
c t i v i t y

te p o r

2008

THEME ALGORITHMICS, PROGRAMMING, SOFTWARE AND ARCHITECTURE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Abstraction

Abstract Interpretation

Paris - Rocquencourt

http://www.inria.fr/recherche/equipes/listes/theme_Algorithmics, Programming, Software and Architecture.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/abstraction.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Overall Objectives 1
2.2. Highlights of the Year 2

3. Scientific Foundations .2
3.1. Abstract Interpretation Theory 2
3.2. Formal Verification by Abstract Interpretation 3
3.3. Advanced Introductions to Abstract Interpretation 4

4. Application Domains .4
4.1. Certification of Safety Critical Software 4
4.2. Security Protocols 5
4.3. Abstraction of Biological Cell Signalling Networks 5

5. Software . 5
5.1. The Astrée Static Analyzer 5
5.2. The Apron Numerical Abstract Domain Library 6
5.3. Translation Validation 7
5.4. ProVerif 7
5.5. CryptoVerif 8

6. New Results . 9
6.1. Abstract Semantics of Grammars 9
6.2. Abstract Semantics of Resolution-Based Logic Languages 9
6.3. Bi-inductive Definitions and Bifinitary Semantics of the Eager Lambda-Calculus 9
6.4. Verification of Security Protocols in the Formal Model 10

6.4.1. Case Study: the Secure Storage System Plutus 10
6.4.2. Extensions of ProVerif 10

6.5. Verification of Security Protocols in the Computational Model 10
6.5.1. Computationally Sound Mechanized Proofs for Basic and Public-key Kerberos 10
6.5.2. Extensions of CryptoVerif 11

6.6. Verification of Security Protocols: Formal Model and Computational Model 11
6.7. Analysis of Biological Pathways 11

6.7.1. Reachable Species Analysis 11
6.7.2. Automatic Reduction of Differential Semantics 11
6.7.3. Rule-based Modelling of Biological Systems 12

6.8. Relational Inductive Shape Analysis 12
6.9. Analysis of Buffer Overruns 12
6.10. Analysis of Multithreaded Programs 13

6.10.1. Happens-Before Memory Model 13
6.10.2. Determinism 13
6.10.3. Application to Java Bytecode Language 13

6.11. Boolean Flags in the Polyhedron Abstract Domain 13
6.12. Sound Floating-Point Polyhedra Domain 13
6.13. A Reduced Disjunctive Extension for Temporal Abstract Domains 14
6.14. Static Analysis of Communicating Imperfectly-Clocked Synchronous Systems Using

Continuous-Time Abstract Domains 14
7. Contracts and Grants with Industry . 14

7.1. ES_PASS Contract 14
7.2. SSVAI Contract 15
7.3. Asbaprod Contract 15
7.4. Controvert ANR 15

2 Activity Report INRIA 2008

7.5. FormaCrypt ARA 15
7.6. Contract with CELAR 16
7.7. Thésée ANR 16

8. Dissemination . 16
8.1. Interaction with the Scientific Community 16

8.1.1. Academy Members, Professional Societies 16
8.1.2. Collective Responsibilities 16
8.1.3. Editorial Boards and Program Committees 16
8.1.4. PhD and Habilitation Juries 17

8.2. Teaching 17
8.2.1. Supervision of PhDs and Internships 17
8.2.2. Training 17
8.2.3. Graduate Courses 17
8.2.4. Undergraduate Courses 18

8.3. PhD theses 18
8.4. Habilitation theses 18
8.5. Monographs 18
8.6. Participation in Conferences and Seminars 18

8.6.1. Participation in Conferences 18
8.6.2. Invitations and Participation in Seminars 20

8.7. Short-Term Visitors 21
9. Bibliography .21

1. Team
Research Scientist

Bruno Blanchet [CR, CNRS, HdR]
Radhia Cousot [DR, CNRS, HdR]
Jérôme Feret [CR, INRIA Paris–Rocquencourt]
Antoine Miné [CR, CNRS]
Xavier Rival [CR, INRIA Paris–Rocquencourt]

Faculty Member
Patrick Cousot [Team leader, Professor/Professeur, ENS, HdR]
Laurent Mauborgne [Assistant Professor/Maître de conférences, ENS, HdR]

Technical Staff
Élodie-Jane Sims [Research engineer, ENS]

PhD Student
Julien Bertrane
Guillaume Capron
Pietro Ferrara

Post-Doctoral Fellow
Axel Simon [University of Kent]

Visiting Scientist
Roberto Giacobazzi [Università di Verona, June — Aug. 2008]

Administrative Assistant
Joëlle Isnard [Administrative Head DI, ENS]
Elisabeth Baque [INRIA, 16 Oct. 2008 —]
Nathalie Gaudechoux [INRIA, — 23 March. 2008]
Emmanuelle Grousset [INRIA, 13 March. 2008 — 15 Oct. 2008]
Nelly Maloisel [INRIA, 24 March. 2008 —]

Other
Ferdinanda Camporesi [Università di Bologna, — 31 March 2008]
Liqian Chen [National University of Defense Technology, — 30 Sept. 2008]
David Durrleman [ENS, —30 Jan. 2008]

2. Overall Objectives

2.1. Overall Objectives
Software has known a spectacular development this last decade both in its scope of applicability and its size.
Nevertheless, software design and development methods remain mostly manual, hence error-prone. It follows
that complex software-based systems are unsafe and insecure, which is not acceptable in safety-critical or
mission-critical applications. Intellectual and computer-based tools must therefore be developed to cope with
the safety and security problems.

The notions of abstraction and approximation, as formalized by the abstract interpretation theory, are
fundamental to design, model, develop, analyze, and verify highly complex systems, from computer-based
to biological ones. They also underlie the design of safety and security verification tools.

2 Activity Report INRIA 2008

2.2. Highlights of the Year

In 2008, the abstract interpretation community celebrated the 30 years of Abstract Interpretation during a one
day workshop in San Francisco, USA. Fourteen speakers from eleven countries gave a broad overview of the
global spread of abstract interpretation worldwide during the last 30 years. The publication of the English
translation of Patrick Cousot’s Thesis is ongoing.

Figure 1.

Bruno Blanchet defended his habilitation à diriger des recherches on November 26. His report [12] summa-
rizes his work on the verification of security protocols, which essentially consists in designing and implement-
ing the two protocol verifiers PROVERIF (Section 5.4) and CRYPTOVERIF (Section 5.5). PROVERIF is already
widely used. CRYPTOVERIF is more recent and starts being used by others; it is the first automatic protocol
verifier that is sound in the computational model.

Patrick Cousot has received a Humboldt Research Award 2008.

3. Scientific Foundations

3.1. Abstract Interpretation Theory
The abstract interpretation theory [80], [6], [85] is the main scientific foundation of the work of the ABSTRAC-
TION project-team. Its main current application is on the safety and security of complex hardware and software
computer systems.

http://30yai.di.univr.it/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/

Project-Team Abstraction 3

Abstract interpretation is a theory of sound approximation of mathematical structures, in particular those
involved in the behavior of computer systems. It allows the systematic derivation of sound methods and
algorithms for approximating undecidable or highly complex problems in various areas of computer science
(semantics, verification and proof, model-checking, static analysis, program transformation and optimization,
typing, software steganography, etc...).

3.2. Formal Verification by Abstract Interpretation
The formal verification of a program (and more generally a computer system) consists in proving that its
semantics (describing “what the program executions actually do”) satisfies its specification (describing “what
the program executions are supposed to do”).

Abstract interpretation formalizes the idea that this formal proof can be done at some level of abstraction
where irrelevant details about the semantics and the specification are ignored. This amounts to proving that an
abstract semantics satisfies an abstract specification. An example of abstract semantics is Hoare logic while
examples of abstract specifications are invariance, partial, or total correctness. These examples abstract away
from concrete properties such as execution times.

Abstractions should preferably be sound (no conclusion derived from the abstract semantics is wrong with
respect to the program concrete semantics and specification). Otherwise stated, a proof that the abstract
semantics satisfies the abstract specification should imply that the concrete semantics also satisfies the concrete
specification. Hoare logic is a sound verification method, debugging is not (since some executions are left out),
bounded model checking is not either (since parts of some executions are left out). Unsound abstractions lead
to false negatives (the program may be claimed to be correct/non erroneous with respect to the specification
whereas it is in fact incorrect). Abstract interpretation can be used to design sound semantics and formal
verification methods.

Abstractions should also preferably be complete (no aspect of the semantics relevant to the specification
is left out). So if the concrete semantics satisfies the concrete specification this should be provable in the
abstract. However program proofs (for non-trivial program properties such as safety, liveness, or security) are
undecidable, and so, automatic tools for reasoning about programs are all either unsound or incomplete, or
they may not terminate, or they require human intervention. Nevertheless, we can design tools that address
undecidable problems by allowing the tool not to terminate, to be driven by human intervention, to be unsound
(e.g. debugging tools omit possible executions), or to be incomplete (e.g. static analysis tools may produce
false alarms). Incomplete abstractions lead to false positives or false alarms (the specification is claimed to be
potentially violated by some program executions while it is not). Semantics and formal verification methods
designed by abstract interpretation may be complete (e.g. [83], [84]) or incomplete (e.g. [2]).

Sound, automatic, terminating and precise tools are difficult to design. Complete tools to solve non-trivial
verification problems are impossible to design, by undecidability. However static analysis tools producing very
few or no false alarms have been designed and used in industrial contexts for specific families of properties
and programs [86]. In all cases, abstract interpretation provides a systematic construction method based on the
effective approximation of the concrete semantics, which can be (partly) automated and/or formally verified.

Abstract interpretation aims at:

• providing a basic coherent and conceptual theory for understanding in a unified framework the
thousands of ideas, concepts, reasonings, methods, and tools on formal program analysis and
verification [6], [85];

• guiding the correct formal design of automatic tools for program analysis (computing an abstract
semantics) and program verification (proving that an abstract semantics satisfies an abstract specifi-
cation) [81].

Abstract interpretation theory studies semantics (formal models of computer systems), abstractions, their
soundness, and completeness.

4 Activity Report INRIA 2008

In practice, abstract interpretation is used to design analysis, compilation, optimization, and verification tools
which must automatically and statically determine properties about the runtime behavior of programs. For
example the ASTRÉE static analyzer (Section 5.1), which was developed by the team over the last seven years,
aims at proving the absence of runtime errors in programs written in the C programming language. It is used
in the avionics industry to verify very large, synchronous, time-triggered, real-time, safety-critical, embedded
software.

3.3. Advanced Introductions to Abstract Interpretation
The informal presentation “Abstract Interpretation in a Nutshell” aims at providing a short intuitive introduc-
tion to the theory. A more comprehensive introduction to abstract interpretation is available online1. The paper
entitled “Basic concepts of abstract interpretation” [82] and an elementary “course on abstract interpretation”2

can also be found on the web.

4. Application Domains

4.1. Certification of Safety Critical Software
Keywords: absence of runtime error, abstract interpretation, certified compilation, static analysis, translation
validation, verifier.

Safety critical software may incur great damage in case of failure, such as human casualties or huge financial
losses. These include many kinds of embedded software, such as fly-by-wire programs in aircrafts and other
avionic applications, control systems for nuclear power plants, or navigation systems of satellite launchers.
For instance, the failure of the first launch of Ariane 5 (flight Ariane 501) was due to overflows in arithmetic
computations. This failure caused the loss of several satellites, worth up to $ 500 millions.

This development of safe and secure critical software requires formal methods so as to ensure that they do
not go wrong, and will behave as specified. In particular, testing or bug finding methods do not provide any
guarantee that no failure will occur, even of a given type such as runtime errors; therefore, their scope is
limited for certification purposes. For instance, testing can usually not be performed for all possible inputs due
to feasibility and cost reasons, so that it does not prove anything about a large number of possible executions.

By contrast, sound program analysis methods such as abstract-interpretation-based static analysis are able
to cope with these programs, since they can prove the absence of bugs. Yet, these techniques are generally
incomplete since the absence of runtime errors is undecidable in practice; therefore, they are prone to false
alarms (i.e., they may fail to prove the absence of runtime errors for a program which is safe).

It should be noted that, due to the size of the critical codes (typically from 100 to 1000 kLOCs), only scalable
methods can succeed (in particular, software model checking techniques are subject to state explosion issues).
As a consequence, this domain requires efficient static analyses, where costly abstractions should be used only
parsimoniously.

Furthermore, many families of critical software have similar features, such as the reliance on floating point
intensive computations for the implementation of control laws, including linear and non-linear control with
feedback, interpolations, and other DSP algorithms. Since we stated that a proof of absence of runtime errors is
required, very precise analyses are required, which should be able to yield no false alarm (hence, producing a
full proof of absence of runtime error) on wide families of critical applications. To achieve that goal, significant
advantages can be found in the design of domain specific analyzers, such as ASTRÉE [79], [87], which has
been initially designed specifically for synchronous embedded software.

1http://www.di.ens.fr/~cousot/AI/
2http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/AI/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Project-Team Abstraction 5

Last, some specific critical software qualification procedures may require additional properties being proved.
As an example, the DO-178 regulations (which apply to avionics software) require a tight, documented, and
certified relation to be established between each development stage. In particular, compilation of high level
programs into executable binaries should also be certified correct.

The ABSTRACTION project-team has been working on both proof of absence of runtime errors and certified
compilation for seven years, using abstract interpretation techniques. Successful results have been achieved on
industrial applications. The ABSTRACTION project-team has strong plans to continue research on this topic
and to industrialize ASTRÉE, which should be commercially available in the near future.

4.2. Security Protocols
Keywords: formal model, security protocols, verifier.

Security protocols use cryptography in order to guarantee the security of exchanges over an insecure network,
such as the Internet. The design of security protocols is notoriously error-prone: errors have been found in
many published protocols. Security errors can have serious consequences, such as loss of money in the case of
electronic commerce. Moreover, security errors cannot be detected by testing, because they appear only in the
presence of a malicious adversary. Security protocols are therefore an important area for formal verification.

The work of the ABSTRACTION project-team on security protocols has led to the development of two suc-
cessful automatic protocol verifiers, PROVERIF in the formal model and CRYPTOVERIF in the computational
model, and we plan to pursue research on this topic, in particular with extensions to CRYPTOVERIF.

4.3. Abstraction of Biological Cell Signalling Networks
Keywords: biology, health, static analysis.

Protein-protein interactions consist in complexations and post translational modifications such as phospho-
rilation. These interactions enable biological organisms to receive, propagate, and integrate signals that are
expressed as proteins concentrations in order to make decisions (on the choice between cell division and cell
death for instance). Models of such interaction networks suffer from a combinatorial blow up in the number
of species (number of non-isomorphic ways in which some proteins can be connected to each others). This
large number of species makes the design and the analysis of these models a highly difficult task. Moreover
the properties of interest are usually quantitative observations on stochastic or differential trajectories, which
are difficult to compute or abstract.

Contextual graph-rewriting systems allow a concise description of these networks, which leads to a scalable
method for modelling them. Then abstract interpretation allows the abstraction of these systems properties.
First qualitative abstractions (such as over approximation of complexes that can be built) provide both
debugging information in the design phases (of models) and static information that are are necessary in order
to make other computations (such as stochastic simulations) scale up. Then qualitative invariants also drive
efficient quantitative abstractions (such as the reduction of ordinary differential semantics).

The work of the ABSTRACTION project-team on biological cell signalling networks ranges from qualitative
abstraction to quantitative abstraction.

5. Software

5.1. The Astrée Static Analyzer
Keywords: absence of runtime error, abstract interpretation, static analysis, verifier.

Participants: Patrick Cousot [project leader, correspondant], Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, Xavier Rival, Bruno Blanchet [Nov. 2001–Nov. 2003], David Monniaux [Nov.
2001–Aug. 2007].

http://www.astree.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

6 Activity Report INRIA 2008

The ASTRÉE static analyzer [79], [87] www.astree.ens.fr aims at proving the absence of runtime errors in
programs written in the C programming language.

ASTRÉE analyzes structured C programs, with complex memory usages, but without dynamic memory
allocation and recursion. This encompasses many embedded programs as found in earth transportation, nuclear
energy, medical instrumentation and aerospace applications, in particular synchronous control/command. The
whole analysis process is entirely automatic.

ASTRÉE discovers all runtime errors including:

• undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or
out of bounds array indexing);

• any violation of the implementation specific behavior as defined in the relevant Application Binary
Interface (such as the size of integers and arithmetic overflows);

• any potentially harmful or incorrect use of C violating optional user-defined programming guidelines
(such as no modular arithmetic for integers, even though this might be the hardware choice);

• user defined assertions.

The analyzer performs an abstract interpretation of the programs being analyzed, using a parametric domain
(ASTRÉE is able to choose the right instantiation of the domain for wide families of software). This analysis
produces abstract invariants, which over-approximate the reachable states of the program, so that it is possible
to derive an over-approximation of the dangerous states (defined as states where any runtime error mentioned
above may occur) that the program may reach, and produces alarms for each such possible runtime error. Thus
the analysis is sound (it correctly discovers all runtime errors), yet incomplete, that is it may report false alarms
(i.e., alarms that correspond to no real program execution). However, the design of the analyzer ensures a high
level of precision on domain-specific families of software, which means that the analyzer produces few or no
false alarms on such programs.

In order to achieve this high level of precision, ASTRÉE uses a large number of expressive abstract domains,
which allow expressing and inferring complex properties about the programs being analyzed, such as
numerical properties (digital filters, floating point computations), boolean control properties, and properties
based on the history of program executions.

ASTRÉE has achieved the following two unprecedented results:

• A340–300. In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any
RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon 64 using 580 Mb of memory).

• A380. From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes then in
development and test for the A380 series. The operational application by Airbus France at the end
of 2004 was just in time before the A380 maiden flight on Wednesday, 27 April, 2005.

These research and development successes have led to consider the inclusion of ASTRÉE in the production of
the critical software for the A350.

5.2. The Apron Numerical Abstract Domain Library
Keywords: convex polyhedron, interval, linear equality numerical abstract domain, octagon.

Participants: Antoine Miné [correspondant], Bertrand Jeannet [team PopArt, INRIA-RA].

The APRON library is dedicated to the static analysis of the numerical variables of a program by abstract
interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under a common API for
analysis implementers, encourage the research in numerical abstract domains by providing a platform for
integration and comparison, and provide a teaching and demonstration tool to disseminate knowledge on
abstract interpretation.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://apron.cri.ensmp.fr/library/

Project-Team Abstraction 7

The APRON library is not tied to a particular numerical abstraction but instead provides several domains
with various precision versus cost trade-offs (including intervals, octagons, linear equalities and polyhedra). A
specific C API was designed for domain developers to minimize the effort when incorporating a new abstract
domain: only few domain-specific functions need to be implemented while the library provides various generic
services and fallback methods (such as scalar and interval operations for most numerical data-types, parametric
reduced products, and generic transfer functions for non-linear assignments). For the analysis designer, the
APRON library exposes a higher-level, richer, API, with C, C++, and OCaml bindings.

The APRON library is freely available on the web at http://apron.cri.ensmp.fr/library under the LGPL license.
In order to help disseminate the knowledge in abstract interpretation, a simple inter-procedural static ana-
lyzer for a toy language is included. An on-line version is deployed at http://pop-art.inrialpes.fr/interproc/
interprocweb.cgi.

The APRON library is developed since 2006 and currently consists of 86 000 lines of C, C++, and OCaml.
This year has seen the release of version 0.9.9. The main addition is the support for arbitrary precision floats
through the MPFR library. This enables floating-point capable domains (such as intervals and octagons) to use
arbitrary precision, and adds the MPFR data-types to the API and support libraries.

Current external library users include the Proval/Démon team (LRI Orsay, France), the Analysis of Computer
Systems Group (New-York University, USA), the Sierum software analysis platform (Kansas State University,
USA), NEC Labs (Princeton, USA), EADS CCR (Paris, France), IRIT (Toulouse, France), ONERA (Toulouse,
France), CEA LIST (Saclay, France), VERIMAG (Grenoble, France), ENSMP CRI (Fontainebleau, France).

5.3. Translation Validation
Keywords: abstract interpretation, certified compilation, static analysis, translation validation, verifier.

Participant: Xavier Rival [correspondant].

The main goal of this software project is to make it possible to certify automatically the compilation of large
safety critical software, by proving that the compiled code is correct with respect to the source code: When the
proof succeeds, this guarantees that no compiler bug did cause incorrect code be generated. Furthermore, this
approach should allow to meet some domain specific software qualification criteria (such as those in DO-178
regulations for avionics software), since it allows proving that successive development levels are correct with
respect to each other i.e., that they implement the same specification. Last, this technique also justifies the use
of source level static analyses, even when an assembly level certification would be required, since it establishes
separately that the source and the compiled code are equivalent.

The compilation certification process is performed automatically, thanks to a prover designed specifically. The
automatic proof is done at a level of abstraction which has been defined so that the result of the proof of
equivalence is strong enough for the goals mentioned above and so that the proof obligations can be solved by
efficient algorithms.

The current software features both a C to Power-PC compilation certifier and an interface for an alternate
source language frontend, which can be provided by an end-user.

5.4. ProVerif
Keywords: formal model, security protocols, verifier.

Participants: Bruno Blanchet [correspondant], Xavier Allamigeon [April–July 2004].

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://apron.cri.ensmp.fr/library/

8 Activity Report INRIA 2008

PROVERIF (www.proverif.ens.fr) is an automatic security protocol verifier, in the formal model (so called
Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

• It can handle many different cryptographic primitives, including shared- and public-key cryptogra-
phy (encryption and signatures), hash functions, and Diffie-Hellman key agreements, specified both
as rewrite rules or as equations.

• It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded
message space. This result has been obtained thanks to some well-chosen approximations. This
means the verifier can give false attacks, but if it claims that the protocol satisfies some property,
then the property is actually satisfied. PROVERIF also provides attack reconstruction: when it cannot
prove a property, it tries to reconstruct an attack, that is, an execution trace of the protocol that
falsifies the desired property.

The PROVERIF verifier can prove the following properties:

• secrecy (the adversary cannot obtain the secret);

• authentication and more generally correspondence properties, of the form “if an event has been
executed, then other events have been executed as well”;

• strong secrecy (the adversary does not see the difference when the value of the secret changes);

• equivalences between processes that differ only by terms;

PROVERIF has been used by researchers for studying various kinds of protocols, including electronic voting
protocols, certified email protocols, and zero-knowledge protocols. It has been used as a back-end for the tool
TULAFALE implemented at Microsoft Research Cambridge, which verifies web services protocols. It has also
been used as a back-end for verifying implementations of protocols in F# (a dialect of ML included in .NET),
by Microsoft Research Cambridge.

PROVERIF is freely available on the web, at www.proverif.ens.fr, under the GPL license.

5.5. CryptoVerif
Keywords: computational model, security protocols, verifier.

Participant: Bruno Blanchet [correspondant].

CRYPTOVERIF (www.cryptoverif.ens.fr) is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CRYPTOVERIF can prove:

• secrecy [13];

• correspondences [77], which include in particular authentication; this is the main extension imple-
mented this year.

CRYPTOVERIF provides a generic mechanism for specifying the security assumptions on cryptographic
primitives, which can handle in particular symmetric encryption, message authentication codes, public-key
encryption, signatures, hash functions.

The generated proofs are proofs by sequences of games, as used by cryptographers. These proofs are valid
for a number of sessions polynomial in the security parameter, in the presence of an active adversary.
CRYPTOVERIF can also evaluate the probability of success of an attack against the protocol as a function
of the probability of breaking each cryptographic primitive and of the number of sessions (exact security).

CRYPTOVERIF is still at a rather early stage of development, but it has already been used for a study of
Kerberos in the computational model and a project for using it as a back-end for verifying implementations of
protocols in F# is starting at Microsoft Research Cambridge.

http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

Project-Team Abstraction 9

CRYPTOVERIF is freely available on the web, at www.cryptoverif.ens.fr, under the CeCILL license.

6. New Results

6.1. Abstract Semantics of Grammars
Keywords: abstract semantics, bottom-up semantics, context-free grammar, grammar flow analysis, grammar
problem, parsing, top-down semantics.

Participants: Patrick Cousot, Radhia Cousot.

We have introduced abstract interpretations of a fixpoint protoderivation semantics defining the maximal
derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is
a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language
semantics and including Knuth grammar problems, classical grammar flow analysis algorithms, and parsing
algorithms [84], [15].

6.2. Abstract Semantics of Resolution-Based Logic Languages
Keywords: Herbrand semantics, abstract semantics, bottom-up semantics, logic programming, parsing, s-
semantics, top-down semantics.

Participants: Patrick Cousot, Radhia Cousot.

The abstract interpretation point of view on context-free grammars has been extended to resolution-based
logic programs and proof systems in [58]. Starting from a transition-based small-step operational semantics
of PROLOG-like programs (akin to the Warren Machine), we consider maximal infinite derivations for
the transition system from most general goals. This semantics is abstracted by instantiation to terms and
furthermore to ground terms, following the so called c and s-semantics approach. Orthogonally, these sets
of derivations can be abstracted to SLD-trees, call patterns and models, as well as interpreters providing
effective implementations (such as PROLOG or lazy PROLOG). These semantics can be presented in bottom-
up fixpoint form. This abstract interpretation-based construction leads to classical bottom-up semantics (such
as the s-semantics of computed answers of Giorgio Levi, the c-semantics of correct answers of Keith Clark,
and the minimal-model semantics of logical consequences of Maarten van Emden and Robert Kowalski). The
approach is general and can be applied to infinite and top-down semantics.

6.3. Bi-inductive Definitions and Bifinitary Semantics of the Eager
Lambda-Calculus
Keywords: bi-inductive definition, big-step semantics, divergence, inductive definition, natural semantics,
operational semantics, relational semantics, small-step semantics, structural semantics.

Participants: Patrick Cousot, Radhia Cousot.

We have introduced an order-theoretic generalization of set-theoretic inductive definitions. This generalization
covers inductive, co-inductive, and bi-inductive definitions, including non-monotonic ones, and is preserved by
abstraction. This allows the structural operational semantics to describe simultaneously the finite/terminating
and infinite/diverging behaviors of programs. This is illustrated on the structural bifinitary semantics of the
call-by-value λ-calculus at various levels of abstraction including small/big-step trace/relational/operational
semantics [14].

http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

10 Activity Report INRIA 2008

6.4. Verification of Security Protocols in the Formal Model
The formal model of protocols, or Dolev-Yao model is an abstract model in which messages are represented by
terms. Our protocol verifier PROVERIF relies on this model. The paper by Bruno Blanchet on the verification
of correspondence properties in PROVERIF [77] written last year is now to appear in the Journal of Computer
Security. This year, we have finished our case study of the filesystem Plutus and have implemented several
extensions of PROVERIF.

6.4.1. Case Study: the Secure Storage System Plutus
Keywords: automatic verification, lazy revocation, secure storage, security protocols.

Participants: Bruno Blanchet, Avik Chaudhuri [University of California, Santa Cruz].

We have studied formal security properties of the state-of-the-art protocol for secure file sharing on untrusted
storage Plutus, in the automatic protocol verifier PROVERIF. As far as we know, this is the first automated
formal analysis of a secure storage protocol. The protocol used as the basis of Plutus features a number of
interesting schemes like lazy revocation and key rotation. These schemes improve the protocol’s performance,
but complicate its security properties. Our analysis clarifies several ambiguities in the design and reveals
some unknown attacks on the protocol. We propose corrections, and prove precise security guarantees for the
corrected protocol [19].

6.4.2. Extensions of ProVerif
Keywords: attack reconstruction, automatic verification, security protocols.

Participant: Bruno Blanchet.

In the frame of a contract with CELAR (see Section 7.6), we have implemented several extensions of
PROVERIF. We have improved the display of Horn clauses generated by PROVERIF and of the derivations
from these clauses by providing explanations in English that relate the clauses to the process that represents
the protocol. We have implemented the reconstruction of attacks for protocols that rely on weak secrets (such
as passwords), so that, when the weak secret is subject to an off-line guessing attack, PROVERIF can now,
in most cases, provide an explicit description of how to mount the attack in the form of a trace of the
process that provides enough knowledge for the adversary to mount the attack. We have also implemented
the reconstruction of attacks for strong secrecy. Strong secrecy means that the adversary cannot distinguish
when the value of a secret changes. When strong secrecy does not hold, PROVERIF can, in most cases, provide
a trace up to a point at which the process behaves differently depending on the value of the secret (for instance,
a test in the process yields a different result). Note that the existence of such a trace does not necessarily prove
that strong secrecy is wrong: the difference of behavior of the process may not be visible to the adversary (for
instance, the two branches of a test may not be distinguishable by the adversary). Providing this trace is still
very helpful for the user to understand why the proof failed and whether the problem corresponds to a real
attack. We have finally improved the display of traces by providing information on where in the process each
action of the trace is executed.

6.5. Verification of Security Protocols in the Computational Model
The computational model of protocols considers messages as bitstrings, which is more realistic than the formal
model, but also makes the proofs more difficult. Our verifier CRYPTOVERIF is sound in this model. This year,
we have finished our case study of Kerberos and have implemented some extensions of CRYPTOVERIF.

6.5.1. Computationally Sound Mechanized Proofs for Basic and Public-key Kerberos
Keywords: Kerberos, automatic verification, computational model, key usability, security protocols.

Participants: Bruno Blanchet, Aaron Jaggard [Rutgers University], Andre Scedrov [University of Pennsylva-
nia], Joe-Kai Tsay [University of Pennsylvania].

http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

Project-Team Abstraction 11

We have done a computationally sound mechanized analysis of Kerberos 5, both with and without its
public-key extension PKINIT. We have proved authentication and key secrecy properties using the prover
CRYPTOVERIF, which works directly in the computational model; these are the first mechanical proofs of
a full industrial protocol at the computational level. We also generalize the notion of key usability and use
CRYPTOVERIF to prove that this definition is satisfied by keys in Kerberos [20].

6.5.2. Extensions of CryptoVerif
Keywords: automatic verification, computational model, security protocols.

Participant: Bruno Blanchet.

We have implemented some improvements in the proof strategy of CRYPTOVERIF, in particular to make the
proof of public-key protocols fully automatic in most cases. We automate the case distinction between the
cases in which the interlocutor is honest or dishonest. We also allow the simplification of games to suggest
case distinctions that can lead to further simplifications. Finally, we allow backtracking, since the success or
failure of the proof may depend on the order of application of the security assumptions of primitives, when
several cryptographic primitives are used.

We also provide a library that defines the most frequent cryptographic primitives, so that the user can include
these primitives without having to redefine them.

6.6. Verification of Security Protocols: Formal Model and Computational
Model
Keywords: automatic verification, computational model, formal model, security protocols.

Participant: Bruno Blanchet.

Bruno Blanchet has written his habilitation à diriger des recherches on the verification of security protocols.
His report [12] summarizes his work on this topic, which essentially consists in designing and implementing
the two protocol verifiers PROVERIF (Section 5.4) and CRYPTOVERIF (Section 5.5). He defended it on
November 26, 2008.

6.7. Analysis of Biological Pathways
We have introduced a framework to design and analyze biological networks. We focus on protein-protein
interaction networks described as graph rewriting systems. Such networks can be used to model some
signalling pathways that control the cell cycle. The task is made difficult due to the combinatorial blow up
in the number of reachable species (i.e. non-isomorphic connected components of proteins).

6.7.1. Reachable Species Analysis
Keywords: biology, protein-protein interaction networks, qualitative properties, verification.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana [Harvard Medical
School], Jean Krivine [Harvard Medical School].

We have developed an abstract interpretation-based framework to compute an over-approximation of the
reachable species in protein-protein interaction networks, that is based on abstractions developed for mobile
systems in [89], [90], [7], and [91].

We show several applications of this framework in [92]. In [25], we give a characterization of a class of protein-
protein interaction networks for which our analysis is complete. Most networks encountered in signaling fit
this characterization, which gives new insights in Systems Biology to robustness and evolvability.

6.7.2. Automatic Reduction of Differential Semantics
Keywords: biology, differential semantics, protein-protein interaction networks, verification.

http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/

12 Activity Report INRIA 2008

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana [Harvard Medical
School], Jean Krivine [Harvard Medical School], Russel Harmer [Paris VII].

We have developed an abstract interpretation-based framework that enables the computation of scalable differ-
ential semantics for protein-protein interaction networks. This framework uses indistinguishably techniques in
order to detect and prove that some potential correlations between the states of some distinct parts in protein
species have no impact on the dynamic of the networks. These information drive the computation of an ab-
stract differential system over a set of self-consistent abstract observables. Results are sound since trajectories
in the abstract system are projections of the trajectories in the concrete system. This framework gives new
insights in order to describe evolution between systems: indeed several networks can be compared according
to the relative amount of control between protein-protein interactions.

This framework has been presented in [60], [62], [64], and [63]. This framework is also submitted to a journal.

6.7.3. Rule-based Modelling of Biological Systems
Keywords: biology, concurrency, protein-protein interaction networks, refinements.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana [Harvard Medical
School], Jean Krivine [Harvard Medical School], Russel Harmer [Paris VII].

We have proposed a formal framework to refine rule-based protein-protein interaction networks while pre-
serving their stochastic and their differential semantics. Refinements is a key process in rule-based modelling.
Refining an interaction allows tuning the kinetics of an interaction according to some constraints in the context
of the interacting proteins.

In [24], we propose a framework to make homogeneous refinements. In such a homogeneous refinement, the
accuracy of the refinement is the same for each protein of a given type. We use such refinement process in [88]
to model a repair scheme for the ADN.

6.8. Relational Inductive Shape Analysis
Keywords: absence of runtime error, inductive definitions, memory abstraction, relational abstraction, shape
analysis, static analysis, symbolic abstract domains.

Participants: Bor-Yuh Evan Chang [University of California at Berkeley], Xavier Rival.

Developer-supplied data structure specifications are important to shape analyses, as they tell the analysis what
information should be tracked in order to obtain the desired shape invariants. We observe that data structure
checking code (e.g., used in testing or dynamic analysis) provides shape information that can also be used in
static analysis.

We extended the parametric abstract domain proposed in [78] for lightweight automatic shape analysis so as
to express properties about relations among shape properties (such as doubly-linked list structures) and also
between shape properties and numerical properties (as in search trees or in balanced trees) [21].

The class of inductive definitions that can be used in our analysis is very broad. As a consequence, complex
relations among abstract elements sometimes need be infered, so that a powerful reduction operator is needed.
We designed a simple such operator [75], which has not been implemented yet. The principle of this operator
is to perform an abstract interpretation of inductive definitions using our analysis parametered with other
inductive definitions, so as to prove implication properties among them.

6.9. Analysis of Buffer Overruns
Keywords: automatic verification, relational domains, static analysis.

Participants: Pietro Ferrara, Francesco Logozzo [Microsoft Research, Redmond], Manuel Fähndrich [Mi-
crosoft Research, Redmond].

Project-Team Abstraction 13

We have introduced Stripes, a new relational domain to analyze buffer overruns when directly accessing
memory in unsafe code in the .Net framework. We have combined it with both the interval and the linear
equalities domain, in order to increase the precision of the analysis. We have implemented it in Clousot, a
generic static analyzer; the resulting analysis is both scalable and precise [29].

6.10. Analysis of Multithreaded Programs
We have introduced a generic framework in order to statically analyze multithreaded programs. We have
proposed a new property in order to discover unordered communications, and we have applied it to the analysis
of Java programs.

6.10.1. Happens-Before Memory Model
Keywords: automatic verification, memory model, multithreaded programs.

Participant: Pietro Ferrara.

Memory models define which behaviors are allowed during the execution of a multithreaded program. We
have defined, in a fixpoint form, the happens-before memory model, and then we have abstracted it with a
computable semantics. Our approach is generic w.r.t. the programming language, the numerical domain, and
the analyzed property [28].

6.10.2. Determinism
Keywords: automatic verification, determinism, multithreaded programs.

Participant: Pietro Ferrara.

Developing and reasoning about multithreaded programs is particularly difficult because of random interleav-
ing during the execution of threads. We have defined a static analysis of a new deterministic property aimed at
discovering such behaviors. This property is particularly flexible, and we have proposed some ways of relaxing
it [27].

6.10.3. Application to Java Bytecode Language
Keywords: Java, alias analysis, automatic verification, bytecode, multithreaded programs.

Participant: Pietro Ferrara.

We apply this generic framework to the analysis of Java multithreaded programs at bytecode level. In this
context, we have defined an alias analysis in order to precisely trace how threads interact on shared memory
and synchronize through monitors [26].

6.11. Boolean Flags in the Polyhedron Abstract Domain
Keywords: disjunctions, linear inequality constraints, numerical properties, partitioning, static analysis.

Participant: Axel Simon.

In the context of integer linear programming, it is well known that a Boolean variable can be used to express
disjunctive information. We generalise this approach to polyhedral analysis by showing that storing a Boolean
flag in a bounded Z-polyhedron is equivalent to Boolean partitioning, that is, a Boolean flag can be used to
fully distinguish two polyhedra within a single polyhedron [30]. As an example application we show how to
model the change of points-to relationships when analyzing loops that operate on string buffers.

6.12. Sound Floating-Point Polyhedra Domain
Keywords: floating-point arithmetics, linear inequality constraints, numerical properties, static analysis.

Participants: Liqian Chen, Antoine Miné, Patrick Cousot.

14 Activity Report INRIA 2008

The polyhedron domain is one of the most pervasive numerical abstract domain. Unfortunately, current
implementations suffer from the “coefficient explosion” problem causing scalability (when using arbitrary
precision rationals) or precision issues (when using machine integers prone to overflow). We have designed
[22] a polyhedron domain fully implemented in floating-point arithmetics. The benefits are: a compact
representation, efficient algorithms, and a gradual loss of precision. The main challenges were the design
of sound and stable algorithms, despite rounding errors. Preliminary experiments show that our domain is
on par with state-of-the-art rational implementations (see Section 5.2) when analyzing programs with small
integer coefficients, but much more efficient on programs with large or floating-point coefficients.

6.13. A Reduced Disjunctive Extension for Temporal Abstract Domains
Keywords: abstract domains, continuous-time semantics, disjunction, quasi-synchronous systems, static
analysis.
Participant: Julien Bertrane.

The introduction of a syntactic disjunction is crucial in order to have precise abstract operators. It allows
indeed a partitioning of sets of behaviors that are too different to be represented by a single abstract element
and thus prevents analyses to be blocked. Implementing disjunctions of Abstract Constraints and of Changes
Counting elements in the naive way by lifting the domains is however too costly. We introduce a local (on
the temporal point of view) disjunction and operators that maintain the fact that constraints never overlap
(except in disjunctive branches) so that a path can be found inside disjunctive elements or an abstract operator
applied to these elements in a linear time. Reductions between underlying domains (Abstract Constraints and
of Changes Counting) are still possible in the extended domain. This extension was introduced in [11].

6.14. Static Analysis of Communicating Imperfectly-Clocked Synchronous
Systems Using Continuous-Time Abstract Domains
Keywords: abstract domains, continuous-time semantics, quasi-synchronous systems, static analysis.
Participant: Julien Bertrane.

Julien Bertrane has written his PhD on the verification of quasi-synchronous systems. Synchronous program-
ming is a formalism well adapted to the development of computer systems controlling embedded systems.
It is based on the idea of the repeated synchrony of some tasks (at clock ticks). However, it is often neces-
sary to use multi-clock systems. Furthermore, physical clocks may desynchronize. Giving such a system a
continuous-time semantics does not only enable modeling in a more realistic way the actual execution but
also enables defining faster more precise and less costly abstract domains that can prove some of the temporal
specifications of such systems. Julien Bertrane’s report [11] summarizes his work in this topic. He defended it
on November 28, 2008.

7. Contracts and Grants with Industry
7.1. ES_PASS Contract

ES_PASS (Embedded Software Product-based ASSurance) is an ITEA European project grouping technology
and tool providers as well as industrial end-users in the field of embedded software for automotive, avionic,
railway and space transportation (AbsInt Angewandte Informatik GmbH, Airbus France, CEA/LIST, CS
Systèmes d’Information, DaimlerChrysler AG, EADS Astrium SAS, EADS Innovation Works, École Normale
Supérieure (ENS), Esterel technologies, FéRIA (IRIT & ONERA), Fraunhofer FIRST, Institut für Bahntechnik
(IFB), Saarland University, Siemens VDO, Technical University Munich, Technical University of Madrid,
Thales Avionics, Thales Transport). The objective of the participation of the ABSTRACTION project-team to
ES_PASS is to confront the ASTRÉE analyzer to a wide range of industrial applications in order to evaluate
its practical applicability and prepare its industrialization. Patrick Cousot is the principal investigator for this
action.

http://www.astree.ens.fr/

Project-Team Abstraction 15

7.2. SSVAI Contract
SSVAI (Space Software Validation using Abstract Interpretation) is an ESA-ITI project (European Space
Agency’s Innovative Triangle Initiative) with Astrium Space Transportation, the CEA, the ENS, and the École
polytechnique. The activity of the ABSTRACTION project-team in this project is mainly to apply the ASTRÉE
static analyzer to the MSU (Monitoring Software Unit) code of the ATV (Automated Transfer Vehicle) for the
ISS (International Space Station).

Upon completion of the project, we successfully analyzed several versions of a Scade model of the MSU
controller compiled into C (including versions generated by different Scade compilers, and using different
generation options). The study demonstrated the ability of ASTRÉE to handle Scade-generated code. It showed
that, although the library of abstract domains built in ASTRÉE from our experience on avionics software is
sufficient in some cases, achieving zero false alarms would require the development of new abstract domains
adapted to the aspects of control theory specific to space control. However, it also showed that this could
be mitigated by introducing a few numerical limiters at strategic locations in the code. Patrick Cousot is the
principal investigator for this action.

7.3. Asbaprod Contract
ASBAPROD (ASsurance BAsée PRODduit) is an industrial project on static program analysis by abstract
interpretation with Airbus France which objective is determined annually.

The main work in 2008 consisted in analyzing with ASTRÉE several new classes of medium-sized (50–100
KLoc) critical embedded C programs: auto-test [70], [71] and communication [72] software. Good results
(reasonable analysis time and a couple of remaining false alarms) could be achieved through analysis
parametrization. Compared to pure control-command software (the primary target of ASTRÉE), the main
challenge is that these are hand-coded (hence exhibiting a wider variety of C constructs and programming
patterns) and make use of pointers and pointer arithmetics (although there is no dynamic memory allocation).
This diversification helped strengthen ASTRÉE (in particular its new memory model [93]) and enlarge its
focus. Patrick Cousot is the principal investigator for this action.

7.4. Controvert ANR
The CONTROVERT project (2005–2008) brings together control-theory researchers of ONERA/DCSD and the
Université Paul Sabatier of Toulouse and computer scientists from the ABSTRACTION project-team. A first
objective is to bridge the gap between control-theory-based methods for analyzing properties of models of
systems and their controllers (e.g. robustness) by continuous Lagrangian overapproximation of the system
trajectories and abstract-interpretation-based methods for analyzing control/command programs (e.g. safety
properties) in opened loop. A second objective is to use the results of the control-command theoretic analysis
of the closed loop to support the program analysis in the context of the controlled system. Patrick Cousot is
the principal investigator for this action.

7.5. FormaCrypt ARA
The ABSTRACTION project-team coordinates the FORMACRYPT project, on “formal proofs and probabilistic
semantics in cryptography” (project web site: http://www.di.ens.fr/~blanchet/formacrypt/index.html). This
project is financed by the Agence Nationale pour la Recherche, in the frame of the Action de Recherche Amont
Sécurité, Systèmes embarqués et Intelligence Ambiante (ARA SSIA). This project of a duration of 3 years and
half (January 2006–July 2009) brings together researchers of the INRIA project-teams ABSTRACTION and
CASCADE (LIENS, Laboratoire d’Informatique de l’École Normale Supérieure), SECSI (LSV, Laboratoire
Spécification et Vérification, ENS Cachan), and CASSIS (LORIA, Laboratoire Lorrain de Recherche en
Informatique et ses Applications), as well as Martín Abadi as scientific advisor. The goal of this project is to
bridge the gap between the formal and computational models of security protocols, so as to obtain automatic
proofs of protocols valid in the computational model. This project has led to 30 publications in international

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.di.ens.fr/~blanchet/formacrypt/
http://www.di.ens.fr/~blanchet/formacrypt/index.html

16 Activity Report INRIA 2008

conferences, workshops, and journals, to the implementation of two tools, CRYPTOVERIF and an extension of
AVISPA, and strongly contributed to the organisation of a series of international workshops (the workshops on
Formal and Computational Cryptography, FCC). Bruno Blanchet is the principal investigator for this action.

7.6. Contract with CELAR
In the frame of a 2-year contract (July 2008–October 2010) with CELAR (Centre d’Electronique de
l’Armement), we implement extensions of PROVERIF in order to make it easier to use: extensions to attack
reconstruction, improvements to the user interface and to the documentation. Bruno Blanchet is the principal
investigator for this action.

7.7. Thésée ANR
The objective of the THÉSÉE project (2006–2009) is to develop static analysis techniques for proving the
absence of runtime errors in asynchronous (real-time) programs. The project is in cooperation with EDF and
Airbus France. The main problem is to scale up traditional sequential static analysis methods so as to cope with
the combinatorial explosion resulting form the interleaving of communications and interactions through shared
variables in a parallel execution of the asynchronous processes. Patrick Cousot is the principal investigator for
this action.

8. Dissemination

8.1. Interaction with the Scientific Community
8.1.1. Academy Members, Professional Societies

Patrick Cousot is a member of the Academia Europaea.

Patrick Cousot is member of the IFIP working group WG 2.3 on programming methodology.

Patrick Cousot is a member of the Board of Trustees and of the Scientific Advisory Board of the IMDEA-
Software (Instituto madrileño de estudios avanzados — Research Institute in Software Development Technol-
ogy), Madrid, Spain and of the Asian Association for Foundations of Software (AAFS),

8.1.2. Collective Responsibilities
Bruno Blanchet is a member of the commission de spécialistes (hiring committee) of ENS Cachan.

Patrick Cousot is director of studies in computer science at ENS and member of the commission de spécialistes
(hiring committee) of ENS.

Radhia Cousot is head of the Abstract Interpretation group at École Polytechnique under a convention between
the CNRS, the École Normale Supérieure and the École Polytechnique.

Laurent Mauborgne is assistant director of studies in computer science at ENS and member of the commission
de spécialistes (hiring committee) of ENS.

8.1.3. Editorial Boards and Program Committees
Bruno Blanchet is associate editor of the International Journal of Applied Cryptography (IJACT).

Bruno Blanchet was member of the program committee of the ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages (POPL’09), the ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security (PLAS 2008), the IEEE Computer Security Foundations Symposium (CSF
2008), and program committee co-chair of the 4th Workshop on Formal and Computational Cryptography
(FCC 2008).

Patrick Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal (HOSC,
Springer) and of the Journal of Computing Science and Engineering (JCSE, Kiise).

http://www.cryptoverif.ens.fr/
http://www.proverif.ens.fr/
http://www.acadeuro.org/
http://www.imdea.org/
http://www.imdea.org/Institutos/Software/tabid/125/Default.aspx
http://aafs.score.cs.tsukuba.ac.jp/
http://www.brics.dk/~hosc/
http://jcse.kiise.org/

Project-Team Abstraction 17

Patrick Cousot is member of the steering committees of the Static Analysis Symposium (SAS) and the
Verification, Model-Checking and Abstract Interpretation (VMCAI) international conference.

Patrick Cousot was member of the program committees of the First International Conference on Foundations
of Informatics, Computing, and Software (FICS 2008), the sixth IEEE International Conferences on Software
Engineering and Formal Methods (SEFM-08), and the second IFIP Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE 2008)

Radhia Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal (HOSC,
Springer).

Radhia Cousot was member of the program committee of the Ninth Verification, Model Checking and Abstract
Interpretation (VMCAI’08) international conference and the Fifteen International Static Analysis Symposium
(SAS 2008).

Jérôme Feret participated in the expert committee of the sixth call for projects of the National Foundation of
Research in Aeronautic and Space Applications (FNRAE).

Antoine Miné was member of the program committee of the 16th International Conference on Compiler
Construction (CC 2008).

Xavier Rival was member of the program committee of the ACM Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2008) and the Bytecode 2008 Workshop.

8.1.4. PhD and Habilitation Juries
Patrick Cousot was the director of the PhD thesis of Julien Bertrane (École polytechnique, November 2008).

Patrick Cousot was the director of the HdR of Bruno Blanchet (University Paris-Dauphine, November 2008).

Radhia Cousot was reviewer of the PhD thesis of Greta Yorsh (Tel Aviv University, March 2008).

8.2. Teaching
8.2.1. Supervision of PhDs and Internships

Patrick Cousot supervised the PhD thesis of Julien Bertrane and the research apprenticeships of Ferdinanda
Camporesi and David Durrleman. Patrick Cousot and Antoine Miné supervised the research apprenticeship
of Liqian Chen. Radhia Cousot supervised the PhD thesis of Guillaume Capron and the PhD thesis of Pietro
Ferrara.

8.2.2. Training
Participants: Patrick Cousot, Radhia Cousot, Laurent Mauborgne, Antoine Miné, Xavier Rival.

The ABSTRACTION project-team organised a one-day training session on the ASTRÉE static analyzer (see
Section 5.1) for academic and industrial partners in the ES_PASS project (see Section 7.1) and well as to a
two days training in abstract interpretation for the Chinese Delegation of the East China Normal University,
Shanghai, China in « Highly Dependable Systems »[42].

8.2.3. Graduate Courses
Bruno Blanchet taught 6 hours in the MPRI (Master Parisien de Recherche en Informatique) course on
Cryptographic protocols: formal and computational proofs of Stéphanie Delaune and Cédric Fournet [36].

Radhia Cousot was responsible of the M2 course “Abstract interpretation: application to verification and static
analysis” at the MPRI (Master Parisien de Recherche en Informatique) [57]. Julien Bertrane, Patrick Cousot,
Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival participated in the course.

Pietro Ferrara taught 16 hours in course on Analysis and Verification of Programs (prof. Agostino Cortesi) of
the Master program in Computer Science of University Ca’ Foscari of Venice.

http://www.brics.dk/~hosc/
http://www.astree.ens.fr/

18 Activity Report INRIA 2008

8.2.4. Undergraduate Courses
Julien Bertrane was teaching assistant at École Polytechnique.

Patrick Cousot gave the M1 course “Foundations of abstract interpretation: application to semantics” [46] at
the École Normale Supérieure.

Laurent Mauborgne was a partial time associate professor (professeur chargé de cours) at École Polytechnique.
He gave a 32-hour course on static analysis for 3rd year students (M1) [68]. He gave 30 hours of lectures in
small groups for 2nd year students, following the course “Foundations of Computer Science” directed by
François Morain and Jean-Marc Steyaert.

Xavier Rival gave training sessions on “Algorithmics and programming in Java” and on “Principles of
Programming Languages” at the École Polytechnique and a lecture on abstract interpretation and static
analysis at the École des Mines de Paris.

8.3. PhD theses
Julien Bertrane defended his PhD on November 28, 2008 on static analysis of communicating imperfectly-
clocked synchronous systems using continuous-time abstract domains [11].

8.4. Habilitation theses
Bruno Blanchet defended his habilitation à diriger des recherches on November 26, 2008 on the verification
of security protocols [12].

8.5. Monographs
8.5.1. Value-Range Analysis of C Programs

Research into new analysis techniques is often hampered by the technical difficulties of analyzing accesses
through pointers, pointer arithmetic, coercion between types, integer wrap-around and other low-level be-
haviour. While approaches to some of these problems can be found in the available literature, there is no
coherent treatment that addresses all of these aspects together.

This book presents a concise, yet formal description of a value-range analysis that soundly approximates the
semantics of C programs using systems of linear inequalities (polyhedra). The analysis is formally specified
down to the bit-level while providing a precise approximation of all low-level aspects of C using polyhedral
operations. As such, it provides a basis for implementing new analyses that are aimed at verifying higher-level
program properties precisely. One such analysis, namely the tracking of the NUL position in C string buffers,
is presented, thereby demonstrating the extensibility of the approach.

While the book focuses on a sound analysis of C, it will be useful to any researcher and student with an
interest in static analysis of real-world programming languages [31]. It should be particularly valuable to
Ph.D. students embarking on a related topic.

8.6. Participation in Conferences and Seminars
8.6.1. Participation in Conferences

VMCAI: International Conference on Verification, Model Checking and Abstract Interpretation (San
Francisco, January 2008).
Julien Bertrane, Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival attended the conference. Patrick Cousot chaired a session. Radhia
Cousot gave an invited talk [23]. Jérôme Feret presented [25].

30YAI: 30 Years of Abstract Interpretation Workshop (San Francisco, January 2008).
Julien Bertrane, Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival attended the workshop. Patrick Cousot gave an invited talk [53].

Project-Team Abstraction 19

POPL: ACM Symposium on Principles of Programming Languages (San Francisco, January 2008).
Julien Bertrane, Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival attended the conference.

AsiaCCS: ACM Symposium on Information, Computer and Communications Security (Tokyo, Japan,
March 2008).
Bruno Blanchet attended the conference.

ESOP: European Symposium on Programming (Budapest, Hungary, March 2008).
Pietro Ferrara attended the conference.

TACAS: International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(Budapest, Hungary, March 2008).
Pietro Ferrara attended the conference.

FASE: International Conference on Fundamental Approaches to Software Engineering (Budapest, Hun-
gary, March 2008).
Pietro Ferrara attended the conference.

FOSSACS: International Conference on Foundations of Software Science and Computation Structures
(Budapest, Hungary, April 2008).
Pietro Ferrara attended the conference.

CC: International Conference on Compiler Construction (Budapest, Hungary, April 2008).
Pietro Ferrara attended the conference. Antoine Miné attended the conference and chaired a session.

Bytecode: Workshop on Bytecode Semantics, Verification, Analysis and Transformation (Budapest,
Hungary, April 2008).
Pietro Ferrara presented [26].

TAP: International Conference on Tests and Proofs (Prato, Italy, April 2008).
Pietro Ferrara presented [28].

PLDI: ACM Conference on Programming Language Design and Implementation (PLDI) (Tucson, USA,
June 2008).
Xavier Rival attended the conference.

LCTES: ACM Conference on Languages, Compilers, and Tools for Embedded Systems (Tucson, USA,
June 2008).
Xavier Rival attended the conference and chaired a session.

FCS-ARSPA-WITS: Joint Workshop on Foundations of Computer Security, Automated Reasoning for
Security Protocol Analysis and Issues in the Theory of Security (Pittsburgh, PA, USA, June 2008).
Bruno Blanchet attended the workshop.

FCC: Workshop on Formal and Computational Cryptography (Pittsburgh, PA, USA, June 2008).
Bruno Blanchet chaired a session.

FICS: First International Conference on Foundations of Informatics, Computing and Software (Shanghai,
China, 03–06 June 2008).
Patrick Cousot gave an invited talk [45] and chaired a session. Julien Bertrane attended the
conference.

CSF: Computer Security Foundations Symposium (Pittsburgh, PA, USA, June 2008).
Bruno Blanchet chaired a session and gave a 5 minutes talk on [20].

NSV: First International Workshop on Numerical Abstractions for Software Verification (Princeton, NJ,
USA, July 2008).
Patrick Cousot gave an invited talk [56] and chaired a session.

IFIP WG 2.3 Cambridge meeting: (Cambridge University, UK, July 2008).
Patrick Cousot attended the semestrial meeting and gave a presentation [55].

20 Activity Report INRIA 2008

OOPSLA: ACM Conference on Object-oriented Programming (Nashville, USA, October 2008).
Pietro Ferrara presented [29].

VSTTE’08: Second IFIP Working Conference on Verified Software: Theories, Tools, and Experiments
(Toronto, Canada, October 2008).
Xavier Rival attended the conference.

SEFM: IEEE International Conference on Software Engineering and Formal Methods (Cape Town, South
Africa, November 2008).
Pietro Ferrara presented [27].

APLAS: Asian Symposium on Programming Languages and Systems (Bangalore, India, December
2008).
Antoine Miné attended the conference.

8.6.2. Invitations and Participation in Seminars
Julien Bertrane gave seminars and presentations on static analysis of imperfectly-clocked synchronous systems
in the Logic and Semantics Group of the Queen Mary University (London) [33], in the Dipartimento di
Informatica of the Università degli Studi di Verona [34] and in the Compiler Design Lab of the Universität des
Saarlandes (Saarbrücken) [35].

Bruno Blanchet presented a talk on “Automated Security Proofs with Sequences of Games” (joint work with
David Pointcheval) at IRIT, Toulouse, France, January 2008 [38] and at RCIS, AIST, Tokyo, Japan, March
2008 [37].

Patrick Cousot gave seminars and presentations at Stony Brook University [51], the Center for Computational
and Systems Biology, The Microsoft Research — University of Trento, Trento, Italy [50], the Dipartimento
di Mathematica Pura ed Applicata, Universitá degli Studi di Padova, Italy [44], the Collège de France [47],
Schloß Dagstuhl, Wadern, Germany [54], New York University [48], [43], the Comité de Direction de l’INRIA
[49], the IFIP WG 2.3 working group [55], the Seoul National University, Korea [40], the Max Planck Institut
für Informatik, Saarbrücken [52], the ESA/ Noordwijk (ESTEC), the Netherland [41], the Airbus workshop
on formal verification tools strategy [39].

Jérôme Feret presented an abstract interpretation framework for analyzing qualitative properties of biological
pathways [59] and a framework to represent biochemical processes in the π-calculus [61] in working groups at
Harvard Medical School. He presented an abstract interpretation framework for reducing differential semantics
for biological networks in a working group at Harvard Medical School [60] and in seminars at Verimag [62],
at Paris VII [64], and at the École Normale Supérieure [63].

Pietro Ferrara presented a talk on static analysis via abstract interpretation of the happens-before memory
model at the University "Ca’ Foscari" of Venice [66] and at the École Normale Supérieure [67]. He presented
a talk on static analysis of the determinism of multithreaded programs at the University "Ca’ Foscari" of Venice
[65].

Antoine Miné participated in the seminar “Beyond the Finite: New Challenges in Verification and Semistruc-
tured Data”, Schloss Dagstuhl, Wadern, Germany, April 2008. Antoine Miné presented some results of the
SSVAI project (see Section 7.2) at ESTEC [73], Noordwijk, Netherlands, September 2008. Antoine Miné
participated in the workshop “Security and Reliability of Software Systems” in Bangalore, India, December
2008, and presented a 2-hour invited tutorial [69] on ASTRÉE.

Xavier Rival attended the “THEORY Workshop at VSTTE 2008” and gave a one hour invited lecture on
parametric abstract domains for shape analysis [75]. Xavier Rival participated in the seminar “Emerging Uses
and Paradigms for Dynamic Binary Translation”, Shhloss Dagstuhl, Wadern, Germany, October 2008, and
gave a lecture on certified compilation [74].

http://www.astree.ens.fr/

Project-Team Abstraction 21

Axel Simon participated in the seminar “Beyond the Finite: New Challenges in Verification and Semistructured
Data”, Schloss Dagstuhl, Wadern, Germany, April 2008. He presented work on “Scalable Program Analysis
using Convex Polyhedra” to the Theoretical Computer Science group at the University of Kent, November
2008 [76].

8.7. Short-Term Visitors
Agostino Cortesi (Università di Venezia) visited the project-team Abstraction in April 2008.

Reinhard Wilhelm (Universitët des Saarlandes) and Francesco Ranzato (Università di Podova) came in June
2008.

Neil Jones (University of Copenhagen), Jifeng He (East China Normal University), Ji Wang (National
University of Defense Technology), Jing Liu (East China Normal University), Huibiao Zhu (East China
Normal University), Dehui Du (East China Normal University), Jian Guo (East China Normal University),
and Wei Dong (National University of Defense Technology) came in September 2008.

9. Bibliography
Major publications by the team in recent years

[1] B. BLANCHET. A Computationally Sound Mechanized Prover for Security Protocols, in "IEEE Transactions on
Dependable and Secure Computing", vol. 5, no 4, October–December 2008, p. 193–207.

[2] B. BLANCHET, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL.
A Static Analyzer for Large Safety-Critical Software, in "Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI’03), San Diego, California, USA", ACM Press,
June 7–14 2003, p. 196–207.

[3] P. COUSOT. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation,
in "Theoretical Computer Science", vol. 277, no 1–2, 2002, p. 47–103.

[4] P. COUSOT, R. COUSOT. Temporal Abstract Interpretation, in "Conference Record of the Twentyseventh
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, United States", ACM Press, New York, New York, United States, January 2000, p. 12–25.

[5] P. COUSOT, R. COUSOT. Systematic Design of Program Transformation Frameworks by Abstract Interpreta-
tion, in "Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, United States", ACM Press, New York, New York, United
States, January 2002, p. 178–190.

[6] P. COUSOT, R. COUSOT. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in "Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Los Angeles, California", ACM Press, New
York, NY, 1977, p. 238–252.

[7] J. FERET. Abstract Interpretation of Mobile Systems, in "Journal of Logic and Algebraic Programming, special
issue on pi-Calculus", vol. 39, no 1, 2005.

22 Activity Report INRIA 2008

[8] L. MAUBORGNE, X. RIVAL. Trace Partitioning in Abstract Interpretation Based Static Analyzers, in "European
Symposium on Programming (ESOP’05)", M. SAGIV (editor), Lecture Notes in Computer Science, vol. 3444,
Springer-Verlag, 2005, p. 5–20.

[9] A. MINÉ. The Octagon Abstract Domain, in "Higher-Order and Symbolic Computation", vol. 19, 2006, p.
31–100.

[10] X. RIVAL. Symbolic Transfer Functions-based Approaches to Certified Compilation, in "Conference Record
of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Venice, Italy", ACM Press, New York, New York, United States, 2004, p. 1–13.

Year Publications
Doctoral Dissertations and Habilitation Theses

[11] J. BERTRANE. Static analysis of communicating imperfectly-clocked synchronous systems using continuous-
time abstract domains, Thèse, École polytechnique, 28 Novembre 2008.

[12] B. BLANCHET. Vérification automatique de protocoles cryptographiques : modèle formel et modèle calcula-
toire, Habilitation à Diriger des Recherches, Université Paris-Dauphine, November 2008.

Articles in International Peer-Reviewed Journal

[13] B. BLANCHET. A Computationally Sound Mechanized Prover for Security Protocols, in "IEEE Transactions
on Dependable and Secure Computing", vol. 5, no 4, October–December 2008, p. 193–207.

[14] P. COUSOT, R. COUSOT. Bi-inductive Structural Semantics, in "Information and Computation", To appear,
2008.

[15] P. COUSOT, R. COUSOT. Grammar Semantics, Analysis, and Parsing by Abstract Interpretation, in "Theoret-
ical Computer Science", To appear, 2008.

[16] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL. Why does ASTRÉE scale up?, in
"Formal Methods in Systems Design", 2008.

[17] M. HINCHEY, M. JACKSON, P. COUSOT, B. COOK, J. P. BOWEN, T. MARGARIA. Software engineering and
formal methods, in "Communications of the ACM", vol. 51, no 9, September 2008, p. 54–59.

[18] D. MONNIAUX. The pitfalls of verifying floating-point computations, in "ACM Transactions on Programming
Languages and Systems", vol. 30, 3, 2008.

International Peer-Reviewed Conference/Proceedings

[19] B. BLANCHET, A. CHAUDHURI. Automated Formal Analysis of a Protocol for Secure File Sharing on
Untrusted Storage, in "IEEE Symposium on Security and Privacy, Oakland, CA", IEEE, May 2008, p.
417–431.

[20] B. BLANCHET, A. D. JAGGARD, A. SCEDROV, J.-K. TSAY. Computationally Sound Mechanized Proofs
for Basic and Public-key Kerberos, in "ACM Symposium on Information, Computer and Communications
Security (ASIACCS’08), Tokyo, Japan", ACM, March 2008, p. 87–99.

Project-Team Abstraction 23

[21] B.-Y. E. CHANG, X. RIVAL. Relational Inductive Shape Analysis, in "ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Francisco, USA", ACM, January 2008, p. 247–260.

[22] L. CHEN, A. MINÉ, P. COUSOT. A Sound Floating-Point Polyhedra Abstract Domain, in "Proc. of the Sixth
Asian Symposium on Programming Languages and Systems (APLAS’08), Bangalore, India", Lecture Notes
in Computer Science, vol. 5356, Springer, December 2008, p. 3–18.

[23] R. COUSOT. Abstract Interpretation of Non-monotone Bi-inductive Semantic Definitions, in "Proceedings
of the Ninth International Conference on Verification, Model Checking and Abstract Interpretation, VM-
CAI’2008, San Francisco, USA", F. LOGOZZO, D. A. PELED, L. D. ZUCK (editors), Lecture Notes in
Computer Science, vol. 4905, Springer, Berlin, Germany, 7–9 January 2008, p. 1–3.

[24] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Rule-based modelling, symmetries, re-
finements., in "Proceedings of the First International Workshop, Formal Methods in Systems Biology,
FMSB’2008, Cambridge, UK", J. FISHER (editor), Lecture Notes in BioInformatics, vol. 5054, Springer,
Berlin, Germany, 4–5 June 2008, p. 103–122.

[25] V. DANOS, J. FERET, W. FONTANA, J. KRIVINE. Abstract interpretation of cellular signalling networks, in
"Proceedings of the Ninth International Conference on Verification, Model Checking and Abstract Interpreta-
tion, VMCAI’2008, San Francisco, USA", F. LOGOZZO, D. A. PELED, L. D. ZUCK (editors), Lecture Notes
in Computer Science, vol. 4905, Springer, Berlin, Germany, 7–9 January 2008, p. 83–97.

[26] P. FERRARA. A fast and precise alias analysis for data race detection, in "Proceedings of the Third Workshop
on Bytecode Semantics, Verification, Analysis and Transformation (Bytecode’08)", Electronic Notes in
Theoretical Computer Science, Elsevier, April 2008.

[27] P. FERRARA. Static analysis of the determinism of multithreaded programs, in "Proceedings of the Sixth
IEEE International Conference on Software Engineering and Formal Methods (SEFM 2008)", A. CERONE,
S. GRUNER (editors), IEEE Computer Society, November 2008.

[28] P. FERRARA. Static analysis via abstract interpretation of the happens-before memory model, in "Proceedings
of the Second International Conference on Tests and Proofs (TAP’08)", B. MEYER, R. HÄHNLE (editors),
Lecture Notes in Computer Science, vol. 4966, Springer, April 2008, p. 116–133.

[29] P. FERRARA, F. LOGOZZO, M. FÄHNDRICH. Safer Unsafe Code for .NET, in "OOPSLA ’08: Proceedings of
the 23rd ACM SIGPLAN conference on Object oriented programming systems languages and applications,
New York, NY, USA", ACM, 2008, p. 329–346.

[30] A. SIMON. Splitting the Control Flow with Boolean Flags, in "Static Analysis Symposium, Valencia, Spain",
M. ALPUENTE, G. VIDAL (editors), LNCS, vol. 5079, Springer, July 2008, p. 315-331.

Scientific Books (or Scientific Book chapters)

[31] A. SIMON. Value-Range Analysis of C Programs, Springer, August 2008.

Research Reports

[32] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL, E.-J. SIMS. Mode d’emploi et
manuel de référence de l’analyseur ASTRÉE, 319 pages, 2008.

24 Activity Report INRIA 2008

Other Publications

[33] J. BERTRANE. Reduced product of abstract domains for the static analysis of properties of imperfectly-clocked
synchronous systems, Seminar: Logic and Semantics Group of the Queen Mary University (London), 5 August
2008.

[34] J. BERTRANE. Static analysis by abstract interpretation of properties of imperfectly-clocked synchronous
systems, Seminar: Dipartimento di Informatica of the Università degli Studi di Verona, 16 September 2008.

[35] J. BERTRANE. Static analysis of communicating imperfectly-clocked synchronous systems using continuous-
time abstract domains, Seminar: Compiler Design Lab of the Universität des Saarlandes (Saarbrücken), 18
November 2008.

[36] B. BLANCHET, S. DELAUNE, C. FOURNET. Cryptographic protocols: formal and computational proofs, M2
course of the MPRI (Master Parisien de Recherche en Informatique), 2008.

[37] B. BLANCHET, D. POINTCHEVAL. Automated Security Proofs with Sequences of Games, Seminar, RCIS,
AIST, Tokyo, Japan, March 2008.

[38] B. BLANCHET, D. POINTCHEVAL. Automated Security Proofs with Sequences of Games, Seminar, IRIT,
Toulouse, France, January 2008.

[39] P. COUSOT. AS-TRÉE and related works, Airbus Workshop on Formal Verification Tools Strategy, Airbus
France, Toulouse, 4–5 December 2008.

[40] P. COUSOT. Abstract Interpretation and Application to Static Analysis of Safety-Critical Embedded Computer
Software, Computer Science & Engineering Distinguished Lecture Series, Seoul National University, Seoul,
Korea, 30 September 2008.

[41] P. COUSOT. Abstract Interpretation and Application to the Static Analysis of Mission-Critical Embedded Com-
puter Software, Final review of the ESA ITI project « Space Software Validation using Abstract Intepretation »,
ESA/ Noordwijk (ESTEC), The Netherlands, 19 September 2008.

[42] P. COUSOT. Abstract Interpretation and its Applications, Series of seminars for the Chinese Delegation of
ECNU, Shanghai, China in « Highly Dependable Systems », ENS, Paris, 17–18 September 2008.

[43] P. COUSOT. Abstract-Interpretation-based Static Analysis of Safety-Critical Embedded Software, Computer
Science Colloquium, Courant Institute of Mathematical Sciences, New York University, 21 November 2008.

[44] P. COUSOT. Advances and Challenges in Static Program Analysis by Abstract Interpretation, Colloquia
Patavina, Dipartimento di Mathematica Pura ed Applicata, Universitá degli Studi di Padova, Italy, 19 February
2008.

[45] P. COUSOT. Automatic Software Verification by Abstract Interpretation, First International Conference on
Foundations of Informatics, Computing and Software, Shanghai, China, 03–06 June 2008.

[46] P. COUSOT. Foundations of abstract interpretation: application to semantics, M1 course of the École Normale
Supérieure, 2008.

Project-Team Abstraction 25

[47] P. COUSOT. La vérification des programmes par interprétation abstraite, Séminaire de la Chaire d’innovation
technologique Liliane Bettencourt, Collège de France, Paris, 22 February 2008.

[48] P. COUSOT. Parameterized Refinement in Abstract-Interpretation-Based Static Analysis, Verification Seminar,
Courant Institute of Mathematical Sciences, New York University, 30 April 2008.

[49] P. COUSOT. Présentation de l’équipe/projet « ABSTRACTION » de l’INRIA Paris-Rocquencourt commune au
CNRS et à l’ENS, Comité de Direction de l’INRIA, Paris, 10 June 2008.

[50] P. COUSOT. Software Verification by Abstract Interpretation and the ASTRÉE Static Analyzer, Center for
Computational and Systems Biology, The Microsoft Research — University of Trento, Trento, Italy, 5
February 2008.

[51] P. COUSOT. Software Verification by Abstract Interpretation and the ASTRÉE Static Analyzer, Computer
Science Department, Stony Brook University, USA, 18 January 2008 2008.

[52] P. COUSOT. Static Software Analysis, in the Large, Distinguished Lecture Series at the MPI for Software
Systems, Max Planck Institut für Informatik, Saarbrücken, 26 August 2008.

[53] P. COUSOT. Thirty Years of Abstract Interpretation, POPL’08 Workshop on « Thirty Years of Abstract
Interpretation », David Schmidt and Roberto Giacobazzi, San Francisco, USA, 9 January 2008.

[54] P. COUSOT. Why does ASTRÉE scale up?, Dagstuhl seminar 08161, Scalable Program Analysis, Schloß
Dagstuhl, Wadern, Germany, 15 April 2008.

[55] P. COUSOT, R. COUSOT. Calculational Design of Semantics of the Eager Lambda-Calculus by Abstract
Interpretation, IFIP WG 2.3 meeting, Cambridge University, UK, 25 July 2008.

[56] P. COUSOT, R. COUSOT. Numerical Domains for Software Verification by Abstract Interpretation, First
International Workshop on Numerical Abstractions for Software Verification, Princeton, New Jersey, USA,
8 July 2008.

[57] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL. Foundations of abstract inter-
pretation: application to semantics, M2 course of the MPRI (Master Parisien de Recherche en Informatique),
2008.

[58] P. COUSOT, R. COUSOT, R. GIACOBAZZI. Abstract Interpretation of Resolution-Based Semantics, To appear,
2008.

[59] J. FERET. Abstract Interpretation of Biological Networks, Working group: Fontana Lab, Harvard Medial
School, Boston, USA, 17 January 2008.

[60] J. FERET. Abstract Interpretation of Differnetial Semantics for Biological Networks, Working group: Fontana
Lab, Harvard Medial School, Boston, USA, 22 May 2008.

[61] J. FERET. Representation of biochemical processes using the π-calculus, Lecture group: Fontana Lab, Harvard
Medial School, Boston, USA, 13 Mars 2008.

26 Activity Report INRIA 2008

[62] J. FERET. Réduction de sémantiques différentielles pour réseaux d’interactions entre protéines par interpré-
tation abstraite, Séminaire Verimag, 13 Novembre 2008.

[63] J. FERET. Réduction de sémantiques différentielles pour réseaux d’interactions entre protéines par interpré-
tation abstraite, Séminaire de l’Équipe Sémantique et Interprétation Abstraite, 12 décembre 2008.

[64] J. FERET. Réduction de sémantiques différentielles pour réseaux d’interactions entre protéines par interpré-
tation abstraite, Séminaire de l’Équipe PPS, 20 Novembre 2008.

[65] P. FERRARA. Static analysis of the determinism of multithreaded programs, Lunch Seminar: University "Ca’
Foscari" of Venice, Italy, 18 December 2008.

[66] P. FERRARA. Static analysis via abstract interpretation of the happens-before memory model, Lunch Seminar:
University "Ca’ Foscari" of Venice, Italy, 28 May 2008.

[67] P. FERRARA. Static analysis via abstract interpretation of the happens-before memory model, Séminaire de
l’Équipe Sémantique et Interprétation Abstraite, 20 juin 2008.

[68] L. MAUBORGNE. Static Analysis of Programs, M1 course of the École Polytechnique, 2008.

[69] A. MINÉ. Building a specialized static analyzer: the ASTRÉE experience, Workshop on Security and
Reliability of Software Systems, Bangalore, India, 12 December 2008.

[70] A. MINÉ. Rapport technique sur l’analyse de l’autotest A340 par ASTRÉE, Deliverable for the Asbaprob
contract, 15 March 2008.

[71] A. MINÉ. Rapport technique sur l’analyse de l’autotest A380 par ASTRÉE, Deliverable for the Asbaprob
contract, 15 March 2008.

[72] A. MINÉ. Rapport technique sur l’analyse de la passerelle par ASTRÉE, Deliverable for the Asbaprob
contract, 15 March 2008.

[73] A. MINÉ. The ASTRÉE Static Analyzer, Space Software Validation using Abstract Interpretation, Presentation
at ESTEC, Noordwijk, Netherlands, 19 September 2008.

[74] X. RIVAL. Certified Compilation, Presentation at the Dagstuhl Seminar 08441, Emerging Uses and Paradigms
for Dynamic Binary Translation, 30 October 2008.

[75] X. RIVAL. Design of parametric abstract domains for shape analysis, Presentation at The THEORY Workshop
at VSTTE 2008, 9 October 2008.

[76] A. SIMON. Scalable Program Analysis using Convex Polyhedra, Theoretical Computer Science group at the
University of Kent, UK, November 2008.

References in notes

[77] B. BLANCHET. Computationally Sound Mechanized Proofs of Correspondence Assertions, in "20th IEEE
Computer Security Foundations Symposium (CSF’07), Venice, Italy", IEEE, July 2007, p. 97–111.

Project-Team Abstraction 27

[78] B.-Y. E. CHANG, X. RIVAL, G. C. NECULA. Shape Analysis with Structural Invariant Checkers, in
"Proceedings of the Fourteenth International Symposium on Static Analysis, SAS’07, Kongens Lyngby,
Denmark", G. FILÉ, H. RIIS-NIELSON (editors), Lecture Notes in Computer Science, vol. 4634, Springer,
Berlin, Germany, 22–24 August 2007, p. 384-401.

[79] P. COUSOT. Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code, invited tutorial, in "Pro-
ceedings of the Seventh ACM & IEEE International Conference on Embedded Software, EMSOFT’2007", C.
M. KIRSCH, R. WILHELM (editors), ACM Press, New York, NY, USA, 2007, p. 7–9.

[80] P. COUSOT. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique de programmes (in French), Thèse d’État ès sciences mathématiques,
Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[81] P. COUSOT. The Calculational Design of a Generic Abstract Interpreter, invited chapter, in "Calculational
System Design", M. BROY, R. STEINBRÜGGEN (editors), vol. 173, NATO Science Series, Series F: Computer
and Systems Sciences. IOS Press, Amsterdam, The Netherlands, 1999, p. 421–505.

[82] P. COUSOT, R. COUSOT. Basic Concepts of Abstract Interpretation, invited chapter, in "Building the Infor-
mation Society", R. JACQUART (editor), chap. 4, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2004, p. 359–366.

[83] P. COUSOT, R. COUSOT. Bi-inductive Structural Semantics, in "Structural Operational Semantics, SOS’07,
Wroclaw, Poland", R. J. VAN GLABBEEK, M. HENNESSY (editors), ENTCS (1)., vol. 192, no 1, Elsevier
B.V., 9 July 2007.

[84] P. COUSOT, R. COUSOT. Grammar Analysis and Parsing by Abstract Interpretation, invited chapter, in
"Program Analysis and Compilation, Theory and Practice: Essays dedicated to Reinhard Wilhelm on the
Occasion of his 60th Birthday", T. W. REPS, M. SAGIV, J. BAUER (editors), Lecture Notes in Computer
Science, vol. 4444, Springer, Berlin, Germany, 2007.

[85] P. COUSOT, R. COUSOT. Systematic design of program analysis frameworks, in "Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio,
Texas", ACM Press, New York, New York, United States, 1979, p. 269–282.

[86] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. The ASTRÉE
analyser, in "Proceedings of the Fourteenth European Symposium on Programming Languages and Sys-
tems, ESOP’2005, Edinburg, Scotland", M. SAGIV (editor), Lecture Notes in Computer Science, vol. 3444,
Springer, Berlin, Germany, 2–10 April 2005, p. 21–30.

[87] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. Varieties
of Static Analyzers: A Comparison with ASTRÉE, invited paper, in "Proceedings of the First IEEE &
IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE’07, Shanghai, China,
Shanghai, China", M. HINCHEY, J. HE, J. SANDERS (editors), IEEE Computer Society Press, Los Alamitos,
California, USA, 6–8 June 2007.

[88] V. DANOS, J. FERET, W. FONTANA, J. KRIVINE, R. HARMER. Investigation of a biological repair scheme,
in "Proceedings of the ninth Workshop on Membrane Computing, WMC9, Edinburgh, UK, Edinburgh, UK",
G. PAUN (editor), LNCS, to appear, no 5391, Springer 2009, Berlin, Germany, 28–31 July 2008.

28 Activity Report INRIA 2008

[89] J. FERET. Confidentiality Analysis of Mobile Systems, in "Seventh International Static Analysis Symposium
(SAS’00)", LNCS, Springer-Verlag, no 1824, Springer-Verlag, 2000.

[90] J. FERET. Dependency analysis of Mobile Systems, in "European Symposium on Programming (ESOP’02)",
LNCS, Springer-Verlag, no 2305, Springer-Verlag, 2002.

[91] J. FERET. Analysis of Mobile Systems by Abstract Interpretation, Thèse de doctorat en informatique, École
Polytechnique, 25 February 2005.

[92] J. FERET. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation, in "Proceedings
of the International Conference of Computational Methods in Sciences and Engineering, ICCMSE’2007,
Corfu, Greece, Corfu, Greece", T. E. SIMOS (editor), American Institute of Physics Conference Proceedings,
vol. 2, no 963, American Institute of Physics, 25–30 September 2007, p. 619–622.

[93] A. MINÉ. Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics,
in "Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES’2006", ACM Press, New York, USA, June 2006, p. 54–63.

