
c t i v i t y

te p o r

2007

THEME NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Runtime

Efficient Runtime Systems for Parallel
Architectures

Futurs

http://www.inria.fr/recherche/equipes/listes/theme_NUM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/runtime.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-futurs.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Designing Efficient Runtime Systems 1
2.2. Highlights of the year 3

3. Scientific Foundations .3
3.1. Runtime Systems Evolution 3
3.2. Current Trends 4

4. Application Domains .5
5. Software . 7

5.1. NewMadeleine 7
5.2. Marcel 8
5.3. ForestGOMP 9
5.4. Mad-MPI 9
5.5. MPICH2-NewMadeleine 10
5.6. PadicoTM 10
5.7. PIOMan 11
5.8. Open-MX 11

6. New Results . 12
6.1. Communication Optimization over High Speed Networks 12
6.2. Low-latency, shared-memory communication within MPICH2 13
6.3. Thread Scheduling over Hierarchical Architectures 13
6.4. Efficient scheduling of OpenMP threads on NUMA machine 14
6.5. Flexible network communications on computational grids 14
6.6. Reactivity to I/O events 15
6.7. NUMA-aware placement of communications 15
6.8. High-performance message passing over generic Ethernet hardware 16

7. Contracts and Grants with Industry . 16
7.1. PhD thesis co-supervised with CEA/DAM 16
7.2. Contract between INRIA and Myricom 16

8. Other Grants and Activities . 16
8.1. “Calcul Intensif et Grilles de Calcul” ANR projects 16
8.2. NEGST (NExt Grid Systems and Techniques) 17
8.3. PHC Pessoa MAE Grant 17
8.4. PHC Sakura MAE Grant 18
8.5. Associate Team Program with ANL 18
8.6. Committees 18
8.7. Invitations 18

9. Dissemination . 19
9.1. Reviews 19
9.2. Seminars 19
9.3. Teaching 19

10. Bibliography .19

1. Team
Team Leader

Raymond Namyst [Professor, Université Bordeaux 1, LaBRI, HdR]
Administrative assistant

Sylvie Embolla [Project Assistant]
Staff members

Olivier Aumage [Research Associate (CR1) Inria]
Alexandre Denis [Research Associate (CR1) Inria]
Brice Goglin [Research Associate (CR2) Inria]
Guillaume Mercier [Assistant Professor, ENSEIRB, LaBRI]
Pierre-André Wacrenier [Assistant Professor, Université Bordeaux 1, LaBRI]

Research scientists (partner)
Marie-Christine Counilh [Assistant Professor, Université Bordeaux 1, LaBRI]

Research engineers
Christophe Frézier [Associate Engineer, INRIA, until Sep. 30th 2007]
Nathalie Furmento [Research Engineer, CNRS]
Cécile Romo-Glinos [Associate Engineer, INRIA, from Dec. 1st 2007]

Ph.D. students
Elisabeth Brunet [Regional Grant, LaBRI]
Mathieu Faverge [ANR Grant, LaBRI, from Nov. 2nd 2006]
François Broquedis [Ministry of Research and Technology Grant, LaBRI, from Sep. 1st 2007]
Jérôme Clet-Ortega [Ministry of Research and Technology Grant, LaBRI, from Sep. 1st 2007]
François Diakhaté [CEA Grant, LaBRI, from Sep. 1st 2007]
Stéphanie Moreaud [ANR Grant, LaBRI, from Sep. 1st 2007]
Samuel Thibault [Ministry of Research and Technology Grant, LaBRI, until Sep. 30th 2007]
François Trahay [Ministry of Research and Technology Grant, LaBRI]

2. Overall Objectives

2.1. Designing Efficient Runtime Systems
Keywords: NUMA, SMT, distributed, environment, heterogeneity, parallel, runtime.

The RUNTIME project seeks to explore the design, the implementation and the evaluation of mechanisms that
will form the core of tomorrow’s parallel runtime systems. More precisely, we propose to define, implement
and validate the most generic series of runtime systems providing both an efficient and flexible foundation for
building environments/applications in the field of intensive parallel computing. These runtime systems will
have to allow an efficient use of parallel machines such as large scale heterogeneous and hierarchical clusters.

By runtime systems, we mean intermediate software layers providing the parallel applications with the required
additional functionalities and dealing with the high-performance computing specific issues left unaddressed
by the operating system and its peripheral device drivers. Runtime systems can thus be seen as functional
extensions of operating systems and should be distinguished from high-level libraries. Note that the boundary
between a runtime system and the underlying operating system is rather fuzzy since a runtime system may
also feature specific extensions/enhancements to the underlying operating system (e.g. extensions to the OS
thread scheduler).

2 Activity Report INRIA 2007

One of the main challenges encountered when designing modern runtime systems is to provide powerful
abstractions, both at the programming interface level and at the implementation level, to deal with the
increasing complexity of upcoming hardware architectures. While it is essential to understand – and somehow
anticipate – the evolutions of hardware technologies (e.g. programmable network interface cards, multicore
architectures, hardware accelerators), the most delicate task is to extract models and abstractions that will
fit most of upcoming hardware features. This is a job that requires monitoring of technological development
and... great experience.

Our research project centers on three main directions:

Mastering large, hierarchical multiprocessor machines The emergence of deeply hierarchical architec-
tures based on multi-threaded multi-core chips and NUMA machines raises the need for a careful
distribution of threads and data. Indeed, cache misses and NUMA penalties become more and more
important with the complexity of the machine, making these constraints as important as paralleliza-
tion. They require some new programming models and new tools to make the most out of these
underlying architectures.

As quoted by Gao et al. [52], we believe it is important to expose domain-specific knowledge
semantics to the various software components in order to organize computation according to the
application and architecture. Indeed, the whole software stack, from the application to the scheduler,
should be involved in the parallelizing, scheduling and locality adaptation decisions by providing
useful information to the other components. Unfortunately, most operating systems only provide a
poor scheduling API that does not allow applications to transmit valuable hints to the system.

That’s why we investigate new approaches in the design of thread schedulers, focusing on high-level
abstractions to both model hierarchical architectures and describe the structure of applications’ par-
allelism. In particular, we have introduced the bubble scheduling concept [24], [17], [12] that helps
to structure relations between threads in a way that can be efficiently exploited by the underlying
thread scheduler. Bubbles express the inherent parallel structure of multithreaded applications: they
are abstractions for grouping threads which “work together” in a recursive way.

Many research issues remain to be addressed, such as designing specific scheduling algorithms
(favoring memory affinity, frequent synchronizations or load balance) or using our framework as
a backend for OPENMP compilers.

Optimizing communications over high performance clusters and grids Using a large panel of mecha-
nisms such as user-mode communications, zero-copy transactions and communication operation
offload, the critical path in sending and receiving a packet over high speed networks has been
drastically reduced over the years. Recent implementations of the MPI standard, which have been
carefully designed to directly map basic point-to-point requests onto the underlying low-level
interfaces, almost reach the same level of performance for very basic point-to-point messaging
requests. However more complex requests such as non-contiguous messages are left mostly unat-
tended, and even more so are the irregular and multi-flow communication schemes. The intent of
the work on our NEWMADELEINE communication engine, for instance, is to address this situation
thoroughly. The NEWMADELEINE optimization layer delivers much better performance on complex
communication schemes with negligible overhead on basic single packet point-to-point requests.
Through Mad-MPI, our proof-of-concept implementation of a subset of the MPI API, we intend to
show that MPI applications can also benefit from the NEWMADELEINE communication engine.

Regarding larger scale configurations (clusters of clusters, grids), we intend to propose new models,
principles and mechanisms that should allow to combine communication handling, threads schedul-
ing and I/O event monitoring on such architectures, both in a portable and efficient way. We particu-
larly intend to study the introduction of new runtime system functionalities to ease the development
of code-coupling distributed applications, while minimizing their unavoidable negative impact on
the application performance.

Integrating Communications and Multithreading Asynchronism is becoming ubiquitous in modern com-

Project-Team Runtime 3

munication runtimes. Complex optimizations based on online analysis of the communication
schemes and on the de-coupling of the request submission vs processing. Flow multiplexing or
transparent heterogeneous networking also imply an active role of the runtime system request sub-
mit and process. And communication overlap as well as reactiveness are critical. Since network
request cost is in the order of magnitude of several thousands CPU cycles at least, independent com-
putations should not get blocked by an ongoing network transaction. This is even more true with
the increasingly dense SMP, multicore, SMT architectures where many computing units share a few
NICs. Since portability is one of the most important requirements for communication runtime sys-
tems, the usual approach to implement asynchronous processing is to use threads (such as Posix
threads). Popular communication runtimes indeed are starting to make use of threads internally and
also allow applications to also be multithreaded. Low level communication libraries also make use
of multithreading. Such an introduction of threads inside communication subsystems is not going
without troubles however. The fact that multithreading is still usually optional with these runtimes is
symptomatic of the difficulty to get the benefits of multithreading in the context of networking with-
out suffering from the potential drawbacks. We advocate the importance of the cooperation between
the asynchronous event management code and the thread scheduling code in order to avoid such dis-
advantages. We intend to propose a framework for symbiotically combining both approaches inside
a new generic I/O event manager.

Beside those main research topics, we obviously intend to work in collaboration with other research teams in
order to validate our achievements by integrating our results into larger software environments (MPI, OpenMP,
PaStiX) and to join our efforts to solve difficult problems.

Among the target environments, we intend to carry on developing the successor to the PM2 software suite,
which would be a kind of technological showcase to validate our new concepts on real applications through
both academic and industrial collaborations (CEA/DAM, Bull, IFP, Total). We also plan to port standard
environments and libraries (which might be a slightly sub-optimal way of using our platform) by proposing
extensions (as we already did for MPI and Pthreads) in order to ensure a much wider spreading of our work
and thus to get more important feedback.

Finally, most of the work proposed as part of this project is dedicated to be used as a foundation for
environments and programming tools exploiting large scale computing grids. While these environments must
address many issues related to long distance links properties and decentralized administration (authentication,
security, deployment), they must also rely on efficient runtime systems on the “border clusters” in order to
convert optimally the local area resources potential into application performance.

2.2. Highlights of the year
• MPICH2-NEWMADELEINE : an efficient multirail implementation of MPI over heterogeneous

hardware.
• FORESTGOMP is the first NUMA-aware implementation of OPENMP for hierarchical multiproces-

sors.

3. Scientific Foundations
3.1. Runtime Systems Evolution

Keywords: cluster, communication, distributed, environment, library, multithreading, parallel.

Nowadays, when intending to implement complex parallel programming environments, the use of runtime
systems is unavoidable. For instance, parallel languages compilers generate code which is getting more and
more complex and which relies on advanced runtime system features (e.g. the HPF Adaptor compiler [42],
the Java bytecode Hyperion compiler [1]). They do so not only for portability purposes or for the simplicity
of the generated code, but also because some complex handling can be performed only at runtime (garbage
collection, dynamic load balancing).

4 Activity Report INRIA 2007

Parallel runtime systems have long mostly consisted of an elaborate software glue between standard libraries
implementations, such as, for instance, MPI [34] for communication handling and POSIX-threads [58] for
multi-threading management. Environments such as Athapascan [43], Chant [56] or PM2 [57] well illustrate
this trend. Even though such approaches are still widespread, they do suffer from numerous limitations related
to functional incompatibilities between the various software components (decreased performance) and even to
implementation incompatibilities (e.g. thread-unsafe libraries).

In the past, several proposals (Nexus [49], Panda [61], PM2 [57]) have shown that a better approach lies
in the design of runtime systems that provide a tight integration of communication handling, I/O and multi-
threading management. In order to get closer to an optimal solution, those runtime systems often exploit very
low-level libraries (e.g. BIP [60], GM [33], MX [36], FM [59] or LFC [41] for Myrinet networks) so as to
control the hardware finely. It is one of the reasons that makes the design of such systems so difficult.

Many custom runtime systems have thus been designed to meet the needs of specific environments (e.g
Athapascan-0 [45], [55] for the Athapascan-1 [43] environment, Panda [61] for the Orca [38] compiler,
PM [62] for the SCore environment, PM2 [57] for load balancing tools using thread migration). Somehow,
because they were often intended for very similar architectures, these proposals also resulted in duplicating
programming efforts.

Several studies have therefore been launched as an attempt to define some kinds of “micro-runtimes” (just
like micro-kernels in the field of operating systems) that would provide a minimal set of generic services onto
which a wide panel of higher-level runtime systems could be built. An example of such a micro-runtime system
is µPM2 [11]. µPM2 integrates communication handling and multi-threading management without imposing a
specific execution model. Such research approaches indeed allowed for a much better reuse of runtime systems
within different programming environments. The µPM2 platform has, for instance, been successfully used as a
basis for implementing a distributed Java virtual machine [1], a Corba object broker [53], a high-performance
communication framework for grids (PadicoTM [48]) and even a multi-network version of the MPICH [7],
[6] library.

3.2. Current Trends
Keywords: cluster, communication, distributed, environment, library, multithreading, parallel.

Even though several problems still remain unresolved so far (communication schemes optimization, reactivity
to I/O events), we now have at our disposal efficient runtime systems that do efficiently exploit small-
scale homogeneous clusters. However, the problem of mastering large-scale, hierarchical and potentially
heterogeneous configurations (that is, clusters of clusters) still has to be tackled. Such configurations bring
in many new problems, such as high-performance message routing in a heterogeneous context, dynamic
configuration management (fault-tolerance). There are two interesting proposals in the particular case of
heterogeneous clusters of clusters, namely MPICH-G2 [35] and PACX-MPI [40]. Both proposals attempt to
build virtual point-to-point connections between each pair of nodes. However, those efforts focus on very large-
scale configurations (the TCP/IP protocol is used for inter-cluster communication as clusters are supposed to
be geographically distant) and are thus unsuitable for exploiting configurations featuring high-speed inter-
cluster links. The CoC-Grid Project [32] follows an approach similar to ours through trying to provide an
efficient runtime system for such architectures.

Besides, even if the few aforementioned success stories demonstrate that current runtime systems actually
improve both portability and performance of parallel environments, a lot of progress still has to be made with
regards to the optimal use of runtime systems features by the higher level software layers. Those upper layers
still tend to use them as mere “black-boxes”. More precisely, we think that the expertise accumulated by a
runtime system designer should be formalized and then transferred to the upper layers in a systematic fashion
(code analysis, specialization). To our knowledge, no such work exists in the field of parallel runtime systems
to date.

Project-Team Runtime 5

The members of the RUNTIME project have an acknowledged expertise in the parallelization of complex
applications on distributed architectures (combinatorial optimization, 3D rendering, molecular dynamics), the
design and implementation of high performance programming environments and runtime systems (PM2), the
design of communication libraries for high speed networks (MADELEINE) and the design of high performance
thread schedulers (MARCEL, LinuxActivations).

During the last few years, we focused our efforts on the design of runtime systems for clusters of SMP
nodes interconnected by high-performance networks (Myrinet, Quadrics, Infiniband, SCI, Giganet, etc). Our
goal was to provide a low-level software layer to be used as a target for high-level distributed multithreaded
environments (e.g. PM2, Athapascan). A key challenge was to allow the upper software layers to achieve the
full performance delivered by the hardware (low latency and high bandwidth). To obtain such a “performance
portability” property on a wide range of network hardware and interfaces, we showed that it is mandatory
to elaborate alternative solutions to the classical interaction schemes between programming environments
and runtime systems. We thus proposed a communication interface based on the association of “transmission
constraints” with the data to be exchanged and showed data transfers were indeed optimized on top of any
underlying networking technology. It is clear that more research efforts will have to be made on this topic.

Another aspect of our work was to demonstrate the necessity of carefully studying the interactions between the
various components of a runtime system (multiprogramming, memory management, communication handling,
I/O events handling, etc.) in order to ensure an optimal behavior of the whole system. We particularly explored
the complex interactions between thread scheduling and communication handling. We hence better understood
how the addition of new functionalities within the scheduler could improve communication handling. In
particular, we focused our study on the impact of the thread scheduler reactivity to I/O events. Some research
efforts conducted by the group of Henri BAL (VU, The Netherlands), for instance, have led to the same
conclusion.

Regarding multithreading, our research efforts have mainly focused on designing a multi-level “chameleon”
thread scheduler (its implementation is optimized at compilation time and tailored to the underlying target
architecture) and on addressing the complexity of efficiently scheduling threads on hierarchical machines like
SMPs of multicore chips and NUMA machines.

Although it was originally designed to support programming environments dedicated to parallel computing
(PM2, MPI, etc.), our software is currently successfully used in the implementation of middleware such as
object brokers (OmniORB, INRIA Paris project) or Java Virtual Machines (Project Hyperion, UNH, USA).
Active partnerships with other research projects made us realize that despite their different natures these
environments actually share a large number of requirements with parallel programming environments as
far as efficiency is concerned (especially with regard to critical operations such as multiprogramming or
communication handling). An important research effort should hence be carried out to define a reference
runtime system meeting a large subset of these requirements. This work is expected to have an important
impact on the software development for parallel architectures.

The research project we propose is thus a logical continuation of the work we carried out over the last few
years, focusing on the following directions: the quest for the best trade-off between portability and efficiency,
the careful study of interactions between various software components, the use of realistic performance
evaluations and the validation of our techniques on real applications.

4. Application Domains

4.1. Panorama
Keywords: CLUMP, SMP, cluster, communication, grid, multithreading, network, performance.

6 Activity Report INRIA 2007

This research project takes place within the context of high-performance computing. It seeks to contribute to
the design and implementation of parallel runtime systems that shall serve as a basis for the implementation
of high-level parallel middleware. Today, the implementation of such software (programming environments,
numerical libraries, parallel language compilers, parallel virtual machines, etc.) has become so complex that
the use of portable, low-level runtime systems is unavoidable.

The last fifteen years have shown a dramatic transformation of parallel computing architectures. The expensive
supercomputers built out of proprietary hardware have gradually been superseded by low-cost Clusters Of
Workstations (COWs) made of commodity hardware. Thanks to their excellent performance/cost ratio and
their unmatched scalability and flexibility, clusters of workstations have eventually established themselves as
the today’s de-facto standard platforms for parallel computing.

This quest for cost-effective solutions gave rise to a much wider diffusion of parallel computing architectures,
illustrated by the large and steadily growing number of academic and industrial laboratories now equipped with
clusters, in France (GridExplorer cluster at IDRIS, Grid’5000 project, clusters at CEA/DAM, etc.), in Europe
(cluster DAS-3 in the Netherlands, etc.) or in the rest of the world (the US TeraGrid Project, etc.). As a general
rule, these clusters are built out of a homogeneous set of PCs interconnected with a fast system area network
(SAN). Such SAN solutions (Myrinet, Quadrics, Infiniband, etc.) typically provide 10Gb/s throughput and a
couple of microseconds latency. Commonly found computing node characteristics range from off-the-shelf
PCs to high-end symmetrical multiprocessor (SMP) or non-uniform memory access (NUMA) machines with
a large amount of memory accessed through high-performance chipsets with multiple I/O buses or switches.

This increasing worldwide expansion of parallel architectures is actually driven by the ever growing need for
computing power needed by numerous real-life applications. These demanding applications need to handle
large amounts of data (e.g. DNA sequences matching), to provide more refined solutions (e.g. analysis and
iterative solving algorithms), or to improve both aspects (e.g. simulation algorithms in physics, chemistry,
mechanics, economics, weather forecasting and many other fields). Indeed, the only way to obtain a greater
computing power without waiting for the next generation(s) of processors is to increase the number of
computing units. As a result, the cluster computing architectures which first used to aggregate a few units
quickly tended to grow to hundreds and now thousands of units. Yet, we lack the software and tools that could
allow us to exploit these architectures both efficiently and in a portable manner. Consequently, large clusters do
not feature nowadays a suitable software support to really exploit their potential as of today. The combination
of several factors led in this uncomfortable situation.

First of all, each cluster is almost unique in the world regarding its processor/network combination. This simple
fact makes it very difficult to design a runtime system that achieves both portability and efficiency on a wide
range of clusters. Moreover, few softwares are actually able to keep up with the technological evolution; while
others involve a huge amount of work to adapt the code due to an unsuitable internal design. We showed in [2]
that the problem is actually much deeper than a mere matter of implementation optimization. It is mandatory
to rethink the existing interfaces from a higher, semantic point of view. The general idea is that the interface
should be designed to let the application “expresses its requirements”. This set of requirements can then be
mapped efficiently by the runtime system onto the underlying hardware according to its characteristics. This
way the runtime system can guarantee performance portability. The design of such a runtime system interface
should therefore begin with a thorough analysis of target applications’ specific requirements.

Moreover, and beside semantic constraints, runtime systems should also address an increasing number of
functional needs, such as fault tolerant behavior or dynamically resizable computing sessions. In addition,
more specific needs should also be taken into account, for example the need for multiple independent logical
communication channels in modular applications or multi-paradigm environments (e.g. PadicoTM [47]).

Finally, the special case of the CLUsters of MultiProcessors (CLUMPS) introduces some additional issues in
the process of designing runtime systems for distributed architectures. Indeed, the classical execution models
are not suitable because they are not able to take into account the inherent hierarchical structure of CLUMPS.
For example, it was once proposed to simply expand the implementation of standard communication libraries
such as MPI in order to optimize inter-processor communication within the same node (MPI/CLUMPS [54]).
Several studies have shown since then that complex execution models such as those integrating multi-threading

Project-Team Runtime 7

and communication (e.g. Nexus [50], [49], Athapascan [43], PM2 [57], MPI+OPENMP [44]), are in fact
much more efficient.

This last issue about clusters of SMP is in fact a consequence of the current evolution of high-end distributed
configurations towards more hierarchical architectures. Other similar issues are expected to arise in the future.

• The clusters hierarchical structure depth is increasing. The nodes themselves may indeed exhibit a
hierarchical structure: because the overall memory access delay may differ (e.g. according to the
proximity of the processor to the memory bank on a Non Uniform Memory Architecture) or because
the computational resources are not symmetrical (e.g. multi-processors featuring the Simultaneous
Multi-Threading technology). The challenge here is to express those characteristics as part of the
execution model provided by the runtime system without compromising applications portability and
efficiency on “regular” clusters.

• The widespread availability of clusters in laboratories combined with the general need for processing
power usually leads to interconnect two or more clusters by a fast link to build a cluster of
clusters. Obviously, it is likely that these interconnected clusters will be different with respect to
their processor/network pair. Consequently, the interconnected clusters should not be considered as
merged into one big cluster. Therefore, and beside a larger aggregated computing potential, this
operation results in the addition of another level in the cluster hierarchy.

• A current approach tends to increase the number of nodes within the clusters (the CEA/DAM,
for instance, owns a cluster of 544 16-cores nodes linked with a Quadrics network). These large
clusters lead to a set of new issues to be addressed by runtime systems. For instance, a lot of low-
level communication libraries do not allow users to establish point-to-point connections between
the whole set of nodes of a given configuration when the number of nodes grows beyond several
dozens. It should be emphasized that this limitation is often due to physical factors of network
interconnection cards (NICs), such as on-board memory amount, etc. Therefore, communication
systems bypassing the constraint of a node being able to perform efficient communications only
within a small neighbourhood have to be designed and implemented.

• Finally, each new communication technology brings its own new programming model. Typically,
programming over a memory-mapped network such as SCI is completely different from program-
ming over a message passing oriented network such as Myrinet or a remote DMA based network
such as Infiniband. Similar observations can be made about I/O (the Infiniband technology’s inter-
operability with Fiberchannel and iSCSI is bringing in new issues), processors and other peripheral
technologies. Runtime systems should consequently be openly designed from the very beginning not
only to deal with such a constantly evolving set of technologies but also to be able to integrate easily
and to exploit thoroughly existing as well as forthcoming idioms.

In this context, our research project proposal aims at designing a new generation of runtime systems able to
provide parallel environments with most of the available processing power of cluster-like architectures. While
many teams are currently dealing with the exploitation of widely distributed architectures (grid computing)
such as clusters interconnected by wide-area networks, we propose, as a complementary approach, to conduct
researches dedicated to the design of high-performance runtime systems to be used as a solid foundation for
high level programming environments for large parallel applications.

5. Software
5.1. NewMadeleine

The MADELEINE library which had been the communication subsystem of the PM2 software suite for almost
ten years has now been replaced in production by the NEWMADELEINE library. NEWMADELEINE is pri-
marily dedicated to the exploitation of clusters interconnected with (possibly multiple) high-speed networks,
potentially of different natures. NEWMADELEINE is a complete redesign and rewrite of MADELEINE. The
new architecture is entirely modular and in the process of being completely componentified. The drivers are
already available as software components.

8 Activity Report INRIA 2007

The NEWMADELEINE SchedOpt optimizing scheduler aims at enabling the use of a much wider range of
communication flow optimization techniques such as packet reordering or cross-flow packet aggregation [13].
SchedOpt targets applications with irregular, multi-flow communication schemes such as found in the increas-
ingly common application conglomerates made of multiple programming environments and coupled pieces of
code, for instance. It is designed to be programmable through the concepts of optimization strategies (what
to optimize for, what the optimization goal is) expressed in terms of tactics (how to optimize to reach the
optimization goal), allowing experimentations with multiple approaches or on multiple issues with regard to
processing communication flows. Tactics themselves are made of basic communication flows operations such
as packet merging or reordering.

Special purpose strategies have also been developped. A strategy is dedicated to heterogeneous multirail
support [19]. A QoS strategy [28] is responsible for differentiated service support: it allows to use distinct
optimizations and priorities for distinct communication flows.

NEWMADELEINE has strong relationships established with other software projects in the Runtime team, each
of whose having been the subject of dedicated work during the last year. Indeed, NEWMADELEINE is the
direct core communication library of the Mad-MPI [18] and MPICH-Madeleine modules and is being ported
as a communication subsystem target for the MPICH2-Nemesis software from Argonne National Laboratory.
It is built upon the PadicoTM software component model, and is now the default communication stack for
clusters in PadicoTM. It fundamentally relies on the new PIOMAN module [26] and the MARCEL module for
asynchronous communication request processing and progression. It now works together with the Fast User
Trace module to provide post-mortem communication schemes analysis. And finally it directly depends on the
recent work on Non-Uniform Input-Ouput Access (NUIOA) [22], [31] when run on non-uniform hierarchical
architectures.

The reference software development branch of the NEWMADELEINE software consists in 62 500 lines of
code. NEWMADELEINE is available on various networking technologies: Myrinet, Infiniband, Quadrics,
SCI and Ethernet. This library, distributed as part of the PM2 software is developed and maintained by
Olivier AUMAGE, Elisabeth BRUNET, Nathalie FURMENTO and Raymond NAMYST. The software is freely
available under the terms of the GNU General Public License version 2 at the following URL: http://runtime.
futurs.inria.fr/newmadeleine/.

5.2. Marcel
MARCEL is the thread library of the PM2 software suite. MARCEL features a two-level thread scheduler (also
called N:M scheduler) that achieves the performance of a user-level thread package while being able to exploit
multiprocessor machines. The architecture of MARCEL was carefully designed to support a high number of
threads and to efficiently exploit hierarchical architectures (e.g. multi-core chips, NUMA machines).

The most important feature of MARCEL is its scheduler, named BubbleSched. BubbleSched is a framework
that allows scheduling experts to implement and experiment with powerful user-level thread schedulers (http://
runtime.futurs.inria.fr/marcel/bubblesched.php). It is based on high-level abstractions called bubbles. The
application describes affinities between the threads it launches by encapsulating them into nested bubbles
(those which work on the same data for instance). BubbleSched then allows to implement various advanced
bubble schedulers that distribute bubbles (and hence threads) over the hierarchy of the computer so as to
benefit from cache effects as much as possible. Memory buffer location may also be taken into account in
the scheduler to avoid NUMA factor penalties [30], and other affinities may be involved such as between
communication threads and physical I/O devices. A trace of the scheduling events can be recorded and used
after execution for generating an animated movie showing a replay of the execution: how bubbles and threads
were created, how they got distributed over the machine, how they eventually got scheduled on processors,
etc. End users may hence easily try and tune various bubble schedulers for their applications, and select the
most suited one.

MARCEL provides a POSIX-compliant interface and a set of original extensions. It can also be compiled
to provide ABI-compatibility with NTPL threads under Linux, so that multithreaded applications can use

http://runtime.futurs.inria.fr/newmadeleine/
http://runtime.futurs.inria.fr/newmadeleine/
http://runtime.futurs.inria.fr/marcel/bubblesched.php
http://runtime.futurs.inria.fr/marcel/bubblesched.php

Project-Team Runtime 9

MARCEL without being recompiled. This permits for instance to run Java applications with MARCEL. All
these flavors are based on the same thread management core kernel and are specialized at compilation time.

While keeping the possibility to be run autonomously, MARCEL combines perfectly with NEWMADELEINE
and PIOMAN, improving reactivity to communications. Specific softwares matching the needs of PM2 are
also included, allowing thread migration between homogeneous machines.

The reference software development branch of the MARCEL software consists in 61 000 lines of code. This
library is developed and maintained by Samuel THIBAULT and Olivier AUMAGE. The software is freely
available under the terms of the GNU General Public License version 2 at the following URL: http://runtime.
futurs.inria.fr/marcel/.

5.3. ForestGOMP
FORESTGOMP is an OPENMP environment based on both the GNU OPENMP compiler (GCC/GOMP)
and the MARCEL thread library. It is designed to schedule efficiently nested sets of threads (derived from
nested parallel sections) over hierarchical architectures. Indeed, approaching the theoretical performance of
hierarchical multicore machines requires a very careful distribution of threads and data among the underlying
non-uniform architecture in order to minimize cache misses and NUMA penalties. Languages extensions such
as OPENMP can really enhance the quality of thread scheduling in a portable way, by transmitting precious
informations about the parallel structure of the program or the affinities between threads and data to the
underlying runtime system.

The FORESTGOMP runtime generates nested MARCEL bubbles, which encapsulate threads sharing common
data, each time an OPENMP parallel section is encountered. Then, thanks to BUBBLESCHED abilities, we are
able to design NUMA-aware scheduling policies that dynamically map these bubbles onto the various levels of
the underlying hierarchical architecture. Two ad-hoc scheduling policies have already been implemented. The
spread scheduler [23] is designed to deal with multilevel application by consisting of a mere recursive function
that greedily distribute a hierarchy of bubbles over the hierarchy of runqueues according to their computation
load (either explicitly specified by the programmer, or inferred from the number of threads). The affinity
scheduler [27], [20] enforces a distribution of threads that maximizes the proximity of threads belonging to
the same parallel section, and uses a NUMA-aware work stealing strategy when load balancing is needed. We
have validated this approach with highly irregular, fine grain, divide-and-conquer parallel applications.

The experiments we conducted validate this approach in terms of development easiness for the programmer,
portability and performance. This is therefore a way for experts to build complex scheduling strategies that
take characteristics of the application into account. Using and mixing such strategies, application programmers
get a greater control on scheduling of their OPENMP programs.

François BROQUEDIS is the main contributor to this piece of software, it is distributed within the PM2 software
suite. It is freely available under the terms of the GNU General Public License version 2 at the following URL:
http://runtime.futurs.inria.fr/forestgomp/index.php

5.4. Mad-MPI
Mad-MPI is a light implementation of the MPI standard. This simple, straightforward proof-of-concept imple-
mentation provides a subset of the MPI API, to allow MPI applications to benefit from the NEWMADELEINE
communication engine. Mad-MPI is based on the point-to-point nonblocking posting (isend, irecv) and
completion (wait, test) operations of MPI, these four operations being directly mapped to the equivalent
operations of NEWMADELEINE.

Mad-MPI also implements some optimizations mechanisms for derived datatypes [51]. MPI derived datatypes
deal with noncontiguous memory locations. The advanced optimizations of NEWMADELEINE allowing to
reorder packets lead to a significant gain when sending and receiving data based on derived datatypes.

The Mad-MPI implementation consists in 3 000 new lines of code. It is distributed as part of the PM2 software
and is developed and maintained by Nathalie FURMENTO. The software is freely available under the terms of
the GNU General Public License version 2 at the following URL: http://runtime.futurs.inria.fr/MadMPI/.

http://runtime.futurs.inria.fr/marcel/
http://runtime.futurs.inria.fr/marcel/
http://runtime.futurs.inria.fr/forestgomp/index.php
http://runtime.futurs.inria.fr/MadMPI/

10 Activity Report INRIA 2007

5.5. MPICH2-NewMadeleine
MPICH2-NEWMADELEINE is the successor to the old MPICH-Madeleine implementation that was derived
from MPICH 1.2.7. MPICH2-NEWMADELEINE is based on the most recent MPICH2 software (1.0.6pX)
and utilizes the NEWMADELEINE communication library for all network communication. As far as intranode
communication are concerned, the Nemesis communication subsystem is employed [9], [14]. Nemesis is a
new generic communication subsystem which goal is to address the communication needs of a wide range of
programming tools and environments for clusters and parallel architectures. It has been designed to yield very
low latency and high bandwidth, especially for intranode communication.

The resulting MPI implementation exhibits excellent performance, especially in the shared-memory case,
which in crucial in the case of NUMA clusters. The level of performance is indeed very good and MPICH2-
Nemesis compares favourably with other next-generation MPI implementations such as Open MPI or
GridMPI. The latencies achieved by MPICH2-NEWMADELEINE in shared-memory are currently the best
among generic MPI implementations and are extremely close to that of highly-tuned vendor-specific ports.

The NEWMADELEINE communication library has been integrated as a Nemesis network module but some
architectural changes have been made to the upper layers, in particular at the ADI3 level (ch3 has thus been
modified). Those changes prefigures more profound changes to come and announce the future merge between
Nemesis and NEWMADELEINE. Also, all optimization mechanisms implemented in NEWMADELEINE are
made available at the MPI level. For instance, MPICH2, with its NEWMADELEINE Nemesis module can use
efficiently multirail configurations.

This work has been initiated by Darius BUNTINAS and Guillaume MERCIER during his postdoctoral stay at
the ARGONNE NATIONAL LABORATORY (ANL). Guillaume being still an active member of the MPICH2’s
development and support team we have regular contacts with ARGONNE NATIONAL LABORATORY regarding
the device version of Nemesis. A proposal of Associate Team has therefore been submitted at the end of 2007.

MPICH2-NEWMADELEINE , a joint development between the ANL and the Runtime Project will soon
be available on Runtime’s website and is developed and maintained by Darius BUNTINAS and Guillaume
MERCIER and Elisabeth BRUNET.

5.6. PadicoTM
PadicoTM is a high-performance communication framework for grids. It is designed to enable various
middleware systems (such as CORBA, MPI, SOAP, JVM, DSM, etc.) to utilize the networking technologies
found on grids. PadicoTM aims at decoupling middleware systems from the various networking resources to
reach transparent portability and flexibility: the various middleware systems use PadicoTM through a seamless
virtualization of networking resources; only PadicoTM itself uses directly the networks.

PadicoTM architecture is based on software components. Puk (the PadicoTM micro-kernel) implements a
light-weight high-performance component model that is used to build communication stacks. Typical com-
munications stacks built in PadicoTM follow a three-layer approach. The lowest layer, called the arbitration
layer, aims at making the access to the resources cooperative rather than competitive. It enables the use of
multiple middleware systems atop a single network, as needed by code coupling programming models such
as parallel objects or parallel components. This layer is based on PIOMAN to ensure high performance and
good interactions between threads and networking. The middle layer, called the abstraction layer, decouples
the paradigm of the programming interface from the paradigm of the network; for example, it can do dynamic
client/server connections over static SPMD networks. The highest level layer, called the personality layer,
gives several API called “personalities” over the abstractions. It aims at providing the middleware systems
with the API they expect. It enables PadicoTM to seamlessly integrate unmodified middleware systems.

PadicoTM currently supports most high performance networks (Infiniband, Myrinet, SCI, Quadrics, etc.),
communication methods for grids (plain TCP, splicing to cross firewalls, routing, tunneling). Various mid-
dleware systems are supported over PadicoTM: various CORBA implementations (omniORB, Mico), pop-
ular MPI implementations (MPICH from Argonne – actually, MPICH/PadicoTM is derived from MPICH-
Madeleine —, YAMPII from the University of Tokyo, our own MPI-Mad), Apache Portable Runtime, JXTA

Project-Team Runtime 11

from Sun (in collaboration with the PARIS project), gSOAP, Mome (DSM developed in the PARIS project),
Kaffe (Java virtual machine), and Certi (HLA implementation from the ONERA).

PadicoTM was started in the PARIS project (Rennes) in 2001, in collaboration with Christian PÉREZ and
migrated in RUNTIME in October 2004 together with Alexandre DENIS. The current main contributors
to PadicoTM are Alexandre DENIS, Christophe FRÉZIER, and François TRAHAY (RUNTIME) with some
occasional contributions from Christian PÉREZ and Mathieu JAN (PARIS).

PadicoTM is composed of roughly 50 000 lines of C. It is free software distributed under the terms
of the GNU General Public License, and is available for download at: http://runtime.futurs.inria.fr/
PadicoTM/. It is has been hosted on InriaGForge since mid-2005 and has been downloaded 440 times
(ranked 51 out of 245 GForge projects) since then. PadicoTM is registered at the APP under number
IDDN.FR.001.260013.000.S.P.2002.000.10000.

As far as we are aware of, it is currently used by several French projects: ARA “LEGO” from the ANR, ACI
GRID HydroGrid, ACI GRID EPSN and Inria ARC RedGrid. It is also used in the European FET project POP.

5.7. PIOMan
PIOMAN is the event detector server used by the PM2 software suite. It aims at providing the other software
components with a service that can guarantee a predefined level of “reactivity” to I/O events. It is typically
used by NEWMADELEINE and PadicoTM to quickly react to network events, such as the arrival of a new
packet. PIOMAN is derived from the former MARCEL event server developed by Vincent DANJEAN and thus
works closely with MARCEL so as to be triggered upon context switches, processor idleness, etc.

PIOMAN is able to isolate blocking system calls on dedicated threads so that the whole process isn’t
suspended. It is actually a portable alternative to the Scheduler Activations model proposed by Anderson
[37] and implemented in the LinuxActivations library [10]. By isolating blocking system calls, it becomes
possible to suspend only the thread responsible for the blocking call, while the other threads continue their
execution. This mechanism makes PIOMAN reactive even during heavy computing phases.

PIOMAN handles both blocking and non-blocking detection methods and is able to choose the more suitable
method depending on the processors’ load and the communication library’s preferences. This way, the
application is reactive whatever the context is.

The level of reactivity provided by PIOMAN allows NEWMADELEINE to make communications progress
in the background (by making the rendez-vous handshake progress for instance) and thus to fully overlap
computation and communication [26], [25].

MADELEINE and NEWMADELEINE have been ported over PIOMAN. We also plan to use PIOMAN in
PadicoTM and in MPI implementations such as MPICH2-Nemesis (within our collaboration with the Argonne
National Laboratory) and YAMPII (within the collaboration with the University of Tokyo).

This library, distributed as part of the PM2 software is developed and maintained by François TRAHAY. The
software is freely available under the terms of the GNU General Public License version 2 at the following
URL: http://runtime.futurs.inria.fr/pioman/.

5.8. Open-MX
The OPEN-MX software stack is a high-performance message passing implementation for any generic
Ethernet interface. It is developped within our collaboration with Myricom, Inc. as a part of the move towards
the convergence between high-speed interconnects and generic networks. This convergence has been observed
for a couple of years, especially with Myricom, Quadrics or FibreChannel offering interoperability between
their specific networks and Ethernet networks, but also with the latter providing features initially developed
by the former.

http://runtime.futurs.inria.fr/PadicoTM/
http://runtime.futurs.inria.fr/PadicoTM/
http://runtime.futurs.inria.fr/pioman/

12 Activity Report INRIA 2007

Ethernet networks are very popular in high-performance computing (42 % of the Top500 installations). They
achieve improved performance thanks to advanced features that were previously specific to proprietary net-
works (for instance DMA and Offloading). The need for a high-performance MPI implementation becomes
critical. Unfortunately, most work towards high-performance communications focusses on high-performance
interconnects such as InfiniBand or Myri-10G. Until now, people have been relying on basic MPI implemen-
tations over TCP/IP, for instance MPICH P4 or MPICH2 SSM.

These implementations suffer of TCP/IP performance limitations caused by its design for generic communi-
cations while cluster communication specificities should allow multiple optimizations. Some RDMA based
implementations [39] have been proposed but they required non-standard features in the hardware and still
suffer from several performance issues in the TCP/IP stack.

We are thus developing OPEN-MX [21] in collaboration with Myricom, Inc. to expose the raw Ethernet
performance at the application level through a pure message passing protocol. While the goal is similar to the
old GAMMA stack [46], the implementation differs since OPEN-MX relies on generic hardware and drivers
and has been designed for message passing. OPEN-MX is currently in early development and already shows
a good ability to expose the raw performance of any Ethernet hardware to the MPI layers.

OPEN-MX is wire-compatible with Myricom’s MX protocol and interface so that any application built for
MX may run on any machine without Myricom’s hardware and talk other nodes running with or without the
native MX stack. OPEN-MX is currently expected to be used as a networking layer for the PVFS2 parallel file-
system on the upcoming BlueGene/P machine in the Argonne laboratory. It will connect BlueGene specific
nodes with generic 10 gigabit/s Ethernet boards to generic I/O nodes with Myri-10G running in native MX
mode.

This work already enables the study of zero-copy communication implementation on top of generic hardware
that has not been designed for such a usage. Several other optimizations such as memory copy offloading will
also have to be studied to emulate zero-copy in the corner cases.

Brice GOGLIN is the main contributor to OPEN-MX. The software is already composed of more than 17 000
lines of code in the Linux kernel and in user-space. It is freely available under the terms of the GNU General
Public License version 2 at the following URL: http://open-mx.gforge.inria.fr/.

6. New Results

6.1. Communication Optimization over High Speed Networks
The NEWMADELEINE communication subsystem introduces fundamental changes in communication request
handling and optimizations. Traditionally, communication libraries, being synchronous, tightly link the com-
munication requests to the application workflow, and therefore transmit incoming packets immediately to the
lower network layer without any accumulation. On the contrary, NEWMADELEINE keeps accumulating pack-
ets in its optimization window while the NICs are busy. As soon as a NIC becomes idle, the optimization
window is analyzed so as to generate a new ready-to-send request to be transfered through the card: NICs
are exploited at their maximum (they are not overloaded when there is a high demand of transfers and under
exploited when there is not) and the communication optimizations are made just-in-time so they closely fit the
ongoing communication scheme at any given time.

When at least one of the multiplexing units becomes idle, an optimization function is called to elect the next
request to be submitted to each idle unit. In doing so, it may select a packet to be sent from the optimization
window, or for instance, synthesize a request out of several packets from that window. A wide panel of
arguments may be used as an input to the optimizing function. The optimization function is to be selected
among an extensible and programmable set of strategies. Each strategy aims at some particular optimizing
goal. A strategy is itself made of one or more tactics that apply some elementary optimizing operations selected
from the panel of usual operations. In particular we have experimented with multi-fragment messages with
multiple policies of multi-rail packet balancing on heterogeneous high performance networks [19] and also

http://open-mx.gforge.inria.fr/

Project-Team Runtime 13

with providing differentiated services to distinct communication flows [28] through the use of corresponding
SchedOpt strategies. NEWMADELEINE showed both its usefulness in conducting such experiments and very
good results in terms of latency and bandwidth, while incurring only negligible overhead on basic single
packets micro-benchmarks.

Our implementation of MPI, Mad-MPI, has shown that the performance of NEWMADELEINE can be obtained
with MPI applications [18]. Mad-MPI has been compared to implementations of MPI for specific high
performance networks, MPICH-MX and OPENMPI-MX 1.1 over MYRI-10G, and MPICH-QUADRICS
over QUADRICS. This allowed us to evaluate the overhead of Mad-MPI under situations where no optimization
is possible, as for example where a MPI ping-pong program exchanges single-segment messages (i.e.
contiguous arrays of bytes). On both networks, Mad-MPI introduces a constant overhead of less than 0,5 µs
and reaches 1155 Mbytes/s in bandwidth over MYRI-10G and 835 Mbytes/s over QUADRICS.

We have also shown the benefits of the aggregation of small messages, by comparing the performance of a
multi-segments ping-pong program, with each “ping” being a sequence of independent MPI_Isend operations
that use separate MPI communicators. We have observed that Mad-MPI is up to 70 % faster than other
implementations of MPI over MX-10G, and up to 50 % faster that MPICH over QUADRICS.

Finally, we have evaluated the performance of our optimization mechanisms when using MPI derived
datatypes. We used a ping-pong program which exchanges arrays of a given indexed datatype. The datatype
describes a sequence of two data blocks, one small block (64 bytes) followed by a large data block
(256 KBytes). Using the NEWMADELEINE scheduling strategy which aggregates all the small blocks (using
messages reordering) with the rendez-vous requests of the large blocks, Mad-MPI exhibits a gain of about
70 % in comparison with MPICH and about 50 % with OPENMPI over MX and until about 70 % versus
MPICH over QUADRICS.

6.2. Low-latency, shared-memory communication within MPICH2
The Nemesis software has been developed in order provide MPICH2 with a high-performance communication
subsystem but also to assess the performance of the MPI programing model altogether. Some manufactures
indeed expressed their concerns about MPI as being able to efficiently handle communication, in particular in
a shared-memory context.

Bearing those concerns in mind, we developed and prototyped Nemesis in order to achieve a very low latency.
We also were able to reduce drastically the amount of instructions needed to transfer messages across processes
within a single node. Actually, we were able to cut the number of instructions down by a 60% factor. This work
demonstrated the relevance of MPI as a programming tool for shared-memory architectures.

We plan to demonstrate the relevance of Nemesis as a communication layer for other programming environ-
ments that MPI, as well as to incorporate it into existing communication layers that do not provide efficient
shared-memory support.

6.3. Thread Scheduling over Hierarchical Architectures
Exploiting full computational power of current more and more hierarchical multiprocessor machines requires
a very careful distribution of threads and data among the underlying non-uniform architecture, so as to
minimize the number of remote memory accesses, to favor cache affinities, or to guarantee fast completion
of synchronization steps. Unfortunately, most operating systems only provide a limited thread scheduling API
that does not allow applications to transmit valuable scheduling hints to the system. This is the main reason
why OS schedulers usually perform poorly on NUMA architectures, and especially with irregular applications.

We have proposed to extend classical thread schedulers with high-level abstractions called Bubbles [64],
[63], which are used to dynamically describe relations between threads in order to improve applications’
performance in a portable way. Bubbles let the programmer express relations like data sharing, collective
operations, good behavior with regards to co-scheduling on a SMT processor or on a NUMA machine, or
more generally a particular scheduling policy need (serialization, preemption, gang scheduling, etc.). The

14 Activity Report INRIA 2007

scheduler can use this information to maximize the locality of threads belonging to the same bubble while still
trying to keep all the processors busy.

This mechanism is generic enough for developing a wide range of schedulers, hence letting programmers try
various approaches for distributing bubbles on the machine: simple top-bottom distribution, gang scheduling,
work stealing, etc. We have therefore designed a framework named BubbleSched that allows scheduling ex-
perts to prototype, experiment and implement user-level bubble-based thread schedulers. Non-expert program-
mers may even try different combinations of existing strategies to schedule the threads of their applications. Of
course, such combination may still be difficult from an algorithmic point of view, but with the additional help
of the associated post-mortem trace analysis tool, review at will how their applications got scheduled. This lets
them easily discover misbehaviours so as to try and tune various scheduling approaches. Thus programmers
can really focus on algorithmic issues rather than on gory details.

6.4. Efficient scheduling of OpenMP threads on NUMA machine
To express parallelism, scientific programmers are used to work with OPENMP, a high level parallel
language, that relies on a set of annotations (including scheduling directives). While OPENMP-parallelized
applications suit well SMP computers, their execution on NUMA architectures are far from being optimal,
particularly when considering irregular applications. This is due to the difficulty to combine load balancing
and thread/memory affinity relations. Indeed, nowadays OPENMP runtimes do not bind the application parallel
structure to the underlying architecture, which may lead to not maintaining the nearness of threads and their
most frequently used data.

To solve this problem, we have designed “FORESTGOMP”, an extension to the GNU OPENMP runtime sys-
tem that relies on the MARCEL/BUBBLESCHED thread scheduling package already described in section 5.3.
This approach brings ability to define complex scheduling policies to deal with multilevel, hierarchical and
fine-grain parallelism: thanks to this framework, OPENMP is now a good tool to tackle irregular applications
on NUMA architectures [23].

In particular, we wrote the AFFINITY bubble-scheduler specifically designed to deal with irregular applications
based on a divide and conquer scheme. The FORESTGOMP/Affinity approach is running the MPU application
about 3 times faster than the GOMP/PTHREAD environment on a 16 cores computer [20]. On the same
way, tests performed with the BT-MZ application on the same computer results in a 10.2 speedup for the
FORESTGOMP/spread approach, while GOMP/PTHREAD reaches a speedup of 7.

6.5. Flexible network communications on computational grids
Computational grids are defined as a large scale interconnection of computing resources — clusters of
workstations or parallel supercomputer — on multiple sites. Therefore, the networking resources involved
are very heterogeneous, ranging from high performance interconnection networks inside parallel computers
to wide are networks between sites. The technologies of these networks are different, so are the protocols,
the software stacks and the performance; even the middleware systems available differ from one network type
to another — typically CORBA is available only over TCP/IP, only MPI is available over high performance
networks.

PadicoTM is a communication framework that decouples middleware systems from the actual networking
resource. The applications are thus able to transparently and efficiently utilize any kind of middleware (either
parallel or distributed) on any network. Since year 2005, PadicoTM is built with true software components.
Communications methods, network access, and paradigm adaptation are implemented as components. Thus,
using components as building blocks, the user may assemble communication stacks following the needs of
the application and the requirements imposed by the network infrastructures. We were able to add various
communication methods as new components, mainly communication methods for wide area networks: various
compression filters (ZIP, LZO, BZIP) and flexible socket factories to cross firewalls without compromising
security (SSH tunnel, TCP splicing, relaying with dynamic routing).

Project-Team Runtime 15

To control the component assembly process, and to allow advanced communication methods that require
negotiation or synchronization between nodes, we have shown that a control channel used for bootstrap and
out-of-band communication is required. We proposed [15] a novel approach for the management of this control
channel as an overlay network that combine security, connectivity, and high performance.

We have started an initiative called Madico to merge PadicoTM and MADELEINE, in order to improve the
integration of PadicoTM, NEWMADELEINE, and MARCEL. We have proposed a new design based on software
components for NEWMADELEINE, and the implementation is ongoing. Strategies and drivers are already
embedded into components. Our goal is to reach same flexibility in configuration and dynamicity at the cluster
level as we have at the grid level, and to enable the use of NEWMADELEINE schedulers on large scale networks
where NEWMADELEINE optimizations make sense too. Moreover, we have integrated the PadicoTM control
channel infrastructure into NEWMADELEINE to get dynamicity at every level.

Finally, we worked on widening the availability of middleware systems over PadicoTM, and its use by other
projects. The Apache Portable Runtime (APR) and JXTA-C (Sun Microsystems) were ported by members of
the PARIS project to enable the JuxMem environment to run over PadicoTM; this will be used in the “LEGO”
ANR project. We are currently working closely with the Scalapplix project-team to use PadicoTM in the EPSN
(http://epsn.gforge.inria.fr) steering software to couple visualisation on a dedicated cluster and simulation
running on a computational grid. The Salomé project (CEA/EDF, http://www.salome-platform.org/) is very
interested in the connectivity features from PadicoTM and actually employed an intern in collaboration with
RUNTIME to finalize the implementation of the PadicoTM control channel. Moreover, we ported the MPI
implementation YAMPII/GridMPI (http://www.gridmpi.org/) from the University of Tokyo over PadicoTM
with good results in the context of the NEGST grant (CNRS-JST) with Japan.

6.6. Reactivity to I/O events
Nowadays, communication libraries for high speed networks achieve very low latencies, close to the perfor-
mance of the underlying hardware. Actually, this is true only when data transfers are done in an “undisturbed
environment”, i.e. the resources (CPU, memory bus, network interface) are fully available. In real applications,
the property of low latency is hard to obtain, because the runtime system (or the operating system) is unable
to react to network I/O events in a short time.

We showed that, by using a centralized I/O event server, a high level of “reactivity” can be guaranteed in
a portable way even during heavy computing phases. We have designed a scalable architecture for this I/O
server named PIOMAN. By interacting with the thread scheduler, PIOMAN detects the completion of the
communication queries (either by polling the network or waiting for interrupts) and triggers the appropriate
callback as soon as possible. The progression of asynchronous communications in the background can thus be
performed efficiently, allowing a full overlap of communications and computations [26], [25].

PadicoTM, MADELEINE and NEWMADELEINE are already using PIOMAN, making them reactive even when
running many computing threads. We are currently developping an enhanced version of NEWMADELEINE
that would optimize the communications more efficiently thanks to the multithreading support provided by
PIOMAN.

6.7. NUMA-aware placement of communications
Clusters of NUMA nodes are becoming increasingly popular in high-performance computing thanks to AMD
Opteron processors. It is well known that scheduling threads and placing memory properly on such nodes has
a strong impact on the overall intra-node computing performance because of NUMA affinities between threads
and memory. However, the impact of non-uniform access on input/output performance had not been studied
extensively. Yet, it is known to have a non-negligible effect since people had been used to manually place
communication benchmarks carefully on the processors and memory banks close to the network interface.

http://epsn.gforge.inria.fr
http://www.salome-platform.org/
http://www.gridmpi.org/

16 Activity Report INRIA 2007

We ran an extensive study of these Non-Uniform Input-Ouput Access (NUIOA) effects on multi-Opteron
machines. It exhibited a strong bandwidth degradation (up to 40 % among a 2 GB/s communications) when
placing communication buffers on memory banks that are far from a high-performance network interface.
Moreover, this impact is actually asymmetric since it only applies to buffers where it is written, not where it is
read. On the latency side, the effect of placement is visible but almost negligible (hundreds of nanoseconds at
most).

We then implemented in NEWMADELEINE an automatic placement strategy which queries NUMA affinities
from low-level network drivers and let the communication middleware place communicating tasks and buffers
accordingly. It enables performance portability by guarantying that communication performance will be as
good as if manually placed. These results have been published in [22].

6.8. High-performance message passing over generic Ethernet hardware
The OPEN-MX message passing stack 5.8 is in early development but it still runs and provides a native
message passing layer on any Ethernet hardware.

The API compatibility with the native Myrinet Express stack already enables existing parallel application
to use OPEN-MX. Indeed, the regular MPICH-MX layer works transparently on top of OPEN-MX with
satisfying performance [21]. Also, the PVFS2 storage system has been successfully tested and his under
experimentation in the Argonne national laboratory in the context of the BlueGene/P installation.

7. Contracts and Grants with Industry

7.1. PhD thesis co-supervised with CEA/DAM
3 years, 2007-2010

We did set up a collaboration with the CEA/DAM (French Atomic Energy Commission, Marc PÉRACHE,
Bruyère le Chatel) on the support of nuclear simulation programs (adaptive mesh) on large clusters of SMP
(thousands of processors) and on Itanium2-based NUMA machines. In October 2007, François DIAKHATÉ has
started a PhD thesis granted by the CEA under the co-supervision of Marc PÉRACHE and Raymond NAMYST
about the use of virtualization within parallel applications over clusters of multiprocessor machines.

7.2. Contract between INRIA and Myricom
We have setup a collaboration with Myricom, Inc. (US Company building high-speed interconnect hardware
and software) regarding the design and implementation of a message passing protocol on top of generic
Ethernet interfaces. Myricom, Inc. provides us with high-performance networking hardware while we develop
the OPEN-MX software stack to expose a high-performance MPI layer on top of any generic generic Ethernet
interfaces. This contract started in July 2007 and is expected to last at least one year.

8. Other Grants and Activities

8.1. “Calcul Intensif et Grilles de Calcul” ANR projects
3 years, 2005-2007

Project-Team Runtime 17

The National Agency for Research (ANR) has launched a program called CIGC about the development of
High Performance computing and Grids. In 2005, twelve research proposals have been selected by the national
committee. We participate to three of these projects (granted each a three-years funding):

LEGO Grid infrastructure and middleware is now a mature technology; however, grid programming and
use is still a very complex task, because each middleware only take into account one paradigm:
MPI, RPC, workflow, master-slave, shared data, ... Thus a new model must be learnt for each kind
of application. Current high performance computing application are becoming multi-paradigm. The
aim of LEGO is to propose and to implement a multi-paradigm programming model (component,
shared data, master-slave, workflow) comprising state of the art grid programming. It will use
efficient scheduling, deployment, and an adequate communication layer. The model will be designed
to cope with three kinds of classical high performance computing applications: climate modeling,
astronomy simulation, and matrix computation.

NUMASIS Adapting and Optimizing Applicative Performance on NUMA Architectures Design and
Implementation with Applications in Seismology. Future generations of multiprocessor machines
will rely on a NUMA architecture featuring multiple memory levels as well as nested computing
units. To achieve most of the hardware’s performance, parallel applications need powerful software
to carefully distribute processes and data so as to limit non-local memory accesses. The NUMASIS
project aims at evaluating the functionalities provided by current operating systems and middleware
in order to point out their limitations. It also aims at designing new methods and mechanisms for
an efficient scheduling of processes and a clever data distribution on such platforms. The target
application domain is seismology, which is very representative of the needs of computer-intensive
scientific applications.

PARA The peak performance improvement of the new microprocessor generation comes from an increase
in the degrees and the multiple levels of parallelism: multithread/multicore, multiple and complex
vector units. This increase in the number of way to express parallelism leads to reconsider the usual
code optimization techniques. The goal of project PARA is to study and develop new optimization
methods for an optimal use of the different parallelism levels. Target architectures will be both new
generation of generic processors and more specialized systems (GPU, processor Cell, APE). The
idea is to combine microbenchmarking techniques (dynamic and detailed analyses of small code
kernels) with adaptative code generation (iterative optimizations expressed by metaprograms). Our
reference code will come from the numeric simulation field (fluid mechanics, geophysics and QCD)
and from cryptology (mainly cryptoanalysis).

8.2. NEGST (NExt Grid Systems and Techniques)
3 years, 2006-2009.

This project is funded by the CNRS and Japan Science and Technology Agency and is led by Serge PETITON
(INRIA Grand-Large) and Ken MIURA (National Institute of Informatics Center for Grid Research and
Development).

It aims at promoting collaborations between Japan and France on grid computing technology. Following
successful France-Japan workshops hosted by CNRS in Paris and NEREGI/NII in Tokyo, three important
novel research issues have been identified: 1) Instant Grid and virtualization of grid computing resources, 2)
Grid Metrics and 3) Grid Interoperability and Applications. The objective is to accelerate the intensive works
of several research teams in these subjects in both countries. An international testbed including the French
Grid’5000 project and its Japanese counterpart NEREGI will be use to demonstrate and validate systems,
software and applications.

8.3. PHC Pessoa MAE Grant
We are setting up a collaboration with the team of Associate Professor Salvador Abreu at University of Évora,
Portugal, about the design of a constraint solving engine (such as GNU Prolog) for parallel architectures. We

18 Activity Report INRIA 2007

intend to build the engine on top of the runtime systems provided in our team. We also would like to study the
exploitation of new processing hardware such as the heterogeneous multicore IBM Cell which shows some
interesting potential for this specific use. This contract is expected to start at the beginning of 2008.

8.4. PHC Sakura MAE Grant
We are setting up a collaboration with the team of Professor Yutaka Ishikawa at University of Tokyo, Japan,
about the design and implementation of high performance communication middleware for new generation
parallel computer architectures. We are aiming at studying and promoting possible convergence points
between the NEWMADELEINE, PIOMAN and PadicoTM software on the RUNTIME team side and the YAMPI
and GRIDMPI software on the University of Tokyo side. In particular, we expect YAMPI to benefit from
the NEWMADELEINE packet scheduler when performing multi-rail communications, and we would like to
experiment with the virtualization capacity of the PadicoTM to enable the IMPI (Interoperable MPI) support
of GridMPI to run at full speed on high speed networks when available while maintaining "on the wire" TCP
interoperability when conversing with non-PadicoTM communication stacks on the other side. This contract
is expected to start at the beginning of 2008.

8.5. Associate Team Program with ANL
We submitted a proposal in order to create an Associate Team between our group and the Radix Lab located at
Argonne National Laboratory (Chicago, USA). The Radix Lab is involved in research about operating systems,
parallel programming and MPI implementations. In particular, they developed the MPICH2 implementation.
Since Guillaume MERCIER spent 18 months as a post-doc in this group, it seemed rather natural to apply
to the “Associate Team Program” because we share a lot of research topics and we could efficiently pool
our resources regarding parallel programming models and implementations. We expect to efficiently make
converge the Nemesis and NEWMADELEINE software in order to create a new high-performance runtime
system tailored for the MPICH2 implementation but that could benefit other current implementations.
Since the MPICH2 group currently doesn’t develop its own thread library our knowledge in the field of
multithreading will be of great help in order to better address this complicated matter. In the long run, we
also expect to work on a possible new model that would address the issues raised with the NUMA and multi-
cores architectures.

8.6. Committees
Raymond NAMYST was co-chair of the EXPGRID (Experimental Grid testbeds for the assessment of large-
scale distributed applications and tools) workshop held in conjunction with the 15th International Symposium
on High Performance Distributed Computing (HPDC-15). He is also member of the EuroPVMMPI 2007,
EuroPVMMPI2008, Cluster 2008, CCGRID’08 and RenPar 2008 program committees.

8.7. Invitations
Brice GOGLIN has been invited at the CLUSTERVISION Users’ Group in Cheltenham, UK, in October 2007
to present Runtime and ScAlApplix project research activities using latest hardware available in Grid’5000 in
Bordeaux.

Elisabeth BRUNET and Guillaume MERCIER have visited Argonne National Laboratory for a two-weeks
period in September 2007. The goal of this visit was twofold: firstly Elisabeth BRUNET made a presentation
of the NEWMADELEINE communication library and its mechanisms. Secondly, this visit was an opportunity
to discuss about setting up an “Associate Team” between Runtime and the Radix Lab, responsible for the
development of the MPICH2 software.

Project-Team Runtime 19

Alexandre DENIS and Guillaume MERCIER have been invited to visit Prof. Ishikawa’s group in Tokyo
University in Japan. Informal contacts between the Runtime group and this Japanese group have going
for a couple of months and this two-weeks visit that took place in April 2007 was an opportunity to
discuss about strengthening our collaboration. After this visit, both groups decided to apply to the Sakura
program, as well as to the Ayame program. A proposal of Associate Team has also been submitted. During
this visit Alexandre DENIS successfully managed to integrate the Japanese GRIDMPI over his PadicoTM
communication software. We also started some discussion about the support of IMPI into the MPICH2
implementation.

9. Dissemination

9.1. Reviews
Olivier AUMAGE was involved in the paper reviewing process of the Transaction on Parallel and Distributed
Systems IEEE journal and the EuroPVM/MPI conference.

Brice GOGLIN was involved in the paper reviewing process of the International Conference on Cluster
Computing (Cluster 2007).

Alexandre DENIS was involved in the paper reviewing process of the International Conference on Cluster
Computing (Cluster 2007) and the EuroPVM/MPI 2007 conference.

Raymond NAMYST has reviewed 2 PhD Thesis during the year 2007.

9.2. Seminars
Raymond NAMYST gave several seminars about multi-core programming at the CEA (Mar. 2007), the LaBRI
(Apr. 2007) and the ENS Lyon (Oct. 2007).

Olivier AUMAGE gave a seminar about NEWMADELEINE at the LIG/Montbonnot (Mar. 2007). He also gave
a seminar for the members of the LEGO grant at the ANR mid-term evaluation meeting in Paris (Sep. 2007).

François TRAHAY gave a seminar about PIOMAN at the LaBRI (Nov. 2007).

9.3. Teaching
Olivier AUMAGE gave a course on “Network Architecture and Related Systems” in the Master of Science
at the University Bordeaux 1. He gave a course about “High-Performance Communication Supports” and a
course on “Programming Languages for Parallelism” at the ENSEIRB engineering school.

Alexandre DENIS gave a course on “System and Middleware for Parallel and Distributed Computing” in the
Master of Science at the University of Bordeaux 1.

Brice GOGLIN gave a course on “Parallel and Distributed Systems” at the ENSEIRB engineering school.

10. Bibliography
Major publications by the team in recent years

[1] G. ANTONIU, L. BOUGÉ, P. HATCHER, M. MACBETH, K. MCGUIGAN, R. NAMYST. The Hyperion system:
Compiling multithreaded Java bytecode for distributed execution, in "Parallel Computing", vol. 27, October
2001, p. 1279–1297, http://www.irisa.fr/paris/Biblio/Papers/Antoniu/AntBouHatBetGuiNam01ParCo.ps.gz.

http://www.irisa.fr/paris/Biblio/Papers/Antoniu/AntBouHatBetGuiNam01ParCo.ps.gz

20 Activity Report INRIA 2007

[2] O. AUMAGE, L. BOUGÉ, A. DENIS, L. EYRAUD, J.-F. MÉHAUT, G. MERCIER, R. NAMYST, L. PRYLLI. A
Portable and Efficient Communication Library for High-Performance Cluster Computing (extended version),
in "Cluster Computing", vol. 5, no 1, January 2002, p. 43-54, http://runtime.futurs.inria.fr/Download/Publis/
AumBouDenEyrMehMerNamPry01CC.ps.gz.

[3] O. AUMAGE, L. BOUGÉ, L. EYRAUD, R. NAMYST. Communications efficaces au sein d’une interconnexion
hétérogène de grappes : Exemple de mise en oeuvre dans la bibliothèque Madeleine, in "Calcul réparti à
grande échelle", F. BAUDE (editor), ISBN 2-7462-0472-X, Hermès Science Paris, 2002.

[4] O. AUMAGE, L. BOUGÉ, J.-F. MÉHAUT, R. NAMYST. Madeleine II: A Portable and Efficient Communication
Library for High-Performance Cluster Computing, in "Parallel Computing", vol. 28, no 4, April 2002, p.
607–626, http://runtime.futurs.inria.fr/Download/Publis/clustercomputing2k1.ps.gz.

[5] O. AUMAGE, L. EYRAUD, R. NAMYST. Efficient Inter-Device Data-Forwarding in the Madeleine Com-
munication Library, in "Proc. 15th Intl. Parallel and Distributed Processing Symposium, 10th Hetero-
geneous Computing Workshop (HCW 2001), San Francisco", Extended proceedings in electronic form
only, Held in conjunction with IPDPS 2001, April 2001, 86, http://runtime.futurs.inria.fr/Download/Publis/
AumEyrNam00HCW2001.ps.gz.

[6] O. AUMAGE, G. MERCIER. MPICH/MadIII: a Cluster of Clusters Enabled MPI Implementation, in "Proc. 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), Tokyo", IEEE, May
2003, p. 26–35, http://runtime.futurs.inria.fr/Download/Publis/AumMer03CCGRID.ps.gz.

[7] O. AUMAGE, G. MERCIER, R. NAMYST. MPICH/Madeleine: a True Multi-Protocol MPI for High-
Performance Networks, in "Proc. 15th International Parallel and Distributed Processing Symposium (IPDPS
2001), San Francisco", Extended proceedings in electronic form only., IEEE, April 2001, 51, http://runtime.
futurs.inria.fr/Download/Publis/AumMerNam01IPDPS2001.ps.gz.

[8] L. BOUGÉ, P. HATCHER, R. NAMYST, C. PÉREZ. A multithreaded runtime environment with thread migration
for a HPF data-parallel compiler, in "The 1998 Intl Conf. on Parallel Architectures and Compilation
Techniques (PACT ’98), Paris, France", IFIP WG 10.3 and IEEE, October 1998, p. 418-425, ftp://ftp.ens-
lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-43.ps.Z.

[9] D. BUNTINAS, G. MERCIER, W. GROPP. Implementation and Shared-Memory Evaluation of MPICH2 over the
Nemesis Communication Subsystem, in "Recent Advances in Parallel Virtual Machine and Message Passing
Interface: Proc. 13th European PVM/MPI Users Group Meeting, Bonn, Germany", September 2006.

[10] V. DANJEAN, R. NAMYST, R. RUSSELL. Linux Kernel Activations to Support Multithreading, in "Proc. 18th
IASTED International Conference on Applied Informatics (AI 2000), Innsbruck, Austria", IASTED, February
2000, p. 718-723, http://runtime.futurs.inria.fr/Download/Publis/DanNamRus00IASTED.ps.gz.

[11] R. NAMYST. Contribution à la conception de supports exécutifs multithreads performants, Habilitation à
diriger des recherches, Université Claude Bernard de Lyon, pour des travaux effectués à l’école normale
supérieure de Lyon, December 2001, http://runtime.futurs.inria.fr/Download/Publis/NamystHDR.pdf.

Year Publications
Doctoral dissertations and Habilitation theses

http://runtime.futurs.inria.fr/Download/Publis/AumBouDenEyrMehMerNamPry01CC.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumBouDenEyrMehMerNamPry01CC.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/clustercomputing2k1.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumEyrNam00HCW2001.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumEyrNam00HCW2001.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumMer03CCGRID.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumMerNam01IPDPS2001.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/AumMerNam01IPDPS2001.ps.gz
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-43.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-43.ps.Z
http://runtime.futurs.inria.fr/Download/Publis/DanNamRus00IASTED.ps.gz
http://runtime.futurs.inria.fr/Download/Publis/NamystHDR.pdf

Project-Team Runtime 21

[12] S. THIBAULT. Ordonnancement de processus légers sur architectures multiprocesseurs hiérarchiques :
BubbleSched, une approche exploitant la structure du parallélisme des applications., Ph. D. Thesis, Univ.
Bordeaux 1, December 2007.

Articles in refereed journals and book chapters

[13] E. BRUNET. NewMadeleine : ordonnancement et optimisation de schémas de communication haute perfor-
mance (version étendue de Perpi’06)., in "Technique et Science Informatiques", To appear, 2008.

[14] D. BUNTINAS, G. MERCIER, W. GROPP. Implementation and Evaluation of Shared-Memory Communication
and Synchronization Operations in MPICH2 using the Nemesis Communication Subsystem, in "Parallel
Computing, Selected Papers from EuroPVM/MPI 2006", vol. 33, no 9, September 2007, p. 634–644.

[15] A. DENIS. Meta-communications in component-based communication frameworks for grids, in "Cluster
Computing", vol. 10, no DOI 10.1007/s10586-007-0036-5, June 2007, p. 253-263.

[16] B. GOGLIN, O. GLÜCK, P. V.-B. PRIMET. Interaction efficace entre les réseaux rapides et le stockage
distribué dans les grappes de calcul, in "Technique et Science Informatiques", To appear, 2008.

[17] S. THIBAULT, R. NAMYST, P.-A. WACRENIER. BubbleSched: une plate-forme pour la conception
d’ordonnanceurs de threads portables sur machines multiprocesseurs hiérarchiques, in "Technique et Science
Informatiques", To appear, 2008.

Publications in Conferences and Workshops

[18] O. AUMAGE, E. BRUNET, N. FURMENTO, R. NAMYST. NewMadeleine: a Fast Communication Scheduling
Engine for High Performance Networks, in "CAC 2007: Workshop on Communication Architecture for
Clusters, held in conjunction with IPDPS 2007, Long Beach, California, USA", Also available as LaBRI
Report 1421-07 and INRIA RR-6085, March 2007, http://hal.inria.fr/inria-00127356.

[19] O. AUMAGE, E. BRUNET, G. MERCIER, R. NAMYST. High-Performance Multi-Rail Support with the New-
Madeleine Communication Library, in "HCW 2007: the Sixteenth International Heterogeneity in Computing
Workshop, held in conjunction with IPDPS 2007, Long Beach, California, USA", March 2007, http://hal.inria.
fr/inria-00126254.

[20] F. BROQUEDIS, F. DIAKHATÉ, S. THIBAULT, O. AUMAGE, R. NAMYST, P.-A. WACRENIER. Scheduling
Dynamic OpenMP Applications over Multicore Architectures, in "Proceedings of the 22th International
Parallel and Distributed Processing Symposium (IPDPS 2008), Miami, FL", Submitted, IEEE, April 2008.

[21] B. GOGLIN. Design and Implementation of Open-MX: High-Performance Message Passing over generic Eth-
ernet hardware, in "CAC 2008: Workshop on Communication Architecture for Clusters, held in conjunction
with IPDPS 2008, Miami, FL", Submitted, IEEE, April 2008.

[22] S. MOREAUD, B. GOGLIN. Impact of NUMA Effects on High-Speed Networking with Multi-Opteron
Machines, in "The 19th IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS 2007), Cambridge, Massachussetts", November 2007, http://hal.inria.fr/inria-00175747.

[23] S. THIBAULT, F. BROQUEDIS, B. GOGLIN, R. NAMYST, P.-A. WACRENIER. An Efficient OpenMP Runtime
System for Hierarchical Architectures, in "International Workshop on OpenMP (IWOMP), Beijing,China", 6
2007, p. 148–159, http://hal.inria.fr/inria-00154502.

http://hal.inria.fr/inria-00127356
http://hal.inria.fr/inria-00126254
http://hal.inria.fr/inria-00126254
http://hal.inria.fr/inria-00175747
http://hal.inria.fr/inria-00154502

22 Activity Report INRIA 2007

[24] S. THIBAULT, R. NAMYST, P.-A. WACRENIER. Building Portable Thread Schedulers for Hierarchical
Multiprocessors: the BubbleSched Framework, in "EuroPar, Rennes,France", ACM, 8 2007, http://hal.inria.
fr/inria-00154506.

[25] F. TRAHAY, E. BRUNET, A. DENIS. A multithreaded communication engine for multicore architectures, in
"CAC 2008: Workshop on Communication Architecture for Clusters, held in conjunction with IPDPS 2008,
Miami, FL", Submitted, IEEE, April 2008.

[26] F. TRAHAY, A. DENIS, O. AUMAGE, R. NAMYST. Improving Reactivity and Communication Overlap in MPI
using a Generic I/O Manager, in "EuroPVM/MPI", F. CAPPELLO, T. HERAULT, J. DONGARRA (editors),
Lecture Notes in Computer Science, vol. Recent Advances in Parallel Virtual Machine and Message Passing
Interface, no 4757, Springer, 2007, p. 170-177, http://hal.inria.fr/inria-00177167.

Internal Reports

[27] F. BROQUEDIS. De l’exécution structurée de programmes OpenMP sur architectures hiérarchiques, Mémoire
de DEA, June 2007, http://hal.inria.fr/inria-00177150.

[28] J. CLET-ORTEGA. Ordonnancement et qualité de service pour réseaux rapides, Mémoire de DEA, June 2007,
http://hal.inria.fr/inria-00177230.

[29] F. DIAKHATÉ. Reconstruction parallèle de surfaces par partition de l’unité hiérarchique, Mémoire de DEA,
June 2007, http://runtime.futurs.inria.fr/Download/Publis/Dia07Master.pdf.

[30] S. JEULAND. Ordonnancement de threads dirigé par la mémoire sur architecture NUMA, Mémoire de DEA,
September 2007, http://hal.inria.fr/inria-00177129.

[31] S. MOREAUD. Impact des architectures multiprocesseurs sur les communications dans les grappes de calcul :
de l’exploration des effets NUMA au placement automatique, Mémoire de DEA, June 2007, http://hal.inria.fr/
inria-0017749.

References in notes

[32] Cluster-of-Clusters(CoC)-Grid Project, http://www.tu-chemnitz.de/informatik/RA/cocgrid/.

[33] GM information from Myricom, http://www.myri.com/scs/.

[34] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, June 1995, http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html.

[35] MPICH-G2: a Grid-enabled Implementation of MPI, http://www3.niu.edu/mpi/.

[36] Myrinet Express (MX): A High Performance, Low-Level, Message-Passing Interface for Myrinet, 2006, http://
www.myri.com/scs/.

[37] T. ANDERSON, B. BERSHAD, E. LAZOWSKA, H. LEVY. Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism, in "ACM Transactions on Computer Systems", vol. 10, no 1,
February 1992, p. 53-79.

http://hal.inria.fr/inria-00154506
http://hal.inria.fr/inria-00154506
http://hal.inria.fr/inria-00177167
http://hal.inria.fr/inria-00177150
http://hal.inria.fr/inria-00177230
http://runtime.futurs.inria.fr/Download/Publis/Dia07Master.pdf
http://hal.inria.fr/inria-00177129
http://hal.inria.fr/inria-0017749
http://hal.inria.fr/inria-0017749
http://www.tu-chemnitz.de/informatik/RA/cocgrid/
http://www.myri.com/scs/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www3.niu.edu/mpi/
http://www.myri.com/scs/
http://www.myri.com/scs/

Project-Team Runtime 23

[38] H. BAL, F. KAASHOEK, A. TANENBAUM. ORCA: A language for parallel programming of distributed
systems, in "IEEE Transactions on Software Engineering", vol. 18, no 3, Mar 1992, p. 190-205.

[39] P. BALAJI, H.-W. JIN, K. VAIDYANATHAN, D. K. PANDA. Supporting iWARP Compatibility and Features
for Regular Network Adapters, in "Proceedings of the Workshop on Remote Direct Memory Access (RDMA):
Applications, Implementations, and Technologies (RAIT); held in conjunction with the IEEE International
Confer ence on Cluster Computing, Boston, MA", September 2005.

[40] T. BEILSEL, E. GABRIEL, M. RESCH. An Extension to MPI for Distributed Computing on MPP’s, in
"EuroPVM/MPI ’97: Recent Advances in Parallel Virtual Machine and Message Passing Interface, Cracow,
Pologne", M. BUBACK, J. DONGARRA, J. WASNIEWSKI (editors), Lecture Notes in Computer Science, vol.
1332, Springer Verlag, novembre 1997, p. 75-83.

[41] R. BHOEDJANG, T. RUHL, H. BAL. LFC: A Communication Substrate for Myrinet, in "Fourth Annual
Conference of the Advanced School for Computing and Imaging, Lommel, Belgium", June 1998, http://
citeseer.ist.psu.edu/bhoedjang98lfc.html.

[42] T. BRANDES, F. ZIMMERMANN. ADAPTOR: A Transformation Tool for HPF Programs, in "Proceedings
of the Conference on Programming Environments for Massively Parallel Distributed Systems", Birkhauser
Verlag, April 1994, p. 91-96.

[43] J. BRIAT, I. GINZBURG, M. PASIN, B. PLATEAU. Athapascan Runtime : Efficiency for Irregular Problems,
in "Proceedings of the Euro-Par ’97 Conference, Passau, Germany", Lecture Notes in Computer Science, vol.
1300, Springer Verlag, août 1997, p. 590–599.

[44] F. CAPPELLO, D. ETIEMBLE. MPI versus MPI+OpenMP on IBM SP for the NAS Benchmarks, in "Super-
computing", 2000.

[45] M. CHRISTALLER. Athapascan-0 : vers un support exécutif pour applications parallèles irrégulières efficace-
ment portables, Ph. D. Thesis, Université Joseph Fourier, Grenoble I, Nov 1996.

[46] G. CIACCIO, G. CHIOLA. GAMMA and MPI/GAMMA on GigabitEthernet, in "Proceedings of 7th EuroPVM-
MPI conference, Balatonfured, Hongrie", Lecture Notes in Computer Science, vol. 1908, Springer Verlag,
Septembre 2000.

[47] A. DENIS, C. PÉREZ, T. PRIOL. PadicoTM: An Open Integration Framework for Communication Middleware
and Runtimes, in "Future Generation Computer Systems", vol. 19, 2003, p. 575–585, http://www.irisa.fr/paris/
Biblio/Papers/Denis/DenPerPri03FGCS.pdf.

[48] A. DENIS, C. PÉREZ, T. PRIOL. PadicoTM: An Open Integration Framework for Communication Middleware
and Runtimes, in "IEEE International Symposium on Cluster Computing and the Grid (CCGrid2002), Berlin,
Germany", IEEE Computer Society, May 2002, p. 144-151, http://www.irisa.fr/paris/Biblio/Papers/Denis/
DenPerPri02CCGRID.ps.

[49] I. FOSTER, J. GEISLER, C. KESSELMAN, S. TUECKE. Managing Multiple Communication Methods in High-
performance Networked Computing Systems, in "Journal of Parallel and Distributed Computing", vol. 40,
1997, p. 35–48.

http://citeseer.ist.psu.edu/bhoedjang98lfc.html
http://citeseer.ist.psu.edu/bhoedjang98lfc.html
http://www.irisa.fr/paris/Biblio/Papers/Denis/DenPerPri03FGCS.pdf
http://www.irisa.fr/paris/Biblio/Papers/Denis/DenPerPri03FGCS.pdf
http://www.irisa.fr/paris/Biblio/Papers/Denis/DenPerPri02CCGRID.ps
http://www.irisa.fr/paris/Biblio/Papers/Denis/DenPerPri02CCGRID.ps

24 Activity Report INRIA 2007

[50] I. FOSTER, C. KESSELMAN, S. TUECKE. The Nexus approach to integrating multithreading and communi-
cation, in "Journal of Parallel and Distributed Computing", vol. 37, 1996, p. 70-82.

[51] N. FURMENTO, G. MERCIER. Optimisation Mechanisms for MPICH-Madeleine, Also available as LaBRI
Report 1362-05, Technical Report, no 0306, INRIA, July 2005, http://hal.inria.fr/inria-00069874.

[52] G. R. GAO, T. STERLING, R. STEVENS, M. HERELD, W. ZHU. Hierarchical multithreading: programming
model and system software, in "20th International Parallel and Distributed Processing Symposium (IPDPS)",
April 2006.

[53] J.-M. GEIB, C. GRANSART, P. MERLE. CORBA : des concepts à la pratique, Inter-Editions, 1997.

[54] P. GEOFFRAY, L. PRYLLI, B. TOURANCHEAU. BIP-SMP: High Performance message passing over a cluster
of commodity SMPs, in "Supercomputing (SC ’99), Portland, OR", Electronic proceedings only, November
1999.

[55] I. GINZBURG. Athapascan-0b: Intégration efficace et portable de multiprogrammation légère et de communi-
cations, Thèse de doctorat, Institut National Polytechnique de Grenoble, LMC, Sep 1997.

[56] M. HAINES, D. CRONK, P. MEHROTRA. On the design of Chant: A talking threads package, in "Proc. of
Supercomputing’94, Washington", November 1994, p. 350-359.

[57] R. NAMYST. PM2 : un environnement pour une conception portable et une exécution efficace des applications
parallèles irrégulières, Thèse de doctorat, Univ. de Lille 1, January 1997.

[58] B. NICHOLS, D. BUTTLAR, J. FARRELL. Pthreads Programming: POSIX Standard for Better Multiprocess-
ing, 1996.

[59] S. PAKIN, V. KARAMCHETI, A. CHIEN. Fast Messages (FM: Efficient, Portable Communication for
workstation cluster and Massively-Parallel Processors, in "IEEE Concurrency", 1997.

[60] L. PRYLLI, B. TOURANCHEAU. BIP: A new protocol designed for High-Performance networking on Myrinet,
in "1st Workshop on Personal Computer based Networks Of Workstations (PC-NOW ’98), Orlando, USA",
Lecture Notes in Computer Science, vol. 1388, Springer-Verlag, Held in conjunction with IPPS/SPDP 1998.
IEEE, mars 1998, p. 472-485.

[61] T. RUHL, H. E. BAL, R. A. BHOEDJANG, K. G. LANGENDOEN, G. D. BENSON. Experience with a
Portability Layer for Implementing Parallel Programming Systems, in "International Conference on Parallel
and Distributed Processing Techniques and Applications, Sunnyvale, CA", August 1996, p. 1477-1488.

[62] H. TEZUKA, A. HORI, Y. ISHIKAWA, M. SATO. PM: An Operating System Coordinated High Performance
Communication Library, in "Proceedings of High Performance Computing and Networks (HPCN’97)",
Lecture Notes in Computer Science, vol. 1225, Springer Verlag, Avril 1997, p. 708-717.

[63] S. THIBAULT. A Flexible Thread Scheduler for Hierarchical Multiprocessor Machines, in "Second Inter-
national Workshop on Operating Systems, Programming Environments and Management Tools for High-
Performance Computing on Clusters (COSET-2), Cambridge / USA", ICS / ACM / IRISA, 06 2005, http://hal.
inria.fr/inria-00000138/en/.

http://hal.inria.fr/inria-00069874
http://hal.inria.fr/inria-00000138/en/
http://hal.inria.fr/inria-00000138/en/

Project-Team Runtime 25

[64] S. THIBAULT. Un ordonnanceur flexible pour machines multiprocesseurs hiérarchiques, in "16ème Rencon-
tres Francophones du Parallélisme 16ème Rencontres Francophones du Parallélisme, Le Croisic / France",
ACM/ASF - École des Mines de Nantes, 04 2005, http://hal.inria.fr/inria-00000137/en/.

http://hal.inria.fr/inria-00000137/en/

