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2. Overall Objectives

2.1. Introduction
The team MISTIS aims at developing statistical methods for dealing with complex problems or data. Our
applications consist mainly of image processing and spatial data problems with some applications in biology
and medicine. Our approach is based on the statement that complexity can be handled by working up from
simple local assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we focus on involve mixture models, Markov models,
and more generally hidden structure models identified by stochastic algorithms on one hand, and semi and
non-parametric methods on the other hand.

Hidden structure models are useful for taking into account heterogeneity in data. They concern many areas
of statistical methodology (finite mixture analysis, hidden Markov models, random effect models, ...). Due
to their missing data structure, they induce specific difficulties for both estimating the model parameters and
assessing performance. The team focuses on research regarding both aspects. We design specific algorithms for
estimating the parameters of missing structure models and we propose and study specific criteria for choosing
the most relevant missing structure models in several contexts.

Semi and non-parametric methods are relevant and useful when no appropriate parametric model exists for
the data under study either because of data complexity, or because information is missing. The focus is on
functions describing curves or surfaces or more generally manifolds rather than real valued parameters. This
can be interesting in image processing for instance where it can be difficult to introduce parametric models
that are general enough (e.g. for contours).
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2.2. Highlights of the year
MISTIS got Ministry grants for two interdisciplinary ANR projects. The first one is called "Visualisation
et analyse d’images hyperspectrales multidimensionnelles en Astrophysique" (VAHINEES). and aims at
developing physical as well as mathematical models, algorithms, and software able to deal efficiently with
hyperspectral multi-angle data but also with any other kind of large hyperspectral dataset (astronomical
or experimental). The second one is called "Forecast and projection in climate scenario of Mediterranean
intense events: Uncertainties and Propagation on environment" (MEDUP) and deals with the quantification and
identification of sources of uncertainties associated with the forecast and climate projection for Mediterranean
high-impact weather events.

3. Scientific Foundations

3.1. Mixture models
Keywords: EM algorithm, clustering, conditional independence, missing data, mixture of distributions,
statistical pattern recognition, unsupervised and partially supervised learning.

Participants: Juliette Blanchet, Jean-Baptiste Durand, Florence Forbes, Gersende Fort, Stéphane Girard,
Matthieu Vignes.

In a first approach, we consider statistical parametric models, θ being the parameter possibly multi-
dimensional usually unknown and to be estimated. We consider cases where the data naturally divide into
observed data y = y1, ..., yn and unobserved or missing data z = z1, ..., zn. The missing data zi represents for
instance the memberships to one of a set of K alternative categories. The distribution of an observed yi can be
written as a finite mixture of distributions,

f(yi | θ) =
K∑

k=1

P (zi = k | θ)f(yi | zi, θ) . (1)

These models are interesting in that they may point out an hidden variable responsible for most of the
observed variability and so that the observed variables are conditionally independent. Their estimation is often
difficult due to the missing data. The Expectation-Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. It provides parameters estimation but
also values for missing data.

Mixture models correspond to independent zi’s. They are more and more used in statistical pattern recognition.
They allow a formal (model-based) approach to (unsupervised) clustering.

3.2. Markov models
Keywords: Bayesian inference, EM algorithm, Markov properties, clustering, conditional independence,
graphical models, hidden Markov field, hidden Markov trees, image analysis, missing data, mixture of dis-
tributions, selection and combination of models, statistical pattern recognition, statistical learning, stochastic
algorithms.

Participants: Juliette Blanchet, Jean-Baptiste Durand, Florence Forbes, Gersende Fort, Vasil Khalidov,
Matthieu Vignes.

Graphical modelling provides a diagrammatic representation of the logical structure of a joint probability
distribution, in the form of a network or graph depicting the local relations among variables. The graph
can have directed or undirected links or edges between the nodes, which represent the individual variables.
Associated with the graph are various Markov properties that specify how the graph encodes conditional
independence assumptions.
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It is the conditional independence assumptions that give the graphical models their fundamental modular
structure, enabling computation of globally interesting quantities from local specifications. In this way
graphical models form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields. The
specificity of Markovian models is that the dependencies between the nodes are limited to the nearest neighbor
nodes. The neighborhood definition can vary and be adapted to the problem of interest. When parts of the
variables (nodes) are not observed or missing, we refer to these models as Hidden Markov Models (HMM).
Hidden Markov chains or hidden Markov fields correspond to cases where the zi’s in (1) are distributed
according to a Markov chain or a Markov field. They are natural extension of mixture models. They are widely
used in signal processing (speech recognition, genome sequence analysis) and in image processing (remote
sensing, MRI, etc.). Such models are very flexible in practice and can naturally account for the phenomena to
be studied.

They are very useful in modelling spatial dependencies but these dependencies and the possible existence of
hidden variables are also responsible for a typically large amount of computation. It follows that the statistical
analysis may not be straightforward. Typical issues are related to the neighborhood structure to be chosen
when not dictated by the context and the possible high dimensionality of the observations. This also requires
a good understanding of the role of each parameter and methods to tune them depending on the goal in mind.
As regards, estimation algorithms, they correspond to an energy minimization problem which is NP-hard and
usually performed through approximation. We focus on a certain type of methods based on the mean field
principle and propose effective algorithms which show good performance in practice and for which we also
study theoretical properties. We also propose some tools for model selection. Eventually we investigate ways
to extend the standard Hidden Markov Field model to increase its modelling power.

3.3. Functional Inference, semi and non-parametric methods
Keywords: dimension reduction, extreme value analysis, kernel method, level sets estimation, non-parametric,
projection methods.

Participants: Caroline Bernard-Michel, Laurent Gardes, Stéphane Girard, Alexandre Lekina.

We also consider methods which do not assume a parametric model. The approaches are non-parametric
in the sense that they do not require the assumption of a prior model on the unknown quantities. This
property is important since, for image applications for instance, it is very difficult to introduce sufficiently
general parametric models because of the wide variety of image contents. Projection methods are then a way
to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel methods which rely on
smoothing the data using a set of kernels (usually probability distributions), are other examples. Relationships
exist between these methods and learning techniques using Support Vector Machine (SVM) as this appears
in the context of level-sets estimation, see paragraph 3.3.2. Such non-parametric methods have become the
cornerstone when dealing with functional data [39]. This is the case for instance when observations are
curves. They allow to model the data without a discretization step. More generally, these techniques are
of great use for dimension reduction purposes (paragraph 3.3.3). They permit to reduce the dimension of
the functional or multivariate data without assumptions on the observations distribution. Semi-parametric
methods refer to methods that include both parametric and non-parametric aspects. Examples include the
Sliced Inverse Regression (SIR) method [44] which combines non-parametric regression techniques with
parametric dimension reduction aspects. This is also the case in extreme value analysis [38], which is based
on the modelling of distribution tails, see paragraph 3.3.1. It differs from traditionnal statistics which focus on
the central part of distributions, i.e. on the most probable events. Extreme value theory shows that distributions
tails can be modelled by both a functional part and a real parameter, the extreme value index.

3.3.1. Modelling extremal events
Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of probability
distributions. More specifically, it focuses on the limiting distributions for the minimum or the maximum
of a large collection of random observations from the same arbitrary distribution. Let x1 ≤ ... ≤ xn denote
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n ordered observations from a random variable X representing some quantity of interest. A pn-quantile of
X is the value qpn such that the probability that X is greater than qpn is pn, i.e. P (X > qpn

) = pn. When
pn < 1/n, such a quantile is said to be extreme since it is usually greater than the maximum observation xn

(see Figure 1).

1/n

pn

x1 x2 q̂1/n = xn q̂pn ?

Figure 1. The curve represents the survival function x → P (X > x). The 1/n-quantile is estimated by the
maximum observation so that q̂1/n = xn. As illustrated in the figure, to estimate pn-quantiles with pn < 1/n, it is

necessary to extrapolate beyond the maximum observation.

To estimate such quantiles requires therefore dedicated methods to extrapolate information beyond the
observed values of X . Those methods are based on Extreme value theory. This kind of issues appeared in
hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting from
flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function `(x) acts as
a nuisance parameter which yields a bias in the classical extreme-value estimators developped so far. Such
models are often refered to as heavy-tail models since the probability of extreme events decreases at a
polynomial rate to zero. More generally, the problems that we address are part of the risk management theory.
For instance, in reliability, the distributions of interest are included in a semi-parametric family whose tails
are decreasing exponentially fast. These so-called Weibull-tail distributions [8] are defined by their survival
distribution function:

P (X > x) = exp {−xθ`(x)}, x > x0 > 0. (3)
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Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family. An
important part of our work consists in establishing links between models (2) and (3) in order to propose
new estimation methods.

3.3.2. Level sets estimation
Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology, one
is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
population. Points outside this bound are considered as outliers compared to the reference population. Level
sets estimation can be looked at as a conditional quantile estimation problem which permits to benefit from
a non-parametric statistical framework. In particular, boundary estimation, arising in image segmentation as
well as in supervised learning, is interpreted as an extreme level-set estimation problem.

3.3.3. Dimension reduction
Our work on high dimensional data imposes to face the curse of dimensionality phenomenon. Indeed, the
modelling of high dimensional data requires complex models and thus the estimation of high number of
parameters compared to the sample size. In this framework, dimension reduction methods aim at replacing
the original variables by a small number of linear combinations with as small as possible loss of information.
Principal Component Analysis (PCA) is the most widely used method to reduce dimension in data. However,
standard linear PCA can be quite inefficient on image data where even simple image distorsions can lead to
highly non linear data. Two directions are investigated. First, non-linear PCAs can be proposed, leading to
semi-parametric dimension reduction methods [43]. Another field of investigation is to take into account
the application goal in the dimension reduction step. One of our approaches is therefore to develop new
Gaussian models of high dimensional data for parametric inference [36]. Such models can then be used
in a Mixtures or Markov framework for classification purposes. Another approaches consists in combining
dimension reduction, regularization techniques and regression techniques to improve the Sliced Inverse
Regression method [44].

4. Application Domains
4.1. Image Analysis

Participants: Caroline Bernard-Michel, Juliette Blanchet, Florence Forbes, Laurent Gardes, Stéphane Girard.

As regards applications, several areas of image analysis can be covered using the tools developed in the team.
More specifically, we address in collaboration with Team Lear, INRIA Rhône-Alpes, issues about object and
class recognition and about the extraction of visual information from large image data bases. Other applications
in medical imaging are natural. We work more specifically on MRI data. We also consider other statistical 2D
fields coming from other domains such as remote sensing. Finally, in the context of the ANR MDCO project,
see paragraph 8.2, we work on hyperspectral multi-angle images.

4.2. Biology, Environment and Medicine
Participants: Florence Forbes, Laurent Gardes, Stéphane Girard, Vasil Khalidov, Alexandre Lekina, Matthieu
Vignes.

A second domain of applications concerns biomedical statistics and molecular biology. We consider the use
of missing data models in population genetics. We also investigate statistical tools for the analysis of bacterial
genomes beyond gene detection. Applications in agronomy are also considered. Finally, in the context of
the ANR VMC project, see paragraph 8.2, we plan to study the uncertainties on the forecasting and climate
projection for Mediterranean high-impact weather events.

4.3. Reliability
Participants: Laurent Donini, Jean-Baptiste Durand, Laurent Gardes, Stéphane Girard.
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Reliability and industrial lifetime analysis are applications developed through collaborations with the EDF
research department and the LCFR laboratory (Laboratoire de Conduite et Fiabilité des Réacteurs) of CEA
/ Cadarache. We also consider failure detection in print infrastructure through collaborations with Xerox,
Meylan and the CIFRE PhD thesis of Laurent Donini, co-advised by Jean-Baptiste Durand and Stéphane
Girard.

5. Software

5.1. The HDDA and HDDC toolboxes
Participant: Stéphane Girard.

Joint work with: Charles Bouveyron (Université Paris 1) and Gilles Celeux (Select, INRIA). The High-
Dimensional Discriminant Analysis (HDDA) and the High-Dimensional Data Clustering (HDDC) toolboxes
contain respectively efficient supervised and unsupervised classifiers for high-dimensional data. These classi-
fiers are based on Gaussian models adapted for high-dimensional data [36]. The HDDA and HDDC toolboxes
are available for Matlab and will be soon included into the software MixMod.

Both toolboxes are available at http://ace.acadiau.ca/math/bouveyron/softwares.html

5.2. The Extremes freeware
Participants: Sophie Chopart, Laurent Gardes, Stéphane Girard.

Joint work with: Jean Diebolt (CNRS) and Myriam Garrido (INRA Clermont-Ferrand).

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme quantile
estimation procedures and model selection methods. This software results from a collaboration with EDF
R&D. It is also a consequence of the PhD thesis work of Myriam Garrido [42]. The software is written in
C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments. It can
be downloaded at the following URL: http://mistis.inrialpes.fr/software/EXTREMES/. Recently, this software
has been used to propose a new goodness-of-fit test to the distribution tail [16]. Besides, a new interface is
going to be developped by Sophie Chopart in C++ in order to obtain a software independent of Matlab.

5.3. The SpaCEM3 program
Participants: Juliette Blanchet, Sophie Chopart, Florence Forbes.

The SpaCEM3 (Spatial Clustering with EM and Markov Models) program replaces the former, still available,
SEMMS (Spatial EM for Markovian Segmentation) program developed with Nathalie Peyrard from INRA
Avignon.

SpaCEM3 proposes a variety of algorithms for image segmentation, supervised and unsupervised classification
of multidimensional and spatially located data. The main techniques use the EM algorithm for soft clustering
and Markov Random Fields for spatial modelling. The learning and inference parts are based on recent
developments based on mean field approximations. The main functionalities of the program include:

The former SEMMS functionalities, ie.

• Model based unsupervised image segmentation, including the following models: Hidden Markov
Random Field and mixture model;

• Model selection for the Hidden Markov Random Field model;

• Simulation of commonly used Hidden Markov Random Field models (Potts models).

• Simulation of an independent Gaussian noise for the simulation of noisy images.

http://ace.acadiau.ca/math/bouveyron/softwares.html
http://mistis.inrialpes.fr/software/EXTREMES/


Team MISTIS 7

And additional possibilities such as,

• New Markov models including various extensions of the Potts model and triplets Markov models;
• Additional treatment of very high dimensional data using dimension reduction techniques within a

classification framework;
• Models and methods allowing supervised classification with new learning and test steps.

The SEMMS package, written in C, is publicly available at: http://mistis.inrialpes.fr/software/SEMMS.html.
The SpaCEM3 written in C++ is available at http://mistis.inrialpes.fr/software/SpaCEM3.tgz. Sophie Chopart
started working on an improved version including a user interface that should be available in 2008.

5.4. The FASTRUCT software
Participant: Florence Forbes.

Joint work with: Olivier Francois (TimB, TIMC) and Chibiao Chen (former Post-doctoral fellow in Mistis).

The FASTRUCT program is dedicated to the modelling and inference of population structure from genetic
data. Bayesian model-based clustering programs have gained increased popularity in studies of population
structure since the publication of the software STRUCTURE [46]. These programs are generally acknowl-
edged as performing well, but their running-time may be prohibitive. FASTRUCT is a non-Bayesian imple-
mentation of the classical model with no-admixture uncorrelated allele frequencies. This new program relies
on the Expectation-Maximization principle, and produces assignment rivaling other model-based clustering
programs. In addition, it can be several-fold faster than Bayesian implementations. The software consists of
a command-line engine, which is suitable for batch-analysis of data, and a MS Windows graphical interface,
which is convenient for exploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at http://mistis.inrialpes.fr/
realisations.html.

The functionalities are further described in the related publication:

• Molecular Ecology Notes 2006 [37].

5.5. The TESS software
Participant: Florence Forbes.

Joint work with: Olivier Francois (TimB, TIMC) and Chibiao Chen (former post-doctoral fellow in Mistis).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial population genetics.
Is it particularly useful for seeking genetic barriers or genetic discontinuities in continuous populations. The
method is based on a hierarchical mixture model where the prior distribution on cluster labels is defined as a
Hidden Markov Random Field [40]. Given individual geographical locations, the program seeks population
structure from multilocus genotypes without assuming predefined populations. TESS takes input data files
in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE). It returns graphical
displays of cluster membership probabilities and geographical cluster assignments from its Graphical User
Interface.

The functionalities and the comparison with three other Bayesian Clustering programs are specified in the
following publication:

• Molecular Ecology Notes 2007 [13].

6. New Results
6.1. Mixture models
6.1.1. Taking into account the curse of dimensionality.

Participant: Stéphane Girard.

http://mistis.inrialpes.fr/software/SEMMS.html
http://mistis.inrialpes.fr/software/SpaCEM3.tgz
http://mistis.inrialpes.fr/realisations.html
http://mistis.inrialpes.fr/realisations.html
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Joint work with: Charles Bouveyron (Université Paris 1), Gilles Celeux (Select, INRIA) and Cordelia Schmid
(Lear, INRIA).

In the PhD work of Charles Bouveyron (co-advised by Cordelia Schmid from the INRIA team LEAR) [36],
we propose new Gaussian models of high dimensional data for classification purposes. We assume that the
data live in several groups located in subspaces of lower dimensions. Two different strategies arise:

• the introduction in the model of a dimension reduction constraint for each group,

• the use of parsimonious models obtained by imposing to different groups to share the same values
of some parameters.

This modelling yields a new supervised classification method called HDDA for High Dimensional Discrimi-
nant Analysis [11]. Some versions of this method have been tested on the supervised classification of objects in
images. This approach has been adapted to the unsupervised classification framework, and the related method
is named HDDC for High Dimensional Data Clustering [10]. In collaboration with Gilles Celeux and Charles
Bouveyron we are currently working on the automatic selection of the discrete parameters of the model. We
also, in the context of Juliette Blanchet PhD work (also co-advised by C. Schmid), combined the method
to our Markov-model based approach of learning and classification and obtained significant improvement in
applications such as texture recognition where the observations are high-dimensional.

We are then also willing to get rid of the Gaussian assumption. To this end, non linear models and semi-
parametric methods are necessary.

6.1.2. Multi-speaker Localization with Binaural Audition and Stereo Vision using the EM
Algorithm
Participants: Florence Forbes, Vasil Khalidov.

Joint work with: Elise Arnaud, Miles Hansard, Radu Horaud and Ramya Narasimha from the INRIA team
Perception.

This work takes place in the context of the POP European project (see Section 8.3.1) and includes further
collaborations with researchers from University of Sheffield, UK. The context is that of multi-modal sensory
signal integration. We focus on audio-visual integration. Fusing information from audio and video sources
has resulted in improved performance in applications such as tracking. However, crossmodal integration
is not trivial and requires some cognitive modelling because at a lower level, there is no obvious way to
associate depth and sound sources. Combining expertise from team Perception and University of Sheffield,
we address the difficult problems of integrating spatial and temporal audio-visual stimuli using a geometrical
and probabilistic framework and attack the problem of associating sensorial descriptions with representation
of prior knowledge.

First, we address the problem of speaker localization within an unsupervised model-based clustering frame-
work. Both auditory and visual observations are available. We gather observations over a time interval [t1, t2].
We assume that within this time interval the speakers are static so that each speaker can be described by its 3-D
location in space. A cluster is associated with each speaker. In practice we consider N + 1 possible clusters
corresponding to the addition of an extra outlier category to the N speakers.

We then consider then a set of M visual observations. Each such observation corresponds to a binocular
disparity, namely a 3-D vector Ym = (um, vm, dm)t where um and vm correspond to the 2-D location in the
Cyclopean image1, and dm denotes the measured disparity at this image location. Note that such a binocular
disparity corresponds to the location of a physical object that is visible in both the left and right images of the
stereo pair. We define a function v : R3 → R3 such that v(sn) represents the binocular disparity of speaker n
when his location is given by sn.

1The Cyclopean image is a geometric construction developped by M. Hansard and R. Horaud
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Similarly, let us consider a set of K auditory observations. Each such observation corresponds to an auditory
disparity, namely the interaural time difference, or ITD. We define a function u : R3 → R such that u(sn)
evaluates the ITD of speaker n given his coordinates in the 3-D space.

We then show that recovering speakers localizations can be seen as a parameter estimation issue in a missing
data framework. The parameters to be estimated are the speaker locations, and the missing variables are the
assignement variables associating each individual observations to one of the N speakers ot to the outlier class.
We are currently investigating the use of the EM algorithm to provide these parameters estimates.

6.2. Markov models
6.2.1. Triplet Markov fields for the classification of complex structure data

Participants: Florence Forbes, Juliette Blanchet.

We address the issue of classifying complex data. We focus on three main sources of complexity, namely the
high dimensionality of the observed data, the dependencies between these observations and the general nature
of the noise model underlying their distribution. We investigate the recent Triplet Markov Fields and propose
[9] new models in this class designed for such data and in particular allowing very general noise models. In
addition, our models can handle the inclusion of a learning step in a consistent way so that they can be used
in a supervised framework. One other advantage of our models is that whatever the initial complexity of the
noise model, parameter estimation can be carried out using state-of-the-art Bayesian clustering techniques
under the usual simplifying assumptions (typically, non correlated noise condition). As generative models,
they can be seen as an alternative, in the supervised case, to discriminative Conditional Random Fields. In
the non supervised case, identifiability issues underlying the models can occur. We also consider the issue of
selecting the best model with regards to the observed data using a criterion (referred to as BICMF ) based on
the Bayesian Information Criterion (BIC).

In [9], the models performance is illustrated on simulated and real data exhibiting the mentioned various
sources of complexity. See also Figure 2 for an illustration on synthetic data.

6.2.2. Integrated Markov models for clustering genes: combining expression data with missing
values and gene interaction network analysis
Participants: Juliette Blanchet, Florence Forbes, Matthieu Vignes.

DNA microarray technologies provide means for monitoring in the order of tens of thousands of gene
expression levels quantitatively and simultaneously. However data generated in these experiments can be noisy
and have missing values. When it is not ignored, the last issue has been solved by imputing the expression
matrix in order to keep going with traditional analysis method. Although it was a first useful step, it is not
recommended to use value imputation to deal with missing data. Moreover, appropriate tools are needed to
cope with noisy background in expression levels and to take into account a dependency structure among genes
under study. Various approaches have been proposed but to our knowledge none of them has the ability to fulfil
all these features. We therefore propose [26] a clustering algorithm that explicitly accounts for dependencies
within a biological network and for missing value mechanism to analyze microarray data. We propose to tackle
these issues in a unique statistical framework. We take advantage of many features of the probabilistic aspect
of the model. In a previous work [22], we mentioned the ability of a straightforward extension of the model
therein to deal with missing values. It is now implemented and we prove it to be successful at dealing with
different absence patterns either on simulated or real biological data sets. We emphasize that our model can be
useful in a great range of applications for clustering entities of interest (such as genes, proteins, metabolites in
post-genomics studies). It requires individual possibly incomplete measurements taken on these entities related
by a relevant interaction network. Hence our method is neither organism- nor data-specific. Also, the method
is of interest in a wide variety of fields where missing data is a common feature: social sciences, computer
vision, remote sensing, speach recognition and of course biological systems. In experiments on synthetic and
real biological data, reported in [26], our method demonstrates enhanced results over existing approaches.
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True segmentation (a) (b) (c) (d)

HMF-IN

Classification rates 51.2% 80.7% 66.3% 74.5%
TMF

Classification rates 96.6% 91.7% 95.8% 88.4%
Selected K 2 3 4 4

Figure 2. Synthetic image segmentations using a standard Hidden Markov (HMF-IN) model (second row) and our
triplet Markov (TMF) model (third row): the true 2-class segmentation is the image in the upper left corner and

four different noise models are considered. In (a) class distributions are mixtures of two Gaussians, In (c)
observations from class 1 are generated from a Gamma(1,2) distribution and observations from class 2 are

obtained by adding 1 to realizations of an Exponential distribution with parameter 1. In (b) and (d) the noisy
images are obtained by replacing each pixel value respectively in (a) and (c) by its average with its four nearest

neighbors. Classification rates are given below each segmentation results. In the TMF model case, Gaussian
components are used to approximate the noise model. The last row gives the number of components K selected

using our BICMF criterion.
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6.2.3. LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans
Participant: Florence Forbes.

Joint work with: Benoit Scherrer, Michel Dojat (Grenoble Institute of Neuroscience) and Christine Garbay
(LIG).

MRI brain scan segmentation is a challenging task and has been widely addressed in the last 15 years.
Difficulties in automatic segmentation arise from various sources including the size of the data, the low
contrast between tissues, the limitations of available prior knowledge, local perturbations such as noise or
global perturbations such as intensity nonuniformity. Current approaches share three main characteristics:
first, tissue and structure segmentations are considered as two separate tasks whereas they are clearly linked.
Second, for a robust to noise segmentation, the Markov Random Field (MRF) probabilistic framework is
classically used to introduce spatial dependencies between voxels Third, tissue models are generally estimated
globally through the entire volume and do not reflect spatial intensity variations within each tissue, due mainly
to biological tissue properties and to MRI hardware imperfections. Only the latter is generally addressed,
modeled by the introduction of an explicit so called “bias field” model to estimate. Local segmentation is an
attractive alternative. The principle is to compute models in various subvolumes to fit better to local image
properties. However, the few local approaches proposed to date are clearly limited: they use local estimation
as a preprocessing step only to estimate a bias field model, a training set for statistical local shape modelling
, redondant information to ensure consistency and smoothnesss between local estimated models, or an atlas
providing a priori local spatial information greedily increasing computational cost. We present in this work
[33] an original LOcal Cooperative Unified Segmentation (LOCUS) approach which 1) performs tissue and
structure segmentation by distributing a set of cooperating local MRF models through the volume, 2) segments
structures by introducing prior localization constraints in a MRF framework and 3) ensures local models
consistency and tractable computational time via specific cooperation and coordination mechanisms.

The evaluation was performed using phantoms and real 3T brain scans. It shows good results and in particular
robustness to nonuniformity and noise with a low computational cost. Figure 3 shows a visual comparison
with two well known approaches, FSL and SPM5, on a very high bias field real 3T brain scan. This image was
acquired with a surface coil which provides a high sensitivity in a small region (here the occipital lobe) for
functional imaging applications.

(a) (b) (c) (d)

Figure 3. Tissue segmentation of a very high bias field real 3T brain scan (a): segmentations provided by SPM5 (b),
FSL (c) and LOCUS (d).

6.2.4. Multimodal MRI segmentation of ischemic stroke lesions
Participant: Florence Forbes.

Joint work with: Benoit Scherrer, Michel Dojat, Yacine Kabir (Grenoble Institute of Neuroscience) and
Christine Garbay (LIG).

The problem addressed is the automatic segmentation of stroke lesions on MR multi-sequences. Lesions
enhance differently depending on the MR modality and there is an obvious gain in trying to account for various
sources of information in a single procedure. To this aim, we propose [32] a multimodal Markov random field
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model which includes all MR modalities simultaneously. The results of the multimodal method proposed
are compared with those obtained with a mono-dimensional segmentation applied on each MRI sequence
separately. We also constructed an Atlas of blood supply territories to help clinicians in the determination of
stroke subtypes. Single modality segmentations show as expected that some of the modalities are not or less
informative in term of lesion detection and cannot therefore be considered alone. In addition, the modalities
information varies with the session. The multimodal approach has the advantage to intrinsically take that into
account and to provide satisfactory results in all cases. Further analysis is required. In particular we propose
to use the Blood Supply territories Atlas to further assess the performance of the approach.

6.2.5. Joint Markov model for cooperative disparity estimation and object boundary extraction
Participant: Florence Forbes.

Joint work with: Ramya Narasimha, Elise Arnaud, Miles Hansard and Radu Horaud from team Perception,
INRIA.

Accurate disparity and object boundary estimation is critical in several applications. In most approaches, these
processes are considered as two separate tasks although they are clearly linked: the disparity discontinuities
(which are also 3D depth discontinuities) occur usually at object boundaries. However, most disparity
estimation algorithms result in disparity discontinuities occurring at improper locations. By “improper" we
mean locations which are not at the actual depth discontinuities.

In this work, we build on standard approaches to dense disparity estimation and propose an original approach
which simultaneously corrects disparity and finds the object boundaries. These two tasks are dealt with
cooperatively, i.e. the presence of disparity discontinuity aids the detection of object boundaries and vice versa.
Our approach relies on two assumptions: (i) that the discontinuities in depth are usually at object boundaries
(which is true for natural images) (ii) that the disparity discontinuities obtained from naive disparity estimation
are usually at the vicinity of actual depth discontinuities. Thus, if we locate the object boundaries which
are in the vicinity of the disparity discontinuities – using the gradient map of the image as evidence –, we
can correct the disparity values so that they fit closer to the object boundaries. The feedback of boundary
estimation on disparity estimation is made through the use of an additional auxiliary field referred to as
a displacement field. This field suggests the corrections that need to be applied at disparity discontinuities
in order that they align with object boundaries, so that disparity discontinuities can then be assumed as
representing the object boundaries. The displacement model allows to estimate directions in which the
discontinuities have to be moved. This information is incorporated in the disparity model so that the disparity
values at discontinuities are influenced only by the neighbors in the opposite direction of the displacement. The
resulting procedure involves alternation between estimation of disparity and displacement fields in an iterative
framework at various scales. When the observation is a set of two stereo images (right and left), we propose
a joint probabilistic model of both disparity and displacement fields. Considering the resulting conditional
distributions, the formulation reduces to a Markov Random Field (MRF) model on disparities while it reduces
to a Markov chain for displacement variables. The disparity-MRF is then optimized using variational mean
field and the exact optimization of the Markov chain is carried out using Viterbi algorithm.

The main originality is to define such a model through conditional distributions that can model explicitly
relationships between disparity and object boundaries. As a result, we observe a significant gain in disparity
and boundary estimations in experiments. The latter show already good results when made with basic image
information such as gradient maps. Other monocular cues could be incorporated easily.

As regards, the probabilistic setting itself, we chose to first ignore the parameter estimation issue by fixing them
manually. However, a natural future direction of research is to investigate the possibility to incorporate this kind
of model in an EM (Expectation Maximization) or variants framework. Besides providing theoretically based
parameter estimation, this would also have the advantage to provide a richer framework in which iterative
estimation of realizations of the displacement and disparity fields would be replaced by iterative estimation of
full distributions for these fields.
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6.3. Semi and non-parametric methods
6.3.1. Modelling extremal events

Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Myriam Garrido (INRA Clermont-Ferrand), Armelle Guillou (Univ. Strasbourg), and Jean
Diebolt (CNRS, Univ. Marne-la-vallée).

Our first achievement is the development of new estimators dedicated to Weibull-tail distributions (3): kernel
estimators [18] and bias correction through exponential regression [14], [15]. Our second achievement is the
construction of a goodness-of-fit test for the distribution tail. Usual tests are not adapted to this problem since
they essentially check the adequation to the central part of the distribution. The proposed method [16] is based
on the comparison between two estimators of quantiles: classical parametric estimators and extreme-value
statistics based quantiles.

6.3.2. Conditional extremal events
Participants: Stéphane Girard, Laurent Gardes, Alexandre Lekina.

Joint work with: Cécile Amblard (TimB in TIMC laboratory, Univ. Grenoble 1).

The goal of the PhD thesis of Alexandre Lekina is to contribute to the development of theoretical and
algorithmic models to tackle conditional extreme value analysis, ie the situation where some covariate
information X is recorded simultaneously with a quantity of interest Y . In such a case, the tail heaviness
of Y depends on X, and thus the tail index as well as the extreme quantiles are also functions of the covariate.
We will investigate how to combine nonparametric smoothing techniques [39] with extreme-value methods in
order to obtain efficient estimators of the conditional tail index and conditional extreme quantiles. Conditional
extremes are studied in climatology where one is interested in how climate change over years might affect
extreme temperatures or rainfalls. In this case, the covariate is univariate (the time). Bivariate examples include
the study of extreme rainfalls as a function of the geographical location. Interaction between extreme-value
statistics and environmental sciences has been discussed at the Statistical Extremes and Environmental Risk
Workshop [29]. The application part of the study will be joint work with the LTHE (Laboratoire d’étude des
Transferts en Hydrologie et Environnement) located in Grenoble.

More future work will include the study of multivariate extreme values. To this aim, a research on some
particular copulas [1], [35] has been initiated with Cécile Amblard, since they are the key tool for building
multivariate distributions [45].

6.3.3. Boundary estimation
Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Anatoli Iouditski (Univ. Joseph Fourier, Grenoble), Guillaume Bouchard (Xerox, Meylan),
Pierre Jacob and Ludovic Menneteau (Univ. Montpellier II) and Alexandre Nazin (IPU, Moscow, Russia).

Two different and complementary approaches are developped.

• Extreme quantiles approach. The boundary bounding the set of points is viewed as the larger level
set of the points distribution. This is then an extreme quantile curve estimation problem. We propose
estimators based on projection as well as on kernel regression methods applied on the extreme
values set [20], for particular set of points. Our work is to define similar methods based on wavelets
expansions in order to estimate non-smooth boundaries, and on local polynomials estimators to
get rid of boundary effects [31]. Besides, we are also working on the extension of our results to
more general sets of points. This work has been initiated in the PhD work of Laurent Gardes [41],
co-directed by Pierre Jacob and Stéphane Girard and in [21] with the consideration of star-shaped
supports.
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• Linear programming approach. The boundary of a set of points is defined has a closed curve
bounding all the points and with smallest associate surface. It is thus natural to reformulate
the boundary estimation method as a linear programming problem. The resulting estimate is
parsimonious, it only relies on a small number of points. This method belongs to the Support
Vector Machines (SVM) techniques. Their finite sample performances are very impressive but their
asymptotic properties are not very well known, the difficulty being that there is no explicit formula
of the estimator. However, such properties are of great interest, in particular to reduce the estimator
bias.

6.3.4. Nuclear plants reliability
Participants: Laurent Gardes, Stéphane Girard.

Joint work with: Nadia Perot, Nicolas Devictor and Michel Marquès (CEA).

One of the main activities of the LCFR (Laboratoire de Conduite et Fiabilité des Réacteurs), CEA Cadarache,
concerns the probabilistic analysis of some processes using reliability and statistical methods. In this context,
probabilistic modelling of steels tenacity in nuclear plants tanks has been developed. The databases under
consideration include hundreds of data indexed by temperature, so that, reliable probabilistic models have
been obtained for the central part of the distribution. However, in this reliability problem, the key point is to
investigate the behaviour of the model in the distribution tail. In particular, we are mainly interested in studying
the lowest tenacities when the temperature varies (Figure 4).

Figure 4. Tenacity as a function of the temperature.

A postdoctoral position on this problem, supported by the CEA, has been opened. Laurent Gardes and
Stéphane Girard will co-advise the student. We are currenlty investigating the possibility to sign a research
contract on this topic involving MISTIS and the LCFR.

6.3.5. Quantifying uncertainties on extreme rainfall estimations
Participants: Caroline Bernard-Michel, Laurent Gardes, Stéphane Girard.

Joint work with: Gilles Molinié from Laboratoire d’Etude des Transferts en Hydrologie et Environnement
(LTHE), France.
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Extreme rainfalls are generally associated with two different precipitation regimes. Extreme cumulated rainfall
over 24 hours results from stratiform clouds on which the relief forcing is of primary importance. Extreme
rainfall rates are defined as rainfall rates with low probability of occurrence, typically with higher mean return-
periods than the observed time period (data length). It is then of primary importance to study the sensitivity
of the extreme rainfall estimation to the estimation method considered. A preliminary work on this topic is
available in [27]. MISTIS got a Ministry grant for a related ANR project (see Section 8.2).

6.3.6. Statistical methods for the analysis of complex remote sensing data
Participants: Caroline Bernard-Michel, Juliette Blanchet, Florence Forbes, Laurent Gardes, Stéphane Girard.

Joint work with: Sylvain Douté from Laboratoire de Planétologie de Grenoble, France.

Visible and near infrared imaging spectroscopy is one of the key techniques to detect, to map and to
characterize mineral and volatile (eg. water-ice) species existing at the surface of the planets. Indeed the
chemical composition, granularity, texture, physical state, etc. of the materials determine the existence
and morphology of the absorption bands. The resulting spectra contain therefore very useful information.
Current imaging spectrometers provide data organized as three dimensional hyperspectral images: two spatial
dimensions and one spectral dimension.

A new generation of imaging spectrometers is emerging with an additional angular dimension. The surface
of the planets will now be observed from different view points on the satellite trajectory, corresponding to
about ten different angles, instead of only one corresponding usually to the vertical (0 degree angle) view
point. Multi-angle imaging spectrometers present several advantages: the influence of the atmosphere on the
signal can be better identified and separated from the surface signal on focus, the shape and size of the surface
components and the surfaces granularity can be better characterized.

However, this new generation of spectrometers also results in a significant increase in the size (several tera-
bits expected) and complexity of the generated data. Consequently, HMA (Hyperspectral Multi Angular) data
induce data manipulation and visualization problems due to its size and its 4 dimensionality.

We propose to investigate the use of statistical techniques to deal with these generic sources of complexity in
data beyond the traditional tools in mainstream statistical packages. Our goal is twofold:

• We first focus on developing or adapting dimension reduction methods, classification and segmen-
tation methods for informative, useful visualization and representation of the data previous to its
subsequent analysis.

• We also address the problem of physical model inversion which is important to understand the com-
plex underlying physics of the HMA signal formation. The models taking into account the angular
dimension result in more complex treatments. We investigate the use of semi-parametric dimen-
sion reduction methods such as SIR (Sliced Inverse Regression, [44]) to perform model inversion,
in a reasonable computing time, when the number of input observations increases considerably. A
preliminary version of this work is presented in [24].

MISTIS got a Ministry grant for a related ANR project (see Section 8.2).

7. Contracts and Grants with Industry

7.1. Contracts
We signed in december 2006 a three-year CIFRE contract with Xerox, Meylan, regarding the PhD work of
Laurent Donini about statistical techniques for mining logs and usage data in a print infrastructure. The thesis
is co-advised by Stéphane Girard and Jean-Baptiste Durand.
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8. Other Grants and Activities

8.1. Regional initiatives
MISTIS participates to the weekly statistical seminar of Grenoble, F. Forbes is one of the organizers and several
lecturers have been invited in this context.

8.2. National initiatives
MISTIS got Ministry grants for two projects supported by the French National Research Agency (ANR):

• MDCO (Masse de Données et Connaissances) program. This three-year project is called "Visualisa-
tion et analyse d’images hyperspectrales multidimensionnelles en Astrophysique" (VAHINEES). It
aims at developing physical as well as mathematical models, algorithms, and software able to deal
efficiently with hyperspectral multi-angle data but also with any other kind of large hyperspectral
dataset (astronomical or experimental). It involves the Observatoire de la Côte d’Azur (Nice), and
several universities (Strasbourg I and Grenoble I).

• VMC (Vulnérabilité : Milieux et climats) program. This three-year project is called "Forecast
and projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation
on environment" (MEDUP) and deals with the quantification and identification of sources of
uncertainties associated with the forecast and climate projection for Mediterranean high-impact
weather events. The propagation of these uncertainties on the environment is also considered, as
well as how they may combine with the intrinsic uncertainties of the vulnerability and risk analysis
methods. It involves Météo-France and several universities (Paris VI, Grenoble I and Toulouse III).

MISTIS is also involved into two projects in the Cooperative Research Initiative (ARC) program supported by
INRIA:

• The ChromoNet project is coordinated by Marie-France Sagot from team HELIX. It aims at the
computational inference and analysis of inter-chromosomal interaction networks. The additional
partners are the SSB (Statistiques des Séquences Biologiques) group at INRA and the Nuclear
Organisation team at MRC, Imperial College London.

• The SeLMIC project (http://r2-d2.ujf-grenoble.fr/selmic/doku.php) is coordinated by Florence
Forbes and aims at developping new statistical methods for the segmentation of multidimensional
MR sequences corresponding to different types of MRI modalities and longitudinal data. The ap-
plications include the detection of brain abnormalities and more specifically strokes and Multiple
Sclerosis lesions. The partners involved are team VisAGeS from INRIA Rennes, the INSERM Unit
U594 (Grenoble Institute of Neuroscience) and LIG.

8.3. International initiatives
8.3.1. Europe

J. Blanchet, F. Forbes and S. Girard are members of the Pascal Network of Excellence.

S. Girard is a member of the European project (Interuniversity Attraction Pole network) “Statistical techniques
and modelling for complex substantive questions with complex data”,
Web site : http://www.stat.ucl.ac.be/IAP/frameiap.html.

S. Girard has also joint work with Prof. A. Nazin (Institute of Control Science, Moscow, Russia).

http://r2-d2.ujf-grenoble.fr/selmic/doku.php
http://www.stat.ucl.ac.be/IAP/frameiap.html
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MISTIS is involved in a European STREP proposal, named POP (Perception On Purpose) coordinated by
Radu Horaud from INRIA team Perception. The three-year project started in January 2006. Its objective is
to put forward the modelling of perception (visual and auditory) as a complex attentional mechanism that
embodies a decision taking process. The task of the latter is to find a trade-off between the reliability of
the sensorial stimuli (bottom-up attention) and the plausibility of prior knowledge (top-down attention). The
MISTIS part and in particular the PhD work of Vasil Kalidhov is to contribute to the development of theoretical
and algorithmic models based on probabilistic and statistical modelling of both the input and the processed
data. Bayesian theory and hidden Markov models in particular will be combined with efficient optimization
techniques in order to confront physical inputs and prior knowledge.

8.3.2. North Africa
S. Girard has joint work with M. El Aroui (ISG Tunis).

8.3.3. North America
F. Forbes has joint work with C. Fraley and A. Raftery (Univ. of Washington, USA).

9. Dissemination

9.1. Leadership within scientific community
F. Forbes is member of the group in charge of incentive initiatives (GTAI) in the Scientific and Technological
Orientation Council (COST) of INRIA.

F. Forbes is part of an INRA (French National Institute for Agricultural Research) Network (MSTGA) on
spatial statistics.

She is also part of an INRA commitee (CSS MBIA) in charge of evaluating INRA researchers once a year.

F. Forbes and S. Girard are members of the commitees (Commissions de Spécialistes) in charge of examining
applications to Faculty member positions respectively at Institut Polytechnique de Grenoble (INPG) and at
University Pierre Mendes France (UPMF, Grenoble II) and University Montpellier II.

S. Girard was also involved in the PhD commitee of Céline Vincent from University Montpellier II "Détection
de structures tourbillonaires par analyse de données directionnelles" (December 2007).

9.2. University Teaching
F. Forbes lectured a graduate course on the EM algorithm at Univ. J. Fourier, Grenoble I.

L. Gardes is faculty member at Univ. P. Mendes-France.

L. Gardes and S. Girard lectured a graduate course on Extreme Value Analysis at Univ. J. Fourier, Grenoble I.

J.B. Durand is faculty member at INPG, Grenoble.

9.3. Conference and workshop committees, invited conferences
Florence Forbes and Gersende Fort were both members of the organizing and scientific committees of the
international workshop "New directions in Monte Carlo methods", Fleurance, June 2007.

Stéphane Girard was invited speaker at the workshop "Valeurs extrêmes, méthodes de Monte-Carlo, entropie
et information" organized by the GDR Phenix and Isis at ENS Lyon, November 2007.
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