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2. Overall Objectives

2.1. Overall Objectives
The CACAO project-team has been officially created on October 9, 2006, after having de facto existed for more
than one year. The objectives of the project-team are along the following lines:

• Study arithmetic of curves of small genus, with a particular emphasis on applications to cryptology;

• Improve the efficiency and the reliability of arithmetics in a broad sense (i.e., the arithmetics of a
wide variety of objects).

These two objectives interplay strongly. On the one hand, arithmetics are at the core of optimizing algorithms
on curves, starting evidently with the arithmetic of curves themselves. On the other hand, curves can sometimes
be a tool to solve some arithmetical problems as integer factorization.

To reach these objectives, we have isolated three key axes of work:

• Algebraic Curves and Cryptology: the main issue here is to investigate curves of small genus over
finite fields (base field Fpn , for various p and n). The main tasks are to compute in the Jacobian of a
given curve, to be able to check that this variety is suitable for cryptography (cardinality, smoothness
test) and to solve problems in those structures (discrete logarithm). Applications go from number
theory (integer factorization) to cryptography (an alternative to RSA).

• Arithmetics: Here, we consider algorithms dealing with multiple-precision integers, floating-points
numbers, p-adic numbers and finite fields. For such basic data structures, we do not expect new
algorithms with better asymptotic behavior to be discovered; however, since those are first-class
objects in all our computations, any speedup is most welcome, even by a factor of 2. Since January
2007, CACAO has also been strongly involved in a project on the number field sieve (NFS), an
integer factorization algorithm. We aim at developing an efficient implementation of the NFS, study
its distribution, and fine-tune it in the currently “practical” range, i.e., 100-150 decimal digits.
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• Linear Algebra and Lattices: solving large linear systems is a key point of factoring and of discrete
logarithm algorithms, which we need to investigate if curves are to be applied in cryptology. Lattices
are central points of the new ideas that have emerged over the very last years for several problems in
computer arithmetic or discrete logarithms algorithms.

Another new direction of research has started since Fall 2006 with the arrival of Marion Videau, who has been
hired as an assistant professor at UHP, coming from the CODES project-team (INRIA Paris - Rocquencourt).
This should allow the project-team to start an axis around symmetric primitives for cryptology; this is an
interesting complement to the expertise already present regarding asymmetric (and especially curve-based)
primitives for cryptology.

3. Scientific Foundations

3.1. Scientific Foundations
3.1.1. Algebraic Curves and Cryptology

Though we are interested in algebraic curves by themselves, the applications to cryptology remain a motivation
of our research, which is therefore especially focused on curves defined over finite fields.

In the mid-eighties, Koblitz [27] and Miller [29] proposed to use elliptic curves as a basis of public key
cryptosystems. Indeed, the set of points on an elliptic curve is an abelian group, which is finite if the base
field is a finite field. In this group, the discrete logarithm problem is thought to be difficult in general, in the
sense that the best known algorithm to solve it has an exponential complexity. This has to be compared with
the classical RSA algorithm, the security of which relies on the difficulty of factoring integers, but where the
best known factoring algorithm has subexponential complexity. In practice, this means that the size of the
parameters is much smaller for elliptic curve based cryptosystems than for classical ones.

More generally, for an algebraic curve over a finite field, there is a finite abelian group associated to it, called
the Jacobian of the curve. Algebraic curves can be classified by their genus; the genus of a conic is zero and
elliptic curves are curves of genus 1 (in that case, the Jacobian is isomorphic to the curve). As long as the
genus is not too large, the discrete logarithm problem in the Jacobian of a curve is thought to be difficult in
general, therefore one can also base cryptosystems on non-elliptic curves.

The main algorithmic tasks in relation to the use of curves in cryptography are the following:

1. Have an explicit description of the group and the group operation, as efficient as possible. The speed
of ciphering and deciphering is indeed directly linked to the efficiency of the group operation.

2. Construct curves suitable for cryptographic use: the minimal requirement for the discrete logarithm
to be difficult is to have a large prime factor in the group order. It is therefore necessary to compute
the group order to check that property. This is what we call the point counting task.

3. Study the security of curve-based primitives. By this, since no general framework exists to assess
that security, we mean undertake an as thorough as possible study of the security offered by those
groups. The most standard way to do this is by trying to solve discrete logarithm problems in certain
classes of curves.

3.1.2. Linear Algebra and Lattices
With “linear algebra and lattices”, we denote two classes of problems of interest: computing vectors of the
kernel of a large sparse matrix defined over a finite field, and studying algorithms to handle lattices that are
given by a vector basis.
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Huge linear systems are frequently encountered as last steps of “index-calculus” based algorithms for factoring
or discrete logarithm computations. Those systems correspond to a particular presentation of the underlying
group by generators and relations; they are thus always defined on a base ring which is Z modulo the
exponent of the group, typically Z/2Z in the case of factorization, Z/(qn − 1)Z when trying to solve a
discrete logarithm problem over F∗qn . Those systems are often extremely sparse, so that specialized algorithms
(Lanczós, Wiedemann) relying only on the evaluation of matrix-vector products essentially have a quadratic
complexity, instead of being cubic with the classical Gaussian elimination.

The sizes of the matrices that are handled in record computations are such that they do not fit in the central
memory of a single machine, even using a representation adapted to their sparse nature. Some parallelism
is then required, yielding various difficulties that are different from the ones encountered in the classical
linear algebra problems linked to numerical analysis. Specifically, dealing with matrices defined over finite
fields precludes direct adaptation of numerical methods based on the notion of convergence and fixed-point
theorems.

The second main topic is algorithmic lattice theory. Lattices are key tools in numerous problems in computer
algebra, algorithmic number theory and cryptology. The typical questions one wants to solve are to find the
shortest nonzero vector in a lattice and to find the closest lattice vector to a given vector. A more general
concern is to find a better lattice basis than the one provided by the user; by “better” we mean that it
consists of short, almost orthogonal vectors. This is a difficult problem in general, since finding the shortest
nonzero vector is already NP-hard, under probabilistic reductions. In 1982, Lenstra, Lenstra, and Lovász [28]
defined the notion of a LLL-reduced basis and described an algorithm to compute such a basis in polynomial
time. Although not always sufficient, the LLL-reduction is sometimes enough for the application. Some
stronger notions of reduction exist, such as Hermite-Korkine-Zolotarev [24] (HKZ) reduction, which require
exponential or super-exponential time but solve the shortest vector problem in an exact way. Schnorr [30]
introduced a complete hierarchy of reductions ranging from LLL to HKZ both in quality and in complexity,
the so-called k-BKZ reductions.

3.1.3. Arithmetics
We consider here the following arithmetics: integers, rational numbers, integers modulo a fixed modulus n,
finite fields, floating-point numbers and p-adic numbers. We can divide those numbers in two classes: exact
numbers (integers, rationals, modular computations or finite fields), and inexact numbers (floating-point and
p-adic numbers).

Algorithms on integers (respectively floating-point numbers) are very similar to those on polynomials,
respectively Taylor or Laurent series. The main objective in that domain is to find new algorithms that make
operations on those numbers more efficient. These new algorithms may use an alternate number representation.

In the case of integers, we are interested in multiprecision arithmetic. Various algorithms are to be used,
depending on the sizes of the objects, starting with the most simple “schoolbook” methods to the most
advanced, asymptotically fast algorithms. The latter are often based on Fourier transforms.

The case of modular arithmetic and finite fields is the first where the representation of the elements has to
be chosen carefully. Depending on the type of operations one wants to perform, one must choose between
a classical representation, the Montgomery representation, a look-up table, a polynomial representation, a
normal basis representation, ... Then appropriate algorithms must be chosen.

With p-adic numbers, we get the first examples of non-exact representations. In that setting, one has to keep
track of the precision all along a computation. The mechanisms to handle that issue can vary: since the
precision losses are not too difficult to control, one can work with a fixed global precision, or one can choose
to have each element carrying its precision. Additionally, there are several choices for representing elements,
in particular when dealing with algebraic extensions of the p-adics (ramified or unramified).

Last but not least, we are interested in the arithmetics of real numbers of floating-point type. Again, we have
a notion of approximation. It is therefore necessary to decide of a format that defines a set of representable
numbers. Then, when the result of an arithmetical operation on two representable numbers is not representable,
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one should define a way to round it to a meaningful representable number. The purpose of the IEEE-754
standard is to give a uniform answer to these questions in order to guarantee the reliability and portability of
floating-point computations. The standard is restricted to the 4 basic field operations and the square root on a
small number of possible formats (single, double, double-extended binary formats), but it can be extended to
arbitrary precision and all classical mathematical functions. This leads to efficiency questions, in particular to
guarantee that the result of an operation has been correctly rounded.

4. Application Domains
4.1. Application Domains
4.1.1. Cryptology.

The main application domain of our project-team is cryptology. Algebraic curves have taken an increasing
importance in cryptology over the last ten years. Various works have shown the usability and the usefulness of
elliptic curves in cryptology, standards (for instance, IEEE P1363 [26] and real-world applications (like the
electronic passport).

We study the suitability of higher genus curves to cryptography (mainly hyperelliptic curves of genus two,
three). In particular, we work on improving the arithmetic of those curves, on the point counting problem, and
on the discrete logarithm problem.

We also have connections to cryptology through the study and development of the integer LLL algorithm,
which is one of the favourite tools to cryptanalyze public-key cryptosystems. Examples are the cryptanalysis
of knapsack-based cryptosystems, the cryptanalyses of some fast variants of RSA, the cryptanalyses of fast
variants of signature schemes such as DSA or Elgamal, or the attacks against lattice based cryptosystems
like NTRU. The use of floating-point arithmetic dramatically speeds up this algorithm, which renders the
aforementioned cryptanalyses more feasible.

Finally, we are studying integer factoring algorithms which are of utmost importance for the evaluation of
the security of the still widely used RSA cryptosystem. In the context of our ANR CADO grant, we are
investigating the Number Field Sieve algorithm, which is the best known algorithm for factoring numbers of
the kind used in practical RSA instances.

4.1.2. Computational Number Theory Systems.
We have strong ties with several computational number theory systems, and code written by members of the
project-team can be found in the Magma software and in the Pari/GP software.

Magma1 is the leading computational number theory software. It also has some features of computer algebra
(algebraic geometry, polynomial system solving) but not all of what is expected of a computer algebra system.
It is developed by the team of John Cannon in Sydney.

Pari/GP2 is a computational number theory system which comes with a library which can be used to access
Pari functions within a C program. It has originally been developed at the Bordeaux 1 University, and is
currently maintained (and expanded) by Karim Belabas, from Bordeaux University. It is free (GPL) software.
We sometimes use it for validation of our algorithms. Again, some code written by members of the project-
team is incorporated into Pari.

SAGE3 is a new open-source computer algebra system. Its development was initiated by William Stein
(Univ. of Washington, Seattle). Instead of reinventing the wheel, SAGE incorporates the most efficient open-
source packages in each domain, for example SINGULAR, PARI/GP, NTL, LINBOX, and the software tools
MPFR and GMP-ECM developed by CACAO. Although quite new, there is already a community of active
developers around SAGE. This system might become a good alternative to Maple, Mathematica, and Magma
to disseminate our research in the future.

1http://magma.maths.usyd.edu.au/magma/
2http://pari.math.u-bordeaux.fr
3http://sagemath.org

http://magma.maths.usyd.edu.au/magma/
http://pari.math.u-bordeaux.fr
http://sagemath.org
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4.1.3. Arithmetics.
Another indirect transfer is the usage of MPFR in GFORTRAN (since 2004), and in GCC, up from version 4.3.
MPFR is currently used at compile-time, to convert expressions like sin(3.1416) into binary double-precision,
when the rounding mode can be statically determined. The MPFR library is also used by the CGAL software,
a library for computational geometry developed by the Geometrica project-team (INRIA Sophia Antipolis -
Méditerranée).

5. Software

5.1. Introduction
A major part of the research done in the CACAO project-team is published within software. On the one hand,
this enables everyone to check that the algorithms we develop are really efficient in practice; on the other hand,
this gives other researchers — and us of course — basic software components on which they — and we —
can build other applications.

5.2. MPFR
Keywords: Ieee 754, arbitrary precision, correct rounding, floating-point number.
Participants: Guillaume Hanrot, Philippe Théveny, Paul Zimmermann [contact].

MPFR is one of the main pieces of software developed by the CACAO team. Since end 2006, with the departure
of Vincent Lefèvre to ENS Lyon, it has become a joint project between CACAO and the ARENAIRE project-
team (INRIA Grenoble - Rhône-Alpes). MPFR is a library for computing with arbitrary precision floating-point
numbers, together with well-defined semantics, distributed under the LGPL license. In particular, all arithmetic
operations are performed according to a rounding mode provided by the user, and all results are guaranteed
correct to the last bit, according to the given rounding mode.

Several software systems use MPFR, for example: the GCC and GFORTRAN compilers; the SAGE computer
algebra system; the KDE calculator Abakus by Michael Pyne; CGAL (Computational Geometry Algorithms
Library) developed by the Geometrica project-team (INRIA Sophia Antipolis - Méditerranée); Gappa, by
Guillaume Melquiond; Genius Math Tool and the GEL language, by Jiri Lebl; Giac/Xcas, a free computer
algebra system, by Bernard Parisse; the iRRAM exact arithmetic implementation from Norbert Müller
(University of Trier, Germany); the Magma computational algebra system; and the Wcalc calculator by Kyle
Wheeler.

The main developments in 2007 were: (i) the start of the MPtools project (see below); (ii) the release of
MPFR 2.3.0, which integrates new functions, among which the Bessel functions, on August 29; and (iii) the
organization of the CEA-EDF-INRIA school Certified Numerical Computation on October 25-26 in Nancy4,
where Guillaume Hanrot and Paul Zimmermann gave the lectures on reliable floating-point computation and
on MPFR. Also, the paper [6] summarizing the objectives, architecture, and features of MPFR has finally
appeared.

In 2007, an ODL (Opération de Développement Logiciel) called MPtools was supported by INRIA for two
years. A new engineer, Philippe Théveny, was hired in September. The objectives of the MPtools project are to
add new mathematical functions to MPFR and MPC. As of October, the following new functions were already
implemented: the arithmetic functions combining MPFR and the double type (mpfr_add_d, mpfr_sub_d,
mpfr_d_sub, mpfr_mul_d, mpfr_div_d, mpfr_d_div), the mpfr_modf function (simultaneous integer and
fractional part), the mpfr_fmod and mpfr_remainder functions (remainder of the division of two floating-
point numbers, with different rounding modes), the mpfr_fms function (fused multiply and subtract), the
mpfr_sinh_cosh function (simultaneous hyperbolic sine and cosine), the mpfr_lgamma function (logarithm
of the gamma function), the J and Y Bessel functions.

4http://www.inria.fr/actualites/colloques/cea-edf-inria/2007/cnc/index.en.html

http://www.inria.fr/actualites/colloques/cea-edf-inria/2007/cnc/index.en.html
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5.3. MPC
Keywords: arbitrary precision, complex floating-point number, correct rounding.

Participants: Philippe Théveny, Paul Zimmermann [contact].

MPC is a floating-point library for complex numbers, which is developed on top of the MPFR library, and
distributed under the LGPL license. It is co-written with Andreas Enge (TANC team, INRIA Futurs Saclay).
A complex floating-point number is represented by x + iy, where x and y are real floating-point numbers,
represented using the MPFR library. The MPC library currently implements all basic arithmetic operations, the
exponential and sine functions, all with correct rounding on both the real part x and the imaginary part y of
any result. A new version, MPC 0.4.6, was released in 2007. MPC is used in particular in the TRIP celestial
mechanics system developed at IMCCE (Institut de Mécanique Céleste et de Calcul des Éphémérides).

5.4. Gmp-Ecm
Participants: Pierrick Gaudry, Alexander Kruppa, Paul Zimmermann [contact].

GMP-ECM is a program to factor integers using the Elliptic Curve Method. Its efficiency comes both from
the use of the GMP library, and from the implementation of state-of-the-art algorithms. GMP-ECM contains
a library (LIBECM) in addition of the binary program (ECM). The binary program is distributed under GPL,
while the library is distributed under LGPL, to allow its integration into other non-GPL software. For example,
the Magma computational number theory software and the SAGE computer algebra system both use LIBECM.

In October 2005, this project moved to http://gforge.inria.fr. Since then and up to November 2007, there have
been more than 5000 downloads. According to the “table of champions” maintained by Richard Brent5, the
ten largest ECM factors were found using GMP-ECM, including the current ECM record (67 digits).

GMP-ECM is used by many mathematicians and computer scientists to factor integers; for example it can be
used to prove the primality of an integer, since several primality tests require to factor a given proportion of a
number [23].

In June, a collaboration has started between Alexander Kruppa and Peter Montgomery; they are designing a
new algorithm for the so-called Phase 2 of the p + 1 and p− 1 algorithms which can be seen as particular cases
of ECM. Their new algorithm is currently being implemented and tested within GMP-ECM, and a new p + 1
record prime factor of 60 digits was set by this implementation in October. An article has been submitted [22].

In September, version 6.1.3 of GMP-ECM was released.

5.5. Local fields
Participant: Emmanuel Thomé [contact].

Mploc is a C library for computing in p-adic fields and their unramified extensions. The focus is mainly on Zp

for prime p, and unramified extensions of Z2. The ability to compute in these structures is important to several
applications, such as point counting or building curves with a prescribed number of points.

The Mploc library is already distributed6 and used, although several performance improvements are sought.
The library presently gathers 8,000 lines of C source code.

5.6. Finite fields
Participants: Pierrick Gaudry, Emmanuel Thomé [contact].

5http://wwwmaths.anu.edu.au/~brent/ftp/champs.txt
6http://www.loria.fr/~thome/software/mploc

http://gforge.inria.fr
http://wwwmaths.anu.edu.au/~brent/ftp/champs.txt
http://www.loria.fr/~thome/software/mploc
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mpFq is (yet another) library for computing in finite fields. The purpose of mpFq is not to provide a software
layer for accessing finite fields determined at runtime within a computer algebra system like Magma, but rather
to give a very efficient, optimized code for computing in finite fields precisely known at compile time. mpFq is
not restricted to a finite field in particular, and can adapt to finite fields of any characteristic and any extension
degree. However, one of the targets being use in cryptology, mpFq somehow focuses on prime fields and on
fields of characteristic two.

mpFq’s ability to generate specialized code for desired finite fields differentiates this library from its competi-
tors. The performance achieved is far superior. For example, mpFq can be readily used to assess the through-
put of an efficient software implementation of a given cryptosystem. Such an evaluation is the purpose of the
“EBats” benchmarking tool7. In 2007, several contributions based on mpFq have been submitted to the “EBats”
contest. In particular, the authors improved over the fastest examples of key-sharing software in genus 1 and 2,
both over binary fields and prime fields.

The library’s purpose being the generation of code rather than its execution, the working core of mpFq consists
of roughly 5,000 lines of Perl code, which generate most of the currently 13,000 lines of C code. mpFq is
currently under active development, and a first release is expected in early 2008. An article describing the
mpFq library and its use for implementing curve-based cryptosystems has been published [14].

5.7. Polynomial arithmetic in characteristic 2
Participants: Pierrick Gaudry, Emmanuel Thomé, Paul Zimmermann [contact].

Gf2x is a set of programs for polynomial multiplication over the binary field, developed together with Richard
Brent (Australian National University, Canberra, Australia). There are implementations of various algorithms
corresponding to different degrees of the input polynomials. In the case of polynomials that fit into one or two
machine-words, the schoolbook algorithm has been improved and implemented using SSE instructions for
maximum speed. For small degrees, we switch to Karatsuba’s algorithm and then to Toom-Cook’s algorithm.
These have been implemented using the most recent improvements. Finally, for very large degrees one has to
switch to Fourier-transform based algorithms, namely Schönhage’s or Cantor’s algorithm. In order to choose
between these two asymptotically fast algorithms, we have implemented and compared them. A first release
of GF2X, version 0.1, is available from http://wwwmaths.anu.edu.au/~brent/gf2x.html. In the long term, GF2X
should be integrated within a more general library like NTL. An article describing our improvements to the
algorithms and their implementation has been submitted, see [20].

5.8. MPQS
Participant: Paul Zimmermann.

MPQS is a program that factors integers using the Multiple Polynomial Quadratic Sieve, developed by Scott
Contini and Paul Zimmermann. It is distributed under GPL from http://www.loria.fr/~zimmerma/free.

6. New Results

6.1. Floating-Point Arithmetic
Participants: Guillaume Hanrot, Philippe Théveny, Paul Zimmermann.

Two papers written in end-2006, on worst cases of periodic functions for large arguments, and on floating-point
L2 approximations to functions, have been published in 2007, see [10], [15].

The paper analyzing the error bounds on the complex floating-point multiplication finally appeared, see [4].

7http://www.ecrypt.eu.org/ebats/

http://wwwmaths.anu.edu.au/~brent/gf2x.html
http://www.loria.fr/~zimmerma/free
http://www.ecrypt.eu.org/ebats/
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6.2. Exact arithmetic
Participants: Pierrick Gaudry, Guillaume Hanrot, Alexander Kruppa, Emmanuel Thomé, Paul Zimmermann.

We have worked on Schönhage-Strassen’s algorithm for multiplying very large integers. Starting with the
GMP implementation, we have designed several improvements, some of them are more implementation tricks
(like preserving locality in the computation to stay in the cache as much as possible), and some of them are
algorithmic improvements (like combining a Mersenne- and a Fermat-like transform). These ideas have been
published in [13], and the corresponding code is released under the LGPL license as a patch against the GMP
library8.

In collaboration with Cheng and Zima, see [11], we have improved upon the best known algorithms for
computing hypergeometric constants. The theoretical asymptotical complexity is unchanged, but the practical
behaviour is better. We demonstrated the efficiency by computing billions of digits of π and 2 billions of digits
of ζ(3) :=

∑
n≥1 n−3, which is a new record9.

Richard Brent and P. Zimmermann are collaborating on a book called “Modern Computer Arithmetic”. A
preliminary version [1] has been published on the web. An INRIA associate team10 with Brent’s group in
Canberra will start in 2008, of which one of the goals is to work on that book.

Another common project with Richard Brent is the search for primitive trinomials over F2. A new factoring
algorithm has been designed in this context, see [9], thus most of the operations are now squares which are
very cheap in characteristic 2. One of our goals is to improve algorithms for finding primitive trinomials of
degree a Mersenne prime. An implementation of the latter algorithm was first used to check our previous
search for primitive trinomials of degree 6972593, one of the largest Mersenne primes known: we observed a
speedup of a factor 70 over the previous algorithm. Then we searched for new primitive trinomials of degree
24036583, and we found exactly two (and their reciprocal):

x24036583 + x8412642 + 1, x24036583 + x8785528 + 1.

The search for the next Mersenne exponent, 25964951, was performed using the idle cycles of the Grid 5000
platform (“besteffort” mode); four primitive trinomials were found:

x25964951 + x880890 + 1, x25964951 + x4627670 + 1, x25964951 + x4830131 + 1, x25964951 + x6383880 + 1.

All those primitive trinomials have been checked by Allan Steel using Magma. A journal paper [21] describing
in detail the new algorithm has been accepted to a special issue of Contemporary Mathematics.

6.3. Crypto-related results
Participants: Pierrick Gaudry, Guillaume Hanrot, Emmanuel Thomé, Marion Videau.

6.3.1. Constructive results
In the context of genus 2 cryptography, we have designed fast explicit formulæ for the group law in the
Jacobian; in fact the formulæ work in the so-called Kummer surface, that is a point and its opposite are merged
into a single element. The Kummer surface is not a group, but there is still enough structure to add an element
with itself, and then to build cryptosystems. Our formulæ are much faster than previously known formulæ
for genus 2 arithmetic. For the case of odd characteristic, the resulting algorithm has been published in [7].
The formulæ have been extended to characteristic 2. Although they do work in all examples we have tested, a
rigorous proof of their validity is yet to be found. All these algorithms have been implemented on top of the
mpFq library, thus confirming that genus 2 cryptosystems can be faster than elliptic ones. This implementation
has been the subject of a publication, see [14].

8http://www.loria.fr/~kruppaal/mul_fft-4.2.1.1.tgz
9http://numbers.computation.free.fr/Constants/constants.html
10http://www.loria.fr/~zimmerma/anc.html

http://www.loria.fr/~kruppaal/mul_fft-4.2.1.1.tgz
http://numbers.computation.free.fr/Constants/constants.html
http://www.loria.fr/~zimmerma/anc.html
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Another “constructive” work has been done in collaboration with Laurent Théry. The goal was to give a
rigorous proof of the primality of an integer. There exist software tools that produce elliptic certificates of
primality, for instance, fastECPP written by François Morain. The algorithm for checking the certificates is
much simpler than for producing it, and it has been possible to implement it within Coq. This implementation
is described in [19].

6.3.2. Destructive results
The paper written on the algorithm developed in 2005 (using a double large prime variation for the discrete
logarithm problem, DLP for short, in Jacobian of curves) with Gaudry, Thomé, Diem and Thériault has been
published [8].

The improvement by Diem in the case of small degree curves has been more precisely studied by Diem and
Thomé who improved the heuristic proof towards a more rigorous one, where the only remaining heuristic
argument is reduced to a random graph comparison result. That paper will be published in Journal of
Cryptology, and is already electronically published [5].

Another contribution in the context of discrete logarithms has been obtained by Enge and Gaudry. For a general
curve of large enough genus g over a finite field q, the complexity of a discrete log computation is in Lqg (1/2),
where L() is the classical subexponential function (this has been recently proven in a rigorous way by Hess
[25]). Enge and Gaudry [12] have shown that for plane curves having a particular shape of degrees in x and
y, this complexity can been reduced heuristically to Lqg (1/3 + ε), recovering the kind of complexity we have
for integer factorization or discrete logarithms in finite fields. We are now working on removing the ε in the
complexity.

Concerning lattices, Hanrot and Stehlé (ARENAIRE project-team, INRIA Grenoble - Rhône-Alpes) completed
an analysis of Kannan’s enumeration algorithm, the best deterministic algorithm for finding a shortest non-zero
vector in a lattice, or a closest vector to a given point. They proved that, in contradiction to what was believed
since the beginning of the 90’s, the complexity of the former problem is at most dd/(2e)+o(d) arithmetic
operations on integers of polynomial size (instead of dd/2+o(d)); for the latter problem, the complexity drops
from dd+o(d) to dd/2+o(d). These analysis more generally yield results on the complexity of HKZ-reduction,
which is also dd/(2e)+o(d). This work was presented at the Crypto’07 conference, see [16].

Using an adaptation of the Number Field Sieve algorithm, Joux, Naccache and Thomé obtained a variety of
new signature forgery algorithms for the RSA digital signature algorithm, when one uses affine padding (where
one uses e.g., (c + x)d as the signature of a message x). The basic assumption is that the attacker has access
to an oracle providing modular e-th roots of the form e

√
c + x. Within subexponential complexity, it is shown

that additional such roots can be obtained. The attack has the same complexity as the special Number Field
Sieve algorithm, which is much lower than the general Number Field Sieve. Another result of this work is a
new subexponential algorithm solving the one-more-rsa problem. This work was presented at the Asiacrypt
2007 conference, see [17].

6.3.3. Legal aspects
2007 was last year for the project Asphalès which had been selected for funding in 2004 by ACI Sécurité
et Informatique. The project goal is the study of the interaction between information security and legal
safeguards. Marion Videau coordinates the projet, jointly with Isabelle de Lamberterie and Stéphanie Lacour.
She has worked on the probative value of electronic data media and their conservation. The article “Légistique
de l’écrit électronique”, results of a joint work with Stéphanie Lacour (CNRS-CECOJI / OCDE-Working Party
on Nanotechnology) has been published [18] among other contributions from various workshops held during
Asphalès project lifetime by l’Harmattan in a book entitled “La Sécurité aujourd’hui dans la société de
l’information”.

Marion Videau and Stéphanie Lacour continue their joint work on various aspects of information security
(personal medical data files, nanotechnology development).
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7. Contracts and Grants with Industry
7.1. MPQS

Participant: Paul Zimmermann.

A non-exclusive license contract (CACAO-LICENCE MPQS-2680) has been signed on July 25th with
Waterloo Maple Inc. (WMI), to enable the use of a fixed version of MPQS (see Section 5.8) within the Maple
computer algebra software.

8. Other Grants and Activities
8.1. National Initiatives
8.1.1. ANR CADO (Crible algébrique, Distribution, Optimisation)

Participants: Pierrick Gaudry, Guillaume Hanrot, Alexander Kruppa, Emmanuel Thomé, Paul Zimmermann.

The team has obtained a financial support from the ANR (“programme blanc”) for a project, common with the
TANC project-team and the number theory team of the mathematics lab in Nancy (IECN). Its objective is to
study the number field sieve algorithm.

We are working on several aspects of this factoring algorithm, that are linked to our main objectives. Among
other things, we will investigate the so-called “polynomial selection” phase, which could possibly be improved
using some lattice reduction tools, we will work on the parallelization (in a Grid context) of the linear algebra
step, we also want to study the relation search phase, where the speed of the underlying arithmetic is crucial.

For all of that, it is important to us to have our own implementation. Therefore, we have started the writing of
this implementation, that will be released under a free software license. The main goal is not to break records,
but to have a convenient and configurable tool to test different strategies.

8.1.2. ANR RAPIDE (Conception et analyse de chiffrements à flots efficaces pour les
environnements contraints)
Participants: Guillaume Hanrot, Marion Videau, Paul Zimmermann.

The project RAPIDE has begun January 1st, 2007. RAPIDE’s goal is the study of the design and the analysis
of efficient stream ciphers suitable for constrained environments. It has been granted and partially funded by
the ANR during the SETIN 2006 call for proposals. Marion Videau is the head of this project. Guillaume
Hanrot and Paul Zimmermann take part in the research activity.

The research activity is centered around the question of non-linear feedback functions. The idea is either to
find a suitable way to use symmetric Boolean functions as feedback functions since they are well known for
their good implementation properties or to find a way to synthesize new families of Boolean functions having
both good cryptographic parameters and good implementation characteristics.

To improve the knowledge about symmetric Boolean functions and their potential use as nonlinear feedbacks,
Marion Videau is currently working in collaboration with the university of Bergen, Selmer Center, Norway.
Symmetric Boolean functions have indeed good representation properties that are currently studied in collab-
oration with Matthew G. Parker in order to apply them to quantum codes. Contacts have also been taken with
Johannes Mykkeltveit for the study of sequences generated with symmetric feedbacks. On the synthesis side,
Marion Videau is currently working with Cédric Lauradoux (post-doctoral fellow, Princeton University) on
the properties of a special class of partially symmetric functions (a paper is currently submitted).

8.2. International Initiatives
8.2.1. Collaboration with ANU

Participants: Richard Brent, Paul Zimmermann.
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Richard Brent visited the CACAO team in May. This visit led to new results concerning the arithmetic of binary
polynomials. To reinforce the active collaboration with Richard Brent and his team, an “associate team” ANC
(Algorithms, Numbers, Computers) has been proposed, and supported by INRIA11.

8.2.2. Other visits
Florian Hess from TU Berlin visited us in January, working mainly with P. Gaudry on efficient group laws in
Jacobians of curves. David Kohel from University of Sydney has spent 2 months in May/June with the CACAO
team as an invited professor of Université Henri Poincaré. He was then hired as a professor in Marseille, and
this visit has been a good opportunity to establish good relations with the new group he is starting there. Dan
Bernstein and Tanja Lange from TU Eindhoven have visited us at the end of November to work on various
topics, including integer factorisation and curve based cryptography.

Marion Videau has spent one month (July 2007) in Bergen, with Selmer Center, in order to develop common
projects with the group of coding theory and cryptography which is worlwide renown in the field.

Guillaume Hanrot spent three weeks together with Nicolas Brisebarre (ARENAIRE project-team) at the
Tsukuba University in order to prepare a collaboration on pairing computation, in software and hardware.
A joint proposal has been submitted to the PHC Sakura program. The results are pending.

9. Dissemination

9.1. Scientific Animation
9.1.1. CACAO seminar

We have a seminar, where we have invited in 2007 the following speakers: Jean-Luc Beuchat, Richard
Brent, Sylvain Chevillard, Jeremie Detrey, Christophe Doche, David Kohel, Christoph Lauter, David Lubicz,
Guillaume Melquiond, Clément Pernet, Thomas Sirvent, Ben Smith, Ley Wilson.

9.1.2. Conference organization
Emmanuel Thomé has co-organized the Journées Nationales de calcul Formel, that took place in Luminy in
January. He will also co-organize the next meeting in 2008.

Pierrick Gaudry has co-organized the École Jeunes Chercheurs en Informatique Mathématique, that took place
in Nancy in March.

Guillaume Hanrot and Paul Zimmermann have organized the 1st school on Certified Numerical Computation
on October 25-26 in Nancy12, which attracted 14 participants from research institutes, universities and
industry.

9.2. Leadership within Scientific Community
Guillaume Hanrot was in the Program Committee of the ISSAC 2007 conference; Paul Zimmermann was in
the Program Committee of the ARITH 18 conference; both are members of the steering committee of the RNC
conference. Pierrick Gaudry was in the Program Committee of the WAIFI 2007 conference.

9.3. Committees memberships
G. Hanrot is vice-head of the Project Committee of INRIA Lorraine. He is also an appointed member of
the INRIA Commission d’Évaluation, of the Mathematics “Commissions de Spécialistes” from Universités
Montpellier 2, Henri Poincaré Nancy 1-Nancy 2-INPL, Jean-Monnet Saint-Étienne. He was a member of the
hiring committee for CR2 at INRIA Rocquencourt in 2007.

11http://www.loria.fr/~zimmerma/anc.html
12http://www.inria.fr/actualites/colloques/cea-edf-inria/2007/cnc/index.en.html

http://www.loria.fr/~zimmerma/anc.html
http://www.inria.fr/actualites/colloques/cea-edf-inria/2007/cnc/index.en.html
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P. Gaudry is an appointed member of the Computer Science “Commissions de Spécialistes” from Universités
Henri Poincaré Nancy 1 and Paris 8. He was one of the reviewers of the PhD these of J. Pujolas (Universitat
Politècnica de Catalunya, Barcelona).

P. Zimmermann is an elected member from the INRIA Evaluation Committee, and of the Computer Science
“Commission de Spécialistes” from University Henri Poincaré Nancy 1. He was member of the PhD thesis
jury of Marc Glisse (Univ. Nancy 2), of Romain Péchoux (INPL), and of the habilitation jury of Isabelle
Debled-Rennesson (Univ. Henri Poincaré Nancy 1). He was a member of the hiring committee for CR2 at
INRIA Futurs Saclay in 2007.

9.4. Invited Conferences
G. Hanrot gave a one-hour invited talk for the LLL+25 conference, Caen, and wrote a survey on the topic
of his talk, which shall be published in a proceedings volume. P. Gaudry gave a one-hour invited talk for the
“Computational Challenges Arising in Algorithmic Number Theory and Cryptography Workshop”, Toronto
and a one-hour invited talk for the ECC 2007 conference, Dublin. Paul Zimmermann gave invited talks at
the “Conference on Algorithmic Number Theory” in Turku (Finland), at the “Explicit Methods and Number
Theory” conference in Bordeaux (France), and at the SAGE Days 6 in Bristol (United Kingdom). M. Videau
gave an invited talk at the C&ESAR 2007 (Computer & Electronics Security Applications Rendez-vous).

9.5. Teaching
As an assistant professor, M. Videau teaches mainly at the master level. The courses directly related to her
research activities are : Introduction to cryptography (master degree, engineering school) and Introduction to
the security of communicating systems (master degree). She has supervised the master thesis of Pierre Dégardin
(University of Limoges), entitled “Is it possible to replace the S-box of the AES by a binomial or trinomial
permutation function?”.

P. Gaudry gave three 3 hours lectures at MPRI (Master Parisien de Recherche en Informatique) about
algorithmic number theory, in the Cryptology course.

E. Thomé gave 6 hours of computer lab at Université Henri Poincaré (M1 students) on the topic of the security
of communicating systems.

P. Gaudry and G. Hanrot are members of the jury of “agrégation externe de mathématiques”, a competitive
exam to hire high school teachers.

E. Thomé is a member of the jury of the competitive exam for the École polytechnique.
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