
c t i v i t y

te p o r

2007

THEME SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Parsifal

Preuves Automatiques et Raisonnement sur
des SpécIFicAtions Logiques

Futurs

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/parsifal.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-futurs.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Main Themes 1
2.2. Highlights of the year 2

3. Scientific Foundations .2
3.1. General Overview 2
3.2. Reasoning about logic specifications 2
3.3. Focused proof systems 4
3.4. Proof structure and proof certificates 4
3.5. Deep Inference and Categorical Axiomatizations 5
3.6. Proof Nets and Combinatorial Characterization of Proofs 5
3.7. A logic for systems biology 6

4. Application Domains .6
4.1. Model checking operational semantics 6
4.2. Mechanized metatheory 7
4.3. Biological systems 7

5. Software . 7
5.1. Bedwyr 7
5.2. Taci 8

6. New Results . 8
6.1. Reasoning about operational semantics 8
6.2. Effective implementation of model checking with linguistic expressions 8
6.3. Focusing proof systems for linear, intuitionistic, and classical logics 9
6.4. Tables, lemmas, and focused proofs 9
6.5. Game semantics for proof search with multiplicative connectives 9
6.6. A Proof theory of induction and co-induction 9
6.7. Proof nets for second order multiplicative linear logic 10
6.8. Combinatorial characterization of the medial rule 10
6.9. Deep inference for hybrid logics 10
6.10. A logic for systems biology 10
6.11. Separation in the λµ-calculus 10
6.12. Static analysis via proof theory 10

7. Other Grants and Activities . 11
7.1. Actions nationales 11
7.2. Actions internationales 11

7.2.1. Slimmer: INRIA funded international team 11
7.2.2. Mobius: an EU Integrated Project on Proof Carrying Code 11
7.2.3. TYPES: coordinated action from IST 12
7.2.4. Hurbert Curien: PAI Amadeus on the “Realm of Cut Elimination” 12
7.2.5. Hurbert Curien: PAI Germaine De Stael “Deep Inference and the Essence of Proofs” 12

8. Dissemination . 12
8.1. Services to the Scientific Community 12

8.1.1. Organization of Conferences and Workshops 12
8.1.2. Editorial activity 12
8.1.3. Participation in program committees 13
8.1.4. Invited talks at Conferences or Workshops 13

8.2. Teaching 13
8.3. Evaluation 13
8.4. Internship supervision 13

2 Activity Report INRIA 2007

9. Bibliography .13

1. Team
Parsifal is an INRIA-Futurs project-team located at the CNRS laboratory LIX (Laboratoire d’Informatique de
l’Ecole Polytechnique). Two additional people join the team at the end 2007: Stephane Lengrand, CNRS CR2
(1 January 2008) and Matteo Capelletti INRIA post doc (1 December 2007).

Head of project-team
Dale Miller [DR INRIA-Futurs]

Research scientist
Joëlle Despeyroux [CR INRIA-Sophia]
Lutz Straßburger [CR INRIA-Futurs]

Administrative assistant
Isabelle Biercewicz

PhD student
David Baelde [Allocataire École Normale Supérieure, Lyon, since 1 September 2005]
Olivier Delande [Bourse Monge École Polytechnique, since 1 October 2006]
Vivek Nigam [Allocataire Mobius, since 1 October 2006]
Alexis Saurin [Allocataire École Normale Supérieure, Paris, since 1 October 2004]

Post-doctoral fellow
Kaustuv Chaudhuri [Post Doctorant INRIA, 1 Nov 2006 - 31 October 2007]
Laurent Méhats [Post Doctorant INRIA, since 1 September 2007]

Invited researchers
Chuck Liang [Associate Professor, Hofstra University, NY, USA, 1 - 30 June 2007]

Student intern
Nicolas Guenot [M2 MPRI, 5 March 2007 - 31 August 2007]
Zachery Snow [MS student from the University of Minnesota, 15 May - 31 July 2007.]

2. Overall Objectives
2.1. Main Themes

The aim of the Parsifal team is to develop and exploit the theories of proofs and types to support the
specification and verification of computer systems. To achieve these goals, the team works on several level.

• The team has expertise in proof theory and type theory and conducts basic research in these fields:
in particular, the team is developing results that help with the automation of deduction and with the
formal manipulation and communication of proofs.

• Based on experience with computational systems and theoretical results, the team designs new
logical principles, new proof systems, and new theorem proving environments.

• Some of these new designs are appropriate for implementation and the team works at developing
prototype systems to help validate basic research results.

• By using the implemented tools, the team can develop examples of specifications and verification to
test the success of the design and to help suggest new logical and proof theoretic principles that need
to be developed in order to improve ones ability to specify and verify.

The foundational work of the team focuses on the proof theory of classical, intuitionistic, and linear logics
making use, primarily, of sequent calculus and deep inference formalisms. A major challenge for the team is
the reasoning about computational specifications that are written in a relational style: this challenge is being
addressed with the introduction of some new approaches to dealing with induction, co-induction, and generic
judgments. Another important challenge for the team is the development of normal forms of deduction: such
normal forms can be used to greatly enhance the automation of search (one only needs to search for normal
forms) and for communicating proofs (and proof certificates) for validation.

2 Activity Report INRIA 2007

The principle application areas of concern for the team currently are in functional programming (e.g., λ-
calculus), concurrent computation (e.g., π-calculus), interactive computations (e.g., games), and biological
systems.

2.2. Highlights of the year
The team has released the Bedwyr model checker that can be used to work with linguistic expressions involving
bound variables in a completely declarative fashion. The system comes with several examples, including a
declarative and direct implementation of bisimulation checking for the finite π-calculus. The team has also
produced a number of papers on extending and applying the important notion of focusing proofs.

3. Scientific Foundations
3.1. General Overview

Keywords: proof normalization, proof search.

In the specification of computational systems, logics are generally used in one of two approaches. In the
computation-as-model approach, computations are encoded as mathematical structures, containing such items
as nodes, transitions, and state. Logic is used in an external sense to make statements about those structures.
That is, computations are used as models for logical expressions. Intensional operators, such as the modals of
temporal and dynamic logics or the triples of Hoare logic, are often employed to express propositions about
the change in state. This use of logic to represent and reason about computation is probably the oldest and
most broadly successful use of logic in computation.

The computation-as-deduction approach, uses directly pieces of logic’s syntax (such as formulas, terms, types,
and proofs) as elements of the specified computation. In this much more rarefied setting, there are two rather
different approaches to how computation is modeled.

The proof normalization approach views the state of a computation as a proof term and the process of
computing as normalization (know variously as β-reduction or cut-elimination). Functional programming can
be explained using proof-normalization as its theoretical basis [38] and has been used to justify the design of
new functional programming languages [20].

The proof search approach views the state of a computation as a sequent (a structured collection of formulas)
and the process of computing as the process of searching for a proof of a sequent: the changes that take place
in sequents capture the dynamics of computation. Logic programming can be explained using proof search as
its theoretical basis [45] and has been used to justify the design of new logic programming languages [44].

The divisions proposed above are informal and suggestive: such a classification is helpful in pointing out
different sets of concerns represented by these two broad approaches (reductions, confluence, etc, versus
unification, backtracking search, etc). Of course, a real advance in computation logic might allow us merge or
reorganize this classification.

Although type theory has been essentially designed to fill the gap between these two kinds of approaches, it
appears that each system implementing type theory up to now only follows one of the approaches. For example,
the Coq system implementing the Calculus of Inductive Constructions (CIC) uses proof normalization while
the Twelf system [54], implementing the Edinburgh Logical Framework (LF, a sub-system of CIC), follows
the proof search approach (normalization appears in LF, but it is much weaker than in, say, CIC).

The Parsifal team works on both the proof normalization and proof search approaches to the specification of
computation.

3.2. Reasoning about logic specifications
Keywords: LINC, definitions, fixed points, generic judgments, higher-order abstract syntax, lambda-tree
syntax.

Project-Team Parsifal 3

Once a computational system (e.g., a programming language, a specification language, a type system) is given
a logic (relational) specifications, how do we reason about the formal properties of such specifications? New
results in proof theory are being developed to help answer this question.

The traditional architecture for systems designed to help reasoning about the formal correctness of specifica-
tion and programming languages can generally be characterized at a high-level as follows: First: Implement
mathematics. This often involves choosing between a classical or constructive (intuitionistic) foundation, as
well as a choosing abstraction mechanism (eg, sets or functions). The Coq and NuPRL systems, for example,
have chosen intuitionistically typed λ-calculus for their approach to the formalization of mathematics. Sys-
tems such as HOL [32] use classical higher-order logic while systems such as Isabelle/ZF [53] use classical
logic. Second: Reduce programming correctness problems to mathematics. Thus, data structures, states,
stacks, heaps, invariants, etc, all are represented as various kinds of mathematical objects. One then reasons
directly on these objects using standard mathematical techniques (induction, primitive recursion, fixed points,
well-founded orders, etc).

Such an approach to formal methods is, of course, powerful and successful. There is, however, growing
evidence that many of the proof search specifications that rely on such intensional aspects of logic as bindings
and resource management (as in linear logic) are not served well by encoding them into the traditional data
structures found in such systems. In particular, the resulting encoding can often be complicated enough that
the essential logical character of a problem is obfuscated.

Despeyroux, Pfenning, Leleu, and Schürmann proposed two different type theories [2], [1] based on modal
logic in which expressions (possibly with binding) live in the functional space A → B while general functions
(for case and iteration reasoning) live in the full functional space �A → B. These works give a possible
answer to the problem of extending the Edinburgh Logical Framework, well suited for describing expressions
with binding, with recursion and induction principles internalized in the logic (as done in the Calculus of
Inductive Constructions). However, extending these systems to dependent types seems to be difficult (see [28]
where an initial attempt was given).

The LINC logic of [59] appears to be a good meta-logical setting for proving theorems about such logical
specifications The three key ingredients of LINC can be described as follows.

First, LINC is an intuitionistic logic for which provability is described similarly to Gentzen’s LJ calculus [29].
Quantification at higher-order types (but not predicate types) is allowed and terms are simply typed λ-terms
over βη-equivalence. This core logic provides support for λ-tree syntax, a particular approach to higher-order
abstract syntax. Considering a classical logic extension of LINC is also of some interest, as is an extension
allowing for quantification at predicate type.

Second, LINC incorporates the proof-theoretical notion of definition (also called fixed points), a simple and
elegant device for extending a logic with the if-and-only-if closure of a logic specification and for supporting
inductive and co-inductive reasoning over such specifications. This notion of definition was developed by
Hallnäs and Schroeder-Heister [35] and, independently, by Girard [31]. Later McDowell, Miller, and Tiu have
made substantial extensions to our understanding of this concept [40], [5], [47]. Tiu and Momigliano [48], [59]
have also shown how to modify the notion of definition to support induction and co-induction in the sequent
calculus.

Third, LINC contains a new (third) logical quantifier ∇ (nabla). After several attempts to reason about logic
specifications without using this new quantifier [39], [41], [5], it became clear that when the object-logic
supports λ-tree syntax, the generic judgment [47], [8] and its associated quantifier could provide a strong
and declarative role in reasoning. This new quantifier is able to help capture internal (intensional) reasons for
judgment to hold generically instead of the universal judgment that holds for external (extensional) reasons.
Another important observation to make about ∇ is that if given a logic specification that is essentially a
collection of Horn clauses (that is, there is no uses of negation in the specification), there is no distinctions
to be made between ∀ or ∇ in the premise (body) of semantic definitions. In the presence of negations and
implications, a difference between these two quantifiers does arise [8].

4 Activity Report INRIA 2007

3.3. Focused proof systems
Keywords: focused proof systems.

There is a great deal of non-determinism that is present in the search for proofs (in the sense of automated
deduction). The non-determinism involved with generating lemmas is one extreme: when attempting to prove
one formula it is possible to generate a potential lemma and then attempt to prove it and to use it to prove the
original formula. In general, there are no clues as to what is a useful lemma to construct. The famous “cut-
elimination” theorem say that it is possible to prove theorems without using lemmas (that is, by restricting
to cut-free proofs). Of course, cut-free proofs are not appropriate for all domains of computation logic since
they can be vastly larger than proofs containing cuts. Even when restricting to cut-free proofs make sense (as
in logic programming, model checking, and some areas of automated reasoning), the construction of cut-free
proofs still contains a great deal of non-determinism.

Structuring the non-deterministic choices within the search for cut-free proofs has received increasing
attention in recent years with the development of focusing proofs systems. In such proof systems, there is
a clear separation between non-deterministic choices for which no backtracking is required (“don’t care non-
determinism”) and choices were backtracking may be required (“don’t know non-determinism”). Furthermore,
when a backtrackable choice is required, that choice actually extends over a series of inference rules,
representing a “focus” during the construction of a proof. One focusing-style proof systems was developed
within the early work of providing a proof-theoretic foundations for logic programming via uniform proofs
[45]. The first comprehensive analysis of focusing proofs was done in linear logic by Andreoli [22]. There
it was shown that proofs are constructed in two alternating phases: a negative phase in which don’t-care-
non-determinism is done and a positive phase in which a focused sequence of don’t-know-non-determinism
choices is applied.

Since a great deal of automated deduction (in the sense of logic programming, type inference, and model
checking) is done in intuitionistic and classical logic, there is a strong need to have comprehensive focusing
results for these logics as well. In linear logic, the assignment of inference rules to the positive and negative
phases is canonical (only the treatment of atomic formulas is left as a non-canonical choice). Within
intuitionistic and classical logic, a number of inference rules do not have canonical treatments. Instead, several
focusing-style proof systems have been developed one-by-one for these logics. A general scheme for putting
all of these choices together has recently been developed within the team and will be described below.

3.4. Proof structure and proof certificates
Keywords: proof certificates.

There has been a good deal of concern in the proof theory literature on the nature of proofs as objects.
An example of such a concern is the question as to whether or not two proofs should be considered equal.
Such considerations were largely of interest to philosophers and logicians. Computer scientists started to get
involved with the structure of proofs more generally in essentially two ways. The first is the extraction of
algorithms from constructive proofs. The second is the use of proof-like objects to help make theorem proving
systems more sophisticated (proofs could be stored, edited, and replayed, for example).

It was not until the development of the topic of proof carrying code (PCC) that computer scientists from
outside the theorem proving discipline took a particular interesting in having proofs as actual data structure
within computations. In the PCC setting, proofs of safety properties need to be communicated from one host to
another: the existence of the proof means that one does not need to trust the correctness of a piece of software
(for example, that it is not a virus). Given this need to produce, communicate, and check proofs, the actual
structure and nature of proofs-as-objects becomes increasingly important.

Often the term proof certificate (or just certificate) is used to refer to some data structure that can be used to
communicate a proof so that it can be checked. A number of proposals have been made for possible structure
of such certificates: for examples, proof scripts in theorem provers such as Coq are frequently used. Other
notions include oracle [52] and fixed points [21].

Project-Team Parsifal 5

The earliest papers on PCC made use of logic programming systems Twelf [51] and λProlog [23]. It seems
that the setting of logic programming is a natural one for exploring the structure of proofs and the trade-offs
between proof size and the need for run-time proof search. For example, there is a general trade-off between
the size of a proof object and the amount of search one must do to verify that an object does, in fact, describe
a proof. Exploring such trade-off should be easy and natural in the proof search setting where such search is
automated. In particular, focused proof systems should be a large component of such an analysis.

3.5. Deep Inference and Categorical Axiomatizations
Keywords: category theory, deep inference.

Deep inference [33], [34] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counterintuitive translation.

One reason for using categories in proof theory is to give a precise algebraic meaning to the identity of proofs:
two proofs are the same if and only if they give rise to the same morphism in the category. Finding the right
axioms for the identity of proofs for classical propositional logic has for long been thought to be impossible,
due to “Joyal’s Paradox”. For the same reasons, it was believed for a long time that it it not possible to have
proof nets for classical logic. Nonetheless, Lutz Straßburger and François Lamarche provided proof nets for
classical logic in [3], and analyzed the category theory behind them in [36]. In [9] and [57], one can find a
deeper analysis of the category theoretical axioms for proof identification in classical logic. Particular focus
is on the so-called medial rule which plays a central role in the deep inference deductive system for classical
logic.

The following research problems are investigated by members of the Parsifal team:

• Find deep inference system for richer logics. This is necessary for making the proof theoretic results
of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

• Use the results on deep inference to find new axiomatic description of categories of proofs for various
logics. So far, this is well understood only for linear and intuitionistic logics. Already for classical
logic there is no common accepted notion of proof category. How logics like LINC can be given a
categorical axiomatisation is completely open.

3.6. Proof Nets and Combinatorial Characterization of Proofs
Keywords: cographs, correctness criteria, proof nets, relation webs.

Proof nets are abstract (graph-like) presentations of proofs such that all "trivial rule permutations" are
quotiented away. More generally, we investigate combinatoric objects and correctness criteria for studying
proofs independently from syntax. Ideally the notion of proof net should be independent from any syntactic
formalism. But due to the almost absolute monopoly of the sequent calculus, most notions of proof nets
proposed in the past were formulated in terms of their relation to the sequent calculus. Consequently we could
observe features like “boxes” and explicit “contraction links”. The latter appeared not only in Girard’s proof
nets [30] for linear logic but also in Robinson’s proof nets [55] for classical logic. In this kind of proof nets
every link in the net corresponds to a rule application in the sequent calculus.

6 Activity Report INRIA 2007

The concept of deep inference allows to design entirely new kinds of proof nets. Recent work by Lamarche and
Straßburger [56] and [4] have extended the theory of proof nets for multiplicative linear logic to multiplicative
linear logic with units. This seemingly small step—just adding the units—had for long been an open problem,
and the solution was found only by consequently exploiting the new insights coming from deep inference. A
proof net no longer just mimicks the seqent calculus proof tree, but rather an additional graph structure that is
put on top of the formula tree (or sequent forest) of the conclusion. The work on proof nets within the team is
focused on the following two directions

• Extend the work of Lamarche and Straßburger to larger fragments of linear logic, containing the
additives, the exponentials, and the quantifiers.

• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for
doing proof seach. An important property of deductive proof nets must be that the correctness can be
checked in linear time. For the classical logic proof nets by Lamarche and Straßburger [3] this takes
exponential time (in the size of the net). We hope that eventually deductive proof nets will provide a
“bureaucracy-free” formalism for proof search.

3.7. A logic for systems biology
Keywords: biology, hybrid logic, linear logic, stochastic pi-calculus, systems biology, temporal logic.

Systems in molecular biology, such as those for regulatory gene networks or protein-protein interactions, can
be seen as state transition systems that have an additional notion of rate of change. Methods for specifying
such systems is an active research area. However, to our knowledge, no logic (more powerful than the boolean
logic) have been proposed so far to both specify and reason about these systems.

One current and prominent method uses process calculi, such as the stochastic π-calculus, that has a built in
notion of rate [26]. Process calculi, however, have the deficiency that reasoning about the specifications is
external to the specifications themselves, usually depending on simulations and trace analysis.

Kaustuv Chaudhuri and Joëlle Despeyroux are considering the problem of giving a logical instead of a process-
based treatment both to specify and to reason about biological systems in a uniform linguistic framework. The
logic they have proposed, called HyLL, is an extension of (intuitionistic) linear logic with a modal situated
truth that may be reified by means of the ↓ operator from hybrid logic. A variety of semantic interpretation can
be given to this logic, including the rates and the delay of formation.

The expressiveness of the logic has been demonstrated on small examples and first meta-theoretical properties
of the logic have been proven. Considerable work needs to be done before this proposal succeeds as a natural
logical framework for systems biology. Remaining work mainly includes the description of larger examples
(requiring more specifications of usual biological notions), and automating reasoning about the specifications.
It also includes further studies of the meta-theoretical properties of the logic, and of course eventual extensions
of the logic (for example to get branching semantics).

4. Application Domains

4.1. Model checking operational semantics
Keywords: model checking, operational semantics, process calculus, symbolic bisimulations.

When operational semantics is presented as inference rules, it can often be encoded naturally as a logic
program, which means that it is usually easy to animated such semantic specifications in direct and natural
ways. Given the natural duality between finite success and finite failure (given a proof theoretic foundations
in papers such as [6] and [46]) it is also possible to describe model checking systems from a proof theoretic
setting.

Project-Team Parsifal 7

One application area for this work is, thus, the development of model checking software that can work on
linguistic expressions that may contain bound variables. Specific applications could be towards checking
bisimulation of λ-calculus and π-calculus expressions.

More about a prototype model checker in this area is described below.

4.2. Mechanized metatheory
Keywords: mechanized metatheory.

There has been increasing interest in the international community with the use of formal methods to provide
proofs of properties of programs and entire programming languages. The example of proof carrying code is
one such example. Two more examples for which the team’s efforts should have important applications are the
following two challenges.

Tony Hoare’s Grand Challenge titled “Verified Software: Theories, Tools, Experiments” has as a goal the
construction of “verifying compilers” to support a vision of a world where programs would only be produced
with machine-verified guarantees of adherence to specified behavior. Guarantees could be given in a number
of ways: proof certificates being one possibility.

The PoplMark challenge [24] envisions “a world in which mechanically verified software is commonplace: a
world in which theorem proving technology is used routinely by both software developers and programming
language researchers alike.” The proposers of this challenge go on to say that a “crucial step towards achieving
these goals is mechanized reasoning about language metatheory.” There is clearly a strong overlap in the goals
of this challenge and those of part of the Parsifal team.

4.3. Biological systems
Keywords: biology, systems biology.

When one looks at systems of biochemical reactions in molecular biology, such as gene-protein and protein-
protein interaction systems, one observes two basic phenomena: state change (where, for example, two or
more molecules interact to form other molecules) and delay. Each of the state changes has an associated delay
before the state change is observed, or, more precisely, a probability distribution over possible delays: the rate
of the change. A system of biochemical reactions can therefore be seen as a stochastic computation.

The HyLL logic proposed this year by Kaustuv Chaudhuri and Joëlle Despeyroux is a first attempt at providing
a logical framework for both specifying and reasoning about such computations.

5. Software

5.1. Bedwyr
Participants: Dale Miller, David Baelde [correspondant].

In order to provide some practical validation of the formal results mentioned above regarding the logic LINC
and the quantifier ∇, we picked a small but expressive subset of that logic for implementation. While that
subset did not involve the proof rules for induction and co-induction (which are difficult to automate) the subset
did allow for model-checking style computation. During 2006 and 2007, the Parsifal team, with contributions
from our close colleagues at the University of Minnesota and the Australian National University, designed and
implemented the Bedwyr system for doing proof search in that fragment of LINC. This system is organized as
an open source project and is hosted on INRIA’s GForge server. It has been described in the conference papers
[58] and [11]. This systems, which is implemented in OCaml, has been download about 200 times since it was
first released.

8 Activity Report INRIA 2007

Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expressions
possibly containing bindings. This system, written in OCaml, is a direct implementation of two recent advances
in the theory of proof search.

1. It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in
such a proof system can capture both may and must behavior in operational semantics.

2. Higher-order abstract syntax is directly supported using term-level λ-binders, the ∇-quantifier,
higher-order pattern unification, and explicit substitutions. These features allow reasoning directly
on expressions containing bound variables.

Bedwyr has served well to validate the underlying theoretical considerations while at the same time providing
a useful tool for exploring some applications. The distributed system comes with several example applications,
including the finite π-calculus (operational semantics, bisimulation, trace analysis, and modal logics), the spi-
calculus (operational semantics), value-passing CCS, the λ-calculus, winning strategies for games, and various
other model checking problems.

5.2. Taci
Participants: David Baelde, Dale Miller, Zachery Snow.

During the summer of 2007, Baelde (LIX PhD student) and visiting intern Zachery Snow (PhD student from
the University of Minnesota) built a prototype theorem prover, called Taci, that we are currently using “in-
house” to experiment in a number of large examples and a few different logics. We hope to make the tool
available eventually once we have settled into the exact logic that it should support.

6. New Results

6.1. Reasoning about operational semantics
Participants: David Baelde, Dale Miller.

The operational semantics of programming and specification languages is often presented via inference rules
and these can generally be mapped into logic programming-like clauses. Such logical encodings of operational
semantics can be surprisingly declarative if one uses logics that directly account for term-level bindings and
for resources, such as are found in linear logic. Traditional theorem proving techniques, such as unification and
backtracking search, can then be applied to animate operational semantic specifications. Of course, one wishes
to go a step further than animation: using logic to encode computation should facilitate formal reasoning
directly with semantic specifications. In the paper [43], Miller outlined an approach to reasoning about logic
specifications that involves viewing logic specifications as theories in an object-logic and then using a meta-
logic to reason about properties of those object-logic theories.

The Bedwyr system (described in the Software section) has been used to validate at least some of the design
ideas presented in [43]. These results are encouraging and the team plans to develop those themes to a greater
extent.

6.2. Effective implementation of model checking with linguistic expressions
Participants: David Baelde, Dale Miller, Vivek Nigam.

The effort to implement Bedwyr provided the team with a number of challenges, including dealing with how
best to implement λ-terms to effectively support unification, backtracking search, and the “flipping” of variable
status (internally, Bedwyr has two provers and the status of variables in these two systems are essentially
duals). Most of these implementation details are documented directly in the code and, in part, in the Bedwyr
user manual [25].

Project-Team Parsifal 9

6.3. Focusing proof systems for linear, intuitionistic, and classical logics
Participants: David Baelde, Dale Miller, Alexis Saurin.

When working with proof search and logic programming within linear logic, the completeness of focusing
proofs by Andreoli [22] provides a critical normal form for proofs in all of linear logic. Chaudhuri and his
colleagues have applied the focusing proof system of linear logic to forward and backward reasoning systems.
Miller and Saurin have provided a new and modular proof of focusing for linear logic in [15]. This proof
allows for direct extensions: for example, the focusing result in Baelde and Miller’s paper [12] were based on
this new modular proof.

In contrast, a flexible and general definition of focusing proofs in intuitionistic and classical proofs have not
been provided. Althought there had been a number of focusing-style proof systems that have been defined for
these two logics, a general framework to relate all of them was needed. In [13], Liang and Miller provided
just such a framework. In particular, the proof systems LJF and LKF were introduced that provides for a great
deal of flexibility in the description of how focusing could be done in these two logics. In particular, polarities
could be mixed (a result that was a challenge to get for intuitionistic logic). Many other focusing systems for
intuitionistic logic could be mapped compositionally into the LJF via the simple insertion of “delay” operators
(simple logical expressions that stop the focusing process).

6.4. Tables, lemmas, and focused proofs
Participants: Dale Miller, Vivek Nigam.

To help validate our energies at exploring focusing proof systems, the team has looked at various applications
of such proof theoretic results. Miller and Nigam in [14] have shown how focusing proof systems can be
exploited to provide a declarative approach to the use of tables in proof search (addressing the issue of lemma
reuse instead of reproof in the case of atomic lemmas). They also showed how a table of lemmas can be used
to give a new form of proof certificate.

6.5. Game semantics for proof search with multiplicative connectives
Participants: Olivier Delande, Dale Miller.

There appears to be a very close connection between focusing proof systems and certain kinds of game
semantics for proof search. The team has been working on understanding a “neutral approach to proof and
refutation”. In [46], Miller and Saurin attempted to use game semantics to provide a “neutral” approach
to proof and refutation. Their approach worked well for additive games (which are essentially Hintikka
games). If the nature of multiplicatives were greatly restricted (to simple “guards”), then this game theoretic
approach worked well again. It was unclear, however, how to extend that effort to handle general multiplicative
connectives. This past year, Olivier Delande has been developing a solution to this problem that involves
several innovations in the earlier notion of games. In particular, since games are no longer determinate (games
might end in a draw), game playing must continue even after one player has failed (in order to find out if the
other play wins or draws). A paper on this work is planned for the end of 2007.

6.6. A Proof theory of induction and co-induction
Participants: David Baelde, Dale Miller.

Systems like the model-checker Bedwyr provides properties of computational system by exploring all of its
finite behaviors. As a result, most such systems cannot handle infinite state spaces and, hence, cannot handle
the vast majority of computer systems. Baelde and Miller [12] [19] have been exploring a proof theory for
induction and coinduction within linear logic: given the cut-elimination and focusing results that they have
obtained, it should be possible to developing some effective tools to help automate proofs that require induction
and coinduction: at least when the required invariants are easy to guess.

10 Activity Report INRIA 2007

6.7. Proof nets for second order multiplicative linear logic
Participant: Lutz Straßburger.

Exploring the ideas of [4] which allowed including the units into the theory of proof nets, Lutz Straßburger
developed a new theory of proof nets that also includes the quantifiers, without relying on boxes, as in Girard’s
original work. The results are not yet published, but available from Straßburger’s webpage1.

6.8. Combinatorial characterization of the medial rule
Participant: Lutz Straßburger.

Geometric or combinatoric correctness criteria are important for studying proofs independently from syntax.
In [17], Lutz Straßburger gives such a criterion for the medial rule which is central in the deep inference
presentation for classical logic [27]. This means that there are now two independent approaches towards
a notion of proof identification: First, via algebraic considerations, i.e., categories [9], and second, via
combinatorial or graph-theoretical considerations, i.e., proof nets and correctness criteria.

6.9. Deep inference for hybrid logics
Participant: Lutz Straßburger.

Hybrid languages are modal languages which use formulas to refer to specific points in a model. There is a
fast growing community because of many applications. In [18] Lutz Straßburger presents a deep inference
deductive system for hybrid logic. Thus, the rich proof theory related to deep inference is made available for
hybrid logics, which so far have mainly been studied via model theory. The HyLL logic proposed by Kaustuv
Chaudhuri and Joëlle Despeyroux for systems biology (see below) also provides a proof theoretic presentation
of hybrid logics, in a traditional natural and sequent style.

6.10. A logic for systems biology
Participants: Kaustuv Chaudhuri, Joëlle Despeyroux.

Kaustuv Chaudhuri and Joëlle Despeyroux have proposed a logic, called HyLL, for reasoning in and about
reactions in systems and molecular biology. Such reaction systems can be imagined as state transition systems
where the transitions are equipped with a stochastic rate function. In HyLL, these transitions are linear
implications (from linear logic). The rate is determined using a modal judgement that makes the rate of
formation explicit. The modal judgement is then reified by means of the ↓ connective from hybrid logic.
They have demonstrated the use of HyLL on the repressilator, an example of a regulatory gene network. The
expressivity of HyLL have been explicated by giving an embedding of the stochastic π-calculus. A paper has
been submitted and a technical report is in preparation.

6.11. Separation in the λµ-calculus
Participant: Alexis Saurin.

The λµ-calculus has been proposed in recent years by M. Parigot as a term calculus inspired by classical logic
(similar to the way that the λ-calculus is inspired by intuitionistic logic. Later on, David & Py proved that the
separation rules failed for the λµ-calculus, leading to the need to fix the calculus. In [16], Saurin showed a
way to regaining the separation theorem by a natural extension of the λµ-calculus to the Λµ-calculus.

6.12. Static analysis via proof theory
Participant: Dale Miller.

1http://www.lix.polytechnique.fr/~lutz/

http://www.lix.polytechnique.fr/~lutz/

Project-Team Parsifal 11

Static analysis of logic programs can provide useful information for programmers and compilers. Typing
systems, such as in λProlog [49] [50], have proved valuable during the development of code: type errors often
represent program errors that are caught at compile time when they are easier to find and fix than at runtime
when they are much harder to repair. Static type information also provides valuable documentation of code
since it provides a concise approximation to what the code does.

In [42], Miller described a method by which it is possible to infer that certain relationships concerning
collections underlying structured data hold. For collections, both multisets and sets were used to approximate
more complicated structures as lists and binary trees. Consider, for example, a list sorting program that
maintains duplicates of elements. Part of the correctness of a sort program includes the fact that if the atomic
formula sort(t, s) is provable, then s is a permutation of t that is in-order. The proof of such a property is
likely to involve inductive arguments requiring the invention of invariants: in other words, this is not likely
to be a property that can be inferred statically during compile time. On the other hand, if the lists t and s
are approximated by multisets (that is, if we forget the order of items in lists), then it might be possible to
establish that if the atomic formula sort(t, s) is provable, then the multiset associated to s is equal to the
multiset associated to t. If that is so, then it is immediate that the lists t and s are, in fact, permutations of
one another (in other words, no elements were dropped, duplicated, or created during sorting). Such properties
based on using multisets to approximate lists can often be inferred statically.

While this work focused exclusively on the static analysis of first-order Horn clauses, it does so by making
substitution instances of such Horn clauses that carry them into linear logic. Proofs for the resulting linear
logic formulas are then attempted as part of static analysis.

Work such as this suggests that declarative languages might permit rich kinds of static analysis. Such
preliminary work provided a partial justification of the need for flexible connections between programming
languages and static analysis that is briefly described in [37].

7. Other Grants and Activities

7.1. Actions nationales
7.1.1. INFER: ANR on the Theory and Application of Deep Inference

Participants: Dale Miller, Lutz Straßburger.

The ANR-project blanc titled “INFER: Theory and Application of Deep Inference” that is coordinated by Lutz
Straßburger has been accepted in September 2006. Besides Parsifal, the teams associated with this effort are
represented by Francois Lamarche (INRIA-Loria) and Michel Parigot (CNRS-PPS).

7.2. Actions internationales
7.2.1. Slimmer: INRIA funded international team

Participants: David Baelde, Dale Miller.

Slimmer stands for Sophisticated logic implementations for modeling and mechanical reasoning is an
“Equipes Associées” with seed money from INRIA. This project is initially designed to bring together the
Parsifal personnel and Gopalan Nadathur’s Teyjus team at the University of Minnesota (USA). Separate NSF
funding for this effort has also been awards to the University of Minnesota. We also hope to expand the scope
of this project to include other French and non-French sites, in particular, Marino Miculan (University of
Udine, Italy) and Brigitte Pientka (McGill University, Canada).

7.2.2. Mobius: an EU Integrated Project on Proof Carrying Code
Participants: Vivek Nigam, Olivier Delande, Joëlle Despeyroux, Dale Miller.

12 Activity Report INRIA 2007

Mobius stands for “Mobility, Ubiquity and Security” and is a Proposal for an Integrated Project in response to
the call FP6-2004-IST-FETPI. This proposal involve numerous site in Europe and was awarded in September
2005. This large, European based project is coordinated out of INRIA-Sophia.

7.2.3. TYPES: coordinated action from IST
Participants: Dale Miller, Joelle Despeyroux.

TYPES is an European project (a coordination action from the IST program) aiming at developing the
technology of formal reasoning based on type theory. The project brings together 36 universities and research
centers from 8 European countries (France, Italy, Germany, Netherlands, United Kingdom, Sweden, Poland
and Estonia). It is the continuation of a number of European projects since 1992. The funding from the present
project enables the maintaining of collaboration within the community by supporting an annual workshop, a
few smaller thematic workshops, one summer school, and visits of researchers to one another’s labs.

7.2.4. Hurbert Curien: PAI Amadeus on the “Realm of Cut Elimination”
Participants: Dale Miller, Lutz Straßburger.

The "PAI" Amadeus for collaboration between France and Austria has approved the grant "The Realm of Cut
Elimination" in November 2006. This proposal will allow for collaborations between the Parsifal team and the
groups of Agata Ciabattoni at Technische Universität Wien (Austria) and Michel Parigot at CNRS-PPS.

7.2.5. Hurbert Curien: PAI Germaine De Stael “Deep Inference and the Essence of Proofs”
Participants: Dale Miller, Lutz Straßburger.

This collaboration between Paris and Bern (Germany) aims at exploring some questions in the structure
and identity of proofs. People involved in the Paris area are Lutz Straßburger, Dale Miller, Alexis Saurin,
David Baelde, Michel Parigot, Stéphane Lengrand, and Séverine Maingaud. People involved in Bern are Kai
Brünnler, Richard McKinley, and Phiniki Stouppa.

8. Dissemination
8.1. Services to the Scientific Community
8.1.1. Organization of Conferences and Workshops

Joëlle Despeyroux co-organized the ACM SIGPLAN-SIGACT international conference on Principles of Pro-
gramming Languages (POPL), with Martin Hofmann (LMU university, Munich, Germany). The conference
was held in Nice, from 14 to 20 January.

Lutz Straßburger organized a workshop on "The Realm of Cut Elimination" on May 14, 2007 at LIX. This
workshop was part of the PAI Amadeus with TU Wien.

Lutz Straßburger organized a workshop on "Theory and Application of Deep Inference" on June 21, 2007 at
LIX. This workshop is part of (and partially financed by) the ANR project INFER on "Theory and Application
of Deep Inference", and the PAI Germaine De Stael project on "Deep Inference and the Essence of Proofs". It
served as first meeting of the participants of these projects.

8.1.2. Editorial activity
Dale Miller has the following editorial duties.

• Theory and Practice of Logic Programming Member of Advisory Board since 1999. Cambridge
University Press.

• ACM Transactions on Computational Logic (ToCL) Area editor for Proof Theory since 1999.
Published by ACM.

• Journal of Functional and Logic Programming. Permanent member of the Editorial Board since
1996. MIT Press.

• Journal of Logic and Computation. Associate editor since 1989. Oxford University Press.

Project-Team Parsifal 13

8.1.3. Participation in program committees
Dale Miller was a program committee member for the following conferences.

• LFMTP’07: Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, August,
Bremem, Germany.

• WoLLIC’07: Fourteenth Workshop on Logic, Language, Information and Computation, Rio de
Janeiro, 2-5 July.

• CADE-21: 21st Conference on Automated Deduction, 17 - 20 July Bremen, Germany.

8.1.4. Invited talks at Conferences or Workshops
David Baelde and Dale Miller were invited speakers at the ICMS Workshop on Mathematical Theories of
Abstraction, Substitution and Naming in Computer Science, Edinburgh, UK, 25-29 May 2007.

Dale Miller and Lutz Straßburger were invited participants to the meeting Collegium Logicum 2007: Proofs
and Structures, 24-25 October 2007, Vienna, Austria.

8.2. Teaching
From December 17 to December 22, 2007, Lutz Straßburger teaches a course on "Introduction to Deep
Inference and Proof Nets" (together with Paola Bruscoli, University of Bath) at the Technische Universität
Dresden for the International MSc Program in Computational Logic.

Dale Miller co-teaches the course “Logique Linéaire et paradigmes logiques du calcul” in the new masters
program MPRI (Master Parisien de Recherche en Informatique) (2004, 2005, 2006, 2007).

8.3. Evaluation
Dale Miller was an external reporter for the Habilitation of Agata Ciabattoni (Technische Universität Wien),
March 2007, and was an external reporter (rapporteur) for the PhD thesis of Sébastien Briais, École Polytech-
nique Fédérale de Lausanne, 17 Dec 2006.

8.4. Internship supervision
From March to August 2007, Nicolas Guenot (MPRI) was writing his Master’s thesis on “Proof search, multi-
focussing and deep inference for linear logic” under the supervision of Lutz Straßburger.

9. Bibliography
Major publications by the team in recent years

[1] J. DESPEYROUX, P. LELEU. Recursion over Objects of Functional Type, in "Special issue of MSCS on
"Modalities in Type Theory"", vol. 11, no 4, August 2001, http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/
papers/mscs00.ps.

[2] J. DESPEYROUX, F. PFENNING, C. SCHÜRMANN. Primitive Recursion for Higher-Order Abstract Syntax, in
"Theoretical Computer Science (TCS)", vol. 266, no 1-2, September 2001, p. 1–57, http://www-sop.inria.fr/
parsifal/Joelle.Despeyroux/papers/tcs00.ps.

[3] F. LAMARCHE, L. STRASSBURGER. Naming Proofs in Classical Propositional Logic, in "Typed Lambda
Calculi and Applications, TLCA 2005", P. URZYCZYN (editor), LNCS, vol. 3461, Springer, 2005, p. 246–261,
http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf.

http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/mscs00.ps
http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/mscs00.ps
http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/tcs00.ps
http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/tcs00.ps
http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf

14 Activity Report INRIA 2007

[4] F. LAMARCHE, L. STRASSBURGER. From Proof Nets to the Free *-Autonomous Category, in "Logical Methods
in Computer Science", vol. 2, no 4:3, 2006, p. 1–44, http://arxiv.org/pdf/cs.LO/0605054.

[5] R. MCDOWELL, D. MILLER. Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in "ACM
Transactions on Computational Logic", vol. 3, no 1, January 2002, p. 80-136, http://www.lix.polytechnique.
fr/Labo/Dale.Miller/papers/mcdowell01.pdf.

[6] R. MCDOWELL, D. MILLER, C. PALAMIDESSI. Encoding transition systems in sequent calculus, in "Theoret-
ical Computer Science", vol. 294, no 3, 2003, p. 411-437, http://www.lix.polytechnique.fr/Labo/Dale.Miller/
papers/tcs97.pdf.

[7] D. MILLER. Forum: A Multiple-Conclusion Specification Language, in "Theoretical Computer Science", vol.
165, no 1, September 1996, p. 201–232.

[8] D. MILLER, A. TIU. A proof theory for generic judgments, in "ACM Trans. on Computational Logic", vol. 6,
no 4, October 2005, p. 749–783, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf.

[9] L. STRASSBURGER. On the Axiomatisation of Boolean Categories with and without Medial, Accepted for
publication in TAC, 2007, http://www.lix.polytechnique.fr/~lutz/papers/medial.pdf.

[10] A. TIU, D. MILLER. A Proof Search Specification of the π-Calculus, in "3rd Workshop on the Foundations of
Global Ubiquitous Computing", ENTCS, vol. 138, September 2004, p. 79-101, http://www.lix.polytechnique.
fr/Labo/Dale.Miller/papers/fguc04workshop.pdf.

Year Publications
Publications in Conferences and Workshops

[11] D. BAELDE, A. GACEK, D. MILLER, G. NADATHUR, A. TIU. The Bedwyr system for model checking over
syntactic expressions, in "21th Conference on Automated Deduction", F. PFENNING (editor), LNAI, no 4603,
Springer, 2007, p. 391–397, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cade2007.pdf.

[12] D. BAELDE, D. MILLER. Least and greatest fixed points in linear logic, in "LPAR 2007: Logic for
Programming, Artificial Intelligence, and Reasoning", Lecture Notes in Computer Science, vol. 4790, 2007,
p. 92-106, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar07final.pdf.

[13] C. LIANG, D. MILLER. Focusing and Polarization in Intuitionistic Logic, in "CSL 2007: Computer Science
Logic", J. DUPARC, T. A. HENZINGER (editors), LNCS, vol. 4646, Springer-Verlag, 2007, p. 451–465,
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf.

[14] D. MILLER, V. NIGAM. Incorporating tables into proofs, in "CSL 2007: Computer Science Logic", J.
DUPARC, T. A. HENZINGER (editors), LNCS, vol. 4646, Springer-Verlag, 2007, p. 466–480, http://www.
lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07nigam.pdf.

[15] D. MILLER, A. SAURIN. From proofs to focused proofs: a modular proof of focalization in Linear Logic, in
"CSL 2007: Computer Science Logic", J. DUPARC, T. A. HENZINGER (editors), LNCS, vol. 4646, Springer-
Verlag, 2007, p. 405–419, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07saurin.pdf.

http://arxiv.org/pdf/cs.LO/0605054
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cade2007.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar07final.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07nigam.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07nigam.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07saurin.pdf

Project-Team Parsifal 15

[16] A. SAURIN. Typing streams in the Λµ-calculus: extended abstract, in "Proceedings of the Short Papers Session
at LPAR 2007", October 2007, http://www.eleves.ens.fr/home/saurin/Recherche/lpar07saurin.pdf.

[17] L. STRASSBURGER. A Characterisation of Medial as Rewriting Rule, in "Term Rewriting and Applica-
tions, RTA’07", F. BAADER (editor), LNCS, vol. 4533, Springer-Verlag, 2007, p. 344–358, http://www.lix.
polytechnique.fr/~lutz/papers/CharMedial.pdf.

[18] L. STRASSBURGER. Deep Inference for Hybrid Logic, in "International Workshop on Hybrid Logic 2007 (Part
of ESSLLI’07)", 2007, http://www.lix.polytechnique.fr/~lutz/papers/hybrid.pdf.

Miscellaneous

[19] D. BAELDE, D. MILLER. Least and greatest fixed points in linear logic: extended version, Technical report,
available from the first author’s web page, April 2007, http://www.lix.polytechnique.fr/~dbaelde/productions/
pool/mumall_draft_long.pdf.

References in notes

[20] S. ABRAMSKY. Computational Interpretations of Linear Logic, in "Theoretical Computer Science", vol. 111,
1993, p. 3–57.

[21] E. ALBERT, G. PUEBLA, M. V. HERMENEGILDO. Abstraction-Carrying Code, in "LPAR 2004: Logic
for Programming, Artificial Intelligence, and Reasoning", Lecture Notes in Computer Science, vol. 3452,
Springer, 2004, p. 380–397.

[22] J.-M. ANDREOLI. Logic Programming with Focusing Proofs in Linear Logic, in "Journal of Logic and
Computation", vol. 2, no 3, 1992, p. 297–347.

[23] A. W. APPEL, A. P. FELTY. Lightweight Lemmas in Lambda Prolog, in "16th International Conference on
Logic Programming", MIT Press, November 1999, p. 411–425.

[24] B. E. AYDEMIR, A. BOHANNON, M. FAIRBAIRN, J. N. FOSTER, B. C. PIERCE, P. SEWELL, D. VYTINIO-
TIS, G. WASHBURN, S. WEIRICH, S. ZDANCEWIC. Mechanized Metatheory for the Masses: The PoplMark
Challenge, in "Theorem Proving in Higher Order Logics: 18th International Conference", LNCS, Springer-
Verlag, 2005, p. 50–65.

[25] D. BAELDE, A. GACEK, D. MILLER, G. NADATHUR, A. TIU. A User Guide to Bedwyr, November 2006,
http://gforge.inria.fr/docman/view.php/367/705/userguide.pdf.

[26] R. BLOSSEY, L. CARDELLI, A. PHILLIPS. A Compositional Approach to the Stochastic Dynamics of Gene
Networks, in "Transactions on Computational Systems Biology", vol. IV, no 3939, 2006, p. 99–122.

[27] K. BRÜNNLER, A. F. TIU. A Local System for Classical Logic, in "LPAR 2001", R. NIEUWENHUIS, A.
VORONKOV (editors), LNAI, vol. 2250, Springer-Verlag, 2001, p. 347–361.

[28] J. DESPEYROUX, P. LELEU. Primitive recursion for higher-order abstract syntax with dependant types, in
"Informal proceedings of the FLoC’99 IMLA Workshop on Intuitionistic Modal Logics and Applications",
June 1999, http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/imla99.ps.

http://www.eleves.ens.fr/home/saurin/Recherche/lpar07saurin.pdf
http://www.lix.polytechnique.fr/~lutz/papers/CharMedial.pdf
http://www.lix.polytechnique.fr/~lutz/papers/CharMedial.pdf
http://www.lix.polytechnique.fr/~lutz/papers/hybrid.pdf
http://www.lix.polytechnique.fr/~dbaelde/productions/pool/mumall_draft_long.pdf
http://www.lix.polytechnique.fr/~dbaelde/productions/pool/mumall_draft_long.pdf
http://gforge.inria.fr/docman/view.php/367/705/userguide.pdf
http://www-sop.inria.fr/parsifal/Joelle.Despeyroux/papers/imla99.ps

16 Activity Report INRIA 2007

[29] G. GENTZEN. Investigations into Logical Deductions, in "The Collected Papers of Gerhard Gentzen, Amster-
dam", M. E. SZABO (editor), North-Holland, 1969, p. 68–131.

[30] J.-Y. GIRARD. Linear Logic, in "Theoretical Computer Science", vol. 50, 1987, p. 1–102.

[31] J.-Y. GIRARD. A Fixpoint Theorem in Linear Logic, An email posting to the mailing list lin-
ear@cs.stanford.edu, February 1992.

[32] M. GORDON. HOL: A Machine Oriented Formulation of Higher-Order Logic, Technical report, no 68,
University of Cambridge, July 1985.

[33] A. GUGLIELMI. A System of Interaction and Structure, in "ACM Trans. on Computational Logic", vol. 8, no

1, 2007.

[34] A. GUGLIELMI, L. STRASSBURGER. Non-commutativity and MELL in the Calculus of Structures, in
"Computer Science Logic, CSL 2001", L. FRIBOURG (editor), LNCS, vol. 2142, Springer-Verlag, 2001,
p. 54–68.

[35] L. HALLNÄS, P. SCHROEDER-HEISTER. A Proof-Theoretic Approach to Logic Programming. II. Programs
as definitions, in "Journal of Logic and Computation", vol. 1, no 5, October 1991, p. 635–660.

[36] F. LAMARCHE, L. STRASSBURGER. Constructing free Boolean categories, in "Proceedings of the Twentieth
Annual IEEE Symposium on Logic in Computer Science (LICS’05)", 2005, p. 209–218.

[37] G. T. LEAVENS, J.-R. ABRIAL, D. BATORY, M. BUTLER, A. COGLIO, K. FISLER, E. HEHNER, C.
JONES, D. MILLER, S. PEYTON-JONES, M. SITARAMAN, D. R. SMITH, A. STUMP. Roadmap for Enhanced
Languages and Methods to Aid Verification, in "Fifth International Conference on Generative Programming
and Component Engineering (GPCE)", ACM, October 2006, p. 221–235.

[38] P. MARTIN-LÖF. Constructive Mathematics and Computer Programming, in "Sixth International Congress
for Logic, Methodology, and Philosophy of Science, Amsterdam", North-Holland, 1982, p. 153–175.

[39] R. MCDOWELL. Reasoning in a Logic with Definitions and Induction, Ph. D. Thesis, University of Pennsyl-
vania, December 1997.

[40] R. MCDOWELL, D. MILLER. Cut-elimination for a logic with definitions and induction, in "Theoretical
Computer Science", vol. 232, 2000, p. 91–119.

[41] R. MCDOWELL, D. MILLER. A Logic for Reasoning with Higher-Order Abstract Syntax, in "Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland", G. WINSKEL (editor),
IEEE Computer Society Press, July 1997, p. 434-445.

[42] D. MILLER. Collection analysis for Horn clause programs, in "Proceedings of PPDP 2006: 8th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming", July 2006, p. 179–188,
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf

Project-Team Parsifal 17

[43] D. MILLER. Representing and reasoning with operational semantics, in "Proceedings of IJCAR: International
Joint Conference on Automated Reasoning", U. FURBACH, N. SHANKAR (editors), LNAI, vol. 4130, August
2006, p. 4–20, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ijcar06.pdf.

[44] D. MILLER. Forum: A Multiple-Conclusion Specification Logic, in "Theoretical Computer Science", vol. 165,
no 1, September 1996, p. 201–232.

[45] D. MILLER, G. NADATHUR, F. PFENNING, A. SCEDROV. Uniform Proofs as a Foundation for Logic
Programming, in "Annals of Pure and Applied Logic", vol. 51, 1991, p. 125–157.

[46] D. MILLER, A. SAURIN. A game semantics for proof search: Preliminary results, in "Proceedings of the
Mathematical Foundations of Programming Semantics (MFPS05)", Electr. Notes Theor. Comput. Sci, no 155,
2006, p. 543–563, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mfps05.pdf.

[47] D. MILLER, A. TIU. A Proof Theory for Generic Judgments: An extended abstract, in "Proc. 18th IEEE
Symposium on Logic in Computer Science (LICS 2003)", IEEE, June 2003, p. 118-127, http://www.lix.
polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf.

[48] A. MOMIGLIANO, A. TIU. Induction and Co-induction in Sequent Calculus, in "Post-proceedings of TYPES
2003", M. C. S. BERARDI, F. DAMIANI (editors), LNCS, no 3085, January 2003, p. 293–308, http://www.
lix.polytechnique.fr/Labo/Alwen.Tiu/linc.pdf.

[49] G. NADATHUR, D. MILLER. An Overview of λProlog, in "Fifth International Logic Programming Conference,
Seattle", MIT Press, August 1988, p. 810–827.

[50] G. NADATHUR, F. PFENNING. The type system of a higher-order logic programming language, in "Types in
Logic Programming", F. PFENNING (editor), MIT Press, 1992, p. 245–283.

[51] G. C. NECULA. Proof-carrying code, in "Conference Record of the 24th Symposium on Principles of
Programming Languages 97, Paris, France", ACM Press, 1997, p. 106–119.

[52] G. C. NECULA, S. P. RAHUL. Oracle-based checking of untrusted software., in "POPL", 2001, p. 142–154.

[53] L. C. PAULSON. Isabelle: The Next 700 Theorem Provers, in "Logic and Computer Science", P. ODIFREDDI
(editor), Academic Press, 1990, p. 361–386.

[54] F. PFENNING, C. SCHÜRMANN. System Description: Twelf — A Meta-Logical Framework for Deductive
Systems, in "16th Conference on Automated Deduction, Trento", H. GANZINGER (editor), LNAI, no 1632,
Springer, 1999, p. 202–206.

[55] E. P. ROBINSON. Proof Nets for Classical Logic, in "Journal of Logic and Computation", vol. 13, 2003, p.
777–797.

[56] L. STRASSBURGER, F. LAMARCHE. On Proof Nets for Multiplicative Linear Logic with Units, in "Computer
Science Logic, CSL 2004", J. MARCINKOWSKI, A. TARLECKI (editors), LNCS, vol. 3210, Springer-Verlag,
2004, p. 145–159.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ijcar06.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mfps05.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf
http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/linc.pdf
http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/linc.pdf

18 Activity Report INRIA 2007

[57] L. STRASSBURGER. What could a Boolean category be?, in "Classical Logic and Computation 2006 (Satellite
Workshop of ICALP’06)", S. VAN BAKEL (editor), 2006, http://www.lix.polytechnique.fr/~lutz/papers/
medial-kurz.pdf.

[58] A. TIU, G. NADATHUR, D. MILLER. Mixing Finite Success and Finite Failure in an Automated Prover,
in "Proceedings of ESHOL’05: Empirically Successful Automated Reasoning in Higher-Order Logics",
December 2005, p. 79–98, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/eshol05.pdf.

[59] A. TIU. A Logical Framework for Reasoning about Logical Specifications, Ph. D. Thesis, Pennsylvania State
University, May 2004, http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/etd.pdf.

http://www.lix.polytechnique.fr/~lutz/papers/medial-kurz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial-kurz.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/eshol05.pdf
http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/etd.pdf

