
epor t

d ' c t i v i ty

2006

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VASY

Validation of Systems

Rhône-Alpes

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/vasy.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ra.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Introduction 1
2.2. Models and Verification Techniques 2
2.3. Languages and Compilation Techniques 2
2.4. Implementation and Experimentation 3

3. Application Domains . 3
3.1. Application Domains 3

4. Software . 3
4.1. The CADP Toolbox 3
4.2. The TRAIAN Compiler 5

5. New Results . 6
5.1. Models and Verification Techniques 6

5.1.1. The CÆSAR_SOLVE Library 6
5.1.2. The BISIMULATOR Tool 6
5.1.3. The EVALUATOR Tool 7
5.1.4. The REDUCTOR and DETERMINATOR Tools 8
5.1.5. Compositional Verification Tools 8
5.1.6. Parallel and Distributed Verification Tools 9
5.1.7. Other Tool Developments 10

5.2. Languages and Compilation Techniques 11
5.2.1. Compilation of LOTOS 11
5.2.2. Compilation of E-LOTOS and LOTOS NT 11
5.2.3. Source-Level Translations between Concurrent Languages 12

5.3. Case Studies and Practical Applications 14
6. Contracts and Grants with Industry .16

6.1. The FormalFame Plus Contract 16
6.2. The Multival Project 17
6.3. The OpenEmbeDD Project 17
6.4. The Topcased Project 17
6.5. Forthcoming Projects 18

7. Other Grants and Activities .18
7.1. National Collaborations 18
7.2. International Collaborations 19
7.3. Visits and Invitations 19

8. Dissemination . 20
8.1. Software Dissemination and Internet Visibility 20
8.2. Program Committees 20
8.3. Lectures and Invited Conferences 21
8.4. Teaching Activities 22
8.5. Miscellaneous Activities 22

9. Bibliography . 23

1. Team
Head of Team

Hubert Garavel [DR2 INRIA]
Administrative Assistant

Elodie Toihein
Inria Staff

Radu Mateescu [CR1 INRIA]
Frédéric Lang [CR1 INRIA]
Wendelin Serwe [CR2 INRIA]

Software Engineers
David Champelovier
Marie Vidal [since September 1st, 2006]

Post-Doctoral Fellows
Gwen Salaün [until December 10, 2006]
Olivier Ponsini [since October 2nd, 2006]

Ph. D. Students
Christophe Joubert [until January 4, 2006]
Jan Stoecker [since September 1st, 2006]

Student Interns
Jérôme Fereyre [CNAM Grenoble, until November 29, 2006]
Nathalie Lépy [CNAM Grenoble, until August 11, 2006]
Abdul Malik Khan [Université Joseph Fourier (Grenoble), until June 30, 2006]
Damien Thivolle [EPITA Paris, until June 30, 2006]

2. Overall Objectives

2.1. Introduction
Created on January 1st, 2000, the VASY project focuses on formal methods for the design of reliable systems.

We are interested in any system (hardware, software, telecommunication) that comprises asynchronous
concurrency, i.e., any system whose behavior can be modeled as a set of parallel processes governed by
interleaving semantics.

For the design of reliable systems, we advocate the use of formal description techniques together with software
tools for simulation, rapid prototyping, verification, and test generation.

Among all existing verification approaches, we focus on enumerative verification (also known as explicit state
verification) techniques. Although less general than theorem proving, these techniques enable an automatic,
cost-efficient detection of design errors in complex systems.

Our research combines two main directions in formal methods, the model-based and the language-based
approaches:

• Models provide mathematical representations for parallel programs and related verification prob-
lems. Examples of models are automata, networks of communicating automata, Petri nets, binary
decision diagrams, boolean equation systems, etc. From a theoretical point of view, research on
models seeks for general results, independently from any particular description language.

• In practice, models are often too elementary to describe complex systems directly (this would be
tedious and error-prone). Higher level formalisms are needed for this task, as well as compilers that
translate high level descriptions into models suitable for verification algorithms.

2 Activity Report INRIA 2006

To verify complex systems, we believe that model issues and language issues should be mastered equally.

2.2. Models and Verification Techniques
By verification, we mean comparison — at some abstraction level — of a complex system against a set of
properties characterizing the intended functioning of the system (for instance, deadlock freedom, mutual
exclusion, fairness, etc.).

Most of the verification algorithms we develop are based on the labeled transition systems (or, simply,
automata or graphs) model, which consists of a set of states, an initial state, and a transition relation between
states. This model is often generated automatically from high level descriptions of the system under study,
then compared against the system properties using various decision procedures. Depending on the formalism
used to express the properties, two approaches are possible:

• Behavioral properties express the intended functioning of the system in the form of automata (or
higher level descriptions, which are then translated into automata). In such a case, the natural
approach to verification is equivalence checking, which consists in comparing the system model
and its properties (both represented as automata) modulo some equivalence or preorder relation.
We develop equivalence checking tools that compare and minimize automata modulo various
equivalence and preorder relations; some of these tools also apply to stochastic and probabilistic
models (such as Markov chains).

• Logical properties express the intended functioning of the system in the form of temporal logic
formulas. In such a case, the natural approach to verification is model checking, which consists
in deciding whether the system model satisfies or not the logical properties. We develop model
checking tools for a powerful form of temporal logic, the modal µ-calculus, which we extend with
typed variables and expressions so as to express predicates over the data contained in the model.
This extension (the practical usefulness of which was highlighted in many examples) provides for
properties that could not be expressed in the standard µ-calculus (for instance, the fact that the value
of a given variable is always increasing along any execution path).

Although these techniques are efficient and automated, their main limitation is the state explosion problem,
which occurs when models are too large to fit in computer memory. We provide software technologies
(see § 4.1) for handling models in two complementary ways:

• Small models can be represented explicitly, by storing in memory all their states and transitions
(exhaustive verification);

• Larger models are represented implicitly, by exploring only the model states and transitions needed
for the verification (on the fly verification).

2.3. Languages and Compilation Techniques
Our research focuses on high level languages with an executable and formal semantics. The former require-
ment stems from enumerative verification, which relies on the efficient execution of high level descriptions.
The latter requirement states that languages lacking a formal semantics are not suitable for safety critical sys-
tems (as language ambiguities usually lead to interpretation divergences between designers and implementors).
Moreover, enumerative techniques are not always sufficient to establish the correctness of an infinite system
(they only deal with finite abstractions); one might need theorem proving techniques, which only apply to
languages with a formal semantics.

We are working on several languages with the above properties:

• LOTOS is an international standard for protocol description (ISO/IEC standard 8807:1989), which
combines the concepts of process algebras (in particular CCS and CSP) and algebraic abstract
data types. Thus, LOTOS can describe both asynchronous concurrent processes and complex data
structures. We use LOTOS for various industrial case studies and we develop LOTOS compilers,
which are part of the CADP toolbox (see § 4.1).

Project-Team VASY 3

• We contributed to the definition of E-LOTOS (Enhanced-LOTOS, ISO/IEC standard 15437:2001),
a deep revision of LOTOS, which tries to provide a greater expressiveness (for instance, by
introducing quantitative time to describe systems with real-time constraints) together with
a better user friendliness. Our contributions to E-LOTOS are available on the WEB (see
http://www.inrialpes.fr/vasy/elotos).

• We are also working on an E-LOTOS variant, named LOTOS NT (LOTOS New Technology) [10],
[1], in which we can experiment new ideas more freely than in the constrained framework of
an international standard. Like E-LOTOS, LOTOS NT consists of three parts: a data part, which
allows the description of data types and functions, a process part, which extends the LOTOS process
algebra with new constructs such as exceptions and quantitative time, and modules, which provide
for structure and genericity. Both languages differ in that LOTOS NT combines imperative and
functional features, and is also simpler than E-LOTOS in some respects (static typing, operator
overloading, arrays), which should make it easier to implement. We are developing several tools for
LOTOS NT: a prototype compiler named TRAIAN (see § 4.2), a translator from (a subset of) LOTOS
NT to LOTOS (see § 5.2.2), and an intermediate semantic model named NTIF (New Technology
Intermediate Form) [6].

2.4. Implementation and Experimentation
As much as possible, we try to validate our results by developing tools that we apply to complex (often
industrial) case studies. Such a systematic confrontation to implementation and experimentation issues is
central to our research.

3. Application Domains
3.1. Application Domains

The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are virtually
applicable to any system or protocol made of distributed agents communicating by asynchronous messages.
The list of recent case studies performed with the CADP toolbox (see in particular § 5.3) illustrates the diversity
of applications:

• Hardware architectures: asynchronous circuits, bus arbitration protocols, cache coherency protocols,
hardware/software codesign;

• Databases: transaction protocols, distributed knowledge bases, stock management;
• Consumer electronics: audiovisual remote control, video on-demand, FIREWIRE bus, home net-

working;
• Security protocols: authentication, electronic transactions, cryptographic key distribution;
• Embedded systems: smart-card applications, air traffic control;
• Distributed systems: virtual shared memory, distributed file systems, election algorithms, dynamic

reconfiguration algorithms, fault tolerance algorithms;
• Telecommunications: high speed networks, network management, mobile telephony, feature interac-

tion detection;
• Human-machine interaction: graphical interfaces, biomedical data visualization, etc.

4. Software
4.1. The CADP Toolbox

Participants: David Champelovier, Hubert Garavel [contact person], Christophe Joubert, Frédéric Lang, Radu
Mateescu, Wendelin Serwe.

http://www.inrialpes.fr/vasy/elotos

4 Activity Report INRIA 2006

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known as
CÆSAR/ALDÉBARAN Development Package), a toolbox for protocols and distributed systems engineering
(see http://www.inrialpes.fr/vasy/cadp). In this toolbox, we develop the following tools:

• CÆSAR.ADT [2] is a compiler that translates LOTOS abstract data types into C types and C functions.
The translation involves pattern-matching compiling techniques and automatic recognition of usual
types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CÆSAR [9] is a compiler that translates LOTOS processes into either C code (for rapid prototyping
and testing purposes) or finite graphs (for verification purpose). The translation is done using several
intermediate steps, among which the construction of a Petri net extended with typed variables, data
handling features, and atomic transitions.

• OPEN/CÆSAR [3] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently from any particular high level language. In this respect, OPEN/CÆSAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CÆSAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR_GRAPH, which provides the programming interface for graph exploration,

– CAESAR_HASH, which contains several hash functions,

– CAESAR_SOLVE, which resolves boolean equation systems on the fly,

– CAESAR_STACK, which implements stacks for depth-first search exploration,

– CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

A number of tools have been developed within the OPEN/CÆSAR environment, among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– DETERMINATOR, which eliminates nondeterminism in normal, probabilistic, or stochastic
systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates regular alternation-free µ-calculus formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expression,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo various
equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which allow interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using efficient
compression techniques) and a software environment for handling this format. BCG also plays a key
role in CADP as many tools rely on this format for their inputs/outputs. The BCG environment
consists of various libraries with their programming interfaces, and of several tools, such as:

– BCG_DRAW, which builds a two-dimensional view of a graph,

– BCG_EDIT, which allows to modify interactively the graph layout produced by
BCG_DRAW,

– BCG_GRAPH, which generates various forms of practically useful graphs,

– BCG_INFO, which displays various statistical information about a graph,

– BCG_IO, which performs conversions between BCG and many other graph formats,

http://www.inrialpes.fr/vasy/cadp

Project-Team VASY 5

– BCG_LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

– BCG_MERGE, which gathers graph fragments obtained from distributed graph construc-
tion,

– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

– BCG_TRANSIENT, which performs transient numerical analysis of (extended) continuous-
time Markov chains, and

– XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc. For instance, one can
define recursive functions on sets of states, which allow to specify in XTL evaluation and
diagnostic generation fixed point algorithms for usual temporal logics (such as HML [55],
CTL [51], ACTL [52], etc.).

• The connection between explicit models (such as BCG graphs) and implicit models (explored on the
fly) is ensured by OPEN/CÆSAR-compliant compilers, e.g.:

– CÆSAR.OPEN, for models expressed as LOTOS descriptions,

– BCG_OPEN, for models represented as BCG graphs,

– EXP.OPEN, for models expressed as communicating automata, and

– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes additional tools, such as ALDÉBARAN and TGV (Test Generation based
on Verification) developed by the VERIMAG laboratory (Grenoble) and the VERTECS project team of INRIA
Rennes.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [5] scripting language. Both EUCALYPTUS and SVL provide users with an easy, uniform
access to the CADP tools by performing file format conversions automatically whenever needed and by
supplying appropriate command-line options as the tools are invoked.

4.2. The TRAIAN Compiler
Participants: David Champelovier, Hubert Garavel [contact person], Frédéric Lang.

We develop a compiler named TRAIAN for translating descriptions written in the LOTOS NT language (see
§ 2.3) into C programs, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN performs lexical analysis, syntactic analysis, abstract syntax tree construction,
static semantics analysis, and C code generation for LOTOS NT types and functions.

Although this version of TRAIAN is still incomplete (it does not handle LOTOS NT processes), it already
has useful applications in compiler construction [7]. The recent compilers developed by the VASY project
team — namely AAL, CHP2LOTOS (see § 5.2.3), EVALUATOR 4.0, EXP.OPEN 2.0 (see § 5.1.5), FSP2LOTOS
(see § 5.2.3), LNT2LOTOS (see § 5.2.2), NTIF (see § 2.3), and SVL (see § 5.1.5) — all contain a large amount
of LOTOS NT code, which is then translated into C code by TRAIAN.

Our approach consists in using the SYNTAX tool (developed at INRIA Rocquencourt) for lexical and syntactic
analysis together with LOTOS NT for semantical aspects, in particular the definition, construction, and
traversals of abstract trees. Some involved parts of the compiler can also be written directly in C if necessary.
The combined use of SYNTAX, LOTOS NT, and TRAIAN proves to be satisfactory, as regards both the rapidity
of development and the quality of resulting compilers.

6 Activity Report INRIA 2006

The TRAIAN compiler can be freely downloaded from the VASY WEB site (see http://www.inrialpes.fr/vasy/traian).

5. New Results
5.1. Models and Verification Techniques
5.1.1. The CÆSAR_SOLVE Library

Participant: Radu Mateescu.

CÆSAR_SOLVE is a generic software library for solving boolean equation systems of alternation depth 1 (i.e.,
without mutual recursion between minimal and maximal fixed point equations) on the fly. This library is at
the core of several CADP verification tools, namely the equivalence checker BISIMULATOR (see § 5.1.2),
the model checker EVALUATOR 3.5 (see § 5.1.3), and the minimization tool REDUCTOR 5.0 (see § 5.1.4).
The resolution method is based on boolean graphs, which provide an intuitive representation of dependencies
between boolean variables, and which are handled implicitly, in a way similar to the OPEN/CÆSAR interface
[3].

The CÆSAR_SOLVE library provides five different resolution algorithms. A1 and A2 are general algorithms
based upon depth-first, respectively breadth-first, traversals of boolean graphs. A3 and A4, based upon
memory-efficient depth-first traversals of boolean graphs, are optimized for the case of acyclic, respectively
disjunctive/conjunctive, boolean graphs. A5 is a general algorithm based upon a depth-first traversal of boolean
graphs; it generalizes Tarjan’s algorithm for computing strongly connected components and is much faster
than A1 and A2 when it is invoked many times on the same equation block. All these algorithms can generate
diagnostics explaining why a result is true or false (examples and counterexamples).

In 2006, the CÆSAR_SOLVE library (12, 200 lines of C code) was improved as follows:

• The primitive for writing a boolean equation system to a text file was enhanced in order to write not
only the whole system, but also the portion of the system representing the diagnostic produced after
solving a given boolean variable.

• The primitive for reading a boolean equation system from a text file was enhanced in order to
handle the cases where the equation blocks and the boolean variables in the left-hand sides of the
equations of a block are numbered neither contiguously, nor increasingly. This allows to read text
files containing diagnostics of resolutions, which do not necessarily fulfill these two conditions.

• The primitives for reading and writing a boolean equation system from/to a text file were enhanced
in order to support on the fly compression, which can reduce the size of text files by several
orders of magnitude. This possibility is exploited by BISIMULATOR (see § 5.1.2) and EVALUATOR
(see § 5.1.3).

• The A4 algorithm was enhanced to detect cycles of the boolean graph that contain certain boolean
variables marked by a predicate provided by the user application. This feature is useful for encoding
the evaluation of certain temporal logic properties describing infinite, unfair execution sequences.
Also, a bug was corrected in algorithm A4 when detecting disjunctive/conjunctive boolean graphs.

An article about CÆSAR_SOLVE was published in an international journal [22].

5.1.2. The BISIMULATOR Tool
Participant: Radu Mateescu.

BISIMULATOR is an equivalence checker that takes as input two graphs to be compared (one represented
implicitly using the OPEN/CÆSAR environment, the other represented explicitly as a BCG file) and determines
whether they are equivalent (modulo a given equivalence relation) or whether one of them is included in the
other (modulo a given preorder relation). BISIMULATOR works on the fly, meaning that only those parts of
the implicit graph pertinent to verification are explored. Due to the use of OPEN/CÆSAR, BISIMULATOR can
be applied directly to descriptions written in high level languages (for instance, LOTOS). This is a significant
improvement compared to older tools (such as ALDÉBARAN and FC2IMPLICIT) which only accepted lower
level models (networks of communicating automata).

http://www.inrialpes.fr/vasy/traian

Project-Team VASY 7

BISIMULATOR works by reformulating the graph comparison problem in terms of a boolean equation
system, which is solved on the fly using the CÆSAR_SOLVE library (see § 5.1.1). A useful functionality of
BISIMULATOR is the generation of a “negative” diagnostic (i.e., a counterexample), which explains why two
graphs are not equivalent (or not included one in the other). The diagnostics generated by BISIMULATOR
are directed acyclic graphs and are usually much smaller than those generated by other tools (such as
ALDÉBARAN) that can only generate counterexamples restricted to sets of traces.

In 2006, we continued the development of BISIMULATOR (15, 900 lines of C code). In addition to a bug fix
related to the counterexample generation for branching equivalence:

• A new command-line option was added to BISIMULATOR to apply τ -confluence reduction on the
implicit graph when comparing modulo branching or observational equivalence. When the implicit
graph contains interleavings due to the presence of loosely-coupled parallel processes, this option
can reduce the time and memory required for the verification by up to one order of magnitude.

• The encoding of observational equivalence in terms of boolean equation systems was enhanced in
order to simplify the equations when the explicit graph is deterministic and does not contain τ -
transitions. In this case, observational equivalence becomes identical to τ∗.a equivalence, except for
the states of the implicit graph from which a deadlock state can be reached after zero or more τ -
transitions. These states are now detected during the computation of τ -closures (transitive reflexive
closures over τ -transitions) and used to simplify the equations accordingly. This can reduce the
number of boolean variables by up to 30%.

5.1.3. The EVALUATOR Tool
Participants: Radu Mateescu, Damien Thivolle.

EVALUATOR is a model checker that evaluates a temporal logic property on a graph represented implicitly
using the OPEN/CÆSAR environment. Properties are described in regular alternation-free µ-calculus, a logic
built from boolean operators, possibility and necessity modalities containing regular expressions denoting
transition sequences, and fixed point operators without mutual recursion between least and greatest fixed
points. The input language of the tool also allows to define parameterized temporal operators and to group
them into separate libraries.

EVALUATOR works on the fly, meaning that only those parts of the implicit graph pertinent to verification
are explored. The model checking problem is reformulated in terms of solving a boolean equation system.
A useful feature of EVALUATOR is the generation of diagnostics (examples and counterexamples) explaining
why a formula is true or false.

In 2006, we continued the development of the EVALUATOR 3.5 tool. In particular, the translation in regular
alternation-free µ-calculus of the inevitability operator of ACTL was improved. When using EVALUATOR 3.5
to check temporal formulas containing this operator, the new translation leads to gains in time and memory up
to a factor 8.

We also continued our work (undertaken in 2003) for extending the regular alternation-free µ-calculus with
new operators dedicated to the specification of properties involving data values. This led to a prototype
EVALUATOR 4.0 (37, 600 lines of SYNTAX/LOTOS NT code and 11, 100 lines of C code), which brings the
following enhancements with respect to EVALUATOR 3.5:

• State formulas are extended with data-handling operators inspired from programming languages,
such as “if-then-else” and “case”. Fixed point operators are enhanced with data parameters allowing
arbitrary calculations to be performed on the fly while exploring the graph. Action formulas are
extended with action patterns that extract the data values contained in transition labels and store them
in variables that can be referred to in the formula. Regular expressions occurring inside modalities
are extended with iteration operators ranging over natural intervals, and also with programming
language constructs such as “while”, “until”, and “for”. Finally, special operators are introduced

8 Activity Report INRIA 2006

for capturing states of the graph and manipulating them in formulas; this allows to express non-
standard properties, such as the existence of self-loops (transitions from a state to itself) and past-
time properties (occurence of actions before a certain state). This new language of formulas is called
MCL (Model Checking Language). It supersedes the regular alternation-free µ-calculus accepted as
input by EVALUATOR 3.5.

• The problem of evaluating an MCL formula on the fly amounts to the local resolution of a boolean
equation system, which is performed using the CÆSAR_SOLVE library. The translation consists of
several phases: lexical, syntactic, and semantic analysis of the MCL formula; type checking and
replacement of the derived operators by primitive ones; conversion to positive normal form by prop-
agating negations down to the atomic formulas; generation of modal equation systems containing
parameterized propositional variables in the left-hand sides and modal formulas in the right-hand
sides; elimination of regular expressions by translating them into terms of modalities and fixed point
equations. Then, the resulting modal equation system and the graph (represented implicitly using
the OPEN/CÆSAR environment) are combined together into a boolean equation system (represented
implicitly according to the CÆSAR_SOLVE interface) containing a distinguished variable, whose
local resolution yields the truth value of the MCL formula on the initial state of the graph.

• The translation of a state formula into a modal equation system was optimized in order to maximize
the number of blocks in the final boolean equation system whose corresponding boolean graphs
are disjunctive/conjunctive. These blocks are solved using the memory-efficient algorithm A4
of CÆSAR_SOLVE, which avoids storing the transitions of the boolean graphs (and hence the
transitions of the graph on which the formula is evaluated). In practice, all temporal formulas
built from the operators of CTL, ACTL, and PDL are translated into boolean equation systems
containing only disjunctive/conjunctive blocks, and are therefore evaluated with a quasi-optimal
memory consumption using A4.

The prototype version EVALUATOR 4.0 was successfully tested on 2, 300 examples of MCL formulas and on
all regular alternation-free µ-calculus formulas available in the demo examples of the CADP distribution.

5.1.4. The REDUCTOR and DETERMINATOR Tools
Participants: Frédéric Lang, Radu Mateescu.

The REDUCTOR 4.0 tool of CADP, developed in 2005, implements several forms of (partial or total) graph
reductions. Some of these reductions are obtained by encoding the reduction problem into a boolean equation
system that is solved on the fly using the CÆSAR_SOLVE library (see § 5.1.1).

CADP also contains a tool named DETERMINATOR, which eliminates nondeterminism from ordinary or
stochastic graphs.

In 2006, we released a new version 5.0 of REDUCTOR, together with a new version of DETERMINATOR.
REDUCTOR 5.0 includes several functionalities previously available in DETERMINATOR. The main changes
are the following:

• We fixed a bug in reduction modulo safety equivalence, which caused the generated labeled transition
system to be not minimal in some cases.

• Three new equivalences were added to REDUCTOR, namely trace reduction (previously available
in DETERMINATOR as normal determinization), weak trace reduction (previously available in
DETERMINATOR as determinization with τ -elimination), and τ divergence reduction.

5.1.5. Compositional Verification Tools
Participants: Hubert Garavel, Frédéric Lang.

The CADP toolbox contains various tools dedicated to compositional verification, among which PROJEC-
TOR 2.0, EXP.OPEN 2.0, and SVL play a central role.

PROJECTOR 2.0 implements behavior abstraction [54], [59] by taking into account interface constraints.

Project-Team VASY 9

EXP.OPEN 2.0 explores on the fly the graph corresponding to a network of communicating automata (repre-
sented as a set of BCG files).

SVL (Script Verification Language) is both a high level language for expressing complex verification scenarios
and a compiler dedicated to this language.

In 2006, we enhanced these tools along the following lines:

• We corrected one bug in PROJECTOR 2.0, two bugs in EXP.OPEN 2.0, and four bugs in SVL.

• We enhanced EXP.OPEN 2.0 to convert networks of communicating automata into Petri nets encoded
in the TPN format of the TINA toolbox developed at LAAS-CNRS.

• We added to EXP.OPEN 2.0 a new operator for specifying priorities between the transitions of a
network of communicating automata.

• We extended the SVL language to support the new equivalences available in REDUCTOR 5.0
(see § 5.1.4) and the new features of BISIMULATOR (see § 5.1.2) and EVALUATOR (see § 5.1.3), e.g.,
selection between depth-first or breadth-first search algorithms, selection of algorithms dedicated to
acyclic graphs, etc.

An article on refined interface generation using EXP.OPEN and SVL (see the VASY 2005 activity report) was
published in an international conference [29].

5.1.6. Parallel and Distributed Verification Tools
Participants: Jérôme Fereyre, Hubert Garavel, Radu Mateescu.

Enumerative verification algorithms need to explore and store very large graphs and, thus, are often limited
by the capabilities of one single sequential machine. To push forward the limits, we are studying parallel and
distributed algorithms adapted to the clusters of PCs and networks of workstations available in most research
laboratories.

As a first goal, we focused on parallelizing the graph construction algorithm, which is a bottleneck for
verification, as it requires a considerable amount of memory to store all reachable states. For this purpose, we
developed two tools [8]: DISTRIBUTOR splits the construction of a graph over N machines communicating
using TCP/IP sockets; each machine builds a graph fragment, the distribution of states between the machines
being determined by a static hash function; BCG_MERGE merges the N graph fragments constructed by
DISTRIBUTOR to produce the entire graph.

DISTRIBUTOR 3.0 and BCG_MERGE 3.0 are now properly documented and integrated into CADP. A tool
paper was published at an international conference [27].

In 2006, this work progressed as follows:

• We studied various enhancements of our CÆSAR_NETWORK library, which implements generic
communication primitives for distributed verification tools. We simplified its programming interface
by reducing the number of primitives needed to initialize and terminate a distributed computing
session. We also designed an extension of the GCF (Grid Configuration File) format used by
CÆSAR_NETWORK in order to support the mainstream job schedulers available in clusters and
grids.

• Each graph generated by executing DISTRIBUTOR on a set of machines is represented as a PBG
(Partitioned BCG Graph) file, which consists of a set of graph fragments generated on each machine
and stored as BCG files. The PBG format provides various information for handling these fragments
(number of states and transitions of each fragment, GCF file used to generate the fragments, log
files produced on each machine, etc.). So far, the only tool of CADP handling the PBG format was
BCG_MERGE, which translates a PBG file into a BCG file by merging all fragments into a single
graph. In 2006, we developed four new prototype tools operating on PBG files:

– PBG_CP copies a PBG file and its dependencies (fragments, log files, and GCF file) from
a machine to another,

10 Activity Report INRIA 2006

– PBG_MV moves a PBG file (and its dependencies) between two machines,

– PBG_RM removes a PBG file (and its dependencies), and

– PBG_OPEN provides a distributed algorithm that implements the OPEN/CÆSAR program-
ming interface [3], thus allowing to explore on the fly a PBG file (without merging its
fragments first as BCG_MERGE does).

As a second goal, we aim at parallelizing on the fly verification itself. Because the CÆSAR_SOLVE library
(see § 5.1.1) is our central verification engine for both model checking, e.g., in the EVALUATOR tool
(see § 5.1.3), and equivalence checking, e.g., in the BISIMULATOR (see § 5.1.2) and REDUCTOR (see § 5.1.4)
tools, we have been designing a distributed version of the CÆSAR_SOLVE library to solve boolean equation
systems on the fly using several machines.

In 2006, we continued the development of this library. The library code (16, 000 lines of C code) was
thoroughly reviewed and simplified. The error management was improved. The primitive for writing a boolean
equation system (or the portion of the system corresponding to the diagnostic of a given variable) to a file
was also implemented in the distributed version of CÆSAR_SOLVE. The distributed resolution algorithm for
boolean equation systems was enhanced to detect on the fly cyclic dependencies between equation blocks (the
presence of such dependencies indicates that the boolean equation system has an alternation depth greater than
one).

An article about the distributed version of CÆSAR_SOLVE and its applications was published in an interna-
tional conference [28].

We developed a new tool, named BES_SOLVE, which supersedes two existing prototype tools for generating
random boolean equation systems and for reading and writing boolean equation systems from/to text files,
respectively. BES_SOLVE allows to compare and cross-check the various resolution algorithms provided by
the sequential and distributed versions of CÆSAR_SOLVE. It constructs a boolean equation system in memory
either by reading it from a (possibly compressed) text file, or by generating it randomly according to various
parameters (number of equation blocks, minimum and maximum number of variables in each block, length of
the equations, percentage of boolean constants, percentage of disjunctive and conjunctive variables in the right-
hand sides of the equations, seed value for initializing the random number generator, etc.). Then, a boolean
variable defined in some equation block of the boolean system can be solved by invoking any sequential
or distributed algorithm of CÆSAR_SOLVE. BES_SOLVE served to experiment intensively the resolution
algorithms and allowed to correct a bug in algorithm A4 of the sequential version of CÆSAR_SOLVE.

5.1.7. Other Tool Developments
Participants: David Champelovier, Jérôme Fereyre, Hubert Garavel, Frédéric Lang, Nathalie Lépy, Radu
Mateescu, Wendelin Serwe, Marie Vidal.

We undertook the design of an integrated development environment for CADP within the ECLIPSE framework.
This environment comprises both a LOTOS editor and a graphical user-interface (inspired from EUCALYPTUS
but based on ECLIPSE) for the CADP tools.

Additionally, we improved the following CADP tools and libraries:

• We fixed one bug in the CAESAR_REGEXP library and two bugs in XTL.

• We enhanced DETERMINATOR and BCG_MIN to support double precision floating point numbers.

• We improved the EUCALYPTUS graphical user-interface to provide access to all recent features and
tools of CADP.

• We added a new CADP demo example (WEB services for stock management and an on-line book
auction) and we updated most of the other demo examples to take advantage of the most recent
features and tools of CADP.

Project-Team VASY 11

We continued adapting CADP to the latest computing platforms:

• We finished porting CADP to recent LINUX distributions and MAC OS 10.4 “TIGER”.

• We modified CADP to support recent C compilers (GCC 4, INTEL ICC 9.0, SUN STUDIO 11).

• We improved the portability of CADP by adding new “wrappers”, i.e., shell scripts that make CADP
less dependent on the underlying operating system.

• As regards 64-bit architectures:

– We wrote a portability guide for 64-bit applications.

– We started porting the shell scripts of CADP as well as third party software used by CADP
(e.g., CUDD, SPARSE, TCL-TK/TIX, garbage collector) to 64-bit architectures.

5.2. Languages and Compilation Techniques
5.2.1. Compilation of LOTOS

Participants: Hubert Garavel, Wendelin Serwe.

The CADP toolbox contains several tools dedicated to the LOTOS language, namely: the CÆSAR.ADT
compiler [2] for the data type part of LOTOS, the CÆSAR compiler [9] for the process part of LOTOS, and
the CÆSAR.INDENT pretty-printer.

In 2006, we performed maintenance activities for these tools (two bugs fixed in CÆSAR, one bug fixed in the
CÆSAR.BDD tool invoked by CÆSAR, and two enhancements in CÆSAR.INDENT). We also improved the C
code generated by CÆSAR and CÆSAR.ADT to avoid warnings emitted by the most recent C compilers.

We pursued our study of state space reduction techniques, our goal being to decrease the size of the graphs
generated by CÆSAR, still preserving strong bisimulation between the original and reduced graphs.

Our work on state space reduction based on live variable analysis resulted in version 7.0 of CÆSAR (previously
named CÆSAR.NEW), which was officially released as part of CADP in July 2006. On all CADP demos,
CÆSAR 7.0 reduced the state space by a mean factor of 45 (we observed a maximum factor of 4,400) as
regards the number of states and by a mean factor of 38 (we observed a maximum factor of 3,100) as regards
the number of transitions. This work led to a journal publication [20].

Additionally, W. Serwe experimented further uses of data-flow analysis to improve the efficiency for enumer-
ative verification. A prototype version of CÆSAR was developed and experimented in the framework of the
FORMALFAME PLUS contract (see § 6.1): we obtained a memory reduction by a factor of 1.4 and a time
reduction by a factor of 2.

5.2.2. Compilation of E-LOTOS and LOTOS NT
Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Wendelin Serwe.

As regards the E-LOTOS language — and, more specifically, its LOTOS NT variant elaborated by the VASY
project team — we worked in two directions:

• The TRAIAN compiler (see § 4.2) remained stable in 2006, but we developed a new tool, named
TRAIAN.INDENT, for indenting LOTOS NT programs, similar to the existing tool CÆSAR.INDENT
(see § 5.2.1).

• In the framework of the FORMALFAME PLUS contract (see § 6.1), we continued the development
of a tool suite for the translation from LOTOS NT to LOTOS, which aims at easing the development
of large specifications by BULL and to reuse the existing LOTOS tools for analyzing concurrent
systems described in LOTOS NT. The tool suite consists of a LOTOS/LOTOS NT preprocessing tool
named LPP, a translator from LOTOS NT data types to LOTOS named LNT2LOTOS, and a shell
script named LNT_COMPILE, which calls LPP and LNT2LOTOS.

12 Activity Report INRIA 2006

In 2006, the tool suite was improved as follows:

– The predefined comparison functions (“=”, “<”, “≤”, etc.), which were only available for
enumerated types in 2005, were made available to all constructor types, using a recursive
lexicographic ordering of constructors and constructor fields.

– A new predefined type “sorted list of T ” was added. The elements of a sorted list are
sorted automatically using the order relation “<” on T , which can be either generated
automatically as explained in the previous item, or given by the user.

– We implemented the translation from LOTOS NT functions into LOTOS equations, starting
from an algorithm [64] that translates into Horn clauses a subset of the C language
(“while” loops without “break” statements and functions with value passing parameters
only and a single “return” statement located at the end of the function). We extended
this algorithm so as to handle reference passing parameters, pattern matching (“case”
statement), loop interruptions (“break” statement), multiple “return” statements within
the body of functions, uncatchable exceptions (“raise” statement), and function name
overloading.

– The LNT_COMPILE tool was improved to allow the generated LOTOS code to be combined
with handwritten LOTOS code and/or C code provided by the user.

LNT2LOTOS is developed using the SYNTAX/TRAIAN technology [7]. It grew from 3, 660 lines
(760 lines of SYNTAX code, 1, 920 lines of LOTOS NT code, and 980 lines of C code) at the end of
2005 up to 17, 300 lines (2, 100 lines of SYNTAX code, 14, 000 lines of LOTOS NT code, and 1, 200
lines of C code) at the end of 2006.

In 2006, we delivered 7 successive versions of the tool suite to BULL, who uses LOTOS NT to
model a critical part of its FAME2 multiprocessor architecture for high-end servers (see § 6.1). A
non-regression test suite of 67 programs representing more than 6, 000 lines of LOTOS NT code was
developed. The reference manual was updated [35] and grew from 29 pages (at the end of 2005) up
to 47 pages (at the end of 2006). A forge was set up under INRIA GFORGE to track bugs and feature
requests, and to serve as a repository where our BULL partners can download the new versions of
the LNT2LOTOS tool suite.

5.2.3. Source-Level Translations between Concurrent Languages
Participants: Hubert Garavel, Abdul Malik Khan, Frédéric Lang, Olivier Ponsini, Gwen Salaün, Wendelin
Serwe.

Although process algebras are, from a technical point of view, the best formalism to describe concurrent
systems, they are not used as widely as they could be. Besides the steep learning curve of process algebras,
which is traditionally mentioned as the main reason for this situation, it seems also that the process algebra
community scattered its efforts by developing too many languages, similar in concept but incompatible in
practice. Even the advent of two international standards, such as LOTOS (in 1989) and E-LOTOS (in 2001),
did not remedy this fragmentation.

To address this problem, we started investigating source-level translators from various process algebras into
LOTOS, so as to widen the applicability of the CADP tools. One first example was the LNT2LOTOS tool suite
(see § 5.2.2). In 2006, we studied also translators for other concurrent languages:

• We considered the process algebra FSP (Finite State Processes) defined in a popular textbook
on concurrency [60]. Continuing the collaboration initiated in 2005 with Jeff Kramer and Jeff
Magee (Imperial College, London, see § 8.3), we removed the ambiguities found in the reference
FSP grammar and provided a new unambiguous LALR(1) grammar for FSP. We redesigned our
FSP2LOTOS prototype, undertaken in 2005, that translated the “basic FSP” fragment (i.e., FSP
without its data part and without syntactic sugar) to LOTOS. The new FSP2LOTOS prototype (5, 000
lines of SYNTAX code, 20, 000 lines of LOTOS NT code, and 500 lines of C code) translates “full
FSP” into LOTOS. It is available on SOLARIS, LINUX, and WINDOWS and has been tested on 10, 500

Project-Team VASY 13

lines of FSP code, including many examples given in the FSP textbook [60].

• In the framework of the FIACRE (see § 7.1), OPENEMBEDD (see § 6.3), and TOPCASED (see § 6.4)
projects, and in cooperation with the LAAS-CNRS and IRIT laboratories, we undertook the definition
of a new intermediate model named FIACRE (Format Intermédiaire pour les Architectures de
Composants Répartis Embarqués). Derived from NTIF [6] and V-COTRE [45], FIACRE will be used
as a pivot formalism between modeling languages (such as AADL, UML, or SYSML) and verification
tools (such as CADP and TINA). After several meetings, intensive technical correspondence (80 e-
mail exchanges), and 8 drafts, we converged to a 14-page document describing FIACRE.

• In the framework of the INRIA/LETI collaboration (see § 7.1), we focused on the process algebra
CHP (Communicating Hardware Processes) for which the TIMA laboratory has developed a circuit
synthesis tool named TAST [65] and which is used by the LETI laboratory to describe complex,
asynchronous circuits at a high abstraction level. The goal is to integrate formal verification into the
design flow of complex microelectronic circuits.

In 2006, we improved the CHP2LOTOS translator by developing code specialisation techniques that
optimize the translation of each channel depending on its profile (i.e., whether and how the CHP
“probe” operator is applied to this channel). Computing channel profiles in a pre-processing step and
optimizing the translation accordingly allows to reduce the state space significantly: on the example
of the FAUST circuit, an asynchronous NoC (Network on Chip) developed at the LETI laboratory
(see § 5.3), we observed a reduction of the number of states (respectively, transitions) by a factor of
89 (respectively, 156).

Our CHP2LOTOS translator (currently, 2, 200 lines of SYNTAX code, 13, 400 lines of LOTOS NT
code, and 3, 900 lines of C code) was extended accordingly. We also added more examples to the
test base (currently, about 500 CHP specifications, corresponding to 14, 500 lines of CHP code).
CHP2LOTOS has been tested on SOLARIS, LINUX, and WINDOWS.

• We also started to investigate the verification of TLM (Transaction Level Model) specifications. Com-
pared to traditional RTL (Register Transfer Level) models, TLM models are more suitable for faster
simulation, simultaneous development of software and hardware, and earlier hardware/software par-
titioning.

Among all TLM languages, SYSTEMC [57] emerges as an industrial standard. SYSTEMC is a
C++ library providing both a high-level description language and a simulation kernel. However,
integrating formal verification with a system design flow based on SYSTEMC/TLM is still an open
question as the process scheduler of the SYSTEMC simulation kernel may differ from the actual
hardware behavior.

In this perspective, we are currently investigating the translation of (a TLM subset of) SYSTEMC
into LOTOS or LOTOS NT (see § 5.2.2). For this purpose, we studied the SYSTEMC front-end
PINAPA [61], which we ported to the SOLARIS operating system.

• In collaboration with Gregor Goessler (POPART project), we designed a translator that connects to
CADP the PROMETHEUS tool developed by POPART. This translator [36] takes as input a model in
the BIP format of PROMETHEUS and performs four main tasks:

1. It converts each sequential component of the BIP behavior layer (a typical condition/action
model) into a sequential LOTOS process that will be translated automatically into a labeled
transition system (BCG file) using CADP.

2. It converts the BIP interaction layer into an EXP.OPEN file, which composes the BCG
graphs using synchronization vectors.

3. It takes into account the global constraints expressed in the BIP execution layer either
as invariants, or as interaction constraints that determine which transition can be fired (a
special case of interaction constraints being priorities between transitions).

14 Activity Report INRIA 2006

Such constraints impact the generation of LOTOS and EXP.OPEN described in items 1.
and 2. above in three ways. First, special actions, called observers, are added in LOTOS
sequential processes to enable observation of local variables occurring in state invariants
and/or interaction constraints. Second, synchronization vectors between observers are
added to the EXP.OPEN model to identify all states in which the invariants or interaction
constraints are violated. Third, priorities are added to the EXP.OPEN model to cut each
transition that violates some interaction constraints, or whose source state violates some
invariant.

4. It generates an SVL script that manages the generation of the BCG files described in item 2
above. This script can then be extended to explore the state space of the input BIP model
on the fly using EXP.OPEN and other CADP tools.

This translator was integrated as a new module in the PROMETHEUS tool. It was experimented on a
hardware architecture.

5.3. Case Studies and Practical Applications
Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Radu Mateescu, Gwen Salaün, Wendelin
Serwe.

In 2006, the VASY project team also worked on the following case studies:

• We continued our collaboration with Antonella Chirichiello (University “La Sapienza”, Rome) on
the use of LOTOS and CADP to design and verify WEB services. This led to a new publication [26]
describing an e-business application specified in LOTOS, verified with CADP, and translated into the
standard orchestration language BPEL.

• In the context of the SENVA collaboration (see § 7.2), we continued the study (undertaken in 2005)
of a turntable system for drilling products. This industrial critical system is interesting because
its distributed embedded controller is simple enough to have a concise formal description, but
sufficiently complex to require formal analysis. This system was previously specified by CWI and
the University of Eindhoven using several languages (χ, µCRL, PROMELA, and timed automata) and
analyzed with various tools [46].

We formally specified in LOTOS a sequential and a distributed version of the controller embedded
in the turntable system, and we formulated in regular alternation-free µ-calculus a set of safety and
liveness properties characterizing its correct behavior. Using the BISIMULATOR (see § 5.1.2) and
EVALUATOR 3.5 (see § 5.1.3) tools of CADP, we checked the compatibility between both versions
of the controller and their correctness with respect to the temporal properties. This activity led to the
publication of a book chapter [23].

• In the context of the FORMALFAME PLUS contract (see § 6.1), we worked on a critical part of
BULL’s FAME2 multiprocessor architecture, the PAB (Pipeline and Active transaction Block), for
which BULL wrote a LOTOS NT specification (3, 977 lines of LOTOS NT) that was translated to
LOTOS (5, 145 lines of LOTOS) using our LNT2LOTOS tool suite (see § 5.2.2).

This specification was used for two purposes. On the one hand, it allowed to generate execution
traces that were used to test the VERILOG code of the PAB; this allowed BULL to detect coding
errors. On the other hand, it was used to verify the correctness of the PAB protocol itself. Confronted
to state explosion issues, we performed several experiments:

– We first optimized the LOTOS specification, taking into account the symmetries induced by
lists containing the same elements in different order. We introduced sorted lists instead of
simple lists and provided external C code to reduce memory usage. This divided the state
space size by a factor of 2.4 (from 900, 000 states down to 379, 000 states), the generation
time by 37 (from 1 hour 19 minutes to 2 minutes 8 seconds), and the memory usage by 6.3
(from 189 down to 30 MBytes).

Project-Team VASY 15

– Using the DISTRIBUTOR tool running on the GRIMAGE cluster of INRIA Rhône-Alpes (36
processors: 10 bi-OPTERON at 2 GHz and 8 bi-XEON at 3 GHz with 1 GByte RAM each),
we were able to generate a state space of 10 million states and 14 million transitions in 2
minutes.

– Finally, BULL managed to split the PAB specification in two independent parts, replacing
the generation of one single, large graph by the generation of two separate, smaller
graphs. BULL also simplified the specification based on symmetry arguments. After these
simplifications, BULL could generate the graph on a single sequential machine in a few
hours.

• In the context of the INRIA/LETI collaboration (see § 7.1), we pursued the study (undertaken in
2005) of the FAUST NoC (Network on Chip) circuit developed by the LETI laboratory.

In 2006, we focused on the communication interconnect part of FAUST [41], which routes packets
(consisting of several 34-bit flits) between the 23 components of the FAUST circuit. This interconnect
is described in the hardware process calculus CHP (Communicating Hardware Processes) and im-
plemented, at the RTL level, in asynchronous logic. The interconnect has 23 communication nodes,
one per component. Each communication node consists of five input and five output controllers.
Each input controller dispatches incoming flits to one out of four output controllers, and each output
controller arbitrates between four input controllers.

To carry out the compositional verification of an input controller, we used the following steps:

– First, applying the idea of data independence, we reduced the potential state space from
1025 to 5.1016 states by setting parts of the flits to a fixed bit pattern. Then, we further
reduced the state space to a manageable size by considering several scenarios (sequences
of 4 flits) carefully chosen according to the properties to be verified (e.g., data integrity
and correct routing of flits/packets). These two reductions were obtained by introducing
additional CHP processes, called “traffic generators”, which restrict the environment of the
input controller by providing meaningful inputs only. Applying our CHP2LOTOS translator
(see § 5.2.3) to the CHP description of the input controller (500 lines of CHP code)
connected to each traffic generator (about 700 lines of CHP code), we produced a set of
LOTOS specifications in less than one second.

– Second, for each LOTOS specification, we generated the corresponding state space using
the compositional verification techniques of CADP (see § 5.1.5) using a generic SVL script
(41 steps, 450 lines of SVL code); for a typical scenario, the generated state space had
1,300 states and 3,116 transitions, and the largest intermediate state space had 295,893
states and 812,283 transitions.

– Third, we used the equivalence checking and model checking tools of CADP to verify
seven properties, such as absence of deadlocks, correctness of the communication protocol,
integrity of the transmitted data, and correctness of flit/packet routing. These verification
steps were automated using an SVL script (250 lines of SVL code).

We were able to exhibit a routing error in the CHP description. Although this error had been already
found (and fixed) manually during the synthesis of the FAUST circuit (it required more than 500,000
steps to replay the error in the TAST native simulator for CHP), our approach based on CHP2LOTOS
and CADP allowed to detect the error automatically in less than 15 minutes.

This work led to a joint INRIA/LETI publication [34].

• We continued our collaboration with Estelle Dumas, Hidde de Jong, and Delphine Ropers (HELIX
project team of INRIA Rhône-Alpes) for connecting CADP and the GNA (Genetic Network Analyzer)
tool developed by HELIX in order to verify temporal properties of genetic regulatory networks.

16 Activity Report INRIA 2006

GNA provides a simulator of qualitative models of genetic regulatory networks in the form of
piecewise-linear differential equations. The output of the simulator is a Kripke structure (i.e., a state-
transition graph in which the relevant information is associated to states) that can also be exported
by GNA as a labeled transition system, thus enabling a direct connection with CADP. This allows to
enhance GNA with verification features.

In practice, GNA is used mainly by biologists, who are not necessarily familiar with computer science
and formal verification. For this community, we are studying a transparent connection between CADP
and GNA based on a client-server architecture, in which CADP is installed on a single server and
several instances of GNA are running on remote client machines. A client sends Kripke structure files
and temporal properties to the server and gets back verdicts and diagnostics. A prototype connection
based on WEB services was developed and experimented on several biologically-relevant examples.

Other teams also used the CADP toolbox for various case studies. To cite only recent work not already
described in previous VASY activity reports, we can mention:

• the verification of the Transport Layer Security protocol [49],
• the test case generation using mutation-based testing techniques [53], [37],
• the verification of fault-tolerant ERLANG programs [43], [44],
• the solving of scheduling problems using untimed model checking [67], [68],
• the verification of software components [38], [39],
• the formal analysis of an automatic document feeder [63],
• the formal analysis and verification of a digital rights management protocol [58],
• the verification of privacy using observational determinism [56],
• the performability analysis of the European Train Control System [48],
• the verification of a WIFI Internet access system available in airports [40].

Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CÆSAR environments) to build their own research software. We can mention the following develop-
ments:

• an environment for the verification of the VODKA video-on-demand system [66],
• the ADAPTOR tool, developed at the IBISC laboratory (Evry), which allows the automatic generation

of adaptors between differing component interfaces,
• the VeSTA tool [42], [62], developed at the LIFC laboratory (Besançon), which allows the verification

of divergence-sensitive and stability respecting τ -simulation for component-based timed systems,
• the ANNOTATOR tool [69], developed at the university of Málaga (Spain), for the static analysis of

software,
• a framework for model checking socket-based concurrent C programs [70], developed at the

university of Málaga (Spain),
• the VERCORS platform [40] for model checking distributed components, developed by the OASIS

project team at INRIA Sophia-Antipolis.

Finally, a textbook [47] was published, which uses CADP as a software support for teaching concurrency
theory.

6. Contracts and Grants with Industry

6.1. The FormalFame Plus Contract
Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

Project-Team VASY 17

There is a long-standing collaboration between VASY and BULL, which aims at demonstrating that the formal
methods and tools developed at INRIA can be successfully applied to BULL’s multiprocessor architectures.
The objective is to develop a complete and integrated solution supporting formal specification, simulation,
rapid prototyping, verification, and testing.

Between 1995 and 1998, two case studies were successfully tackled using CADP: the POWERSCALE bus
arbitration protocol [50] and the POLYKID multiprocessor architecture [12].

Between 1998 and 2004, the collaboration focused on FAME, the CC-NUMA multiprocessor architecture
used in BULL’s NOVASCALE series of high-performance servers based on INTEL ITANIUM processors. The
CADP tools have been used to validate a crucial circuit of FAME – the FSS (Fame Scalability Switch) – that
implements the cache coherency protocol.

In 2004, the collaboration was renewed by a followup contract named FORMALFAME PLUS, which, in 2005,
was extended for two more years. FORMALFAME PLUS aims at enhancing the performance and usability
of the CADP tools to address the FAME2 multiprocessor architecture under design at BULL for their future
high-end servers.

In 2006, the contributions of VASY to FORMALFAME PLUS were the following:

• We continued the development of our LNT2LOTOS tool suite (see § 5.2.2), which was used by
BULL.

• We experimented various abstraction and verification techniques on a critical part of BULL’s FAME2
multiprocessor architecture (see § 5.3).

The FORMALFAME PLUS contract will find its continuation in the MULTIVAL project (see § 6.2).

6.2. The Multival Project
Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Radu Mateescu, Olivier Ponsini, Wen-
delin Serwe.

MULTIVAL (Validation of Multiprocessor Multithreaded Architectures) is a project of MINALOGIC, the French
pôle de compétitivité dedicated to micro-nano technologies and embedded software for systems on chip
(EMSOC cluster). MULTIVAL addresses verification and performance evaluation issues for three innovative
asynchronous architectures developed by BULL, CEA/LETI, and ST MICROELECTRONICS.

In 2006, MULTIVAL was approved for joint funding by the French government (Fonds de compétitivité des
entreprises) and Conseil général de l’Isère. MULTIVAL started in December 2006 for three years.

6.3. The OpenEmbeDD Project
Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

OPENEMBEDD is a French national project of RNTL (Réseau National des Technologies Logicielles). The
goal of OPENEMBEDD is to develop an open-source, generic, standard software engineering platform for
real-time embedded systems, such as those developed by AIRBUS, CS, FRANCE TELECOM, and THALES.
Within an ECLIPSE framework, this platform will combine the principles of model-driven engineering with
those of formal methods.

OPENEMBEDD started in May 2006 for three years. In 2006, our contributions focused on the identification
of a model-based architecture for CADP and the definition of the FIACRE intermediate model for embedded
systems (see § 5.2.3).

6.4. The Topcased Project
Participants: Hubert Garavel, Frédéric Lang, Nathalie Lépy, Jan Stoecker.

18 Activity Report INRIA 2006

TOPCASED (Toolkit in OPen-source for Critical Application and SystEms Development) is a project of AESE,
the French pôle de compétitivité dedicated to aeronautics, space, and embedded systems. This project gathers
23 partners, including companies developing safety-critical systems such as AIRBUS (leader), ASTRIUM,
ATOS ORIGIN, CS, SIEMENS VDO, and THALES AEROSPACE.

TOPCASED develops a modular, open-source, generic CASE environment providing methods and tools
for embedded system development, ranging from system and architecture specifications to software and
hardware implementation through equipment definition. VASY contributes in the combination of model-driven
engineering and formal methods for asynchronous systems.

TOPCASED started in August 2006 for four years. In 2006, we worked along the following lines:

• We contributed actively to the AIRBUS proposal for adding a behavioral annex to AADL (Architec-
ture Analysis & Design Language), the SAE (Society of Automotive Engineers) standard architecture
description language for embedded real-time systems. The behavioral annex provides structured
statements inspired from NTIF [6] that describe data computations using a “big steps” semantics,
which avoids splitting these computations into many smaller, less efficient steps. The behavioral
annex will be submitted for balloting in early 2007.

• We undertook the design of an integrated development environment for CADP based on
ECLIPSE (see § 5.1.7).

• We started a study of time models so as to identify time models which are both equipped with
effective verification algorithms and appropriate to describe asynchronous systems with data and
time.

H. Garavel is the INRIA representative at the TOPCASED executive committee, for which he served as the
secretary during the elaboration phase of the TOPCASED proposal.

6.5. Forthcoming Projects
Participants: Hubert Garavel, Radu Mateescu.

In 2006, VASY contributed to the submission of the EC-MOAN (Scalable modeling and analysis techniques
to study emergent cell behavior: Understanding the E. coli stress response) proposal, which was accepted
for funding within the NEST PATHFINDER European program. EC-MOAN aims at the development of new,
scalable methods for modeling and analyzing integrated genetic, metabolic, and signaling networks, and the
application of these methods for a better understanding of a bacterial model system. EC-MOAN will start in
February 2007 for three years.

7. Other Grants and Activities
7.1. National Collaborations

The VASY project team plays an active role in the joint research center launched in 2004 between INRIA
Rhône-Alpes and the LETI laboratory of CEA-Grenoble. In co-operation with LETI scientists (Edith Beigné,
François Bertrand, Fabien Clermidy, Yvain Thonnart, and Pascal Vivet), VASY develops software tools
for the design of asynchronous circuits and architectures such as GALS (Globally Asynchronous Locally
Synchronous), NoCs (Networks on Chip), and SoCs (Systems on Chip). In 2006, our work focused on the
CHP2LOTOS translator (see § 5.2.3) and its application to the FAUST architecture (see § 5.3).

Together with the OASIS project team of INRIA Sophia-Antipolis (Antonio Cansado and Eric Madelaine),
the LTCI team of ENST-Paris (Irfan Hamid, Elie Najm, and Sylvie Vignes), the SVF team of the LAAS-
CNRS laboratory (Bernard Berthomieu, Florent Peres, and François Vernadat), and the MVR team of IRIT
(Mamoun Filali), VASY participates to the national action FIACRE (ACI Sécurité Informatique) started in
2004 (see http://www-sop.inria.fr/oasis/fiacre). In 2006, we implemented new interconnections (see § 5.1.5)
between CADP, the TINA toolbox developed by SVF, and the VERCORS platform developed by OASIS. We
also undertook the definition of the FIACRE intermediate model (see § 5.2.3).

http://www-sop.inria.fr/oasis/fiacre

Project-Team VASY 19

Additionally, we collaborated in 2006 with several INRIA project teams:

• HELIX (Rhône-Alpes): applications of model checking to biological systems (Estelle Dumas, Hidde
de Jong, Pedro Monteiro, Michel Page, and Adrien Richard);

• OASIS (Sophia-Antipolis): collaboration in the framework of the FIACRE national action (Antonio
Cansado and Eric Madelaine);

• POPART (Rhône-Alpes): combination of the CADP and PROMETHEUS compositional verification
tools (Gregor Goessler).

Beyond INRIA, we had sustained scientific relations with the following teams:

• LAAS-CNRS laboratory (Toulouse): collaboration in the framework of the FIACRE, OPENEMBEDD,
and TOPCASED projects (Bernard Berthomieu and François Vernadat);

• LIP laboratory (Lyon): until November 2006, R. Mateescu had a part-time (20%) collaboration with
the PLUME team;

• LE2I laboratory (Dijon): since December 2006, R. Mateescu is hosted by the computer science team
of LE2I.

7.2. International Collaborations
The VASY project team of INRIA and the SEN2 team of CWI collaborate in SENVA, a joint research team
on safety-critical systems (see http://www.inrialpes.fr/vasy/senva). Launched in 2004, the SENVA team is
supported by INRIA’s European and International Affairs Department and by CWI. The first three years of
SENVA have been favorably evaluated by a panel of international experts in November 2006.

The VASY project team is member of the FMICS (Formal Methods for Industrial Critical Systems) working
group of ERCIM (see http://www.inrialpes.fr/vasy/fmics). From July 1999 to July 2001, H. Garavel chaired
this working group. Since July 2002, he is member of the FMICS Board, in charge of dissemination actions.
Within FMICS, R. Mateescu contributes to the preparation of a “Formal Methods Handbook”.

H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory, launched in 2005 and chaired
by Luca Aceto.

H. Garavel is a member of the technical committee (ETItorial Board) of the ETI (Electronic Tool Integration)
software development platform (see http://jeti.cs.uni-dortmund.de/).

In addition to our partners in aforementioned contractual collaborations, we had scientific relations in 2006
with several international universities and research centers, including:

• Imperial College (Jeff Kramer and Jeff Magee),

• University of Málaga (Carlos Canal and Pedro Merino) [25], [30], and

• University “La Sapienza” of Rome (Antonella Chirichiello and Benjamin Habegger) [26].

7.3. Visits and Invitations
In 2006, we had the following scientific exchanges:

• Jaco van de Pol (CWI, Amsterdam, The Netherlands) visited us on January 26, 2006.

• Christian Attiogbé (University of Nantes) visited us on March 6, 2006 and gave a talk entitled
“Composants logiciels : spécification, composition et vérification avec Kmelia”.

• Pascal Poizat (University of Evry – Val d’Essonne) visited us on May 15–19, 2006. He gave a talk
entitled “Adaptation logicielle – une approche automatisée basée sur des expressions régulières de
vecteurs de synchronisation”.

http://www.inrialpes.fr/vasy/senva
http://www.inrialpes.fr/vasy/fmics
http://jeti.cs.uni-dortmund.de/

20 Activity Report INRIA 2006

• The annual SENVA seminar was held in Venosc on June 12–14, 2006. In addition to the VASY
project team, Manuel Baclet (ENSEEIHT), Jens Calamé, Natalia Ioustinova, Jaco van de Pol, Michael
Weber, and Anton Wijs (CWI, Amsterdam), Wan Fokking (Free University of Amsterdam), Rodolfo
S. Gomez and Li Su (University of Kent), and Sylvain Peyronnet (EPITA) attended this seminar. The
list of talks is available from http://www.inrialpes.fr/vasy/senva/workshop2006.

• Sylvie Lesmanne, Jacques Abily, and Azedine Abdelli (BULL) visited us on June 29–30, 2006.

8. Dissemination

8.1. Software Dissemination and Internet Visibility
The VASY project team distributes two main software tools: the CADP toolbox (see § 4.1) and the TRAIAN
compiler (see § 4.2). In 2006, the main facts are the following:

• We prepared and distributed 15 successive beta-versions (2004-h, ..., 2004-k, 2005-a, ..., 2005-k) of
CADP, leading to a stable version named CADP 2006 “Edinburgh”, released on December 12, 2006.

• The number of license contracts signed for CADP increased from 345 to 366.

• We were requested to grant CADP licenses for 822 different computers in the world.

• The TRAIAN compiler was downloaded by 59 different sites.

The VASY WEB site (see http://www.inrialpes.fr/vasy) was regularly updated with scientific contents, an-
nouncements, publications, etc.

8.2. Program Committees
In 2006, the members of VASY assumed the following responsibilities:

• H. Garavel was, together with John Hatcliff (Kansas State University), responsible for a special
issue [19] of the STTT (Software Tools for Technology Transfer) journal, which gathers the best
software-oriented papers of TACAS’2003.

• H. Garavel was, together with John Hatcliff (Kansas State University), responsible for a special
issue [18] of the TCS (Theoretical Computer Science) journal, which gathers the best theory-oriented
papers of TACAS’2003.

• H. Garavel was a steering committee member of the PDMC (Parallel and Distributed Methods in
Verification) series of international workshops.

• H. Garavel was a program committee member of TACAS’2006 (12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Vienna, Austria, March 25 –
April 2, 2006).

• R. Mateescu was a program committee member of MSVVEIS’2006 (4th International Workshop
on Modeling, Simulation, Verification, and Validation of Enterprise Information Systems, Paphos,
Cyprus, May 23–24, 2006).

• R. Mateescu was a program committee member of ICCGI’2006 (International Conference on
Computing in the Global Information Technology, Bucharest, Romania, August 1–3, 2006).

• R. Mateescu was a program committee member of FMICS’2006 (11th International Workshop on
Formal Methods for Industrial Critical Systems, Bonn, Germany, August 26–27, 2006).

• H. Garavel was a program committee member of PDMC’2006 (5th International Workshop on
Parallel and Distributed Methods in Verification, Bonn, Germany, August 31, 2006).

• R. Mateescu was a program committee member of EWSA’2006 (3rd European Workshop on
Software Architectures, Nantes, France, September 4–5, 2006).

http://www.inrialpes.fr/vasy/senva/workshop2006
http://www.inrialpes.fr/vasy

Project-Team VASY 21

• R. Mateescu was a program committee member of CAL’2006 (1ère Conférence Francophone sur
les Architectures Logicielles, Nantes, France, September 6–8, 2006).

• H. Garavel was a program committee member of FORTE’2006 (26th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed Systems, Paris, France, September
26–29, 2006).

• R. Mateescu was a program committee member of ICSEA’2006 (International Conference on
Software Engineering Advances, Tahiti, French Polynesia, October 29 – November 1st, 2006).

8.3. Lectures and Invited Conferences
In 2006, we gave talks in several international conferences and workshops (see bibliography below). Addi-
tionally:

• R. Mateescu gave a talk entitled “Vérification à la volée basée sur les systèmes d’équations
booléennes” at the LIFC laboratory (Besançon, France) on January 19, 2006.

• R. Mateescu gave a talk entitled “Modélisation et analyse des systèmes parallèles asynchrones” at
the LE2I laboratory (Dijon, France) on February 8, 2006.

• G. Salaün visited the research group of professors Jeff Kramer and Jeff Magee, Imperial College
(London, UK) between January 19 and February 17, 2006.

• F. Lang gave a talk entitled “Propositions d’extensions temporisées pour NTIF” at ENST (Paris,
France) on February 13–14, 2006.

• G. Salaün gave a talk entitled “How Process Algebra Can Contribute to the Formal Development of
WEB Services” at the University of Málaga (Spain) on March 16, 2006.

• H. Garavel and R. Mateescu visited CWI (Amsterdam, The Netherlands) on April 2–4, 2006.
R. Mateescu gave a talk entitled “Sequential and Distributed Test Generation using Boolean
Equation Systems”. H. Garavel gave a talk entitled “State Space Reduction for Process Algebra
Specifications” and a position statement on future projects.

• H. Garavel gave a talk entitled “Validation d’architectures multiprocesseurs à l’aide des outils
CADP” at the LaBRI laboratory (Bordeaux, France) on April 27, 2006.

• H. Garavel gave a talk entitled “Validation d’architectures multi-processeurs : 10 ans de collabora-
tion BULL-INRIA” at CEA/DAM (Bordeaux, France) on April 28, 2006.

• F. Lang gave two talks entitled “An Overview of CADP 2006” and “Translating the LOTOS NT Data
Part into LOTOS Abstract Data Types” at INRIA Sophia-Antipolis (France) on July 6–7, 2006.

• W. Serwe gave a talk entitled “An Overview of CADP 2006” at the Dagstuhl seminar Nr. 06351 on
August 27–September 1st, 2006.

• G. Salaün gave a talk entitled “Translating CHP into LOTOS for the Verification of Asynchronous
Hardware Designs with CADP” at Microsoft Research (Cambridge, United Kingdom) on November
2, 2006.

• H. Garavel and R. Mateescu visited CWI (Amsterdam, The Netherlands) on November 6–9, 2006.
R. Mateescu gave a PAM (Process Algebra Meeting) talk entitled “CÆSAR_SOLVE: A Generic On-
the-Fly Solver for Alternation-Free Boolean Equation Systems and its Applications to Verification”
on November 8, 2006.

• H. Garavel gave a talk entitled “Practical applications of process calculi in industrial projects” at
the LIX Colloquium on Emerging Trends in Concurrency Theory (Ecole Polytechnique, Palaiseau,
France) on November 13–15, 2006.

• F. Lang gave a talk entitled “Refined Interfaces for Compositional Verification” at LAAS-CNRS
laboratory (Toulouse, France) on November 20–21, 2006.

• G. Salaün gave a talk entitled “Software Adaptation: An Approach based on Synchronization Vectors
and Regular Expressions” at the University of Málaga (Spain) on November 22, 2006.

• H. Garavel gave a talk entitled “CADP 2006 from a Model Driven Perspective” at INRIA Rennes
(France) on November 22–23, 2006.

22 Activity Report INRIA 2006

8.4. Teaching Activities
The VASY project team is a host team for the computer science master entitled “Mathématiques, Informatique,
spécialité : Systèmes et Logiciels”, common to Institut National Polytechnique de Grenoble and Université
Joseph Fourier.

In 2006:

• F. Lang and W. Serwe gave the course on “Temps Réel” to the 3rd year students of ENSIMAG (18
hours).

• R. Mateescu was a jury member of Gavril Godza’s PhD thesis entitled “Contribuţii la elaborarea sis-
temelor distribuite tolerante la defecte”, defended at Polytechnic University of Bucharest (Romania)
on February 27, 2006.

• F. Lang was a jury member of Ylies Falcone’s MSc thesis (DEA) entitled “Un cadre formel pour le
test de politiques de sécurité”, defended at Université Joseph Fourier (Grenoble) on June 21, 2006.

• F. Lang supervised, jointly with Gregor Goessler (POPART project team), the MSc thesis of
A. M. Khan entitled “Connection of Compositional Verification Tools for Embedded Systems”,
defended at Université Joseph Fourier (Grenoble) on June 21, 2006.

• R. Mateescu was a jury member of Rémi Brochenin’s MSc thesis entitled “Techniques d’automates
pour raisonner sur la mémoire”, defended at Ecole Normale Supérieure de Lyon on June 26, 2006.

• R. Mateescu supervised the internship (mémoire d’ingénieur) of D. Thivolle entitled “Développe-
ment d’un évaluateur pour une logique temporelle étendue”, defended at EPITA (Paris) on July 3,
2006.

• H. Garavel was a jury member of Marie Lalire’s PhD thesis [15] entitled “Développement d’une
notation algorithmique pour le calcul quantique”, defended at Institut National Polytechnique de
Grenoble on October 19, 2006.

• R. Mateescu was a jury member of Emilie Oudot’s PhD thesis entitled “Contributions à la vérifica-
tion incrémentale des systèmes temporisés à composants”, defended at Université de Franche Comté
(Besançon) on December 7, 2006.

• R. Mateescu was elected suppliant member of the “Commission de spécialistes” at Université de
Bourgogne (section 27).

• H. Garavel was a jury member of Leila Kloul’s habilitation thesis entitled “From Performance
Analysis to Performance Engineering: Some Ideas and Experiments”, defended at Université de
Versailles-Saint-Quentin-en-Yvelines on December 8, 2006.

• H. Garavel supervised the internship (mémoire CNAM) of J. Fereyre entitled “Conception et amélio-
ration d’outils logiciels pour la vérification distribuée”, to be defended in 2007.

• F. Lang and H. Garavel supervised the internship (mémoire CNAM) of N. Lépy entitled “Environ-
nement de développement intégré sous Eclipse pour la vérification des systèmes concurrents”, to be
defended in 2007.

8.5. Miscellaneous Activities
D. Champelovier participated to the design group for the new INRIA Rhône-Alpes WEB site.

H. Garavel is a member of the computing facilities committee of INRIA Rhône-Alpes.

H. Garavel is a member of the recruitment committees for “chargés de recherche 2ème classe” and “ingénieurs
associés” at INRIA Rhône-Alpes.

Within the EMSOC/Atelier du Futur program of the MINALOGIC pôle de compétitivité, H. Garavel is a member
of the working group (6 persons) in charge of making proposals for governance and project selection.

F. Lang participates to the consultative organizational committee of INRIA Rhône-Alpes.

Project-Team VASY 23

F. Lang leads the working group (5 persons) in charge of proposing a new distribution of offices among the
research and administrative teams located in the INRIA building of Montbonnot.

W. Serwe is a member of the continuous training committee of INRIA Rhône-Alpes.

9. Bibliography
Major publications by the team in recent years

[1] H. GARAVEL. Défense et illustration des algèbres de processus, in "Actes de l’Ecole d’été Temps Réel
ETR 2003 (Toulouse, France)", Z. MAMMERI (editor). , Institut de Recherche en Informatique de Toulouse,
September 2003.

[2] H. GARAVEL. Compilation of LOTOS Abstract Data Types, in "Proceedings of the 2nd International Conference
on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada)", S. T. VUONG (editor). , North-
Holland, December 1989, p. 147–162.

[3] H. GARAVEL. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and Testing, in
"Proceedings of the First International Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’98 (Lisbon, Portugal), Berlin", B. STEFFEN (editor). , Lecture Notes in Computer Science,
Full version available as Inria Research Report RR-3352, vol. 1384, Springer Verlag, March 1998, p. 68–84,
http://hal.inria.fr/inria-00073337.

[4] H. GARAVEL, H. HERMANNS. On Combining Functional Verification and Performance Evaluation using
CADP, in "Proceedings of the 11th International Symposium of Formal Methods Europe FME’2002 (Copen-
hagen, Denmark)", L.-H. ERIKSSON, P. A. LINDSAY (editors). , Lecture Notes in Computer Science,
Full version available as Inria Research Report 4492, vol. 2391, Springer Verlag, July 2002, p. 410–429,
http://hal.inria.fr/inria-00072096.

[5] H. GARAVEL, F. LANG. SVL: a Scripting Language for Compositional Verification, in "Proceedings of the
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems
FORTE’2001 (Cheju Island, Korea)", M. KIM, B. CHIN, S. KANG, D. LEE (editors). , Full version
available as Inria Research Report RR-4223, Kluwer Academic Publishers, IFIP, August 2001, p. 377–392,
http://hal.inria.fr/inria-00072396.

[6] H. GARAVEL, F. LANG. NTIF: A General Symbolic Model for Communicating Sequential Processes with Data,
in "Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2002 (Houston, Texas, USA)", D. PELED, M. VARDI (editors). , Lecture Notes
in Computer Science, Full version available as Inria Research Report RR-4666, vol. 2529, Springer Verlag,
November 2002, p. 276–291, http://hal.inria.fr/inria-00071919.

[7] H. GARAVEL, F. LANG, R. MATEESCU. Compiler Construction using LOTOS NT, in "Proceedings of the 11th
International Conference on Compiler Construction CC 2002 (Grenoble, France)", N. HORSPOOL (editor). ,
Lecture Notes in Computer Science, vol. 2304, Springer Verlag, April 2002, p. 9–13.

[8] H. GARAVEL, R. MATEESCU, I. SMARANDACHE-STURM. Parallel State Space Construction for Model-
Checking, in "Proceedings of the 8th International SPIN Workshop on Model Checking of Software
SPIN’2001 (Toronto, Canada), Berlin", M. B. DWYER (editor). , Lecture Notes in Computer Science, Full
version available as Inria Research Report RR-4341, vol. 2057, Springer Verlag, May 2001, p. 217–234,
http://hal.inria.fr/inria-00072247.

http://hal.inria.fr/inria-00073337
http://hal.inria.fr/inria-00072096
http://hal.inria.fr/inria-00072396
http://hal.inria.fr/inria-00071919
http://hal.inria.fr/inria-00072247

24 Activity Report INRIA 2006

[9] H. GARAVEL, J. SIFAKIS. Compilation and Verification of LOTOS Specifications, in "Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada)", L.
LOGRIPPO, R. L. PROBERT, H. URAL (editors). , North-Holland, IFIP, June 1990, p. 379–394.

[10] H. GARAVEL, M. SIGHIREANU. Towards a Second Generation of Formal Description Techniques – Rationale
for the Design of E-LOTOS, in "Proceedings of the 3rd International Workshop on Formal Methods for
Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), Amsterdam", J.-F. GROOTE, B.
LUTTIK, J. VAN WAMEL (editors). , Invited talk, CWI, May 1998, p. 187–230.

[11] H. GARAVEL, M. SIGHIREANU. A Graphical Parallel Composition Operator for Process Algebras, in "Pro-
ceedings of the Joint International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Beijing,
China)", J. WU, Q. GAO, S. T. CHANSON (editors). , Kluwer Academic Publishers, IFIP, October 1999, p.
185–202.

[12] H. GARAVEL, C. VIHO, M. ZENDRI. System Design of a CC-NUMA Multiprocessor Architecture using
Formal Specification, Model-Checking, Co-Simulation, and Test Generation, in "Springer International Journal
on Software Tools for Technology Transfer (STTT)", Full version available as Inria Research Report RR-4041,
vol. 3, no 3, July 2001, p. 314–331, http://hal.inria.fr/inria-00072597.

[13] R. MATEESCU, M. SIGHIREANU. Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-
Calculus, in "Science of Computer Programming", vol. 46, no 3, March 2003, p. 255–281.

[14] G. SALAÜN, W. SERWE. Translating Hardware Process Algebras into Standard Process Algebras —
Illustration with CHP and LOTOS, in "Proceedings of the 5th International Conference on Integrated Formal
Methods IFM’2005 (Eindhoven, The Netherlands)", J. VAN DE POL, J. ROMIJN, G. SMITH (editors). , Lecture
Notes in Computer Science, Full version available as Inria Research Report RR-5666, vol. 3771, Springer
Verlag, November 2005, p. 287–306.

Year Publications
Doctoral dissertations and Habilitation theses

[15] M. LALIRE. Développement d’une notation algorithmique pour le calcul quantique, Thèse de Doctorat,
Institut National Polytechnique de Grenoble, October 2006.

Articles in refereed journals and book chapters

[16] C. ATTIOGBÉ, P. POIZAT, G. SALAÜN. A Formal and Tool-Equipped Approach for the Integration of State
Diagrams and Formal Datatypes, in "IEEE Transactions on Software Engineering", to appear, 2007.

[17] A. CHIRICHIELLO, G. SALAÜN. Encoding Process Algebraic Descriptions of Web Services into BPEL, in
"International Journal on Web Intelligence and Agent Systems", to appear, 2007.

[18] H. GARAVEL, J. HATCLIFF. TACAS 2003 Special Issue — Preface, in "Theoretical Computer Science", vol.
354, no 2, March 2006, p. 169–172.

[19] H. GARAVEL, J. HATCLIFF. Why you should definitely read this special section, in "Springer International
Journal on Software Tools for Technology Transfer (STTT)", vol. 8, no 1, February 2006, p. 1–3.

http://hal.inria.fr/inria-00072597

Project-Team VASY 25

[20] H. GARAVEL, W. SERWE. State Space Reduction for Process Algebra Specifications, in "Theoretical
Computer Science", vol. 351, no 2, February 2006, p. 131–145.

[21] F. LANG. Explaining the Lazy Krivine Machine Using Explicit Substitution and Addresses, in "Journal of
Higher-Order and Symbolic Computation, special issue on Krivine’s machine", to appear, 2007.

[22] R. MATEESCU. CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free Boolean
Equation Systems, in "Springer International Journal on Software Tools for Technology Transfer (STTT)",
Full version available as Inria Research Report RR-5948, July 2006, vol. 8, no 1, February 2006, p. 37–56,
https://hal.inria.fr/inria-00084628.

[23] R. MATEESCU. Modélisation et analyse de systèmes asynchrones avec CADP, N. NAVET (editor). , Traité
IC2, Full version available as Inria Research Report RR 5953, chap. 5, Lavoisier, 2006, p. 151–180,
https://hal.inria.fr/inria-00088076.

[24] G. SALAÜN, L. BORDEAUX, M. SCHAERF. Describing and Reasoning on Web Services using Process
Algebra, in "International Journal of Business Process Integration and Management", vol. 1, no 2, 2006,
p. 116–128.

Publications in Conferences and Workshops

[25] C. CANAL, P. POIZAT, G. SALAÜN. Synchronizing Behavioural Mismatch in Software Composition, in
"Proceedings of the 8th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems FMOODS’2006 (Bologna, Italy)", R. GORRIERI, H. WEHRHEIM (editors). , Lecture Notes in
Computer Science, vol. 4037, Springer Verlag, June 2006, p. 63–77.

[26] A. CHIRICHIELLO, G. SALAÜN. Formal Development of Web Services, in "Proceedings of the 4th Interna-
tional Workshop on Artificial Intelligence for Service Composition AISC’06 (Trento, Italy)", August 2006, p.
36–43.

[27] H. GARAVEL, R. MATEESCU, D. BERGAMINI, A. CURIC, N. DESCOUBES, C. JOUBERT, I.
SMARANDACHE-STURM, G. STRAGIER. DISTRIBUTOR and BCG_MERGE: Tools for Distributed
Explicit State Space Generation, in "Proceedings of the 12th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems TACAS’2006 (Vienna, Austria)", H. HERMANNS, J.
PALBERG (editors). , Lecture Notes in Computer Science, vol. 3920, Springer Verlag, March–April 2006, p.
445–449.

[28] C. JOUBERT, R. MATEESCU. Distributed On-the-Fly Model Checking and Test Case Generation, in "Proceed-
ings of the 13th International SPIN Workshop on Model Checking of Software SPIN’2006 (Vienna, Austria)",
A. VALMARI (editor). , Lecture Notes in Computer Science, vol. 3925, Springer Verlag, March–April 2006,
p. 126–145.

[29] F. LANG. Refined Interfaces for Compositional Verification, in "Proceedings of the 26th IFIP WG 6.1
International Conference on Formal Techniques for Networked and Distributed Systems FORTE’2006 (Paris,
France)", E. NAJM, J.-F. PRADAT-PEYRE, V. VIGUIÉ DONZEAU-GOUGE (editors). , Lecture Notes in
Computer Science, Full version available as Inria Research Report RR-5996, vol. 4229, Springer Verlag,
September 2006, p. 159–174.

https://hal.inria.fr/inria-00084628
https://hal.inria.fr/inria-00088076

26 Activity Report INRIA 2006

[30] P. POIZAT, C. CANAL, G. SALAÜN. Adaptation logicielle: une approche basée sur des expressions régulières
de vecteurs de synchronisation, in "Proceedings of 1ère Conférence francophone sur les Architectures
Logicielles CAL’06 (Nantes, France)", M. C. OUSSALAH, F. OQUENDO, D. TAMZALIT, T. KHAMMACI
(editors). , Hermes Science, September 2006, p. 31–39.

[31] P. POIZAT, J.-C. ROYER, G. SALAÜN. Bounded Analysis and Decomposition for Behavioural Descriptions of
Components, in "Proceedings of the 8th IFIP International Conference on Formal Methods for Open Object-
based Distributed Systems FMOODS’2006 (Bologna, Italy)", R. GORRIERI, H. WEHRHEIM (editors). ,
Lecture Notes in Computer Science, vol. 4037, Springer Verlag, June 2006, p. 33–47.

[32] P. POIZAT, G. SALAÜN, M. TIVOLI. An Adaptation-based Approach to Incrementally Build Component
Systems, in "Proceedings of the 3rd International Workshop on Formal Aspects of Component Software
FACS’06 (Prague, Czech Republic)", F. DE BOER, V. MENCL (editors). , Electronic Notes in Theoretical
Computer Science, September 2006.

[33] P. POIZAT, G. SALAÜN, M. TIVOLI. On Dynamic Reconfiguration of Software Adaptations, in "Proceedings
of the 3rd International Workshop on Coordination and Adaptation for Software Entities WCAT’06 (Nantes,
France)", July 2006.

[34] G. SALAÜN, W. SERWE, Y. THONNART, P. VIVET. Formal Verification of CHP Specifications with CADP
— Illustration on an Asynchronous Network-on-Chip, in "Proceedings of the 13th IEEE International Sym-
posium on Asynchronous Circuits and Systems ASYNC 2007 (Berkeley, California, USA)", to appear, IEEE
Computer Society Press, 2007.

Miscellaneous

[35] D. CHAMPELOVIER, H. GARAVEL. Reference Manual of the LOTOS NT to LOTOS Translator — Version 2E,
Inria/Vasy, 47 pages, September 2006.

[36] A. M. KHAN. Connection of Compositional Verification Tools for Embedded Systems, Mémoire master 2
recherche, Université Joseph Fourier, Grenoble, June 2006.

References in notes

[37] B. K. AICHERNIG, C. C. DELGADO. From Faults via Test Purposes to Test Cases: On the Fault-Based Testing
of Concurrent Systems, in "Proceedings of the 9th International Conference on Fundamental Approaches to
Software Engineering FASE’06 (Vienna, Austria)", L. BARESI, R. HECKEL (editors). , Lecture Notes in
Computer Science, no 3922, Springer Verlag, March 2006, p. 324–338.

[38] P. ANDRÉ, G. ARDOUREL, C. ATTIOGBÉ. Spécification d’architectures logicielles en Kmélia: hiérarchie de
connexion et composition, in "Proceedings of 1ère Conférence Francophone sur les Architectures Logicielles
CAL’06 (Nantes, France)", F. OQUENDO, M. OUSSALAH (editors). , Hermès Science/Lavoisier, September
2006.

[39] C. ATTIOGBÉ, G. ARDOUREL, P. ANDRÉ. Checking Component Composability, in "Proceedings of the
5th International Symposium on Software Composition SC’06 (Vienna, Austria)", W. LOWE, M. SUDHOLT
(editors). , Lecture Notes in Computer Science, no 4089, Springer Verlag, March 2006, p. 18–33.

[40] T. BARROS, A. CANSADO, E. MADELAINE, M. RIVERA. Model-Checking Distributed Components: The
Vercors Platform, in "Proceedings of the 3rd International Workshop on Formal Aspects of Component

Project-Team VASY 27

Software FACS’06 (Prague, Czech Republic)", Electronic Notes in Theoretical Computer Science, Elsevier,
September 2006.

[41] E. BEIGNÉ, F. CLERMIDY, P. VIVET, A. CLOUARD, M. RENAUDIN. An Asynchronous NoC Architecture
Providing Low Latency Service and its Multi-Level Design Framework, in "Proceedings of the 11th IEEE
International Symposium on Asynchronous Circuits and Systems ASYNC’05 (New York, USA)", IEEE
Computer Society Press, March 2005, p. 54–63.

[42] F. BELLEGARDE, J. JULLIAND, H. MOUNTASSIR, E. OUDOT. The Tool VeSTA: Verification of Simulations
for Timed Automata, Technical Report, no RT2006-01, LIFC, Université de Franche-Comté, Besançon,
France, July 2006.

[43] C. BENAC EARLE, L.-Å. FREDLUND. Verification of Language Based Fault-Tolerance, in "Proceedings of the
10th International Conference on Computer Aided Systems Theory EUROCAST 2005 (Las Palmas de Gran
Canaria, Spain)", R. MORENO-DÍAZ, F. PICHLER, A. QUESADA-ARENCIBIA (editors). , Lecture Notes in
Computer Science, vol. 3643, Springer Verlag, February 2005, p. 140–149.

[44] C. BENAC EARLE, L.-Å. FREDLUND, J. DERRICK. Verifying Fault-Tolerant Erlang Programs, in "Proceed-
ings of the 2005 ACM SIGPLAN Workshop on Erlang (Tallinn, Estonia)", K. F. SAGONAS, J. ARMSTRONG
(editors). , ACM Press, September 2005, p. 26–34.

[45] B. BERTHOMIEU, P. RIBET, F. VERNADAT, J. BERNARTT, J.-M. FARINES, J.-P. BODEVEIX, M. FILALI,
G. PADIOU, P. MICHEL, P. FARAIL, P. GAUFILLET, P. DISSAUX, J.-L. LAMBERT. Towards the verification
of real-time systems in avionics: the COTRE approach, in "Proceedings of the 8th International Workshop on
Formal Methods for Industrial Critical Systems FMICS’2003 (Trondheim, Norway)", T. ARTS, W. FOKKINK
(editors). , Electronic Notes on Theoretical Computer Science, vol. 80, Elsevier, June 2003, p. 201–216.

[46] E. BORTNIK, N. TRCKA, A. J. WIJS, S. P. LUTTIK, J. M. VAN DE MORTEL-FRONCZAK, J. C. M. BAETEN,
W. J. FOKKINK, J. E. ROODA. Analyzing a χ Model of a Turntable System using Spin, CADP and UPPAAL,
in "Journal of Logic and Algebraic Programming", vol. 65, no 2, November–December 2005, p. 51–104.

[47] H. BOWMAN, R. GOMEZ. Concurrency Theory: Calculi and Automata for Modelling Untimed and Timed
Concurrent Systems, Springer Verlag, 2006.

[48] E. BÖDE, M. HERBSTRITT, H. HERMANNS, S. JOHR, T. PEIKENKAMP, R. PULUNGAN, R. WIMMER, B.
BECKER. Compositional Performability Evaluation for Statemate, in "Proceedings of the 3rd International
Conference on the Quantitative Evaluation of Systems QUEST’06 (Riverside, California, USA)", IEEE
Computer Society Press, September 2006, p. 167–178.

[49] A. CALIXTO, R. MONROY. Formal Analysis of TLS, in "Studia Informatica Universalis", vol. 2, no 2, 2002,
p. 235–249.

[50] G. CHEHAIBAR, H. GARAVEL, L. MOUNIER, N. TAWBI, F. ZULIAN. Specification and Verification of the
PowerScale Bus Arbitration Protocol: An Industrial Experiment with LOTOS, in "Proceedings of the Joint
International Conference on Formal Description Techniques for Distributed Systems and Communication
Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany)",
R. GOTZHEIN, J. BREDEREKE (editors). , Full version available as Inria Research Report RR-2958, Chapman
& Hall, IFIP, October 1996, p. 435–450, http://hal.inria.fr/inria-00073740.

http://hal.inria.fr/inria-00073740

28 Activity Report INRIA 2006

[51] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA. Automatic Verification of Finite-State Concurrent Systems
using Temporal Logic Specifications, in "ACM Transactions on Programming Languages and Systems", vol.
8, no 2, April 1986, p. 244–263.

[52] R. DE NICOLA, F. W. VAANDRAGER. Action versus State Based Logics for Transition Systems, Lecture Notes
in Computer Science, vol. 469, Springer Verlag, 1990, p. 407–419.

[53] C. C. DELGADO, B. K. AICHERNIG. Test Purpose Generation by Specification Mutation in Distributed
Systems, Technical report, no 313, International Institute for Software Technology, United Nations University,
Macau (China), September 2004.

[54] S. GRAF, B. STEFFEN, G. LÜTTGEN. Compositional Minimization of Finite State Systems using Interface
Specifications, in "Formal Aspects of Computation", vol. 8, no 5, September 1996, p. 607–616.

[55] M. HENNESSY, R. MILNER. Algebraic Laws for Nondeterminism and Concurrency, in "Journal of the ACM",
vol. 32, 1985, p. 137–161.

[56] M. HUISMAN, P. WORAH, K. SUNESEN. A Temporal Logic Characterisation of Observational Determinism,
in "Proceedings of the 19th IEEE Computer Security Foundations Workshop CSFW’06 (Venice, Italy)", IEEE
Computer Society Press, July 2006.

[57] IEEE. IEEE Standard SystemC Language Reference Manual, IEEE Standard, no 1666-2005, Institution of
Electrical and Electronic Engineers, December 2005.

[58] H. JONKER, S. K. NAIR, M. T. DASHTI. Nuovo DRM Paradiso: Formal Specification and Verification of a
DRM Protocol, in "Proceedings of the 1st Benelux Workshop on Information and System Security WISSec
2006 (Antwerpen, Belgium)", Lecture Notes in Computer Science, Springer Verlag, November 2006.

[59] J.-P. KRIMM, L. MOUNIER. Compositional State Space Generation from LOTOS Programs, in "Proceedings
of TACAS’97 Tools and Algorithms for the Construction and Analysis of Systems (University of Twente,
Enschede, The Netherlands), Berlin", E. BRINKSMA (editor). , Lecture Notes in Computer Science, Extended
version with proofs available as Research Report VERIMAG RR97-01, vol. 1217, Springer Verlag, April
1997.

[60] J. MAGEE, J. KRAMER. Concurrency: State Models and Java Programs, Wiley, 1999.

[61] M. MOY, F. MARANINCHI, L. MAILLET-CONTOZ. PINAPA: An Extraction Tool for SystemC descriptions of
Systems-on-a-Chip, in "EMSOFT", W. WOLF (editor). , ACM, September 2005.

[62] E. OUDOT. Contributions à la vérification incrémentale des systèmes temporisés à composants, Ph. D. Thesis,
Université de Franche-Comté, December 2006.

[63] B. PLOEGER, L. SOMERS. Analysis and Verification of an Automatic Document Feeder, CS-Report, no 06–25,
Eindhoven University of Technology, 2006.

[64] O. PONSINI, C. FÉDÈLE, E. KOUNALIS. Rewriting of imperative programs into logical equations, in "Science
of Computer Programming", vol. 56, no 3, May – June 2005, p. 363–401.

Project-Team VASY 29

[65] M. RENAUDIN. TAST Compiler and TAST-CHP Language – Version 0.6, TIMA Laboratory, CIS Group, 2005.

[66] J. J. SÁNCHEZ PENAS. From Software Architecture to Formal Verification of a Distributed System, Ph. D.
Thesis, University of Coruña (Spain), November 2006.

[67] A. J. WIJS, J. VAN DE POL. Solving Scheduling Problems by Untimed Model Checking — The Clinical
Chemical Analyser Case Study, in "Proceedings of the 10th International Workshop on Formal Methods for
Industrial Critical Systems FMICS’05 (Lisbon, Portugal)", Also available as CWI Technical Report SEN-
R0608, ACM, September 2005, p. 54–61.

[68] A. J. WIJS, J. VAN DE POL. Solving Scheduling Problems by Untimed Model Checking, Technical Report, no

SEN-R0608, CWI, Amsterdam, The Netherlands, 2006.

[69] M. DEL MAR GALLARDO, C. JOUBERT, P. MERINO. Implementing Influence Analysis using Parameterised
Boolean Equation Systems, in "Proceedings of the 2nd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation ISOLA’06 (Paphos, Cyprus)", IEEE Computer Society Press,
November 2006.

[70] M. DEL MAR GALLARDO, P. MERINO, D. SANÁN. Towards Model Checking C Code with OPEN/CÆSAR,
in "Proceedings of the 4th International Workshop on Modelling, Simulation, Verification, and Validation of
Enterprise Information Systems MSVVEIS’06 (Paphos, Cyprus)", J. BARJIS, U. ULTES-NITSCHE, J. C.
AUGUSTO (editors). , INSTICC Press, May 2006, p. 198–201.

