
c t i v i t y

te p o r

2007

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team mimosa

Migration et Mobilité: Sémantique et
Applications

Sophia Antipolis - Méditerranée

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/mimosa.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Introduction 1
2.2. Highlights of the year 2

3. Scientific Foundations .2
3.1. Semantics of mobility 2
3.2. Security of concurrent and mobile programs 2
3.3. Reactive and functional programming 3

4. Application Domains .3
4.1. Simulation 3
4.2. Embedded systems 3
4.3. Scripting 4
4.4. Web programming 4

5. Software . 4
5.1. Mimosa softwares 4
5.2. Reactive programming 4

5.2.1. Reactive-C 5
5.2.2. FairThreads in Java and C 5
5.2.3. LURC 5

5.3. Functional programming 5
5.3.1. The Bigloo compiler 5
5.3.2. ULM 5

5.4. Web programming 6
5.4.1. The HOP web programming environment 6
5.4.2. Scheme2JS 6

5.5. Old softwares 6
5.5.1. Bugloo 6
5.5.2. Skribe 6
5.5.3. Icobjs 7
5.5.4. TypI 7
5.5.5. MLObj 7
5.5.6. Trust 7

6. New Results . 7
6.1. Security 7

6.1.1. Controlling information flow 7
6.1.2. Relation between language-based security and process calculi security 8

6.2. Reactive programming 8
6.2.1. The reactive model 8
6.2.2. Safe concurrent programming 8
6.2.3. Reactive and mobile programming: ULM 9
6.2.4. Synchronous Programming: Esterel 9
6.2.5. Multicore and Embedded Systems: SHIM 9
6.2.6. Programming of multicore machines 10
6.2.7. Logic Synthesis 10

6.3. Functional programming 10
6.3.1. Fair cooperative multithreading 10
6.3.2. Bigloo 11

6.4. Web programming 12
6.4.1. Hop 12

2 Activity Report INRIA 2007

6.4.2. Scm2Js 13
7. Contracts and Grants with Industry . 13
8. Other Grants and Activities . 13

8.1.1. APP registration for Hop 13
8.1.2. ACI Sécurité Informatique ALIDECS 13
8.1.3. ANR SETIN ParSec 13

9. Dissemination . 14
9.1. Seminars and conferences 14
9.2. Animation 14
9.3. Teaching 15

10. Bibliography .15

1. Team
Head of project team

Gérard Boudol [Research Director, Inria, HdR]
Vice-head of project team

Ilaria Castellani [Research Scientist, Inria]
Administrative assistant

Sophie Honnorat [Inria]
Staff members Inria

Manuel Serrano [Research Director, Inria, HdR]
Olivier Tardieu [Research Scientist, Inria, till November 30]

Staff members CMA
Frédéric Boussinot [Research Director, CMA, HdR]

Reserch scientists (external)
Roberto Amadio [Professor, University of Paris 7, HdR]

Visting scientist
Erick Gallesio [Visiting Scientist, University of Nice Sophia-Antipolis, till October 1]

Ph. D. students
Marija Kolundzija [University of Torino]
Frederic Dabrowski [MENRT, till April 1]
Stéphane Epardaud [MENRT]
Florian Loitsch [MENRT]

2. Overall Objectives
2.1. Introduction

The overall objective of the MIMOSA project is to design and study models of concurrent, distributed
and mobile programming, to derive programming primitives from these models, and to develop methods
and techniques for formal reasoning and verification, focusing on issues raised by the mobile code. More
specifically, we develop a reactive approach, where concurrent components of a system react to broadcast
events. We have implemented this approach in various programming languages, and we have integrated
migration primitives in this reactive approach. In the past we also intensively studied models of mobility,
like the π-calculus and its distributed variants, and the calculus of Mobile Ambients. Our main research areas
are the following:

• Security. We investigate security issues like confidentiality and resource consumption, using static
analysis methods (for the verification of non-interference of programs with respect to given security
policies, and of computational complexity), with an emphasis on the issues related to concurrent and
mobile code.

• Models and languages for reactive programming. We develop several implementations of the reactive
approach, in various languages. We have designed, and still develop, an alternative to standard thread
systems, called FAIRTHREADS. We study the integration of constructs for mobile code in the model
of reactive programming.

• Functional languages. We develop several implementations of functional languages, mainly based on
the SCHEME programming language. Our studies focus on designing and implementing a platform
for a distributed environment. All our developments on the web rest on these implementations.

• Web programming. We design and implement a programming environment for the web 2.0. It relies
on a new distributed programming architecture where a program executes simultaneously on a server
and a client. We aim at providing a realistic implementation that we constantly validate by developing
and using end-users web applications.

2 Activity Report INRIA 2007

2.2. Highlights of the year
HOP, a software development kit for the Web, has won the software open source contest organized by the
ACM Multimedia Conference 2007 (see http://mmc36.informatik.uni-augsburg.de/acmmm2007/).

3. Scientific Foundations

3.1. Semantics of mobility
Mobility has become an important feature of computing systems and networks, and particularly of distributed
systems. Our project is more specifically concerned with the notion of a mobile code, a logical rather than
physical notion of mobility. An important task in this area has been to understand the various constructs that
have been proposed to support this style of programming, and to design a corresponding programming model
with a precise (that is, formal) semantics.
The models that we have investigated in the past are mainly the π-calculus of Milner and the Mobile Ambients
calculus of Cardelli and Gordon. The first one is similar to the λ-calculus, which is recognized as a canonical
model for sequential and functional computations. The π-calculus is a model for concurrent activity, and also,
to some extent, a model of mobility: π-calculus processes exchange names of communication channels, thus
allowing the communication topology to evolve dynamically. The π-calculus contains, up to continuation
passing style transforms, the λ-calculus, and this fact establishes its universal computing power. The Mobile
Ambient model focusses on the migration concept. It is based on a very general notion of a domain –
an Ambient –, in which computations take place. Domains are hierarchically organized, but the nesting
of domains inside each other evolves dynamically. Indeed, the computational primitives consist in moving
domains inside or outside other domains, and in dissolving domain boundaries. Although this model may
look, from a computational point of view, quite simple and limited, it has been shown to be Turing complete.
In the past we have studied type systems and reasoning techniques for these models. We have, in particular,
used models derived from the π-calculus for the formalization and verification of cryptographic protocols.
We have studied how to integrate the model of reactive programming, described below, into a "global
computing" perspective. This model looks indeed appropriate for a global computing context, since it provides
a notion of time-out and reaction, allowing a program to deal with the various kinds of failures (delays,
disconnections, etc.) that arise in a global network. We have designed and implemented a core programming
language that integrates reactive programming and mobile code, in the context of classical functional and
imperative programming.

3.2. Security of concurrent and mobile programs
We are studying security issues, especially those related to concurrent and mobile programming. In the past
we have developed methods and tools for the verification of cryptographic protocols. We also work on
secure information flow. This is motivated by the observation that access control is not enough to ensure
confidentiality, since access control does not prevent authorized users to disclose confidential information.
We use the language-based approach, developing static analyses, and especially type systems, to ensure that
programs do not implement illegal flow of information. We work particularly on specific confidentiality issues
arising with concurrent and mobile programming, but we also work on more general questions, like how to
allow some pieces of code to declassify some information, while still ensuring some confidentiality policy.
We also use static analysis techniques, namely polynomial quasi-interpretations, to ensure that programs do
not use computational resources beyond fixed limits. Again, a special effort is put here in finding methods that
apply to reactive and/or mobile programs. This could also have applications to embedded code.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/

Project-Team mimosa 3

3.3. Reactive and functional programming
Reactive programming deals with systems of concurrent processes sharing a notion of time, or more precisely
a notion of instant. At a given instant, the components of a reactive system have a consistent view of the
events that have been, or have not been emitted at this instant. Reactive programming, which evolves from
synchronous programming à la ESTEREL, provides means to react – for instance by launching or aborting
some computation – to the presence or absence of events. This style of programming has a mathematical
semantics, which provides a guide-line for the implementation, and allows one to clearly understand and
reason about programs.
We have developed several implementations of reactive programming, integrating it into various programming
languages. The first instance of these implementations was Reactive-C, which was the basis for several
developments (networks of reactive processes, reactive objects), described in the book [6]. Then we developed
the SUGARCUBES, which allow one to program with a reactive style in JAVA, see [4]. Reactive programming
offers an alternative to standard thread programming, as (partly) offered by JAVA, for instance. Classical thread
programming suffers from many drawbacks, which are largely due to a complicated semantics, which is most
often implementation-dependent. We have designed, following the reactive approach, an alternative style for
thread programming, called FAIRTHREADS, which relies on a cooperative semantics. Again, FAIRTHREADS
has been integrated in various languages, and most notably into SCHEME via the BIGLOO compiler that we
develop. One of our major objectives is to integrate the reactive programming style in functional languages,
and more specifically SCHEME, and to further extend the resulting language to support migration primitives.
This is a natural choice, since functional languages have a mathematical semantics, which is well suited to
support formal technical developments (static analysis, type systems, formal reasoning).

4. Application Domains

4.1. Simulation
Simulation of physical entities is used in many distinct areas, ranging from surgery training to games. The
standard approach consists in discretization of time, followed by the integration using a stepwise method (e.g.
Runge-Kutta algorithms). The use of threads to simulate separate and independent objects of the real world
appears quite natural when the focus is put on object behaviours and interactions between them. However,
using threads in this context is not so easy: for example, complex interactions between objects may demand
complex thread synchronizations, and the number of components to simulate may exceed the number of
available threads. Our approach based on FAIRTHREADS, or on the use of reactive instructions, can be helpful
in several aspects:

• Simulation of large numbers of components is possible using automata. Automata do not need thread
stacks, and the consumption of memory can thus stay low.

• Interactions are expressed by means of broadcast events, and can thus be dealt with in a highly
modular way.

• Instants provide a common discrete time that can be used by the simulation.

• Interacting components can be naturally grouped into synchronized areas. This can be exploited in a
multiprocessing context.

4.2. Embedded systems
Embedded systems with limited resources are a domain in which reactive programming can be useful. Indeed,
reactive programming makes concurrent programming available in this context, even in the absence of a library
of threads (as for example the pthreads). One objective is to build embedded systems from basic software
components implementing the minimal functionalities of an operating system. In such an approach, the
processor and the scheduler are considered as special resources. An essential component is a new specialized
scheduler that should provide reactive engines with the functionalities they need.

4 Activity Report INRIA 2007

This approach is useful for mobile telecom infrastructures. It could also be used in more applicative domains,
as the one of gaming consoles. PDAs are also a target in which the proposed approach could be used. In this
context, graphical approaches as ICOBJS could be considered to allow end-users to build some part of their
applications.

4.3. Scripting
Because functional languages offer a high level of abstraction, they generally enable compact implementations.
So, they enable fast prototyping and fast implementing. In consequence, they are generally convenient when
used as scripting languages. For this reason, many famous end-user applications (such as Emacs, Gimp, Auto-
Cad, ...) embed interpreters of functional languages. The compilation of functional languages, at least for the
representatives that use strict evaluation order, is now well understood. Hence, programming in a functional
language does not forbid to produce fast applications that do not clutter the computers they run on. With
some of the modern implementations, it is possible to blend compiled code, for fast execution, and interpreted
code, for scripting. The combination of both execution modes brings expressiveness and efficiency. Few other
languages offer this capability. Exploiting this specificity we have conceived an email synchronizer that is
implemented in Scheme and that also uses this language for supporting user scripting.

4.4. Web programming
Along with games, multimedia applications, and email, the web has popularized computers in everybody’s
life. The revolution is engaged and we may be at the dawn of a new era of computing where the web is a
central element.
Many of the computer programs we write, for professional purposes or for our own needs, are likely to
extensively use the web. The web is a database. The web is an API. The web is a novel architecture. Therefore,
it needs novel programming languages and novel programming environments.
In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed.
Implementing an application with a web interface makes it instantly open to the world and accessible from
much more than one computer. The web also partially solves the problem of platform compatibility because it
physically separates the rendering engine from the computation engine. Therefore, the client does not have to
make assumption on the server hardware configuration, and vice versa. Lastly, HTML is highly durable. While
traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking backward
compatibility, modern web browsers that render on the edge web pages are still able to correctly display the
web pages of the early 1990’s.
For these reasons, the web is arguably ready to escape the beaten track of n-tiers applications, CGI scripting
and interaction based on HTML forms. However, we think that it still lacks programming abstractions that
minimize the overwhelming amount of technologies that need to be mastered when web programming is
involved. Our experience on reactive and functional programming is used for bridging this gap.

5. Software

5.1. Mimosa softwares
Most MIMOSA softwares, even the older stable ones that are not described in the following sections (such as
the SugarCubes and Rejo-Ros) are freely available on the Web. In particular, some are available directly from
the INRIA Web site:
http://www.inria.fr/valorisation/logiciels/langages.fr.html
Most other softwares can be downloaded from the MIMOSA Web site:
http://www-sop.inria.fr/mimosa

5.2. Reactive programming
Participants: Frédéric Boussinot, Stéphane Epardaud.

http://www.inria.fr/valorisation/logiciels/langages.fr.html
http://www-sop.inria.fr/mimosa

Project-Team mimosa 5

5.2.1. Reactive-C
The basic idea of Reactive-C is to propose a programming style close to C, in which program behaviours are
defined in terms of reactions to activations. Reactive-C programs can react differently when activated for the
first time, for the second time, and so on. Thus a new dimension appears for the programmer: the logical time
induced by the sequence of activations, each pair activation/reaction defining one instant. Actually, Reactive-C
rapidly turned out to be a kind of reactive assembly language that could be used to implement higher level
formalisms based on the notion of instant.

5.2.2. FairThreads in Java and C
FAIRTHREADS has first be implemented in JAVA. It is usable through an API. The implementation is based on
standard JAVA threads, but it is independent of the actual JVM and OS, and is thus fully portable. There exists
a way to embed non-cooperative code in FAIRTHREADS through the notion of a fair process. FAIRTHREADS
in C introduces the notion of unlinked threads, which are executed in a preemptive way by the OS. The
implementation in C is based on the pthreads library. Several fair schedulers, executed by distinct pthreads,
can be used simultaneously in the same program. Using several schedulers and unlinked threads, programmers
can take advantage of multiprocessor machines (basically, SMP architectures).

5.2.3. LURC
LURC is a Reactive threading library in C. It is based on the reactive model of ULM (Un langage pour
la mobilité) and the desynchronization feature of FAIRTHREADS in C. It provides several types of thread
models, each with different performance trade-offs at run-time, under a single deterministic semantics. Its
main features as taken from ULM are preemption, suspension, cooperation and signal emission and waiting.
On top of that, threads can switch from asynchronous to synchronous at will. Event-loop programming has
been integrated in a reactive style under the form of a Reactive Event Loop. The main difference with the
syntax of LOFT, another threads library developed in the team, is that LURC is a pure C library, on top of
which a pseudo-language layer can be added in the form of C macros in order to make reactive primitives
look and behave like language primitives. LURC is available on the INRIA website at the following URL:
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/lurc.

5.3. Functional programming
Participants: Stéphane Epardaud, Erick Gallesio, Manuel Serrano.

5.3.1. The Bigloo compiler
The programming environment for the Bigloo compiler [9] is available on the INRIA Web site at the
following URL: http://www-sop.inria.fr/mimosa/fp/Bigloo. The distribution contains an optimizing compiler
that delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler,
and various Bigloo development tools. The distribution also contains several user libraries that enable the
implementation of realistic applications.
BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting to Microsoft Windows is
pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

5.3.2. ULM
ULM is a new language for the mobility that is developed in the team. The ULM Scheme implementation
is an embedding of the ULM primitives in the Scheme language. The bytecode compiler is available on PCs
only but there are two ULM Virtual Machines: one for PCs and one for embedded devices supporting Java 2
Mobile Edition (J2ME) such as most mobile phones. The current version has preliminary support for a mixin
object model, mobility over TCP/IP or Bluetooth Serial Line, reactive event loops, and native procedure calls
with virtual machine reentry. The current version is available at http://www-sop.inria.fr/mimosa/Stephane.
Epardaud/ulm.

http://www-sop.inria.fr/mimosa/Stephane.Epardaud/lurc
http://www-sop.inria.fr/mimosa/fp/Bigloo
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/ulm
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/ulm

6 Activity Report INRIA 2007

5.4. Web programming
Participants: Florian Loitsch, Manuel Serrano.

5.4.1. The HOP web programming environment
HOP is a new higher-order language designed for programming interactive web applications such as web
agendas, web galleries, music players, etc. It exposes a programming model based on two computation levels.
The first one is in charge of executing the logic of an application while the second one is in charge of executing
the graphical user interface. HOP separates the logic and the graphical user interface but it packages them
together and it supports strong collaboration between the two engines. The two execution flows communicate
through function calls and event loops. Both ends can initiate communications.
The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. That broker embeds a HOP interpreter for executing server-side code and a
HOP client-side compiler for generating the code that will get executed by the client.
An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS stream, or
managing blogs.
HOP has won software open source contest organized by the ACM Multimedia Conference 2007 (http://
mmc36.informatik.uni-augsburg.de/acmmm2007/). It is released under the GPL license. It is available at http://
hop.inria.fr.

5.4.2. Scheme2JS
Scm2JS is a Scheme to JavaScript compiler distributed under the GPL license. Even though much effort has
been spent on being as close as possible to R 5 RS, we concentrated mainly on efficiency and interoperability.
Usually Scm2JS produces JavaScript code that is comparable (in speed) to hand-written code. In order to
achieve this performance, Scm2JS is not completely R 5 RS compliant. In particular it lacks exact numbers.
Interoperability with existing JavaScript code is ensured a JavaScript-like dot-notation to access JavaScript
objects and by a flexible symbol-resolution implementation.
Scm2JS is used on a daily basis within HOP, where it generates the code which is sent to the clients (web-
browsers).
Scm2JS can be found here (http://www-sop.inria.fr/mimosa/personnel/Florian.Loitsch/scheme2js/)

5.5. Old softwares
5.5.1. Bugloo

BUGLOO, is a source level debugger for Scheme programs compiled into JVM bytecode. It focuses on provid-
ing debugging support for the Scheme language specificities, such as the automatic memory management, high
order functions, multi-threading, or the runtime code interpreter. The JVM is an appealing platform because it
provides facilities to make debuggers, and helps us to meet the requirements previously exposed.

5.5.2. Skribe
SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of the SCHEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document with SKRIBE is as simple as with
HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratio markup/text is smaller than with the other markup systems we
have tested.
Executing a SKRIBE program with a SKRIBE evaluator produces a target document. It can be HTML files
for Web browsers, a LaTeX file for high-quality printed documents, or a set of info pages for on-line
documentation.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://hop.inria.fr
http://hop.inria.fr
http://www-sop.inria.fr/mimosa/personnel/Florian.Loitsch/scheme2js/

Project-Team mimosa 7

5.5.3. Icobjs
ICOBJS programming is a simple and fully graphical programming method, using powerful means to combine
behaviours. This style of programming is based on the notion of an icobj which has a behavioural aspect (object
part), and a graphical aspect (icon part), and which can be animated on the screen. ICOBJS programming
evolves from the reactive approach and provides parallelism, broadcast event communication and migration
through the network. The Java version of ICOBJS unifies icobjs and workspaces in which icobjs are created,
and uses a specialized reactive engine. Simulations in physics and the mobile Ambient calculus have been
ported to this new system.

5.5.4. TypI
TypI is a type inference interpreter for the intersection types discipline. It implements, in CAML, the algorithm
designed and proved correct by Boudol and Zimmer. A reference manual (in french) can be found on the web
page of the project, and is a chapter of Zimmer’s thesis .

5.5.5. MLObj
MlObj is an interpreter for a prototype language composed of a functional core, objects, mixins and degree
types, written in CAML. It implements Boudol’s theory of objects as recursive records. A reference manual (in
french) can be found on the web page of the project, and is a chapter of Zimmer’s thesis.

5.5.6. Trust
The TRUST tool, designed for the verification of cryptographic protocols, is an optimized OCAML implemen-
tation of the algorithm designed and proved by Amadio, Lugiez and Vanackère. It is available via the

6. New Results

6.1. Security
Participants: Roberto Amadio, Gérard Boudol, Ilaria Castellani, Frédéric Dabrowski, Marija Kolundzija.

6.1.1. Controlling information flow
Non-interference is a property of programs asserting that a piece of code does not implement a flow of
information from classified or secret data to public results. In the past we have followed Volpano and Smith
approach, using type systems, to statically check this property for concurrent programs. The motivation is that
one should find formal techniques that could be applied to mobile, multithreaded code, in order to ensure that
migrating agents and, more generally, concurrent threads do not corrupt protected data, and that the behaviour
of such agents or threads does not actually depend on the value of secret information.
The non-interference property is very often questioned, on the basis that it cannot be used in practice because
it rules out, by its very definition, programs that intentionally declassify information from a confidential
level to a public one, like a password checking procedure for instance. We have addressed this problem,
of how to combine declassification with a security analysis of programs, like typing the information flow.
More specifically, we have introduced a block-structured programming contruct that allows the programmer
to extend the current information flow policy by new rules for legal flow, in order to declassify information
in a sub-program. The use of this construct is however unrestricted, and no way is provided to control how
declassification is used. In [15] we have addressed this problem. The idea is to use standard access control
mechanisms, to constrain a program to declassify only information that is is allowed to read, according to the
access control policy. This is implemented by considering a high level programming language, extending
the one we used for dealing with declassification, that is, a higher-order imperative language à la ML,
enriched with contructs for dynamically managing the use of security policies, namely a mechanism for
locally extending the flow relation (as in the work of Boudol and Matos on declassification), and constructs
for extending, restricting and testing the access rights assigned to a piece of code, à la JAVA. We then define a
type system for this language, extending the one of Boudol and Matos, and we show that typable programs are
secure, not only from the information flow point of view, but also from the access control point of view. That is,

8 Activity Report INRIA 2007

a typable program never attempts, at any point of execution, to access information for which the appropriate
access rigth is not currently granted. As a consequence, in particular, a typable program never attempts to
declassify information that is does not have the right to read. Moreover, no dynamic access control check is
needed in running a typable program.

6.1.2. Relation between language-based security and process calculi security
As regards security properties and related type systems, we pursued our work on the relation between
noninterference for parallel programming languages and security notions for process calculi. A first outcome of
this work is presented in the papers [[16],[25]] (the second being the full version of the first). In these papers we
addressed the question of typing noninterference (NI) in Milner’s Calculus of Communicating Systems (CCS),
in such a way that Milner’s translation of a standard parallel imperative language into CCS preserves both an
existing NI property and the associated type system. In doing so, we generalized previous work by Focardi,
Rossi and Sabelfeld, who showed that a variant of Milner’s translation, restricted to the sequential fragment
of the language, maps a time-sensitive NI property to that of Persistent Bisimulation-based Non Deducibility
on Compositions (PBNDC) on CCS. We extended Focardi, Rossi and Sabelfeld’s result by showing that a
simpler variant of Milner’s translation preserves a time-insensitive NI property on the full parallel language, by
mapping it again to PBNDC. As a by-product, we formalised a folklore result, namely that Milner’s translation
preserves a behavioural equivalence on programs. We also presented a security type system for CCS, inspired
from existing type systems for the pi-calculus. We proved that this type system ensures the PBNDC-property.
We also showed that, as it stands, this type system is too restrictive to reflect any of the proposed type systems
for the imperative language. We outlined a solution to overcome this problem, by slightly relaxing the type
system for CCS.

6.2. Reactive programming
Participants: Roberto Amadio, Gérard Boudol, Frédéric Boussinot, Ilaria Castelani, Frédéric Dabrowski,
Stéphane Epardaud, Olivier Tardieu.

6.2.1. The reactive model

6.2.2. Safe concurrent programming
We are designing a new safe language for reactive programming, called FunLoft. The language is based on
FairThreads [5]. In FairThreads, a thread may either be linked to a scheduler and run cooperatively, or be
unlinked and run preemptively. Threads communicate using both broadcast events and shared memory. Each
event is associated with a unique scheduler which defines global instants for the threads linked to it and for
its associated events. In FunLoft, each scheduler and each thread owns a distinct portion of the memory such
that:

• The memory of a scheduler can only be accessed by the threads which are linked to it.

• The memory of a thread can only be accessed by it.

Non-intersection of distinct portions of the memory is statically checked using a type and effect system. This
entails absence of thread interferences possibly leading to data-races. Termination of recursive functions is also
controlled. In the present version of FunLoft, recursivity can only concern parameters of inductive types. To
control the size of the global memory used by a program, memory locations are stratified over a finite domain.
We rely on a simple data flow analysis to ensure that no cyclic dependence is possible for memory locations
carrying complex datatypes (simple datatypes such as integers do not have this restriction). Several other
static controls are also made, for example to guarantee that the number of living threads remains bounded.
Static checks insure three fundamental properties of FunLoft: that programs are free of memory leaks, that
code between two cooperation points is atomic, and that rounds are fair and always terminate (no run-time
error nor divergence). A formal semantics exists for FunLoft, which takes into account the cooperative aspects
as well as the preemptive ones [23]. The semantics restricted to a unique scheduler has been presented in a
previous paper; the complete semantics, when there are several schedulers, of a model very close to FunLoft is
described in the thesis of F. Dabrowski [10]. We are currently developing an implementation prototype (version

Project-Team mimosa 9

0.2), available at http://www.inria.fr/mimosa/rp/FunLoft. The prototype is used to implement various
examples of graphical simulations (for example, cellular automata made of several thousands of cells, each
being a thread). These examples show that systems with large numbers of concurrent units can be efficiently
implemented in our language.
In Section 6.3.1 we present another approach, still using a type and effect system, of the fairness problem for
a higher-order, concurrent (cooperative) and imperative language. More precisely, in [14] it is shown how to
restrict the use of higher-order memory, in order to ensure that concurrent threads are cooperative, and that the
“instants” in a higher-order reactive model are finite.

6.2.3. Reactive and mobile programming: ULM
During the year 2007, we have developed a prototype application in ULM for France-Télécom. The goal of this
prototype is to study the possible use of mobile agents for dynamic reconfiguration of software components.
This led to various improvements of the ULM virtual machine, compiler and runtime libraries. The mixin
object system has been rewritten for a smaller code, processing and memory footprint. An option has been
added while migrating an agent which will notify of the migration’s success or failure, with possible local
recovery of the migrated agent in case of failure. Terminated agents and unused signals are now being garbage
collected. We have added support for SSL certificates and encryption for the transportation of agents. A new
program lets users disassemble compiled ULM bytecode.

6.2.4. Synchronous Programming: Esterel
Instantaneous Transitions Esterel makes it possible to program hierarchical finite state machines in a safe
and intuitive way. By contrast, specifying flat automata in Esterel is cumbersome and error prone. Many
standards however explicitly prescribe unstructured state machines. For example, the link layer specification
of the Serial ATA standard specifies a 31-state machine by listing transitions in a table. Previously, we extended
Esterel with a primitive construct to encode non-instantaneous state transitions. This year, we further extended
the language to cope with instantaneous transitions [21]. It benefits the programmer who can directly specify
transition tables in Esterel if needed. It also benefits formal verification as, in contrast with previous techniques
for encoding unstructured states machines in Esterel, it does not introduce spurious transitions.
Deterministic Semantics The deterministic semantics of Esterel we previously introduced defines at most one
behavior per program and input sequence. It may define zero if the program is not logically correct. This year,
we revised the deterministic semantics so as to generate error codes instead [13]. The new semantics formalizes
error locations and causes. It enables formal reasoning about incorrect programs using only positive logic, that
is, logic without negation.

6.2.5. Multicore and Embedded Systems: SHIM
Because of multicore and embedded systems, there is a growing need for languages and tools that help
programmers exploit parallel processing units in software systems without requiring dramatic changes in
development methodologies. Common concurrent models allow the behavior of a program to depend on
the scheduling of operations. Unfortunately, reasoning about scheduling can be a new and difficult task for
a programmer used to writing sequential code. SHIM is a novel concurrent programming language that
avoids many of the pitfalls of traditional concurrent programming languages—e.g. data races—by adopting
deterministic message passing as it sole communication mechanism.
Code Generation This year, we implemented a SHIM to C-plus-Pthreads compiler that can produce efficient
code for shared-memory multiprocessors. We present a parallel JPEG decoder and FFT exhibiting 3.05× and
3.3× speedups on a four-core processor. This work will be presented in March 2008 at the Design, Automation,
and Test in Europe conference.
Safety This year, we also formally established race freedom for a core language with local channels and
recursive process definitions. This work is currently under review.

10 Activity Report INRIA 2007

6.2.6. Programming of multicore machines
In FunLoft, schedulers and unlinked threads should be mapped onto native threads that are dispatched
on available cores in a preemptive way. A submitted paper [24] describes the interest of FunLoft for the
programming of multicore machines. A brief note [22] proposes a simulation of colliding particles as a
benchmark for multicore machines.

6.2.7. Logic Synthesis
Optimizing sequential cycles is essential for many types of high-performance circuits, such as pipelines
for packet processing. Retiming is usually applied to such circuits, which renders the length of purely
combinational paths nearly irrelevant since retiming can divide such paths among multiple clock cycles to
increase the clock rate. However, because retiming cannot change the number of registers on a sequential
cycle, the depth of the combinational logic along sequential cycles becomes the bottleneck. Designers usually
attack such cycles by manually combining Shannon decomposition with retiming. Shannon decomposition
provides a way to restructure logic to hide the effects of late-arriving signals. This is done by duplicating a
cone of logic, feeding constant 1s and 0s into the late-arriving signal and placing a two-input multiplexer on the
output of the two cones. Following Shannon decomposition with retiming can greatly improve overall circuit
performance. Since Shannon decomposition can move logic out of sequential loops, a subsequent retiming
step can better balance the logic to reduce the minimum clock period, giving a faster circuit. In 2006, we
proposed an efficient algorithm that simultaneously applies Shannon decomposition and retiming to optimize
circuits with tight sequential cycles. This year, we extended this work with an in-depth analysis of optimality
and convergence [12].

6.3. Functional programming
Participants: Gérard Boudol, Erick Gallesio, Florian Loitsch, Manuel Serrano.

6.3.1. Fair cooperative multithreading
One of the main aim of our project is to integrate the constructs of reactive programming into expressive
programming languages, like SCHEME or ML. However, there is in principle a difficulty in this integration,
which is that in the reactive style of programming, and more generally in any multi-threading context where
the scheduling is cooperative, any program must be cooperative, or fair, that is any program must release the
control after a finite amount of time of running. Thread code may be written so as to be fair, using a “yield”
instruction for instance, but it is not clear how to formally check the fairness property (which is undecidable
in an expressive programming language). To address this issue, we have proposed in [14] a new operational
model for shared variable concurrency, in the context of a concurrent, higher-order imperative language à
la ML. The main novelty is the introduction of a “yield-and-loop” construct, to program intentionnally non-
terminating programs, like servers for instance, the semantics of which is that a looping process suspends
itself on each recursive call. In order to show the fairness property in this model – that is, any thread yields the
scheduler after some finite computation –, we follow and adapt the classical method for proving termination
in typed formalisms, namely the realizability technique. There is a specific difficulty with higher-order state,
which is that one cannot define a realizability interpretation simply by induction on types, because applying a
function may have side-effects at types not smaller than the type of the function. Moreover, such higher-order
side-effects may give rise to computations that diverge without resorting to explicit recursion. We overcome
these difficulties by introducing a type and effect system for our language that enforces a stratification of the
memory. The stratification prevents the circularities in the memory that may cause divergence, and allows
us to define a realizability interpretation of the types and effects, which we then use to prove the intended
termination property. Our realizability interpretation also copes with dynamic thread creation, although the
main difficulty lies in the sequential (imperative and functional) fragment of the language.

Project-Team mimosa 11

In the full version of [14] (available from the web page of the author, and submitted for publication in a
technical journal), we have included a block-structured construct for declaring local regions in the memory,
for effect masking purposes, as in the early work of Lucassen and Gifford. This construct is also used by
Tofte and Talpin for memory management purposes, with a different semantics, namely that a local region is
reclaimed at the end of its scope. The type safety property is difficult to establish in this case. In the course
of proving the results presented in [14], we have discovered a new proof of type safety for Tofte and Talpin’s
calculus of regions. This new proof relies on a new type system for a language extended with an explicit
memory deallocation construct. Then not only we have a simple proof of the safety of Tofte and Talpin’s
typing for the region calculus, but moreover we have a sound type discipline for explicit memory deallocation.
This is exposed in a paper entitled “Typing safe deallocation” (by G. Boudol), which has been submitted for
publication in a conference.

6.3.2. Bigloo
During the year 2007, we have designed and implemented a new package management system for the Scheme
programming language named ScmPkg [19]. It is inspired by the Comprehensive Perl Archive Network (CPAN)
and various GNU/Linux distributions. It downloads, installs, and prepares source codes for execution. It
manages the dependencies between packages. The main characteristic of this system is its neutrality with
respect to the various Scheme implementations. It is neutral with respect to the language extensions that each
Scheme implementation proposes and with respect to the execution environment of these implementations.
This allows the programmer to blend, within the same program, independent components which have been
developed and tested within different Scheme implementations. We have successfully compiled applications
blending Bigloo, Chicken, MzScheme, and STklos codes.
ScmPkg is a loose architecture that consists of a web server, a simple Interface Desciption Language (IDL)
for describing packages, and ad-hoc package managers that are provided by the Scheme implementations (that
we henceforth denote as Scheme hosts, hosts, or dialects) that support ScmPkg.

• The web server implements a graphical user interface for browsing the packages, their documenta-
tion, and their source code. It also supports two services that are used for installing the packages. The
first one provides the whole list of packages and the second implements downloading of individual
packages.

• An IDL describes the material exposed by a package along with some additional meta information.

• Each Scheme host that supports ScmPkg must provide a package manager. This is a simple program
that is in charge of preparing a package for its host. This, in general, involves downloading, preparing
and installing the code. Optionally it may also compile the code. The package manager is the
equivalent to the apt-get command of GNU/Linux Debian distributions.

Before being compiled or interpreted a package may have to be adapted to a Scheme host. That is, some
parts of its interface and its implementation may have to be rewritten. It is handled automatically by the host
package manager. This process is at the heart of the whole system. The general idea of adaptation is that
Scheme hosts are compatible to a large extent. They all support a common set of extensions even though they
don’t share the same interfaces. Sometimes, reusing a source code implemented for a host H1 within a host H2
requires us to provide glue that is made of additional functions and macros. It may also require us to override
some definitions of the original source code (either because H2 allows a faster implementation or because
the H1 implementation uses features that have no counterpart in H2). ScmPkg proposes a methodology for
automatically processing host adaptation. This distinguishes ScmPkg from other packaging systems.
ScmPkg is available at:

http://hop.inria.fr/hop/scmpkg)
ScmPkg has been integrated into Bigloo in the version 3.0 which has been released during 2007. The activity
on the Bigloo mailing list has been steady with approximatively new 800 messages posted, the same activity
as in 2006.

http://hop.inria.fr/hop/scmpkg

12 Activity Report INRIA 2007

6.4. Web programming
Participants: Florian Loitsch, Manuel Serrano.

6.4.1. Hop
During the year 2007, several major versions of HOP have been released. The last one, the version 1.8.0,
released in November, contains several new APIs such as:

• SVG and MathML support.

• Canvas for interactive drawing.

• WebDAV client-side and server-side support.

• ...

In addition to adding new features, we have focused most of our efforts into improving the quality of the
system.

• The reliability of the HOP Web server has been significantly improved. In consequence, we have
been able to run continuously the HOP Web site http://hop.inria.fr, during several months without
any problem.

• The portability of the HOP Web server has been improved. The last version can now be installed
on any regular PC running any main-stream operating system. In addition, successful experiments
for installing it on NASes and PDAs (Network Attached Storages) have been conducted. We plan
to release official pre-compiled versions for theses architectures during the year 2008. The last
portability issue we have addressed during the year is the

• The client-side execution of HOP programs has been improved. It is well-known that writing portable
Web applications, that is, Web applications that can be executed by all the mainstream Web browsers
(e.g., Firefox, Safari, Internet Explorer) is a difficult problem. Since HOP relies on a compiler for
generating client-code on the fly, it has an opportunity to tune the produced code for the each
browser. Hence, the burden of producing portable client-side code no longer rests on the shoulders
of the programmer of the Web application but on the ones of the HOP implementor. We have made
this effort this year.

After a whole year of improvements, we deem that HOP is now polished enough for being used for production-
quality applications. Hence, we have started implementing our first HOP Web applications:

• A full-fledged mail client. This application is now used on a daily-basis by its author. It can be
executed by regular PCs and by PDAs. The application automatically adapts its GUI to fit the size
of its output device.

• A slide authoring system. This application allows slides to contain SVG images, MathML formulas,
and other traditional multimedia resources. It supports graphical animations and video overlays for
highlighting parts of a slide.

• An ubiquitous home media center. That system can use many sources of music and radios and it can
control several output speakers. All the electronic devices that can run a Web browser can participate
to the application. A mobile phone can turn on the music and select a podcast, a laptop can lower the
volume, a PDA can switch off the speakers of the living room and switch on the speakers located in
the kitchen, etc. We feel that without the Web it would have been impossible for us to develop such
an application, or at it least, it would have been much harder. However, although the “standard” Web
technologies are almost sufficient for building our targeted application, some mandatory features are
still missing in current Web SDKs. In particular, the Web lacks portable means for playing music.
HOP has bridged this gap. This application has been sketched in one of our publication [20].

http://hop.inria.fr

Project-Team mimosa 13

6.4.2. Scm2Js
We continued the development of Scm2JS, our Scheme to JavaScript compiler. We experimented with
different call/cc implementations (all based on exceptions) [17]. The final implementation contains several
optimizations: it splits call/cc points into suspension and resume points, which allows to treat each
separately. During restoration Scm2JS needs to emulate a jump to the resume-point, and this goto can be
optimized, now that the jump-target can be manipulated independently from the suspension point.
We furthermore improved call/cc calls at tail-locations. These locations do not need any instrumentation
anymore.
Call/cc support made it furthermore necessary to refactor Scm2JS’s internals to work around JavaScript’s
missing let keyword. Whereas without call/cc most nested scopes can be easily merged into the surround-
ing function scope. Continuations however invalidate such simplifications.
Scm2JS has seen many improvements in other areas too. Scm2JS is now multithread-safe. We have added
module-support. Scm2JS’s documentation has been rewritten. Many bugs have been fixed.
The tool-chain around Scm2JS has been enhanced too. An exporter simplifies the creation of JavaScript
interfaces. HOP has been modified to benefit from this tool.

7. Contracts and Grants with Industry

7.1. CRE France-Télécom R&D
A CRE (contract for external research) started this year, funded by France-Télécom R&D on "Analysis of
security properties for global programming frameworks". The duration of the project is 3 years (may be
extended to 4), and the total funding is 120 kEuros. The purpose of the project is to support the research
done in MIMOSA on security issues and mobile code, and to study the applicability of our methods and results
to concrete problems investigated at France-Télécom R&D.

8. Other Grants and Activities

8.1. National initiatives
8.1.1. APP registration for Hop

Hop has been registered to the APP on June 1fst, 2006 under the reference : IDDN.FR.001.260002.000.S.P.2006.000.10400.

8.1.2. ACI Sécurité Informatique ALIDECS
Frédéric Boussinot is participating to the ACI Sécurité Informatique ALIDECS whose coordinator is Marc
Pouzet. The ACI started in october 2004. Paricipants are Lip6 (Paris), Verimag (Grenoble), Pop-Art (Inria
Rhône-Alpes), Mimosa (Inria Sophia) and CMOS (LaMI Évry). The objective is to study an integrated
development environment for the construction and use of safe embedded components.

8.1.3. ANR SETIN ParSec
The PARSEC project (for “Parallélisme et Sécurité”) has been funded by the ANR Sécurité Informatique
programme for 4 years, starting January 2007. The partners of this project are the teams MIMOSA (coordinator)
and EVEREST at INRIA Sophia Antipolis, LANDE at IRISA, MOSCOVA at INRIA Rocquencourt and
CONCURRENCY at the PPS Laboratory of Paris 7 University and CNRS.

14 Activity Report INRIA 2007

9. Dissemination

9.1. Seminars and conferences
Gérard Boudol presented the research work of the MIMOSA team on security at the the first meeting

of the ANR SETIN project PARSEC in Sophia Antipolis, February 2007. He participated in the
second workshop at the MSR-INRIA Laboratory, Orsay, in June 2007 (where [15] was presented by
Marija Kolundzija), and in the third workshop at the PPS Laboratory, Paris, December 2007, where
he presented [14]. He attended the ETAPS’07 conference in Braga and the TLCA’07 conference in
Paris. He participated in the CONCUR’07 conference in Lisbon, where he presented [14] and in the
MMM-ACNS’07 workshop in St Petersbourg (where [15] was presented by Marija Kolundzija).

Ilaria Castellani took part in the three meetings of the ANR project PARSEC (held respectively at INRIA
Sophia Antipolis, in February 2007, at the MSR-INRIA laboratory, Orsay, in June 2007, and at the
CNRS-Paris7 laboratory PPS, in December 2007). At the second PARSEC meeting she presented the
submitted work [16]. She participated to the conference CONCUR’07 and to its satellite workshop
SecCo’07, where she presented the paper [16] (Lisbon, September 2007). She attended the workshop
TGC’07 and its associated workshop on the Interplay of Programming Languages and Cryptography
(INRIA Sophia Antipolis, November 2007).

Marija Kolundzija participated in the workshops of the ANR SETIN project PARSEC, and in the MMM-
ACNS’07 workshop in St Petersbourg. She presented [15].

Florian Loitsch participated in the Dagstuhl seminar on Programming paradigms for the Web. He
presented the paper [18] at Trends of Functional Programming in New York. Gave a talk on Scm2JS
continuation techniques [17] at the 2007 Workshop on Scheme and Functional Languages.

Manuel Serrano gave several presentations of the HOP system. In an attempt to establish collaboration
with Orange he participated in two seminars at Orange R&D. The first one took place in Grenoble
the second one in Sophia-Antipolis. He gave an invited presentation of HOP at the 2007 International
Lisp Conference that took place in Cambridge, UK. He gave another invited presentation on
programming multimedia application with HOP at the Montreal Scheme and Lisp User Group
seminar. He participated to the ACM Multimedia 2007 event where he has received the price of
the best open source software. He participated to the Dagstuhl seminar on Programming paradigms
for the Web.

Olivier Tardieu took part in two meetings of the ANR project PARSEC (held respectively at INRIA
Sophia Antipolis, in February 2007, at the MSR-INRIA laboratory, Orsay, in June 2007). Olivier
Tardieu participated to the ETAPS’07 conference and to its SLA++P’07 satellite workshop where he
presented the paper [21] (Braga, Portugal, April 2007). Olivier Tardieu participated to the POPL’07
conference (Nice, January 2007) and to the DATE’07 conference (Nice, March 2007) where he
received a best-paper award for his 2006 paper "Optimizing Sequential Cycles through Shannon
Decomposition and Retiming" written with Cristian Soviani and Prof. Stephen A. Edwards from
Columbia University, New York.

9.2. Animation
Gérard Boudol is the coordinator of the ANR SETIN project PARSEC. He organized the first meeting

of this project in Sophia Antipolis, February 2007. He was a member of the ESOP’07 programme
committee. He was a reviewer of the PhD Theses of Gurvan Le Guernic (IRISA) and of Damien
Pous (ENS Lyon). He was an examiner of the PhD Thesis of Frédéric Dabrowski.

Frédéric Boussinot was examiner of the PhD thesis of F. Dabrowski. F. Boussinot was invited speaker at
the SYNCHRON’07 Workshop (Bamberg) and has participated to the Program Comitee of MSR’07
(Lyon).

Project-Team mimosa 15

Manuel Serrano was a member of the program committee of the ACM SIGPLAN Commercial Users of
Functional Programming.

Olivier Tardieu is a member of the IEEE working group P1778 on Esterel v7 Standardization and
particitaped to its monthly meetings. Olivier Tardieu visited Prof. Stephen A. Edwards in Columbia
University, New York, during August 2007.

9.3. Teaching
Florian Loitsch is moniteur at the University of Nice Sophia-Antipolis. He participated to Scheme, C,

and compilation courses.

Manuel Serrano supervised the internship of three undergraduate students during the summer 2007.
During two months, they worked on developing Web applications with HOP.

10. Bibliography
Major publications by the team in recent years

[1] A. ALMEIDA MATOS, G. BOUDOL. On declassification and the non-disclosure policy, in "Computer Security
Foundation Workshop", 2005, p. 226-240.

[2] R. AMADIO, P.-L. CURIEN. Domains and Lambda-Calculi, Cambridge University Press, 1998.

[3] G. BERRY, G. BOUDOL. The chemical abstract machine, in "Theoretical Computer Science", vol. 96, 1992.

[4] F. BOUSSINOT. Objets réactifs en Java, Collection Scientifique et Technique des Telecommunications, PPUR,
2000.

[5] F. BOUSSINOT. FairThreads: mixing cooperative and preemptive threads in C, in "Concurrency and Computa-
tion: Practice and Experience", vol. 18, no DOI: 10.1002/cppe.919, 2006, p. 445-469.

[6] F. BOUSSINOT. La programmation réactive, Masson, 1996.

[7] I. CASTELLANI. Process Algebras with Localities, in "Handbook of Process Algebra, Amsterdam", J.
BERGSTRA, A. PONSE, S. SMOLKA (editors), North-Holland, 2001, p. 945-1045.

[8] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium, Portland, Oregon, USA", October 2006.

[9] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", vol. 10, no 2, May 2000, p. 1–43.

Year Publications
Doctoral dissertations and Habilitation theses

[10] F. DABROWSKY. Programmation Réactive Synchrone: langages et contrôle des ressources, Ph. D. Thesis,
Université Paris 7, 2007.

16 Activity Report INRIA 2007

Articles in refereed journals and book chapters

[11] A. ALMEIDA MATOS, G. BOUDOL, I. CASTELLANI. Typing Noninterference for Reactive Programs, in
"Journal of Logic and Algebraic Programming", vol. 72, 2007, p. 124-156.

[12] C. SOVIANI, O. TARDIEU, S. EDWARDS. Optimizing Sequential Cycles through Shannon Decomposition and
Retiming, in "IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems", vol. 26, no

3, Mar 2007, p. 456–467.

[13] O. TARDIEU. A deterministic logical semantics for pure Esterel, in "ACM Transactions on Programming
Languages and Systems", vol. 29, no 2, Apr 2007, 8.

Publications in Conferences and Workshops

[14] G. BOUDOL. Fair cooperative multithreading, or: typing termination in a higher-order concurrent imperative
language, in "CONCUR’07", Lecture Notes in Computer Science, vol. 4703, 2007, p. 272-286.

[15] G. BOUDOL, M. KOLUNDZIJA. Access control and declassification, in "MMM-ACNS’07", Communications
in Computer and Information Science, vol. 1, 2007.

[16] I. CASTELLANI. State-oriented noninterference for CCS, in "Proceedings SecCo’07", D. GORLA, C.
PALAMIDESSI (editors), ENTCS, vol. 194, no 1, Elsevier Science Publishers, 2007, p. 39-60.

[17] F. LOITSCH. Exceptional Continuations in JavaScript, in "2007 Workshop on Scheme and Functional
Programming", Sep 2007.

[18] F. LOITSCH, M. SERRANO. Hop Client-Side Compilation, in "Proceedings of the 8th Symposium on Trends
on Functional Languages, New Yort, USA", Apr 2007.

[19] M. SERRANO, E. GALLESIO. An Adaptive Package Management System for Scheme, in "Proceedings of the
Second Dynamic Languages Symposium, Montréal, Québec, Canada", Oct 2007.

[20] M. SERRANO. Programming Web Multimedia Applications with Hop, in "Proceedings of the ACM Sigmm
and ACM Siggraph conference on Multimedia, Best Open Source Software, Augsburg, Germany", Sep 2007.

[21] O. TARDIEU, S. EDWARDS. Instantaneous Transitions in Esterel, in "Proceedings of the Workshop on Model-
Driven High-Level Programming of Embedded Systems, Braga, Portugal", Mar 2007.

Internal Reports

[22] F. BOUSSINOT. A Benchmark for Multicore Machines, Technical report, no inria-00174843, 2007, http://hal.
inria.fr/inria-00174843.

[23] F. BOUSSINOT, F. DABROWSKY. Formalisation of FunLoft, Technical report, no inria-00183242, 2007, http://
hal.inria.fr/inria-00183242.

[24] F. BOUSSINOT, F. DABROWSKY. Safe Reactive Programming: the FunLoft Prop osal, Technical report, no

inria-00184100, 2007, http://hal.inria.fr/inria-00184100.

http://hal.inria.fr/inria-00174843
http://hal.inria.fr/inria-00174843
http://hal.inria.fr/inria-00183242
http://hal.inria.fr/inria-00183242
http://hal.inria.fr/inria-00184100

Project-Team mimosa 17

[25] I. CASTELLANI. State-oriented noninterference for CCS, Research Report, no 6322, INRIA, 10 2007, http://
hal.inria.fr/inria-00180168/fr/.

http://hal.inria.fr/inria-00180168/fr/
http://hal.inria.fr/inria-00180168/fr/

