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1. Team

Head of project-team
Frédéric Bonnans [ DR Inria, HdR ]

Administrative assistant
Martine Verneuille [ Al Inria ]

Research scientist
Housnaa Zidani [ Enseignante chercheur, ENSTA ]

Ph. D. student
Romain Apparigliato [ EDF, Logilab ]
Grégory Emiel [ EDF, IMPA ]
Audrey Hermant [ DGA ]
Stefania Maroso [ MESR fellowship until Sept. 06, Ater at Paris VII since ]
Nadia Megdich [ Tunisian fellowship until Sept. 06, Ater at Paris XI since ]
Elisabeth Ottenwaelter [ IUT Paris ]

Post-Doctorant fellow
Pierre Martinon [ since November 1st ]

Visiting scientist
Pablo Lotito [ Pladema, Argentine, 2 weeks ]
Hector Ramirez-Cabrera [ Université du Chili |
Mikhail Solodov [ IMPA - Rio de Janeiro, 1 week |
Claudia Sagastizdbal [ IMPA - Rio de Janeiro, 1 week ]

Student intern
Matthieu Jardin [ Ecole Polytechnique ]

2. Overall Objectives

2.1. Overall Objectives

To develop new algorithms in deterministic and stochastic optimal control, and deal with associated applica-
tions, especially for aerospace trajectories and management for the power industries (hydroelectric resources,
storage of gas and petroleum).

In the field of deterministic optimal control, our objective is to develop algorithms combining iterative fast
resolution of optimality conditions (of the discretized problem) and refinement of discretization, through the
use of interior point algorithms. At the same time we wish to study multiarcs problems (separations, rendez-
vous, formation flights) which necessitates the use of decomposition ideas.

In the field of stochastic optimal control, our first objective is to develop fast algorithms for problems of
dimension two and three, based on fast computation of consistent approximations as well as splitting methods.
The second objective is to link these methods to the stochastic programming approach, in order to deal with
problems of dimensions greater than three.



2 Activity Report INRIA 2006

3. Scientific Foundations

3.1. Scientific Foundations

For deterministic optimal control problems there are basically three approaches. The so-called direct method
consists in an optimization of the trajectory, after having discretized time, by a nonlinear programming solver
that possibly takes into account the dynamic structure; see Betts [32]. The indirect approach eliminates control
variables using Pontryagin’s maximum principle, and solves the resulting two-points boundary value problem
by a multiple shooting method. Finally the dynamic programming approach solves the associated Hamilton-
Jacobi-Bellman (HJB) equation, which is a partial differential equation of dimension equal to the number n of
state variables. This allows to find the global minimum, whereas the two other approaches are local; however,
it suffers from the curse of dimensionality (complexity is exponential with respect to n).

There are various additional issues: decomposition of large scale problems, simplification of models (leading
to singular perturbation problems), computation of feedback solutions.

For stochastic optimal control problems there are essentially two approaches. The one based on the (stochastic)
HIJIB equation has the same advantages and disadvantages as its deterministic counterpart. The stochastic
programming approach is based on a finite approximation of uncertain events called a scenario tree (for
problems with no decision this boils down to the Monte Carlo method). Their complexity is polynomial with
respect to the number of state variables but exponential with respect to the number of time steps. In addition,
various heuristics are proposed for dealing with the case (uncovered by the two other approaches) when both
the number of state variables and time steps is large.

4. Application Domains

4.1. Application Domains

Aerospace trajectories (rockets, planes), automotive industry (car design), chemical engineering (optimization
of transient phases, batch processes).

Storage and management, especially of natural and power resources, portfolio optimization.

5. Software

5.1. Software

We have presently two research softwares. The first is an implementation of interior point algorithms for
trajectory optimization, and the second is an implementation of fast algorithms for bidimensional HJB
equations of stochastic control.

6. New Results

6.1. Trajectory optimization

6.1.1. Second-order Conditions for State Constrained Optimal Control
Participants: F. Bonnans, A. Hermant.
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We have studied state-constrained optimal control problems with only one control variable and one state
constraint, of arbitrary order. We consider the case of finitely many boundary arcs and touch times. We obtain
a theory of second-order conditions without gap, in which the difference between second-order necessary or
sufficient conditions is only a change of an inequality into a strict inequality. This allows us to characterize the
second-order quadratic growth condition, using the second-order information.

6.1.2. Analysis of the shooting algorithm

6.1.3

6.1.4.

Participants: F. Bonnans, A. Hermant.

We have studied the shooting algorithm for optimal control problems with a scalar control and a regular
scalar state constraint. Additional conditions are displayed, under which the so-called alternative formulation
is equivalent to Pontryagin’s minimum principle. The shooting algorithm appears to be well-posed (invertible
Jacobian), iff (i) the no-gap second order sufficient optimality condition holds, and (ii) when the constraint
is of order ¢ > 3, there is no boundary arc. Stability and sensitivity results without strict complementarity at
touch points are derived using Robinson’s strong regularity theory, under a minimal second-order sufficient
condition. The directional derivatives of the control and state are obtained as solutions of a linear quadratic
problem. The result is published in [23].

Structural stability of Pontryaguine extremals for first-order state constraints
Participants: F. Bonnans, A. Hermant.

Assuming well posedness of a first-order state constraint and weak second-order optimality conditions
(equivalent to uniform quadratic growth) we show that boundary arcs are structurally stable, and that touch
point can either remain so, vanish or be transformed into a single boundary arc. This is the first result of this
type. It follows that the shooting algorithm (properly adapted to the possible structural transformations) is
well-posed in this case again.

The result is published in [23].

Multidimensional singular arcs

Participants: F. Bonnans, P. Martinon, E. Trélat (Univ. Orléans), J. Laurent-Varin (Direction des lanceurs,
CNES Evry).

We just started in November 2006 a study of the multidimensional singular arc that can occur in the
atmospheric flight of a launcher. The physical reason for not having a bang-bang control (despite the fact
that the hamiltonian function is affine w.r.t. the control, is that aerodynamic forces may make a high speed
ineffective. Our preliminary results suggest that we have an effective means for computing such extremals.

6.2. Antidiffusive schemes for first order HJB equations

Participants: N. Megdich, H. Zidani.

In the framework of the thesis of N. Megdich, we have continued the study of numerical schemes for HIB
equations coming from optimal control problems with state constraints (RDV problems, target problems,
minimal time). When some controlability assumptions are not satisfied, the solution of the HIB equation is
discontinuous and the classical schemes, relying on finite diffrences or/and interpolation technics, provide
poor quality approximation. In fact, these schemes lead to an increasing loss of precision around the
discontinuities as well as for long time approximations. Hence, the numerical solution is unsatisfying for
long time approximations even in the continuous case.

We prove the convergence of a non-monotone scheme for one-dimensional Hamilton-Jacobi-Bellman equa-
tions of the form u; + max (f(z,a)u,) = 0, u(0,z) = ug(z). The scheme is related to the HIB-Ultra-Bee
a

scheme suggested in [1], [13], which has an anti-diffusive behavior, but where the convergence was not proved.
In our approach we can consider discontinous initial data ug. In particular we show a first-order convergence of
the scheme, in L'-norm (i.e. an error bounded by a constant times Ax where Az is the mesh size) towards the
viscosity solution. We also illustrate the non-diffusive behavior of the scheme on some numerical examples.
A corresponding preprint is under preparation.
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Let us stress on that our scheme is explicit and is non-monotone (neither e-monotone in the sense of R.
Abgrall [28]). As far as we know, there are few non-monotone scheme that has been proved to converge for
HIJ equations (see also Lions and Souganidis [37] for an implicit non-monotone scheme).

6.3. Numerical methods for HJB equation
6.3.1. Splitting

Participants: F. Bonnans, H. Zidani, E. Ottenwaelter.

We have continued the study of splitting algorithms for solving the HIB equation of stochastic control. We
have clarified the issue of monotonicity and consistency of such algorithms. It appears unfortunately that
monotonicity and consistency occur only under quite restrictive hypothesis.

6.3.2. A numerical method for a stochastic impulse control problem. Some results on Howard

algorithm
Participants: F. Bonnans, S. Maroso, H. Zidani.

In the framework of the thesis of S. Maroso, we have studied an implementable scheme for solving the HIB
equation for stochastic impulse control problem. Our scheme is based on the cascade approach that we have
already used in [16], to study the error estimates for the numerical approximation of the impulse HIB equation.
At each (each) step of our algorithm, we have to solve an obstacle problem. We suggest to perform this
resolution by doing a given number of iterations of policy algorithm (also called Howard algorithm).

We also study some convergence results for the policy algorithm. More precisely, we give a simple proof of a
superlinear convergence of the policy iterations when applied to solve a problem in the following setting:

Max,c 4~ (A() X — f(a);

here, the output is the vector X ey , A being a compact set, and for o € AN A(«) is a monotone matrix and
f(a)isavector inA™ . The main idea in our proof is the formulation of the Howard algorithm as a semi-smooth
Newton’s method applied to find the zero of the function F' defined by:

F(X):=Maxgean(A(a)X — f(a).
We prove also that the function F' is differentiable in a weak sense (slant differentiability) [38], [36]

On the other hand, we prove that the Howard algorithm used for solving an obstacle problem:

Max(MX — b, X —¥) =0,
is strictly equivalent to the Primal-dual algorithm introduced by Ito-Kunich [36]. For more details, see [10].

6.3.3. Numerical approximation for a super-replication problem
Participants: S. Maroso, H. Zidani.

In a financial market, consisting in a non-risky asset and some risky assets, people are interested to study the
minimal initial capital needed in order to super-replicate a given contingent claim, under gamma constraints.
Many authors have studied this problem in theoretical point of view [35], [33], [34].

In collaboration with O. Bokanowski!, and B. Bruder?, we study a super-replication problem in dimension
2. The main difficulty for this problem comes from the non-boundedness of the control set. First we give a
characterisation of the value function ¢ as unique viscosity solution of an HIB equation:

11ab.J acque-Louis Lions, Paris 7
21 ab. Probabilités et modzles alatoires, Paris 7. Also at Soc. Générale
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A~ (J(t, 2, y, DI(t,2,y),D*I(t, x,y))) =0,  z,y€ (0,+00). (1)

where J is a symetric matrix differential operator associated to the Hamiltonian, and where A~ (.J) denotes
the smallest eigenvalue of J.

The advantage of the above HJB equation lies on the fact that the operator J does not depend on the control
variable, but the "non standard" form of the equation could lead us to think that it is not-useful. However, from
standard calculations, we obtain a simple formulation of (1) in the following form:

||mHin1 al J(t,x,y, DO(t, ,y),D*I(t,z,y))a =0,  x,y € (0,+00). 2

In this new formulation the variable «v can be seen as a bounded control variable.

We study an approximation scheme for the equation (2) based on the generalized finite differences algorithm
introduced in [6], [4]. We prove the existence, uniqueness of a bounded discrete solution. We also verify the
monotonicity and stability of the scheme. Moreover, we give a consistance error approximation. Then by using
the same arguments as in [30], we prove the convergence of the discrete solutions towards the value function
1, when the discretization step size tends to 0.

A preliminary version of this work is presented in the thesis of S. Maroso, while a complete version will be
submitted as an INRIA report.

6.4. Short and middle term electricity production planning

6.4.1. Efficient optimization technique for weekly unit commitment
Participants: R. Apparigliato, J.P. Vial, R. Zorgati.

The Unit Commitment Problem (UCP) consists of defining the minimal-cost power generation schedule for a
given set of power plants. Due to many complex constraints, the deterministic UCP, even in its deterministic
version, is a challenging large-size, non-convex, non-linear optimization problem, but there exist nowadays
efficient tools to solve it. For a very short term horizon, the deterministic UCP is satisfactory; it is currently
used for the daily scheduling in an industrial way. For the two/four-week time horizon which we are concerned
with, uncertainty become significant and cannot be ignored anymore, making it necessary to treat the UCP as a
stochastic problem. Dealing with uncertainty introduces a level of complexity that is of an order of magnitude
higher than in the deterministic case. Thus, there is a need to design new stochastic optimization techniques
and models, that are implementable in an industrial context.

Contribution. Among possible tools, robust optimization offers promising opportunities. It has the very
attractive property of leading to computationally tractable problems. To investigate this new approach, we
focused our investigations on integrating the uncertainty on water inflows in the management of a hydraulic
valley. To account for the progressive unfolding of uncertainty and the opportunity to take corrective, or
recourse, actions, we modeled future decisions as linear functions of observed past inflows. These so-
called linear decision rules restrict the field of possible future recourse but still capture a good deal of the
adaptive feature of real-time management. We implemented the robust optimization approach on a small but
representative valley with a one week horizon. We simulated the performance of the obtained on a large
sample of randomly generated scenarios. In view of the lack of readily available alternatives, we benchmarked
the robust optimization against a simple enough a deterministic policy with daily revision. The latter approach
is quite close to operational practice: the one-day ahead controls are those obtained by optimizing a one-week
deterministic model; the model is revised on a daily basis to account for the actual water levels in the reservoirs.
We could have used a similar periodic review scheme with the robust optimization scheme, but, even though
it is perfectly implementable at the operation level, it turned out to be computationally too expensive in the
extensive simulation runs. This has put the robust optimization in a clear disadvantage with respect to the



6.4.2.

6 Activity Report INRIA 2006

deterministic policy with periodic review. Nevertheless, the robust approach reduces violations of the volume
constraints from 75% to 95%. This improvement is obtained at the expense of modest 0.5% increase of the
production cost in comparison with the cost of the deterministic technique. Two EDF’s internal reports are in
progress ([25],[26]).

In the newt year, we’ll study the problem of management of the margin of production, defined as the
assessment between the offer and the demand. This problem can be formulated as finding optimal decisions,
according to an economical criterion, for hedging against supply shortage or for selling the positive margin of
production. A EDF’s report is in progress ([27]).

Solving the French optimal power planning problem in the midterm via dynamic bundle
methods
Participants: G Emiel [edf, impa], C. Sagastizdbal.

We are interested in the use of bundle methods to solve large-scale mixed-integer problems, possibly
nonconvex. Specifically, we consider optimization problems arising in electrical power management. Given an
electric generation mix, the aim is to minimize production costs subject to operating constraints of generation
units and other external constraints, like network flow capacities. There are many different problems fitting
such a large framework. In particular, the time horizon chosen for the scheduling highly determines the
specificity of problems. Short, middle and long term decisions have their own peculiarities that need to be
reflected in the modeling. While short term problems are generally modeled in a deterministic framework, for
longer terms, inherent uncertainties may result in poor solutions if a deterministic model is still used. Consider
for instance the French case, where winter demand has uncertainties reaching up to several thousands of
MW. When comparing this value to typical peak loads (70000 MW), we see that for the modeling to yield
any significant values, it must explicitly incorporate the stochastic nature of the problem. For the mid-term
problem we are interested to solve, uncertainty is represented by a scenario tree, composed by many nodes
representing all possible values of the demand, at each given time step.

A solution approach introduced in [29] based on stochastic Lagrangian relaxation, can be applied to solve this
problem. However, since the relaxed constraints involve satisfaction of demand at each node, the dimension of
the dual problem increases with the size of the scenario tree. In addition, demand constraints are formulated
as 3 different equations at each node, corresponding to 3 blocks: base, average, and peak demand. As a result,
the dual dimension becomes very soon too big to be dealt with (from the nondifferentiable point of view, a
problem with more than 10° variables is considered “large scale”.

Instead of dualizing all the constraints at once, an alternative approach is to choose at each iteration subsets
of constraints to be dualized. In this dynamical relaxation, subsets J have cardinality |J| much smaller
than the original one. As a result, the corresponding dual function is manageable from the nondifferentiable
optimization point of view.

Such dynamic relaxation could be done according to some rule depending on which multipliers are active, for
example (i.e., analyzing at which nodes and blocks the demand is not satisfied). From the dual point of view,
this approach yields multipliers with varying dimensions and a dual objective function that changes along
iterations.

Based on [31], we discuss how to apply a bundle dynamic methodology to solve this kind of dual problems,
putting a particular emphasis on the specific structure of the considered power management problem. We also
investigate alternative approaches, related to the so-called incremental methods.

Work in progress.

7. Contracts and Grants with Industry

7.1. Aerospace applications

We are finalizing a contract with CNES whose subject is the optimization of launcher trajectories when the
atmospheric flight may have a singular arc.
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7.2. Electricity production planning

We have two contracts with EDF, related to the CIFRE theses of G. Emiel et R. Apparigliato.

7.3. Trajectory optimization

We have agreements of cooperation with Onera and CNRS concerning the studies on transfer or orbits for
low-thrust satellites, and optimal trajectories for future launchers.

8. Other Grants and Activities

8.1. International collaborations

e  With Claudia Sagastizdbal, IMPA, Rio de Janeiro : we are currently analysing some approaches for
stochasting programming, with application to the production of electricity.

8.2. Visiting Scientists

C. Sagastizdbal and Mikhail Solodov (IMPA - Brazil), Hector Ramirez-Cabrera (DIM - Chile), Pablo Lotito
(Argentina).

9. Dissemination

9.1. Teaching

e F. Bonnans

1. Associate Professor , Ecole Polytechnique (50 h) , and Course on Continuous Optimiza-
tion, Mastere de Math. et Applications, Filiere "OJME", Optimisation, Jeux et Modélisa-
tion en Economie, Université Paris VI (18 h).

2. CIMPA School on Applied Math, 28 aout-8 sept. 2006, Castro Urdiales, Cantabria (Es-
pagne). Satellite activity of International Congress of Matematics 2006. Course on "Opti-
mal control of ordinary differential equations" (7h).

e A.Hermant
1. TD (8h) et TP (4h) du cours "Optimisation quadratique" de premicre année de ’ENSTA
2. TP (8h) du cours "Controle des EDP" de troisieme année de ’ENSTA.

e S. Maroso

1. Supervision of numerical work (4h) and exercices (8h), "Quadratic Optimization" course,
first year at ENSTA.

2. Supervision of exercices (10h), "Differentiable Optimization" course, second year at
ENSTA.

e H. Zidani - Professeur at ENSTA (70h)
1. "Quadratic Optimization" course, first year at ENSTA.
2. "Front propagation" course, third year at ENSTA.
3. Optimal Control and Hamilton-Jacobi-Bellman Equations", third year at ENSTA.

e N. Megdich
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1. Supervision of numerical work (4h) and exercices (8h), "Quadratic Optimization" course,
first year at ENSTA.

2. Course "Linear Control Systems" (30h), Master (1st year) University of Paris-Sud XI.

9.2. Conference and workshop committees, invited conferences

o The Veszprém Optimization Conference: Advanced Algorithms (VOCAL). December 13-15, 2006,
Veszprém, Hungary F. Bonnans, invited plenary speaker

e Eccomas 2006 Egmond aan Zee, The Netherlands, September 5-8, 2006. F. Bonnans, member of
Scientific Committee.

e XIX ISMP : International Symposium on Mathematical Programming. Rio de Janeiro, July 30-
August 4, 2006. F. Bonnans, International Programme Committee.
G. Emiel (attendant).
Talk by F. Bonnans "Second-Order Optimality Conditions and Sensitivity Analysis for State-
Constrained Otimal Control Prolems".

e New Trends in Viscosity Solutions and Nonlinear PDE. Lisbonne July 24-28.
Talks by S. Maroso : “Error estimates for stochastic control problem with unbounded control” and
N. Megdich : “An anti-dissipative fast method for control problems with state constraints”.

e ROCOND: Robust Control Design. July 5-7, - Toulouse. F. Bonnans, member of scientific commit-
tee.

e  Workshop on Advances in Continuous Optimization, Reykjavik, Iceland, 30 June-1 July 2006.
Talk by A. Hermant : “No-gap Second-order Optimality Conditions for State Constrained Optimal
Control Problems”.

Minisymposium "Quantitative Methods for Hamilton-Jacobi Equations and Applications", Torino
04/07/2006. H. Zidani invited speaker.

e EURO XXI: 21st European Conference on Operational Research. Reykjavik, Iceland, July 2-5, 2006.
Talk by F. Bonnans “Fast computation of the leastcore and prenucleolus of cooperative games”.

e 13th IFAC Workshop on Control Applications of Optimisation CAO’06 . 26 - 28 April 2006, ENS
Cachan, France. F. Bonnans, co-chair of International Programme Committee.

e Seminar of the 3" Romand cycle of Operational Research organized by the Swiss Association of
Operational Research, Federal Polytechnic School of Lausanne, HEC Geneve and University of
Fribourg, March 2006. R. Apparigliato, attendant. http://roso.epfl.ch/3emecycle/,

e Journée "Propagation de fronts et applications", CERMICS-ENPC 07/03/2006, H. Zidani, invited
speaker.

e Conf. AMAMEF (finance), Rocquencourt, February 1-3, 2006. Talk by S. Maroso “Error estimates
for a stochastic impulse control problem”.

e  Séminaire a Tours. S. Maroso "Analyse numrique d’un problme de contrle stochastique avec contrle
non born".

e Seminar of Optimization, IMPA, Rio de Janeiro.

Talk by G. Emiel "Solving the mid-term production planning problem of energy systems".
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