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2. Overall Objectives

2.1. Overall Objectives
Nowadays, decision making relies on the support from mathematical models. Quantitative modeling is
routinely used in industries and administration, either to design transportation, distribution and production
systems or to operate them. Optimization concerns every stage of the decision process: investment budgeting,
long term planning, the management of scarce resources, or the planning of day to day operations. In decision
aid, many underlying optimization problems are discrete in nature. Their solution is essentially based on
enumeration techniques, which is notoriously difficult given the huge size of the solution space. A key to
success is the development of finer problem formulations that provide strong approximations and hence help to
prune the enumerative solution scheme. One must also avoid the drawback of enumerating what are essentially
symmetric solutions. Our project aims to develop tight formulations for combinatorial problems exploiting the
complementarity between the latest reformulation techniques, such as Lagrangian and polyhedral approach
(columns and cutting planes generation), non-linear programming tools (quadratic programming and semi-
definite relaxations) and graph theoretic tools (for induced properties and implicit representations of solutions).
Through industrial partnerships, the team targets large scale problems such as those arising in logistics (routing
problems), planning and scheduling, in network design and control, and placement problems (cutting and
packing problems).

2.2. Highlights
The team was created this year (in March 2007). Sophie Michel got her PhD with us in December 2006
(she started her PhD in January 2004). She got an Assistant Professor position, starting in September 2007,
at the University of Le-Havre, in the engineering school in Logistic. Cédric Joncour started his PhD work
in September 2007, having been granted a PhD Scholarship from the Ministry of Education. His subject is
in line with one of the prospective action of our project: collaboration between graph theory approach and
mathematical programming to tackle 2-D packing problems.
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3. Scientific Foundations

3.1. Introduction
Keywords: decomposition approaches, graph theory, integer programming, polyhedral approaches, quadratic
approaches.

Combinatorial optimization is the field of discrete optimization problems. In many applications, the most
important decisions (control variables) are discrete in nature. Binary variables model on/off decision to buy,
invest, hire, to send a vehicle, or enforce a precedence. Integer variables model indivisible quantities. And
extra variables deal with continuous adjustments. This results in models known as mixed integer programs
(MIP) where the relations between variables and input parameters are expressed as linear constraints and
the goal is set as a linear objective function. MIPs are probably the most widely used modeling tools. They
allow a fair description of reality; they are versatile; they can already handle many non-linearities in the cost
function and in the constraints; they are also well-suited for global optimization. However useful they may
be, these models are notoriously difficult to solve: good quality estimations of the optimal value (bounds)
are required to prune enumeration-based global-optimization algorithms whose complexity is exponential.
Commercial solvers (such Ilog-CPLEX or Dash-Optimization’s Xpress-mp) are available. But many real-life
applications remain beyond the scope of such solvers. The scientific community is actively seeking to extend
the capabilities of MIP solvers. Developments made into the context of specific applications, shall become
generic tools over time and see their way into commercial software.
The most effective solution schemes are a complex blend of techniques: cutting planes to better approximate
the convex hull of feasible (integer) solutions, Lagrangian decomposition methods to produce powerful
relaxations, constraint programming to actively reduce the solution domain through logical implications,
heuristics and meta-heuristics (greedy, local improvement, or randomized partial search procedures) to
produce good candidate solutions, and branch-and-bound or dynamic programming enumeration schemes
to find a global optimum. The real challenge is to integrate the most efficient methods into one global
system. Another key to further progress is the development of finer problem formulations whose relaxation
provide stronger approximation that are required for further truncation of enumerative solution schemes.
Tighter formulations are also much more likely to yield good quality approximate solutions through rounding
techniques. With properly chosen formulations, exact optimization tools can be competitive to construct good
approximate solutions within limited computational time when compared to meta-heuristics. Our project
brings together researchers with expertise in graph theory (characterization of graph properties, combinatorial
algorithms) and mathematical programming (polyhedral approach, Dantzig-Wolfe decomposition, quadratic
programming) in the aim of producing better quality formulations and solutions for practical combinatorial
problems such as routing, network design, scheduling, packing and placement problems, thanks to the input
of novel techniques.

3.2. Polyhedral Approach
Introduced by Edmonds in 1965 [46], the polyhedral approach, once combined with branch-and-bound (in
a so-called branch-and-cut algorithm [71]) turned out to be one of the main sources of progress in solving
NP-hard combinatorial optimization problems in the 80’s-90’s. A benchmark problem, in this regard, is the
traveling salesman problem [62]. In the early 80’s, the best algorithm was able to solve instances with around
300 cities. A recent paper [31] reports that branch-and-cut algorithms are able to solve instances with nearly
25000 cities. Similar significant improvements have been observed for instance for network design problems
arising in telecommunication (see Kerivin and Mahjoub, 2005 [61]) or vehicle routing problems in logistic
(see Letchford and Salazar-Gonzalez, 2006 [64]).
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The goal of this approach is to reduce the resolution of an integer program to that of a linear program by
deriving a linear description of the convex hull of the feasible solutions, conv(X), where X is the discrete
set of solutions to the combinatorial problem on hand. A fundamental result in this field is the equivalence
of complexity between solving the combinatorial optimization problem and solving the separation problem
over the associated polyhedron: if x̃ 6∈ conv(X), find a linear inequality π x ≥ π0 satisfied by all points in
conv(X) but violated by x̃ [54]. Hence, for NP-hard problems, one can not hope to get a compact description
of conv(X) nor a polynomial time exact separation routine. Nevertheless, one does not need to know such a
description to take advantage of the polyhedral approach. Only a subset of the inequalities can already yield
a good approximation of the ideal polytope. Moreover, non exact separation, using heuristic procedures, turns
out to be quite efficient for practical purposes.
Polyhedral theory provides ways to derive automatically new inequalities from an initial polyhedral description
P of the problem. For instance, it is known [70] that any valid inequalities for an IP can be obtained by
iteratively taking linear combinations of existing constraints and rounding their coefficients. Such general
purposes cuts have only recently made their way as practical tools: for instance, Gomory fractional cuts are
now generated by default into commercial MIP solvers. Recent work [37], [50] has consisted in numerically
testing the strength of the formulation obtained by application of a single round of such general purpose
cuts (called the first-closure): the separation problem being set as an MIP problem which is solved with a
commercial MIP solver. Cornuéjols (2006) [38] provides a comparative review of general purpose cuts such
as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts, and intersection
cuts, as well as their practical contributions to dual bound improvements. However, the most promising results
have often been obtained with so-called template cuts, i.e. family of valid inequalities derived in an application
specific context: the close form expression of these additional inequalities is a template from which specific
cuts are generated dynamically. To prove validity, one can show that such inequalities can be obtained as a
special case of general purpose procedures. If it can be shown that the inequalities define so-called facets
of conv(X), these inequalities are needed for its description. In practice, one needs to develop efficient
procedures (exact or heuristic) to separate these inequalities. Then, numerical evaluation can show the impact
of the additional inequalities not only on the strength of the resulting dual bound but also in yielding solutions
more likely to satisfy integrality restrictions (which is good for primal heuristics).
The connection between polyhedral approach and graph theory is deep. In the polyhedral approach, many
facets are related to special classes of graphs. The literature is rich with such examples of facet defining systems
described by exhibiting a bijection to a collection of subgraphs of the studied graph: forest polytope (Edmonds,
1961), matching polytope (Edmonds, 1965, [46]) ... There are even results showing that the structure of the
polyhedron itself is closely related to the structure of the graph. For instance, Chvátal proved that the adjacency
in the stable set polytope of a graph G (i.e., the fact that two solutions satisfy the same facet defining constraint
at equality) is characterized as a connectivity property in graph G. Recent works are devoted to give an
analogous interpretation of any facet of the stable set polytope. Lipták and Lovász (1999) [65] exhibited
one. We gave another one in [5] and used it to generate a new set of facets for the stable set polytope of webs.

3.3. Dantzig-Wolfe decomposition and branch-and-price algorithms
Branch-and-price algorithms are more recent than branch-and-cut algorithms. Although column generation
appeared in the 60’s as a technique to handle linear programs with a huge number of variables [30], [51], its
combination with branch-and-bound to solve integer programs was only developed in the 90’s [33] (we did
pioneering work on this subject [88]). Branch-and-price proved to be very useful in solving many practical
problems that were intractable by other means: crew and fleet assignment problems faced by airline companies
[43], [77], vehicle routing problems in public and in fret transport systems [44], cutting stock problems
experienced in the paper, textile, or steel industry [73], [79], [81], [87], production planning problems [32],
[86], and network design problems [76], [28] are such examples. Branch-and-price has now become the
reference method for problems well suited to decomposition and it is making its way in industry: for instance,
decision aid software developed by consultant firms like Eurodecision (Paris) or Adopt (Montréal) rely on this
approach. The use of this method in the practical context of challenging applications has revealed its limitation.
Further developments are required to overcome these difficulties.



4 Activity Report INRIA 2007

Indeed, using column generation in the context of integer programming is not straightforward. The primary
challenges revolve around the convergence of the dual bound computations, the enforcement of integrality
restrictions and the combination with dynamic cutting plane generation. A first step toward targeting these
difficulties was to clarify the underlying Dantzig-Wolfe decomposition principle. While the standard view was
to see Dantzig-Wolfe decomposition as the linear programming formulation of the Lagrangian dual [70], we
presented it as a reformulation technique that gives rise to an integer master program ([80] does this for the
integer case, while [78] extends this view to the mixed integer case). Then, the integrality restrictions of the
original formulation translate into integrality restrictions in the reformulated problem (this is the discretization
approach). Our framework based on the concept of generating sets facilitates the handling of branching
decisions (to enforce integrality) and adding cutting planes to the formulation.
Natural applications for the Dantzig-Wolfe approach are problems whose constraint matrix has a block
diagonal structure augmented with linking constraints, i.e. a constraint matrix A of the form

A =



L L ... L

B1 0 ... 0
0 B2 ... 0
...

. . .
...

0 0 ... BK


, (1)

with K blocks Bk, k = 1, ...,K. Then, dualizing constraints L decomposes the problem into K sub-problems
of smaller size. Moreover, if the K blocks are identical, the column generation reformulation eliminates the
symmetry in k and there is only one pricing problem that needs to be solved during the column generation
algorithm (the same column being optimal for all K subsystems). Beyond this standard application framework,
open questions concern the viability of applying the decomposition principle recursively or to multiple
independent subsystems. We develop a first application of a nested decomposition in [81]. A decomposition
based on multiple independent subsystems (not necessarily disjoint) should provide tighter bounds according
to the theory of Lagrangian decomposition [55]. But, there is typically a large number of dualized constraints
linking the different systems and hence many dual prices to adjust (therefore one expects slow convergence).
To our knowledge the literature does not report of any column generation approach based on multiple
subsystems capturing different combinatorial structures. A recent study however comes close to such multiple
decomposition: [42] combines variable redefinition applied to one subsystem and column generation applied to
another subsystem. The dual bounds that they obtained are shown to be tighter than with alternative approaches
but the computational times are much larger.

3.4. Quadratic approaches
The communication between the non-linear programming and the combinatorial optimization communities
is limited although the latter has much to learn from the former. Several of the latest developments in
discrete optimization are imports from convex optimization [35], [52], [39]. Quadratic programming (QP),
in particular, offers very powerful modeling tools. A quadratic program is a formulation in continuous
variables whose cost and/or constraint functions are polynomials of degree 2. Several classical constraint
types for combinatorial problems are more efficiently modeled with (QP): binary constraints (xi ∈ {0, 1} can
be equivalently set as x2

i = xi); sequencing constraints: for instance in scheduling problems, if job j follows
job i, denoted by xij = 1, then their completion times must satisfy Cj ≥ Ci + pj where pj is the processing
time of j; this can be modeled as xij (Cj − Ci − pj) ≥ 0; transitivity constraints represent requests of the type
“if two variables xi and xj are equal to 1, a third one xk should be 1” (their quadratic formulation xk ≥ xixj

is stronger than the linear xk ≥ xi + xj − 1 when one relaxes the integrality restrictions).
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Although Quadratic Programming (QP) is NP-Hard, some special cases or relaxations are polynomially
solvable. Minimizing a convex quadratic cost over a feasible region described by linear constraints is easy.
This method is implemented in commercial MIP solvers. Convex QP with linear constraints and 0-1 variables
can then be solved using branch-and-bound and solving the continuous QP relaxation at each node. Also, the
Semi-Definite Programming (SDP) relaxation of a QP is polynomially solvable. An SDP is an extension of an
LP where variables are the components of a matrix that is constrained to be semi-definite. When the objective
is not convex, it can be convexified using an augmented relaxation approach [36], [35]: the Hessian is made
convex by adding to the objectives a weighted sum of the quadratic binary constraints and the squared norm
of equality constraints (optimized weights are obtained by solving an SDP relaxation). When applied to an
already convex objective, this approach is still useful to improve the continuous relaxation bound. Solvers are
available for SDP [34], but, in their current implementation, they are very sensitive to the conditioning of the
matrices.
Even though the numerical solution of QP and SDP remains problematic, recent applications of these
techniques to some combinatorial problems have led to major improvements [66], [59], [53], [35]. Generally,
an SDP relaxation can be found for any general Integer Program [74]. Starting from the QP reformulation
of an IP, a Lagrangian relaxation procedure is applied to yield an SDP: after Lagrangian dualization,
the (unconstrained) QP has a solution (in the primal variables) iff some matrix of coefficients is positive
semidefinite. The associated SDP bound is always better than classical LP relaxation [63], although sometimes
the size of the SDP formulation is problematic. In former studies, we discovered other SDP formulations for
Lovász’s bound on vertex coloring [67]: a direct quadratization that appears to be intermediate between the
ones of [59] and [66]. The SDP formulation obtained by application of the general scheme of [74] is of huge
dimension and, because of symmetry, does not bring more than our (compact) SDP formulation. Yet, it can be
fruitfully used to compute bounds on generalizations of Vertex Coloring where symmetry does not hold (List
Coloring, some problems of Frequency Assignment) [67].

3.5. Graph theory tools
The relationship between graph theory and mathematical programming has led to several famous research
advances. Let us cite just a few landmarks. The matching problem (selecting disjoint edges in a graph) is
historically the first integer programming problem that could not be solved by linear programming (no compact
ideal formulation being known) but for which an efficient (polynomial time) combinatorial algorithm was
known [46] (ideal formulations were only known for network flow problems at the time). The combinatorial
algorithm lead to a polyhedral description of the matching polytope with exponentially many constraints
separable in polynomial time [46]. Another example is the study of perfect graphs. Perfect graphs do not
only have nice graph-theoretical properties and behave nicely from an algorithmic point of view, but several
characterizations of perfect graphs also form an interface between graph theory, integer programming and
semi-definite programming: a graph is perfect iff the convex hull of the incidence vectors of its stable sets
is defined by the so-called clique constraint polytope (the only constraints needed are those enforcing that at
most one node can be selected from each clique, while, for general graph, this polytope defines a relaxation
of the stable set polytope). Perfect graphs are also characterized by the fact that their chromatic number (the
minimum number of independent stable sets needed to cover the graph) can be computed in polynomial time
by semi-definite programming.
Thus, the graph theory tools allow to derive better models/formulations for combinatorial optimization
problems (f.i. graph theory characterization of forbidden subgraphs can sometimes be directly expressed
as constraints in a mathematical program). Moreover, combinatorial procedure from graph theory can also
serve as subroutines in mathematical programming approach, f.i., for cut separation or column generation. In
particular, on the issue of symmetries, we believe that progress can come from the complementarity between
graph theory and mathematical programming. This is illustrated by the work of Fekete and Schepers (2004)
[47] on the 2-dimensional placement problem. In our project, we also play the reverse complementarity, i.e. to
use mathematical programming techniques to make progress in graph theory.
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3.6. Mathematical programming based heuristics
A heuristic is an algorithm that attempts to build a “good” primal feasible solution to a combinatorial
optimization problem with no a priori guarantee on its maximum deviation from optimality. Exact optimization
approaches can also serve to build good approximate solutions for complex combinatorial problems, either (i)
by truncating an exact algorithm, or (ii) by constructing solution from the relaxation on which the exact
approach relies, or (iii) by using exact solvers as subroutines in building heuristic solutions. Point (i) is
common practice, even in commercial MIP solvers: one sets a time limit (or another bound on the number
of algorithmic steps) or a threshold deviation from optimality. However, the implementation strategies are
typically different if the aim is to get quickly good primal solution rather than solving the problem exactly.
Point (ii) is key to our project. The chances are that starting from the solution to a stronger relaxation of a
problem (i.e. a better formulation), one gets better primal solution in the end. The techniques to build the primal
solutions range from greedy constructive procedures, to rounding techniques, using the relaxed solution as a
target, or simply exploiting dual information to price choices. Point (iii) is the idea of “MIPPING” questions
[48], i.e. to set intermediate questions, such as finding the best solution in the neighborhood of the current
solution, as a mathematical program that can be solved with a MIP solver or another combinatorial algorithm.
Even though the initial problem might be much too hard for exact methods, the subquestions that arise during
its heuristic solution might be within the scope of exact solvers. There too it is important to have a good
formulation of the “mipped” question. This points to potential collaboration with other INRIA research teams
who develop meta-heuristic approaches (DOLPHIN and TAO).
Heuristics based on exact methods have found a new breath in the recent literature, in part due to the progress of
exact commercial solvers. The latest developments are the Large Scale Neighborhood Search (an exponential
size neighborhood can be explored in a local search procedure, provided that an efficient/polynomial algorithm
exists to search it – Ahuja et al. 2002 [29]), the Relaxation Induced Neighborhood Search (the components of
the LP solution that are close to the best known integer solution are rounded and the residual problem is then
solved as a MIP of smaller size – Danna et al. (2005) [41]) and the feasibility pump algorithm (the rounded
LP solutions defines a target that might be infeasible; the LP is re-optimized with the objective of minimizing
the distance to that target; the process iterates in hope of finding good integer solutions – Fischetti et al., 2003,
2005 [49], [48]).

4. Application Domains

4.1. Introduction
Keywords: environment, optimal placement, production planning, scheduling, telecommunications, trans-
portation systems.

Our group has tackled applications in logistic, transportation and routing [15], [69], [68], [27], in production
planning [45], [86] and inventory control [68], [27], in network design and traffic routing [2], [13],[19],[28],
[40], [58], [60], [75], [76], and in cutting and placement problems [72], [73], [79], [81], [82], [87]. Building
on this experience, we plan to find our motivation for algorithmic developments in the study of complex
combinatorial problems of industrial relevance. In particular, we are currently involved in two industrial
partnerships. With Exeo Solutions (a consultant that has worked for Eco-emballages, Suez, and other main
stream group), we study planning and routing problems that arise in waste management [27], [68]. With
SNCF, we consider train timetabling problems and their re-optimization after a perturbation in the network
[18].
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4.2. Transport and logistic
Managerial problems raised by the planning of operations in transport network, the distribution of goods and
the associated management of inventories have always been central in Operations Research. The tools of
mathematical programming can bring substantial savings given the part of operation and transportation costs
in the global cost of logistic. One could think that these major issues should be well resolved by now. This
is simply not so. The combinatorial difficulties inherent to these problems require new techniques to increase
the size of instances that can be treated. Moreover, new managerial practices and the trend of going from a
hierarchical to an integrated optimization yield new problems.
Our experience in this domain includes several industrial studies:

• we optimize simultaneously transportation routes and customer inventories (a problem known as
inventory routing) with our industrial partner Exeo Solutions [68], [27];

• we have an on-going project with SNCF in the context of the PhD thesis of L. Gely on the operational
re-scheduling of a timetable following a perturbation [18].

• for Routing International, Brussels, we combined vehicle routing and planning over a fixed time
horizon [69],[15];

• we also work on variants of the traveling salesman problem (TSP): the cumulative TSP arises when
cost of an arc is inversely proportional to its position in the circuit (consider for instance a delivery
man that is paid more at the beginning of the journey because of the weight he has to carry).

4.3. Telecommunication network design and control
Network design is a wide research domain arising in railway, highway and telecommunication. Applications in
telecom are very much studied at the moment, a revival due to the arrival of new transfer technologies such as
optical fibers. The aim is to conceive cheap and reliable networks with specific requirements on the topology
(which links will be created) or the capacity of the links (which amount of information can be in transit on a
link at the same time). Sufficient capacities have to be installed to avoid congestion, several paths may have to
link given pairs of nodes to ensure transmission in case of breakdown, all this at the cheapest possible cost.
We work on the design of the network topology, implementing a survivability condition of the form “at least
two paths linking each pair of terminals”. We extended polyhedral approaches to problem variants with specific
requirements. In [2], we deal with the design of so-called SDH/SONET networks, where the links must
form cycles of bounded length (see Figure 1); bounded length requirements can also come from re-routing
restrictions [58], [40], [13]. Associated to network design is the question of traffic routing in the network: one
needs to check that the network capacity suffices to carry the demand for traffic. The assignment of traffic also
implies the installation of specific hardware at transient or terminal nodes. In previous work, we optimized
traffic assignment to minimize such installation cost [76]. We now consider the problem that arises when
using new wavelength division multiplexing (WDM) technologies that allow to pack more traffic on optical
networks. Several streams can be multiplexed, each of them supported by a different wavelength, in an optical
signal [28] (Figure 2 illustrates routing configurations that will be assigned to different wavelengths to handle
several thousands of requests). We are also working on the problem of measuring traffic in a network through
the placement of markers at minimal cost [19].

4.4. Cutting, placement, and scheduling problems
In cutting stock problems, one has a supply of large pieces of raw material in stock and a set of demands for
small “order” pieces. One must satisfy these demands by cutting the required small pieces out of the large
pieces from the stock. The objective is primarily to minimize the waste that is counted as the unused part
of used pieces of stock material. A solution is given by a set of feasible cutting patterns, i.e. assortments of
order pieces that can be cut out of a given large piece of stock material, such that their accumulated production
covers the demands. There are many variants of the cutting stock problem. The main ones concerns the number
of significant dimensions of the forms (1D, 2D, 3D, or even 1.5D), specific restrictions on the cutting process,
the geometrical arrangements of pieces, and the number of cutting stages. There might be secondary objectives
related to the balancing of the workload between different cutting machines, the minimization of the number
of different cutting patterns used, or the respect of due dates for instances.
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Figure 1. Belgian network with links forming cycles of length bounded by 3.
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Packing, placement or loading problems can be stated in similar terms. There, one has a set of resources
(vehicles, railway cars, machines) that must be packed with items. The objective is to maximize the value of
the resulting packing while respecting the capacity of the resources. A solution is given by a set of feasible
individual resource packings which together do not pack the same object more than once. Again, many variants
exist depending mainly on the number of dimensions in which the capacity of the resources are measured and
the specific restrictions on the loading process. Packing problems arise in particular as subproblems in cutting
problems since the question of building “good” cutting patterns typically boils down to packing a resource
piece with maximum value items. There are many applications of these cutting and packing problems: for
instances, the cutting of paper, steel bars, glass, wood, textile, plastic film, optimization of newspaper layout,
scheduling parallel machine, line balancing, and more generally scheduling problems with limited resources.
In previous work, we developed specialized algorithms for some variants of the knapsack problem that arise
as a subproblem in solving cutting stock problems [82]. Our new results in this domain concern the knapsack
problem with setup costs [14]. We also set benchmark results for the 1D cutting stock problem using an exact
optimization approach based on branch-and-price [87]. We were first to introduce exact algorithm for the
1D problem with setup minimization (a much harder variant) [79]. We also applied a nested decomposition
approach to a 2D multi-cutting-stage variant [81] and considered ways of incorporating industrial side-
constraints in an exact approach for the 1D problem [72], [73].

5. Software

5.1. Application specific solvers
The output of our studies on specific applications typically consists in algorithmic developments and codes that
implement the application specific solvers or, in some cases, routines that allow to derive theoretical results
(f.i. in graph theory). The algorithms produced this year are:

• IRP: A branch-and-price-and-cut code to optimize the planning of collection of waste while properly
managing the stock levels [27], [68]. The propotype is currently being experimented on real-life data
by our industrial partner Exeo Solutions.
contact: Sophie Michel

• GRWA: A branch-and-price-and-cut code for routing traffic in a optical telecommunication network
[28].
contact: Benoit Vignac

• LIPARI : A mathematical programming based code for the rescheduling of trains at SNCF.
contact: Laurent Gely

• An integer programming based code to build facet defining inequalities for the stable set polytope of
a claw free graph.
contact: Arnaud Pêcher

5.2. BapCod : a generic Branch-and-Price Code
contact: FrancoisVanderbeck
Beyond the above application specific algorithms, we are involved in the development of a generic platform
for the implementation of the branch-and-price method. Contrary to the cutting plane approach, column
generation has not yet made its way into commercial solvers. Despite its successes, the use of a Dantzig-
Wolfe decomposition approach is currently restricted to experts. The difficulties inherent to implementing the
method and to combining it with other techniques were only overcome in an application specific context.
As a consequence, algorithmic ideas have been developed and tested for specific applications only, without
convincing arguments for showing their impact across different applications. The challenge is to show that
column generation is also a technique that can be automated and make its way into commercial solvers (as
cutting plane approach did recently).
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We develop the prototype of a generic branch-and-price code, named BaPCod, for solving mixed integer
programs by column generation. Previous attempts have been limited to offering “tool-boxes” to ease the
implementation of algorithms combining branch-and-price-and-cut. With these, the user must implement
three basic features for its application: the reformulation, the setting-up of the column generation procedure
and the branching scheme. Other available codes that offer more by default were developed for a specific
class of applications (such as the vehicle routing problem and its variants). Our prototype is a “black-box”
implementation that does not require user input and is not application specific. The features are
(i) the automation of the Dantzig-Wolfe reformulation process (the user defines a mixed integer programming
problem in terms of variables and constraints, identifies subproblems, and can provide the associated solvers
if available, but he does not need to explicitly define the reformulation, the explicit form of the columns, their
reduced cost, or the Lagrangian bounds) – this automation of the decomposition principle is studied in [83].
(ii) a default column generation procedure with standard initialization and stabilization (it may offer a
selection of solvers for the master) – the issue of stabilization is discussed in [1], and
(iii) a default branching scheme – recent progress has been made on the issue of generic branching scheme in
[85].

6. New Results

6.1. Network Design and Routing
Participants: Benoit Vignac, Sophie Michel, Pierre Pesneau, Francois Vanderbeck.

6.1.1. Polyhedral approach to survivability problems
In the design of modern networks, the survivability of the network and its performance in everyday use as
well as in the case of a breakdown are important issues. A common way to ensure survivability is to create
two disjoint paths between each pair of end points (if a link fails, there still exists another path to route the
information). Network efficiency then depends on the re-routing strategy. Assuming local re-routing in case
of a failure, we impose that each link must belong to cycle of bounded length. The traffic will be rerouted
along this cycle [2]. More recently, we considered a second re-routing strategy: we make use of an end-to-end
path for re-routing. Then, we must design a network that has disjoint paths of bounded length between each
pair of access points. We obtained several results for the special case where there are only one source and one
destination in the network [40], [58]. We have extended our study by considering multiple destinations and
then by considering both multiple origins and multiple destinations. We developed a polyhedral approach for
these problems. Several cutting planes have been introduced along with some proofs of their strength. Based
on these cuts, we developed a branch and cut algorithm that proved able to solve real-life instances. This work
led to the publication of the paper [13]. We pursue this work with Luis Gouveia and Ridha Mahjoub, testing
some directed formulations for these problems. In this scope, Ridha Mahjoub and Pierre Pesneau have visited
Luis Gouveia for one week in Lisbon in April 2007.

6.1.2. Nested decomposition approach for telecom network routing problems
Dantzig-Wolfe decomposition is standardly applied to problems whose constraint matrix has a block diagonal
structure augmented with linking constraints (see Section 3.3). Then, relaxing the linking constraints allows to
decompose the problem into a subproblem associated with each diagonal block. If each of these diagonal block
has itself a block diagonal structure, the decomposition principle can be applied recursively. We developed a
first application of a nested decomposition in [81]. Our approach to the network design problem of [28] is
also a nested decomposition. The problem consists in optimizing bandwidth utilization in optical network by
grooming traffic (i.e. packing several requests on a wavelength). Moreover, several streams can be multiplexed
on an optical signal, each of them supported by a different wavelength. The technology is called wavelength
division multiplexing (WDM). WDM and grooming techniques require expensive opto-electronic systems at
nodes: each decomposition or aggregation of traffic requires conversion from the optical to the electrical
domain and then back to optical for re-sending. Hence, one must optimize traffic grooming, routing and
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wavelength assignment (GRWA) to reduce opto-electronic system installation cost. The GRWA problem is
decomposed into a subproblem for each wavelength, each of which is decomposed into basic routing pattern
filling subproblems. The latter are simple aggregation of requests for which we can easily compute the cost
of installing equipment at nodes. Our master program takes the form of a covering problem where traffic to
wavelength assignments are selected so as to cover demands at the cheapest cost. Its Linear Programming
(LP) relaxation is solved by column generation. The pricing problem is itself solved by a column generation
approach where columns are associated to basic routing patterns.

6.1.3. Branch-and-Price approach to vehicle routing problems
We provide approximate solutions to a problem combining vehicle routing and planning over a fixed time
horizon (a problem submitted to us by Routing International, Brussels, a firm that commercializes a software
for the planning of pick-ups and deliveries). The instances were originating from the money transport business,
involving up to 6000 pick-ups and deliveries to plan over a twenty day time horizon with specific requirements
on the frequency of visits to customers. Approximate solutions are constructed using a truncated column
generation procedure followed by a rounding heuristic [15], [69]. This mathematical programming based
procedure can deal with problems with 50 to 80 customers over 5 working days which is the range of
size of most PVRP instances treated in the literature with meta-heuristics. [69] offers a classification of
multiple period VRP, while [15] highlights the importance of alternative optimization criteria not accounted
for in standard operational models and provide insights on the implementation of a column generation based
rounding heuristic.

We also studied a model that integrates the optimization of inventories at customer site and transportation
routes with our industrial partner Exeo Solutions that works in the area of waste management. The application
combines (i) vehicle routing (minimizing the routing cost of sending vehicles of limited capacity to deliver
goods to customers), (ii) planning (optimizing the dates of the visits to customer site over a time horizon),
and (iii) inventory management (avoiding stock-out at customer site) to give rise to a problem known as
inventory routing that is quite complex and was not very well studied in the literature. Previous approaches
were mostly heuristics or hierarchical optimization approaches. We developed an exact Branch-and-Price-and-
Cut algorithm that we truncate to obtain approximate solution. The approach provides solutions with bounded
deviation to optimality for large scale problems (260 customers, 60 time periods, 10 vehicles) [27], [68].

6.1.4. Time-dependent formulation for the vehicle routing problem
We studied a variant of the vehicle routing problem with unit demands using a time dependent formulation
approach [26]. Our results arise from the analysis of the relationship between the linear relaxation of a single
commodity flow model and the linear relaxation of a pure time dependent formulation (closely related to a
formulation for the traveling salesman problem). We introduced a large class of flow bounding constraints that
tighten the single commodity flow formulation. These constraints were obtained by projecting the constraints
of the time-dependent formulation on the natural design variables. The new inequalities allow to recover in
particular the well-known multi-star constraints. Computational results show that instances up to 80 nodes can
be easily solved with the time-dependent formulation when the capacity of the vehicle is reasonably small. Our
aim is now to study time-dependent formulations for the Traveling Salesman Problem with cumulative cost
(that is cost depending on the position of the arcs in the circuit). This case, known as the repairman problem,
also arises in some scheduling problems.

6.2. Primal heuristics based on column generation
Participants: Sophie Michel, Benoit Vignac, Francois Vanderbeck.

The decomposition principle can be exploited in greedy, local search or rounding heuristics, even though some
of these heuristics are not straightforward to implement in the context of dynamic column generation (variables
are only known implicitly and cannot be bounded). The price coordination mechanism of the Dantzig-Wolfe
approach brings the global view that may be lacking when local search or constructive heuristics are applied
directly to the original problem formulation (these latter approaches are often qualified as myopic). There
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are examples of decomposition based heuristics in the literature that range from the simplest truncated exact
approach to the latest meta-heuristic paradigm. We work at classifying these approaches [27], [68], [84]. In
summary, there are four types of methods. (i) The so-called restricted master heuristic: the column generation
formulation restricted to a subset of variables is solved as a MIP; the restricted set of columns defining
subproblem solutions can either be generated heuristically, or be the columns generated during the master
LP solution, or a mixture of both (note that the resulting restricted master problem might be infeasible). (ii)
The greedy heuristics consist in generating iteratively the columns that have the smallest ratio of reduced
cost per unit of constraint satisfaction (based on dual price estimates), selecting some in the solution and
reiterating for the residual master problem. (iii) The rounding heuristics consist in iteratively selecting one
or more columns of the LP solution to the master (among those whose valuse is close to integer), round their
value, and re-optimize the residual master LP (exactly or approximately) – generating new columns in the
process is the key to avoid infeasibility of the above static methods. Variants imply solving residual problems
by other heuristic means. (iv) Local search heuristics are often based on removing a few columns from the
current solution and re-optimizing the residual master IP (typically with one of the above heuristics). All
these heuristics can potentially be applied at any stage of a branch-and-price algorithm. They must integrate
in their implementation the standard balance between intensification versus diversification of the search, and
can make use of the memory of already explored solutions. All these issues are a matter of putting together
efficient implementation strategies (through extensive numerical tuning). Our latest results in this domain can
be found in [15], [27], [28], [68], [72], [87].

6.3. Graph coloring and math programming approaches to graph theory
Participants: Philippe Meurdesoif, Arnaud Pêcher, Eric Sopena, André Raspaud, Annegret Wagler.

6.3.1. Circular colorings
Graph coloring is the problem of assigning colors k ∈ {1, ...,K} to the nodes of a graph G defined by its node
set N and its edge set E, i.e. G = (N,E), such that any two nodes i and j linked by an edge e = (i, j) ∈ E
have different colors. The chromatic number of a graph G, denoted χ(G), is the minumun number of colors
needed to color the graph. The circular chromatic number of a graph is a well-studied refinement of the
chromatic number. Circular-perfect graphs is a superclass of perfect graphs defined by means of this more
general coloring concept. The Strong Perfect Graph Conjecture, recently settled by Chudnovsky, Robertson,
Seymour and Thomas, provides a characterization of perfect graphs by means of forbidden subgraphs. It is
therefore natural to ask for an analogous conjecture for circular-perfect graphs, that is for a characterization of
all minimal circular-imperfect graphs. We exhibited in [17] three classes of minimal circular-imperfect graphs,
namely, certain partitionable webs, a subclass of planar graphs, and odd wheels and odd antiwheels. As those
classes appear to be very different from a structural point of view, we infered that formulating an appropriate
conjecture for circular-perfect graphs, as analogue to the Strong Perfect Graph Theorem, is an hopeless task.

The stability number of a graph G, denoted α(G), is the maximal size of a set of pairwise non-adjacent
vertices. The clique number of a graph G, denoted ω(G), is the size of the maximal clique (complete graph)
contained in G. An equivalent statement of the strong perfect graph theorem is that minimal imperfect graphs
G have min{α(G), ω(G)} = 2. In contrast to this result, it was shown by Pan and Zhu that minimal circular-
imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. We
proved in [21] that claw-free minimal circular-imperfect graphs G have min{α(G), ω(G)} ≤ 3.

We also studied in [12] strongly circular-perfect graphs: a circular-perfect graph is strongly circular-perfect if
its complement is circular-perfect as well. This family entails perfect graphs, odd holes, and odd antiholes. As
main result, we fully characterized the triangle-free strongly circular-perfect graph and proved that, for this
graph class, both the stable set problem and the recognition problem can be solved in polynomial time.

6.3.2. A new quadratic bound for graph coloring
D. Cornaz [38] showed from representing color classes in a graph coloration as stars in the complementary
graph that the chromatic number of a graph, χ(G), could be obtained by computing the independance number,
α(D(G)), of some auxiliary graph D(G). Following this idea, we investigate the lower bound on χ(G)
obtained by approximating α(G) with Lovász’ θ(G) number.
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The procedure for constructing D(G) indeed makes use of an order on the vertices so as to break symmetries
in the color classes representations. Although the value of α(D(G)) does not depend on the order used for
the auxiliary graph, we show that when it comes to approximation, things are different: distinct orderings of
vertices do result in different lower bounds on χ(G).

However, it appears that whatever the order is, this (SDP based) bound outperforms (sometimes dramatically)
the classical θ(G) SDP bound. Sometimes it even dominates the fractional chromatic number, which is known
to be the theoretical limit of polynomial-time lower bounding of the chromatic number [56].

Moreover, we have designed heuristics, based on the dual variables of iteratively computed semidefinite
programs, to generate an order on the vertices yielding a "good" bound on χ.

6.3.3. Graphs and linear programming
Several characterizations of perfect graphs form an interface between graph theory, integer programming and
semi-definite programming: a graph G is perfect iff its stable set polytope STAB(G) (the convex hull of the
incidence vectors of its sets of pairwise non-adjacent vertices, called stable sets) is equal to the so-called
clique constraint polytope QSTAB(G) (the only constraints needed are those enforcing that at most one node
can be selected from each clique, while, for general graph, this polytope defines a relaxation of the stable set
polytope).

For every graph G, the dilation ratio min{t : QSTAB(G) ⊆ t STAB(G)} of the two polytopes yields the
imperfection ratio of G. It is NP-hard to compute and, for most graph classes, it is even unknown whether it is
bounded. We bounded in [11] the imperfection ratio for several well-known graph classes.

Clique family inequalities a
∑

v∈W xv + (a− 1)
∑

v∈W ′ xv ≤ aδ form an intriguing class of valid inequal-
ities for the stable set polytopes of all graphs. We proved in [16] that their Chvátal-rank is at most a. This
provides an alternative proof for the validity of clique family inequalities, involving only standard rounding
arguments.

Providing a complete description of the stable set polytopes of claw-free graphs is a long-standing open
problem. Eisenbrand et al. recently achieved a breakthrough for the subclass of quasi-line graphs. As a
consequence, every non-trivial facet of their stable set polytope has at most two different, but arbitrarily high
left-hand-side coefficients. For claw-free but not quasi-line graphs with stability number at least four, Stauffer
conjectured that the same holds true. On the other hand, there are known claw-free graphs with stability number
α(G) = 3 which induce facets with up to 8 different left hand side coefficients. We proved that the situation
is even worse: for every positive integer b, we exhibit a claw-free graph with stability number three inducing
a facet with b different left hand side coefficients. This result was achieved using an integer programming
reformulation [22].

7. Contracts and Grants with Industry

7.1. Exeo Solutions
Participants: Sophie Michel, Cédric Joncour, Pierre Pesneau, Francois Vanderbeck.

We just completed a research project for Exeo Solutions (we had a 3 year research contract). The inventory
routing application studied in the thesis of S. Michel [27], [68] combines (i) vehicle routing (minimizing the
routing cost of sending vehicles of limited capacity to deliver goods to customers), (ii) planning (optimizing
the dates of the visits to customer site over a time horizon), and (iii) inventory management (avoiding stock-
out at customer site). We developed a rounding heuristic for the integrated tactical problem based on a column
generation reformulation. Central to our approach is a state space relaxation idea that allows to avoid the
symmetry in the time period indexing inherent to this cyclic scheduling problem. The approach provides
solutions with bounded deviation to optimality for large scale problems (260 customers, 60 time periods, 10
vehicles). A prototype implementation of our algorithm is currently being tested by Exeo Solutions.
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7.2. SNCF
Participants: Laurent Gely, Philippe Meurdesoif, Arnaud Pêcher, Pierre Pesneau, Francois Vanderbeck.

We have an on-going contract with SNCF, “Innovation et Recherche”, in the context of the PhD thesis of
L. Gely (with a CIFRE scholarship). After working on the timetabling problem in the aim of maximizing the
throughput (number of trains) that can be handled by a given network [57], we now consider the problem of
managing perturbations [18]. Network managers must re-optimize train schedules in the event of a significant
unforeseen event that translates into new constraints on the availability of resources. The control parameters
are the speed of the trains, their routing and sequencing. The aim is to re-schedule trains to return as quickly
as possible to the theoretic timetable and to restrict the consequences of the perturbation to a limited area.
The question of formulation is again central to the approach that shall be developed here. The models of the
literature are not satisfactory. Continuous time formulations have poor quality due to the presence of discrete
decision (re-sequencing or re-routing). Other standard models based on arc flow in time-space graph blow-
up in size. Formulations in time-space graphs have therefore been limited to tackling single line timetabling
problems. We are now developing a formulation that strikes a compromise between these two previous models.

8. Dissemination

8.1. Organization of scientific meetings
• Pierre Pesneau : member of the organizing committee of the POC group (Polyèdre et Optimisation

Combinatoire) supported by the French Operation Research Society (ROADEF) and the operation
research group of the CNRS (GDR RO). (POC’s aim is to promote the polyhedral approach in
combinatorial optimization. The group organizes the Polyhedra and Combinatorial Optimization
Days yearly, two tutorials, and a doctoral school.)

• Pierre Pesneau : Member of the scientific committee of INOC 2007, Spa, Belgium.

• Pierre Pesneau : Member of the scientific committee of ICTON - ’Mediterranean Winter’ 2007,
Sousse, Tunisia.

• F. Vanderbeck : Member of the scientific committee of FRANCORO V / Roadef 2007, Grenoble.

• We organize a work group that meets on a weekly basis to host presentation of research studies
or on-going work (see http://realopt.math.cnrs.fr/team/pmwiki.php?n=Project.Welcome?n=Project.
Seminars).

8.2. Conferences
• A. Pêcher, P. Pesneau and A. Wagler - "Générer des facettes pour le polytope des stables d’un graphe

sans griffes par la programmation entière" - FRANCORO V / Roadef 2007. February 20-23, 2007,
Grenoble [22].

• S. Michel and F. Vanderbeck, "Heuristiques basées sur la génération de colonnes", - FRANCORO V
/ Roadef 2007. February 20-23, 2007, Grenoble.

• L. Gely, Journée Francilliennes de Recherche Opérationnelles (JFRO): Knapsack and Optimization,
March 9, 2007.

• P. Pesneau and F. Vanderbeck, Journée Scientifique POC on Facets and combinatoric polyhedra,
March 30, 2007, Paris.

• S. Michel, "Inventory Routing Problem", Journée Francilienne de Recherche Opérationnelle (JFRO),
April, 2007, Paris.

• L. Gely, "2nd International Seminar on Railway Operations Modelling and Analysis" (RailHan-
nover2007), April 2007.

http://realopt.math.cnrs.fr/team/pmwiki.php?n=Project.Welcome?n=Project.Seminars
http://realopt.math.cnrs.fr/team/pmwiki.php?n=Project.Welcome?n=Project.Seminars
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• Laurent Gély, “Real-time train scheduling at SNCF”, European ARRIVAL meeting on Robust
planning and Rescheduling in Railways, April 17-19, 2007, Utrech, The Netherlands [18].

• M. T. Godinho, L. Gouveia, T. L. Magnanti, P. Pesneau, and J. Pires. “On Time-Dependent Models
for Unit Demand Vehicle Routing Problems”, International Network Optimization Conference
(INOC 2007), April 23-25, 2007, Spa, Belgium (http://www.poms.ucl.ac.be/inoc2007/).

• Ph. Meurdesoif, P. Pesneau, and F. Vanderbeck, “Metter Installation for monitoring network traffic”,
International Network Optimization Conference (INOC 2007), April 23-25, 2007, Spa, Belgium.

• B. Jaumard, F. Vanderberck, and B. Vignac, “Rounding-off heuristic based on decomposition for-
mulation for an optical network dimensioning problem”, JOPT 2007, May 7-9, 2007, Montréal,
Canada.

• Ph. Meurdesoif, P. Pesneau, and A. Pêcher, JPOC 2007, May 30 - June 1, 2007, Paris.
• S. Michel and F. Vanderbeck, "Inventory Routing Problem solved by Heuristic based on Column

Generation", TRISTAN VI, June 10-15, 2007, Thailand (http://tristan.epfl.ch/).
• S. Michel and F. Vanderbeck, "Inventory Routing Problem solved by Heuristic based on Column

Generation", MISTA 2007 (http://www.mistaconference.org/2007/), Aug. 28-31, 2007, Paris.
• A. Pêcher and X. Zhu - "Circular-perfect claw-free graphs" - Eurocomb 2007, September 11 - 15,

2007, Seville, Spain (http://www.congreso.us.es/eurocomb07/).
• Ph. Meurdesoif, Journée Optimisation des Réseaux, (GT du GdR RO et de la ROADEF), Oct 25,

2007, Paris.
• A. Pêcher, Journées Graphes et Algorithmes, Nov 8, 2007, Paris.
• L. Gely, Arrival fall school 2007 on robust network design and delay management, Nov. 14-16, 2007,

Sevilla, Spain.
• P. Pesneau, Journée Scientifique POC on Matroïds, Nov 30, 2007, Paris.

External collaborators of the group have also been active in dissiminating their work related to the project (see
[24], [23], [20], [25]). In particular, E. Sopena was Invited speaker in CID-2007, Karpacz, Poland.

8.3. Invitations / Workshop
We were invited for short stay abroad or to take part in workshops:

• A. Pêcher and A. Raspaud spent 2 weeks at the University Sun Yat-Sen, Kaohsiung, Taiwan, on the
invitation of X. Zhu in February 2007

• P. Pesneau spent one week in Lisbon on the invitation of Louis Gouveia, in April 2007.
• F. Vanderbeck, workshop in Combinatorial Optimization, Jan 7-12, 2007, Aussois, http://www.

informatik.uni-koeln.de/aussois2007/ .
• F. Vanderbeck, workshop on Mixed Integer Programming (MIP), July 30 - Aug 2, 2007, Montréal,

Canada, (http://www.crm.umontreal.ca/MIP2007/) .

8.4. Visitors
Several international and national colleagues visited us (short visits for scientific exchanges and seminars
presentations):

• Ridha Mahjoub (Professor, Laboratoire LAMSADE Université Paris Dauphine) spent 3 days with
us, Jan. 24-26, 2007.

• Hervé Bricard (Renault, R & D) visited us on Jan. 26, 2007.
• El-ghazali Talbi (Professor, LIFL, CNRS-INRIA-USTL) visited us on June 13-14, 2007.
• Alain Hertz (Professor, GERAD and Ecole des HEC, Montréal) visited us on July 25, 2007.
• Andrew Miller (Assistant Professor, Dept. of Industrial and Systems Engineering, University of

Wisconsin-Madison, USA) visited us on Sept. 3-4, 2007.

http://www.poms.ucl.ac.be/inoc2007/
http://tristan.epfl.ch/
http://www.mistaconference.org/2007/
http://www.congreso.us.es/eurocomb07/
http://www.informatik.uni-koeln.de/aussois2007/
http://www.informatik.uni-koeln.de/aussois2007/
http://www.crm.umontreal.ca/MIP2007/
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8.5. PhD Theses
• Sophie Michel graduated in December 2006 (she started her PhD in January 2004). She did her PhD

work on an inventory routing problem in a collaboration with the firm Exeo Solutions [68]. Advisor:
F. Vanderbeck.

• Sylvain Coulonge will graduate in December 2007. Advisor: A. Pêcher.

• Cédric Joncour started in September 2007. His doctoral study is on 2-D packing problems. Advisors:
A. Pêcher, P. Pesneau, F. Vanderbeck.

• Benoit Vignac (Advisors: B. Jaumard, G. Laporte, F. Vanderbeck) and Laurent Gely (Advisors: P.
Pesneau, F. Vanderbeck) pursue their doctoral research.

8.6. Teaching and Administrative Duties
Each member of the team is quite involved in teaching in the thematic specialties of the project, including
in the research track of the Masters in applied mathematics or computer science. Moreover, we are largely
implied in the organization of the curriculum:

• Arnaud Pêcher is head of studies for the Master of computer science applied to management.

• Philippe Meurdesoif is the project organizer for the operations management specialty of the Master
of Applied Mathematics, Statistics and Econometric.

• Pierre Pesneau is head of the professional curriculum of the operations management specialty.

• Francois Vanderbeck is head of the Master of Applied Mathematics, Statistics and Econometrics.

External collaborators of the group are also quite involve locally. In particular, E. Sopena is head of the doctoral
school in Mathematics and Computer Science.
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