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2. Overall Objectives

2.1. Overall Objectives

The Team aims at designing and developing constructive methods in modeling, identification and control of
dynamical, resonant and diffusive systems.



2 Activity Report INRIA 2008

2.1.1. Research Themes

e Function theory and approximation theory in the complex domain, with applications to frequency
identification of linear systems and inverse boundary problems for the Laplace and Beltrami
operators:

—  System and circuit theory with applications to the modeling of analog microwave devices.
Development of dedicated software for the synthesis of such devices.

— Inverse potential problems in 2-D and 3-D and harmonic analysis with applications to
non-destructive control (from magneto/electro-encephalography in medical engineering or
plasma confinement in tokamaks for nuclear fusion).

e Control and structure analysis of non-linear systems with applications to orbit transfer of satellites.
2.1.2. International and industrial partners

e Collaboration under contract with Thales Alenia Space (Toulouse, Cannes, and Paris), CNES
(Toulouse), XLim (Limoges), CEA-IRFM (Cadarache).

e Exchanges with UST (Villeneuve d’Asq), University Bordeaux-I (Talence), University of Orléans
(MAPMO), University of Pau (EPI Inria Magique-3D), University Marseille-I (CMI), CWI (the
Netherlands), SISSA (Italy), the Universities of Illinois (Urbana-Champaign USA), California at San
Diego and Santa Barbara (USA), Michigan at East-Lansing (USA), Vanderbilt University (Nashville
USA), Texas A&M (College Station USA), ISIB (CNR Padova, Italy), Beer Sheva (Israel), RMC
(Kingston, Canada), University of Erlangen (Germany), Leeds (UK), Maastricht University (The
Netherlands), Cork University (Ireland), Vrije Universiteit Brussel (Belgium), TU-Wien (Austria),
TFH-Berlin (Germany), CINVESTAV (Mexico), ENIT (Tunis), KTH (Stockholm).

e The project is involved in a EMS21-RTG NSF program (with Vanderbilt University), in the Inria
Team Enée associated with LAMSIN-ENIT (including the EPI Anubis and Poems), in an EPSRC
Grant with Leeds University (UK), in the ANR projects AHPI (Math., coordinator) and FILIPIX
(Telecom.).

3. Scientific Foundations

3.1. Identification and approximation

Identification typically consists in approximating experimental data by the prediction of a model belonging
to some model class. It consists therefore of two steps, namely the choice of a suitable model class and the
determination of a model in the class that fits best with the data. The ability to solve this approximation
problem, often non-trivial and ill-posed, impinges on the effectiveness of a method.

Particular attention is payed within the team to the class of stable linear time-invariant systems, in particular
resonant ones, and in isotropically diffusive systems, with techniques that dwell on functional and harmonic
analysis. In fact one often restricts to a smaller class—e. g. rational models of suitable degree (resonant systems,
see section 4.3) or other structural constraints—and this leads us to split the identification problem in two
consecutive steps:

1. Seek a stable but infinite (numerically: high) dimensional model to fit the data. Mathematically
speaking, this step consists in reconstructing a function analytic in the right half-plane or in the
unit disk (the transfer function), from its values on an interval of the imaginary axis or of the unit
circle (the band-width). We will embed this classical ill-posed issue (i.e. the inverse Cauchy problem
for the Laplace equation) into a family of well-posed extremal problems, that may be viewed as a
regularization scheme of Tikhonov-type. These problems are infinite-dimensional but convex (see
section 3.1.1).
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2. Approximate the above model by a lower order one reflecting further known properties of the
physical system. This step aims at reducing the complexity while bringing physical significance
to the design parameters. It typically consists of a rational or meromorphic approximation procedure
with prescribed number of poles in certain classes of analytic functions. Rational approximation in
the complex domain is a classical but difficult non-convex problem, for which few effective methods
exist. In relation to system theory, two specific difficulties superimpose on the classical situation,
namely one must control the region where the poles of the approximants lie in order to ensure the
stability of the model, and one has to handle matrix-valued functions when the system has several
inputs and outputs, in which case the number of poles must be replaced by the McMillan degree (see
section 3.1.2).

When identifying elliptic (Laplace, Beltrami) partial differential equations from boundary data, point 1. above
can be recast as an inverse boundary-value problem with (overdetermined Dirichlet-Neumann) data on part of
the boundary of a plane domain (recover a function, analytic in a domain, from incomplete boundary data). As
such, it arises naturally in higher dimensions when analytic functions get replaced by gradients of harmonic
functions (see section 4.2). Motivated by free boundary problems in plasma control and questions of source
recovery arising in magneto/electro-encephalography, we aim at generalizing this approach to the real Beltrami
equation in dimension 2 (section 6.2.3) and to the Laplace equation in dimension 3 (section 6.2.1).

Step 2. above—i.e. meromorphic approximation with prescribed number of poles—is used to approach other
inverse problems beyond harmonic identification. In fact, the way the singularities of the approximant (i.e.
its poles) relate to the singularities of the approximated function is an all-pervasive theme in approximation
theory: for appropriate classes of functions, the location of the poles of the approximant can be used as an
estimator of the singularities of the approximated function (see section 6.2.2).

We provide further details on the two steps mentioned above in the sub-paragraphs to come.
3.1.1. Analytic approximation of incomplete boundary data

Keywords: Beltrami equations, Hardy spaces, extremal problems, harmonic functions, inverse problems.

Participants: Laurent Baratchart, Slah Chaabi, Yannick Fischer, Juliette Leblond, Jean-Paul Marmorat,
Jonathan Partington, Stéphane Rigat, Emmanuel Russ [Univ. Provence], Fabien Seyfert.

Given a planar domain D, the problem is to recover an analytic function from its values on a subset of the
boundary of D. It is convenient to normalize D and apply in each particular case a conformal transformation
to meet a “normalized” domain. In the simply connected case, which is that of the half-plane, we fix D to
be the unit disk, so that its boundary is the unit circle 7. We denote by H” the Hardy space of exponent p
which is the closure of polynomials in the LP-norm on the circle if 1 < p < co and the space of bounded
holomorphic functions in D if p = co. Functions in H? have well-defined boundary values in L?(T"), which
make it possible to speak of (traces of) analytic functions on the boundary.

A standard extremal problem on the disk is [69]:

(Py) Let1 <p<ooand f € LP(T); find a function g € HP such that g — f is of minimal

norm in L?(T).
When seeking an analytic function in D which approximately matches some measured values f on a sub-arc
K of T', the following generalization of (F) naturally arises:

(P) Let 1<p<oo, K asub-arc of T, f € LP(K), v € LP(T~ K) and M > 0; find a
function g € H? such that |[g — ¢|[,px) < M and g — f is of minimal norm in LP(K)
under this constraint.

Here ¢ is a reference behaviour capsulizing the expected behaviour of the model off K, while M is the
admissible error with respect to this expectation. The value of p reflects the type of stability which is sought
and how much one wants to smoothen the data.
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To fix terminology we generically refer to (P) as a bounded extremal problem. The solution to this convex
infinite-dimensional optimization problem can be obtained upon iteratively solving spectral equations for
appropriate Hankel and Toelitz operators, that involve a Lagrange parameter, and whose right hand-side is
given by the solution to (FPy) for some weighted concatenation of f and ). Constructive aspects are described
in [46], [48], [81], forp =2, p = 00, and 1 < p < oo, while the situation p = 1 is essentially open.

Various modifications of ( P) have been studied in order to meet specific needs. For instance when dealing with
lossless transfer functions (see section 4.3), one may want to express the constraint on 7'\ K in a pointwise
manner: |[g — | < M ae.onT ~\ K, see [51] for p = 2 and ¢ = 0.

Another variation of (P), aiming at solving inverse boundary-value problems from mixed Dirichlet-Neumann
data (see sections 4.2 and 6.2) is to impose as a constraint that [[Im(g — ¥)|;» (1) < M while looking
for Re(g — f) to be of minimal norm in LP(K) under this constraint. This gives rise to a new identification
technique of Robin coefficients, which is interesting for instance in corrosion control, see [21].

The above-mentioned problems can be stated on an annular geometry rather than a disk. For p = 2 the
solution proceeds much along the same lines [20], [36]. When K is the outer boundary, (P) regularizes
a classical inverse problem occurring in nondestructive control, namely to recover a harmonic function
on the inner boundary from overdetermined Dirichlet-Neumann data on the outer boundary (see section
6.2.1). Interestingly perhaps, it becomes a tool to approach Bernoulli type problems for the Laplacian, where
overdetermined observations are made on the outer boundary and we seek the inner boundary knowing it is a
level curve of the flux (see section 6.2.3). Here, the Lagrange parameter indicates which deformation should
be applied on the inner contour in order to improve the fit to the data.

Continuing effort is currently payed by the team to carry over bounded extremal problems and their solution
to more general settings.

Such generalizations are twofold: on the one hand Apics considers 2-D diffusion equations with variable
conductivity, on the other hand it investigates the ordinary Laplacian in R™. The targeted applications are the
determination of free boundaries in plasma control and source detection in electro/magneto-encephalography,
respectively.

An isotropic diffusion equation in dimension 2 can be recast as a so-called real Beltrami equation [74].
This way analytic functions get replaced by “generalized” ones in problems (Fy) and (P). Hardy spaces of
solutions, which are more general than Sobolev ones and allow one to handle LP boundary conditions, have
been introduced when 1 < p < oo [50]. The expansions of solutions needed to constructively handle such
problems, are now under study [49]. The goal is to solve the analog of (P) in this context to approach
Bernoulli-type problems (see section 6.2.1).

At present, bounded extremal problems for the n-D Laplacian are considered on half-spaces or balls. Following
[82], Hardy spaces are defined as gradients of harmonic functions satisfying L? growth conditions on inner
hyperplanes or spheres. From the constructive viewpoint, when p = 2, spherical harmonics offer a reasonable
substitute to Fourier expansions [34]. Only very recently were we able to define operators of Hankel type
whose singular values connect to the solution of (/) in BMO norms. The L? problem also makes contact with
some nonlinear PDE’s, namely to the p-Laplacian. The goal is here to solve the analog of (P) on spherical
shells to approach inverse diffusion problems across a conductor layer.

3.1.2. Meromorphic and rational approximation

Keywords: critical point theory, meromorphic approximation, orthogonal polynomials, rational approxima-
tion.

Participants: Laurent Baratchart, Vincent Lunot, Jean-Paul Marmorat, Martine Olivi, Edward Saff, Herbert
Stahl [TFH Berlin], Maxim Yattselev.

Let as before D designate the unit disk, 7" the unit circle. We further put R for the set of rational functions
with at most N poles in D, which allows us to define the meromorphic functions in LP(T') as the traces of
functions in H? + Ry.
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A natural generalization of problem (F) is

(Pn) Letl <p < oo, N > 0aninteger, and f € LP(T); find a function gy € HP + Ry such
that gy — f is of minimal norm in LP(T).

Problem (P ) aims, on the one hand, at solving inverse potential problems from overdetermined Dirichlet-
Neumann data, namely to recover approximate solutions of the inhomogeneous Laplace equation Au = p,
with © some (unknown) distribution, which will be discretized by the process as a linear combination of NV
Dirac masses. On the other hand, it is used to perform the second step of the identification scheme described in
section 3.1, namely rational approximation with a prescribed number of poles to a function analytic in the right
half-plane, when one maps the latter conformally to the complement of D and solve (P ) for the transformed
function on 7.

Only for p = oo and continuous f is it known how to solve (Py) in closed form. The unique solution is given
by the AAK theory, that allows one to express g in terms of the singular vectors of the Hankel operator with
symbol f. The continuity of g as a function of f only holds for stronger norms than uniform, [77].

The case p = 2 is of special importance. In particular when f € FQ, the Hardy space of exponent 2 of the
complement of D in the complex plane (by definition, h(z) belongs to H" if, and only if h(1/z) belongs to
HP), then (Py) reduces to rational approximation. Moreover, it turns out that the associated solution gy € Ry
has no pole outside D, hence it is a stable rational approximant to f. However, in contrast with the situation
when p = oo, this approximant may not be unique.

The former Miaou project (predecessor of Apics) has designed an adapted steepest-descent algorithm for the
case p = 2 whose convergence to a local minimum is guaranteed; it seems today the only procedure meeting
this property. Roughly speaking, it is a gradient algorithm that proceeds recursively with respect to the order N
of the approximant, in a compact region of the parameter space [44]. Although it has proved rather effective
in all applications carried out so far (see sections 4.2, 4.3), it is not known whether the absolute minimum can
always be obtained by choosing initial conditions corresponding to critical points of lower degree (as done by
the Endymion software section 5.5 and RARL2 software, section 5.2).

In order to establish convergence results of the algorithm to the global minimum, Apics has undergone a long-
haul study of the number and nature of critical points, in which tools from differential topology and operator
theory team up with classical approximation theory. The main discovery is that the nature of the critical points
(e.g. local minima, saddles...) depends on the decrease of the interpolation error to f as N increases [52].
Based on this, sufficient conditions have been developed for a local minimum to be unique. This technique
requires strong error estimates that are often difficult to obtain, and most of the time only hold for N large.
Examples where uniqueness or asymptotic uniqueness has been proved this way include transfer functions
of relaxation systems (i.e., Markov functions) [54], the exponential function, and meromorphic functions [8].
The case where f is the Cauchy integral on a hyperbolic geodesic arc of a Dini-continuous function which
does not vanish “too much” has been recently answered in the positive, see section 6.5.

An analog to AAK theory has been carried out for 2 < p < oo [9]. Although not computationally as powerful,
it has better continuity properties and stresses a continuous link between rational approximation in H? and
meromorphic approximation in the uniform norm, allowing one to use, in either context, techniques available
from the other!.

A common feature to all these problems is that critical point equations express non-Hermitian orthogonality
relations for the denominator of the approximant. This is used in an essential manner to assess the behavior
of the poles of the approximants to functions with branched singularities (cf. sections 3.1.3, 6.6), which is of
particular interest for inverse source problems.

In higher dimensions, the analog of problem (Py) is the approximation of a vector field with gradients
of potentials generated by N point masses instead of meromorphic functions. The issue is by no means
understood at present, and is a major endeavour of future research problems.

IWhen 1 < p < 2, problem (Pyy) is still fairly open.
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Certain constrained rational approximation problems, of special interest in identification and design of passive
systems, arise when putting additional requirements on the approximant, for instance that it should be smaller
than 1 in modulus. Such questions became over years an increasingly significant part of the team’s activity
(see sections 4.3, 6.4, 6.5, and 6.8). When translated over to the circle, a prototypical formulation consists
in approximating the modulus of a given function by the modulus of a rational function of degree n. When
p = 2 this problem can be reduced to a series of standard rational approximation problems, but usually one
needs to solve it for p = oo. The case where |f| is a piecewise constant function with values 0 and 1 can
also be approached via classical Zolotarev problems [79], that can be solved more or less explicitly when
the pass-band consists of a single arc. A constructive solution in the case where |f| is a piecewise constant
function with values 0 and 1 on several arcs (multiband filters) is one recent achievement of the team. Though
the modulus of the response is the first concern in filter design, the variation of the phase must nevertheless
remain under control to avoid unacceptable distortion of the signal. This is an important issue, currently under
investigation within the team under contract with the CNES, see section 6.8.

From the point of view of design, rational approximants are indeed useful only if they can be translated
into physical parameter values for the device to be built. This is where system theory enters the scene, as the
correspondence between the frequency response (i.e. the transfer-function) and the linear differential equations
that generate this response (i.e. the state-space representation), which is the object of the so-called realization
process. Since filters have to be considered as dual modes cavities, the realization issue must indeed be tackled
ina 2 x 2 matrix-valued context that adds to the complexity. A fair share of the team’s research in this direction
is concerned with finding realizations meeting certain constraints (imposed by the technology in use) for a
transfer-function that was obtained with the above-described techniques (see section 6.7).

Behavior of poles of meromorphic approximants and inverse problems for the Laplacian

Keywords: discretization of potentials, free boundary inverse problems, meromorphic and rational approxi-
mation, orthogonal polynomials, singularity detection.

Participants: Laurent Baratchart, Edward Saff, Herbert Stahl [TFH Berlin], Maxim Yattselev.

We refer here to the behavior of the poles of best meromorphic approximants, in the L”-sense on a closed
curve, to functions f defined as Cauchy integrals of complex measures whose support lies inside the curve.
If one normalizes the contour to be the unit circle 7', we are back to the framework of section 3.1.2 and to
problem (Pp); the invariance of the problem under conformal mapping was established in [6]. The research
so far has focused on functions whose singular set inside the contour is zero or one-dimensional.

Generally speaking, the behavior of poles is particularly important in meromorphic approximation to obtain
error rates as the degree goes large and also to tackle constructive issues like uniqueness. However, the original
motivation of Apics is to consider this issue in connection with the approximation of the solution to a Dirichlet-
Neumann problem, so as to extract information on the singularities. The general theme is thus how do the
singularities of the approximant reflect those of the approximated function? The approach to inverse problem
for the 2-D Laplacian that we outline here is attractive when the singularities are zero- or one-dimensional (see
section 4.2). It can be used as a computationally cheap preliminary step to obtain the initial guess of a more
precise but heavier numerical optimization. For sufficiently smooth crack, or pointwise sources recovery, the
approach in question is in fact equivalent to the meromorphic approximation of a function with branch points,
and we were able to prove [4], [6] that the poles of the approximants accumulate in a neighborhood of the
geodesic hyperbolic arc that links the endpoints of the crack, or the sources [47]. Moreover the asymptotic
density of the poles turns out to be the equilibrium distribution on the geodesic arc of the Green potential and
it charges the end points, that are thus well localized if one is able to compute sufficiently many zeros (this
is where the method could fail). The case of more general cracks, as well as situations with three or more
sources, requires the analysis of the situation where the number of branch points is finite but arbitrary, see
section 6.6). This are outstanding open questions for applications to inverse problems (see section 6.2), as also
the problem of a general singularity, that may be two dimensional.
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Results of this type open new perspectives in non-destructive control, in that they link issues of current interest
in approximation theory (the behavior of zeroes of non-Hermitian orthogonal polynomials) to some classical
inverse problems for which a dual approach is thereby proposed: to approximate the boundary conditions by
true solutions of the equations, rather than the equation itself (by discretization).

Let us point out that the problem of approximating, by a rational or meromorphic function, in the LP sense on
the boundary of a domain, the Cauchy transform of a real measure, localized inside the domain, can be viewed
as an optimal discretization problem for a logarithmic potential according to a criterion involving a Sobolev
norm. This formulation can be generalized to higher dimensions, even if the computational power of complex
analysis is then no longer available, and this makes for a long-term research project with a wide range of
applications. It is interesting to mention that the case of sources in dimension three in a spherical or ellipsoidal
geometry, can be attacked with the above 2-D techniques as applied to planar sections (see section 6.2).

Matrix-valued rational approximation

Keywords: inner matrix, rational approximation, realization theory, reproducing kernel space.

Participants: Laurent Baratchart, Martine Olivi, José Grimm, Jean-Paul Marmorat, Bernard Hanzon, Ralf
Peeters [Univ. Maastricht].

Matrix-valued approximation is necessary for handling systems with several inputs and outputs, and it
generates substantial additional difficulties with respect to scalar approximation, theoretically as well as
algorithmically. In the matrix case, the McMillan degree (i.e., the degree of a minimal realization in the
System-Theoretic sense) generalizes the degree.

. 1 . . ; ,
The problem we want to consider reads: Let F € (H 2)mX and n an integer, find a rational matrix of size
m X 1 without poles in the unit disk and of McMillan degree at most n which is nearest possible to ¥ in

! o . .
(H?)™”". Here the L? norm of a matrix is the square root of the sum of the squares of the norms of its entries.

The approximation algorithm designed in the scalar case generalizes to the matrix-valued situation [68]. The
first difficulty consists here in the parametrization of transfer matrices of given McMillan degree n, and the
inner matrices (i.e., matrix-valued functions that are analytic in the unit disk and unitary on the circle) of degree
n enter the picture in an essential manner: they play the role of the denominator in a fractional representation
of transfer matrices (using the so-called Douglas-Shapiro-Shields factorization).

The set of inner matrices of given degree has the structure of a smooth manifold that allows one to use
differential tools as in the scalar case. In practice, one has to produce an atlas of charts (parametrization
valid in a neighborhood of a point), and we must handle changes of charts in the course of the algorithm. Such
parametrization can be obtained from interpolation theory and Schur type algorithms, the parameters being
interpolation vectors or matrices [38], [10], [11]. Some of these parametrizations have a particular interest for
computation of realizations [10], [11], involved in the estimation of physical quantities for the synthesis of
resonant filters. Two rational approximation codes (see sections 5.2 and 5.5) have been developed in the team.

Problems relative to multiple local minima naturally arise in the matrix-valued case as well, but deriving
criteria that guarantee uniqueness is even more difficult than in the scalar case. The already investigated case
of rational functions of the sought degree (the consistency problem) was solved using rather heavy machinery
[7], and that of matrix-valued Markov functions, that are the first example beyond rational function has made
progress only recently [43]. Let us stress that the algorithms mentioned above are first to handle rational
approximation in the matrix case in a way that converges to local minima, while meeting stability constraints
on the approximant.

3.2. Structure and control of non-linear systems

3.2.1.

Feedback control and optimal control

Keywords: control, non-holonomic mechanical system, non-linear control, stabilization of non-linear sys-
tems.
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Participants: José Grimm, Jean-Baptiste Pomet.

Using the terminology of the beginning of section 3.1, the class of models considered here is the one of finite
dimensional nonlinear control systems; we focus on control rather than identification. In many cases, a linear
control based on the linear approximation around a nominal point or trajectory is sufficient. However, there
are important instances where it is not, either because the magnitude of the control is limited or because the
linear approximation is not controllable, or else in control problems like path planning, that are not local in
nature.

Stabilization by continuous state feedback consists in designing a control law which is a smooth (at least
continuous) function of the state making a given point (or trajectory) asymptotically stable for the closed—loop
system. One can consider this as a weak version of the optimal control problem which is to find a control that
minimizes a given criterion (for instance the time to reach a prescribed state). Optimal control generally leads
to a rather irregular dependence on the initial state; in contrast, stabilization is a qualitative objective (i.e., to
reach a given state asymptotically) which is more flexible and allows one to impose a lot more regularity.

Lyapunov functions are a well-known tool to study the stability of non-controlled dynamic systems. For
a control system, a Control Lyapunov Function is a Lyapunov function for the closed-loop system where
the feedback is chosen appropriately. It can be expressed by a differential inequality called the “Artstein
(in)equation” [40], reminiscent of the Hamilton-Jacobi-Bellmann equation but largely under-determined.
One can easily deduce a continuous stabilizing feedback control from the knowledge of a control Lyapunov
function; also, even when such a control is known beforehand, obtaining a control Lyapunov function can still
be very useful to deal with robustness issues. Moreover, if one has to deal with a problem where it is important
to optimize a criterion, and if the optimal solution is hard to compute, one can look for a control Lyapunov
function which comes “close” (in the sense of the criterion) to the solution of the optimization problem but
leads to a control which is easier to work with.

These constructions were exploited in a joint collaborative research conducted with Thales Alenia Space
(Cannes), where minimizing a certain cost is very important (fuel consumption / transfer time) while at the
same time a feedback law is preferred because of robustness and ease of implementation (see section 4.4).

Transformations and equivalences of non-linear systems and models

Keywords: classification, non-linear control, non-linear feedback, non-linear identification.

Participants: Laurent Baratchart, Jean-Baptiste Pomet.

Here we study certain transformations of models of control systems, or more accurately of equivalence classes
modulo such transformations. The interest is two-fold:

e From the point of view of control, a command satisfying specific objectives on the transformed
system can be used to control the original system including the transformation in the controller.
This is relevant when the transformed system has a structure that can easily be exploited, e.g. linear
controllable.

e From the point of view of identification and modeling, the interest is either to derive qualitative
invariants to support the choice of a non-linear model given the observations, or to contribute to a
classification of non-linear models which is missing sorely today. Indeed, the success of the linear
model in control and identification is due to the deep understanding one has of it; a more complete
knowledge of invariants of non-linear models under basic transformations is a prerequisite for a more
general theory of non-linear identification.

Concerning the classes of transformations, a static feedback transformation is a (non-singular) re-
parametrization of the control depending on the state, together with a change of coordinates in the state space.
A dynamic feedback transformation consists of a dynamic extension (adding new states, and assigning them
a new dynamics) followed by a state feedback on the augmented system. Let us now stress two specific
problems that we are tackling.
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Dynamic Equivalence. This equivalence is more general than static equivalence and therefore more interest-
ing for a classification. Very few invariants are known. Any insight on this problem is relevant to the above
questions. See some result in [25] and section 6.11.

A special equivalence class is the one containing linear controllable systems. It turns out that a system is in this
class—i.e. is dynamic linearizable—if and only if there is a formula that gives the general solution by applying
a nonlinear differential operator to a certain number of arbitrary functions of time; such a formula is often
called a (Monge) parametrization and the order of the differential operator the order of the parametrization.
Existence of such a parametrization has been emphasized over the last years as very important and useful in
control, see [67]; this property (with additional requirements on the parametrization) is also called flatness.

An important question remains open: how can one algorithmically decide whether a given system has this
property or not, i.e., is dynamic linearizable or not? The mathematical difficulty is that no a priori bound is
known on the order of the above mentioned differential operator giving the parametrization. Within the team,
results on low dimensional systems have been obtained [1], see also [41]; the above mentioned difficulty is
not solved for these systems but results are given with priori prescribed bounds on this order.

From the differential algebraic point of view, the module of differentials of a controllable system is free and
finitely generated over the ring of differential polynomials in d/d¢ with coefficients in the ring of functions on
the system’s trajectories; the above question is the one of finding out whether there exists a basis consisting
of closed differential forms. Expressed in this way, it looks like an extension of the classical Frobenius
integrability theorem to the case where coefficients are differential operators. Of course, some non classical
conditions have to be added to the classical stability by exterior differentiation, and the problem is open.
In [42], a partial answer to this problem was given, but in a framework where infinitely many variables are
allowed and a finiteness criterion is still missing. The goal is to obtain a formal and implementable algorithm
to decide whether or not a given system is flat around a regular point.

Topological Equivalence. Compared to static equivalence, dynamic equivalence is more general, hence might
offer some more robust “qualitative” invariants; another way to enlarge equivalence classes is to look for
equivalence modulo possibly non-differentiable transformations.

In the case of dynamical systems without control, the Hartman-Grobman theorem states that every system
is locally equivalent via a transformation that is solely bi-continuous, to a linear system in a neighborhood
of a non-degenerate equilibrium. A Hartman-Grobman theorem for control systems would say, typically, that
outside a “meager” class of models (for instance, those whose linear approximation is non-controllable), and
locally around nominal values of the state and the control, no qualitative phenomenon can distinguish a non-
linear system from a linear one, all non-linear phenomena being thus either of global nature or singularities.
Such a statement is wrong, at least away from singularities: if a system is locally equivalent to a controllable
linear system via a bi-continuous transformation —a local homeomorphism in the state-control space- it is also
equivalent to this same controllable linear system via a transformation that is as smooth as the system itself
[53]. A contrario, under weak regularity conditions, linearization can be done by non-causal transformations
(see [45]) whose structure remains unclear, but acquires a concrete meaning when the entries are themselves
generated by a finite-dimensional dynamics.

The above considerations call for the following question, which is important for modeling control systems:
are there local “qualitative” differences between the behavior of a non-linear system and that of its linear
approximation when the latter is controllable?

3.3. Algebraic analysis approach to mathematical systems theory

Keywords: algebraic analysis, computer algebra, linear systems, module theory.

Participant: Alban Quadrat.
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Many systems coming from mathematical physics, applied mathematics and engineering sciences can be
described by means of systems of ordinary or partial differential equations, difference equations, differential
time-delay equations... In the case of linear systems, these systems can be defined by means of matrices with
entries in non-commutative algebras of functional operators such as differential operators, shift operators,
time-delay operators, difference operators...

The methods of algebraic analysis ? give a way to intrinsically study a linear functional system by means of
its associated finitely presented left module over a non-commutative polynomial ring of functional operators.
Thanks to the works of B. Malgrange, V. Palamodov, J. Bernstein, M. Kashiwara and others, algebraic analysis
yields new results and information about the algebraic and analytic properties of linear functional systems,
their solutions and associated algebraic and geometric invariants.

The research of Apics on such topics combines Grobner bases techniques over some non-commutative
polynomial rings with the development of new algorithms of algebraic analysis in order to effectively check
classical properties of module theory (e.g., existence of a non-trivial torsion submodule or r-pure torsion
submodules, torsion-freeness, reflexiveness, projectiveness, stably freeness, freeness, simple or decomposable
modules), give their system-theoretical interpretations (existence of autonomous elements or successive
parametrizations, existence of minimal/injective parametrizations or Bézout equations) and compute important
tools of homological algebra (e.g., (minimal) free resolutions, split long exact sequences, extension and torsion
functors, projective and Krull dimensions, Hilbert power series). The developed algorithms are implemented
in various symbolic packages that are used to apply our results to systems theory (e.g., parameterizability,
flatness, autonomous elements, equivalences of systems, factoring and decomposing linear functional systems)
and to mathematical physics (e.g., research of potentials, computations of the field equations and the
conservation laws).

4. Application Domains

4.1. Introduction

The bottom line of the team’s activity is two-fold, namely function theory and optimization in the frequency
domain on the one hand, and the control of certain systems governed by differential equations on the other
hand. Therefore one can distinguish between two main families of applications: one dealing with the design
and identification of diffusive and resonant systems (these are inverse problems), and one dealing with the
control of certain mechanical systems. For applications of the first type, approximation techniques as described
in section 3.1.1 allow one to deconvolve linear equations, analyticity being the result of either the use of Fourier
transforms or the harmonic character of the equation itself. Applications of the second type mostly concern
the control of systems that are “poorly” controllable, for instance low thrust satellites or optical regenerators.
We describe all these below in more detail.

4.2. Geometric inverse problems for elliptic partial differential equations

Keywords: Beltrami equation, Laplace equation, inverse boundary problems, non destructive control, tomog-
raphy.

Participants: Laurent Baratchart, Yannick Fischer, José Grimm, Mohamed Jaoua, Juliette Leblond, Moncef
Mahjoub [LAMSIN-ENIT and UNSA], Ana-Maria Nicu, Jonathan R. Partington, Stéphane Rigat, Emmanuel
Russ [Univ. Provence], Edward Saff, Meriem Zghal.

2]-E. Bjork, Rings of Differential Operators, North-Holland Publishing Company (1979); M. Kashiwara, Algebraic Study of Systems
of Partial Differential Equations, Mémoires de la Société Mathématiques de France 63 (1992); V. P. Palamodov, Linear Differential
Operators with Constant Coefficients, Grundlehren der mathematischen Wissenschaften 168, Springer (1970).
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We are mainly concerned with classical inverse problems like the one of localizing defaults (as cracks,
pointwise sources or occlusions) in a two or three dimensional domain from boundary data (which may
correspond to thermal, electrical, or magnetic measurements), of a solution to Laplace or to some conductivity
equation in the domain. These defaults can be expressed as a lack of analyticity of the solution of the
associated Dirichlet-Neumann problem that may be approached, in balls, using techniques of best rational
or meromorphic approximation on the boundary of the object (see sections 3.1.2, 3.1.3).

Indeed, it turns out that traces of the boundary data on 2-D cross sections (disks) coincide with analytic
functions in the slicing plane, that has branched singularities inside the disk [5]. These singularities are related
to the actual location of the sources (namely, they reach in turn a maximum in modulus when the plane
contains one of the sources). Hence, we are back to the 2-D framework where approximately recovering these
singularities can be performed using best rational approximation.

In this connection, the realistic case where data are available on part of the boundary only offers a typical
opportunity to apply the analytic extension techniques (see section 3.1.1) to Cauchy type issues, a somewhat
different kind of inverse problems in which the team is strongly interested.

The approach proposed here consists in recovering, from measured data on a subset K of the boundary 0D of
a domain D of R? or R3, say the values Fx on K of some function F, the subset v C D of its singularities
(typically, a crack or a discrete set of pointwise sources), provided that F' is an analytic function in D \ .

e The analytic approximation techniques (section 3.1.1) first allow us to extend F' from the given data
Fg toall of 0D, if K # 0D, which is a Cauchy type issue for which our algorithms provide robust
solutions, in plane domains (see [21] for the case of the 2D disk or simply connected domains,
[20], [36], [27], [13] for 2D annular domains, and [34] for 3D spherical situations, also discussed
in section 6.2). Note that identification schemes for an unknown Robin coefficient together with
stability properties have been obtained in the same way [64].

e From these extended data on the whole boundary, one can obtain information on the presence and the
location of +, using rational or meromorphic approximation on the boundary (sections 3.1.2, 3.1.3).
This may be viewed as a discretization of «y by the poles of the approximants [4]. This is the case in
dimension 2, using classical links between analyticity and harmonicity [2], but also in dimension 3,
at least in spherical or ellipsoidal domains, working on 2-D plane sections, [5], [24]).

The two above steps are shown in [18] to provide a robust way of locating sources from incomplete boundary
data in a 2-D situation with several annular layers. Numerical experiments have already yielded excellent
results in 3-D situations and we are now on the way to process real experimental magneto-encephalographic
data, see also sections 5.8, 6.2.2. The doctoral work of A.-M. Nicu and M. Zghal are concerned with these
applications, in collaboration with the Odyssée team of Inria SAM, and with neurosciences teams in partner-
hospitals (Timone, Marseille, and Salpétriere, Paris).

Such methods are currently being generalized to problems with variable conductivity governed by a 2-D
Beltrami equation, see [50]. The application we have in mind is to plasma confinement for thermonuclear
fusion in a Tokamak, more precisely with the extrapolation of magnetic data on the boundary of the chamber
from the outer boundary of the plasma, which is a level curve for the poloidal flux solving the original div-
grad equation. Solving this inverse problem of Bernoulli type is of importance to determine the appropriate
boundary conditions to be applied to the chamber in order to shape the plasma [57]. These issues are the
topics of the thesis of S. Chaabi and Y. Fischer, and of a joint collaboration with the CEA-IRFM (Cadarache),
the Laboratoire J.-A. Dieudonné at the Univ. of Nice-SA, and the CMI-LATP at the Univ. of Marseille I (see
section 6.2.3).

4.3. Identification and design of resonant systems: hyperfrequency filter
identification

Keywords: filtering device, microwave, multiplexing, telecommunications.
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Participants: Laurent Baratchart, Stéphane Bila [XLim, Limoges], José¢ Grimm, Jean-Paul Marmorat, Fabien
Seyfert.

One of the best training grounds for the research of the team in function theory is the identification and design
of physical systems for which the linearity assumption works well in the considered range of frequency, and
whose specifications are made in the frequency domain. Resonant systems, either acoustic or electromagnetic
based, are prototypical devices of common use in telecommunications.

In the domain of space telecommunications (satellite transmissions), constraints specific to onboard technol-
ogy lead to the use of filters with resonant cavities in the microwave range. These filters serve multiplexing
purposes (before or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically
coupled by irises (orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the
Maxwell equations, forcing the tangent electrical field along the body of the cavity to be zero. A deeper study
(of the Helmholtz equation) states that essentially only a discrete set of wave vectors is selected. In the con-
sidered range of frequency, the electrical field in each cavity can be seen as being decomposed along two
orthogonal modes, perpendicular to the axis of the cavity (other modes are far off in the frequency domain,
and their influence can be neglected).

Figure 1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes
within the cavity, so that there are 16 quantities that should be optimized. Quantities like the diameter and length of
the cavities, or the width of the 11 slits are fixed in the design phase.

Each cavity (see Figure 1) has three screws, horizontal, vertical and midway (horizontal and vertical are two
arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all the
cavities have the same orientation, and when the directions of the irises are the same, as well as the input and
output slits). Since the screws are conductors, they act more or less as capacitors; besides, the electrical field
on the surface has to be zero, which modifies the boundary conditions of one of the two modes (for the other
mode, the electrical field is zero hence it is not influenced by the screw), the third screw acts as a coupling
between the two modes. The effect of the iris is to the contrary of a screw: no condition is imposed where there
is a hole, which results in a coupling between two horizontal (or two vertical) modes of adjacent cavities (in
fact the iris is the union of two rectangles, the important parameter being their width). The design of a filter
consists in finding the size of each cavity, and the width of each iris. Subsequently, the filter can be constructed
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and tuned by adjusting the screws. Finally, the screws are glued. In what follows, we shall consider a typical
example, a filter designed by the CNES in Toulouse, with four cavities near 11 Ghz.

Near the resonance frequency, a good approximation of the Maxwell equations is given by the solution of
a second order differential equation. One obtains thus an electrical model for our filter as a sequence of
electrically-coupled resonant circuits, and each circuit will be modeled by two resonators, one per mode,
whose resonance frequency represents the frequency of a mode, and whose resistance represent the electric
losses (current on the surface).

In this way, the filter can be seen as a quadripole, with two ports, when plugged on a resistor at one end
and fed with some potential at the other end. We are then interested in the power which is transmitted and
reflected. This leads to defining a scattering matrix S, that can be considered as the transfer function of a stable
causal linear dynamical system, with two inputs and two outputs. Its diagonal terms S; 1, Sz 2 correspond to
reflections at each port, while S 2, S 1 correspond to transmission. These functions can be measured at
certain frequencies (on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is
16 in the example), and the key step consists in expressing the components of the equivalent electrical circuit
as a function of the .S;; (since there are no formulas expressing the lengths of the screws in terms of parameters
of this electrical model). This representation is also useful to analyze the numerical simulations of the Maxwell
equations, and to check the design, particularly the absence of higher resonant modes.

In fact, resonance is not studied via the electrical model, but via a low-pass equivalent circuit obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e., the underlying system
may not have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:

e measuring the scattering matrix of the filter near the optimal frequency over twice the pass band
(which is 80Mhz in the example).

e solving bounded extremal problems for the transmission and the reflection (the modulus of he
response being respectively close to 0 and 1 outside the interval measurement, cf. section 3.1.1).
This provides us with a scattering matrix of order roughly 1/4 of the number of data points.

e Approximating this scattering matrix by a rational transfer-function of fixed degree (8 in this
example) via the Endymion or RARL2 software (cf. section 3.1.4).

e A realization of the transfer function is thus obtained, and some additional symmetry constraints are
imposed.

e Finally one builds a realization of the approximant and looks for a change of variables that eliminates
non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
the group of orthogonal complex matrices (symmetry forces this type of transformation).

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relative L? error is less than 10~3. This is illustrated by a reflection diagram (Figure 2).
Non-physical couplings are less than 1072

The above considerations are valid for a large class of filters. These developments have also been used for the
design of non-symmetric filters, useful for the synthesis of repeating devices.

The team investigates today the design of output multiplexors (OMUX) where several filters of the previous
type are coupled on a common guide. In fact, it has undergone a rather general analysis of the question “How
does an OMUX work?” With the help of numerical simulations and Schur analysis, general principles are
being worked out to take into account:

e the coupling between each channel and the “Tee” that connects it to the manifold,
e the coupling between two consecutive channels.

The model is obtained upon chaining the corresponding scattering matrices, and mixes up rational elements
and complex exponentials (because of the delays) hence constitutes an extension of the previous framework.
Its study is being conducted under contract with Thales Alenia Space (Toulouse) (see sections 7.1 and 7.2).
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Figure 2. Nyquist Diagram. Rational approximation (degree 8) and data - Sao

4.4. Spatial mechanics

Keywords: orbital control, satellite, spatial mechanics, telecommunications.

Participants: Alex Bombrun [Univ. of Heidelberg], José Grimm, Jean-Baptiste Pomet.

Generally speaking, aerospace engineering requires sophisticated control techniques for which optimization is
often crucial, due to the extreme functioning conditions. The use of satellites in telecommunication networks
motivates a lot of research in the area of signal and image processing; see for instance section 4.3 for an
illustration. Of course, this requires that satellites be adequately controlled, both in position and orientation
(attitude). This problem and similar ones continue to motivate research in control. The team has been working
for six years on control problems in orbital transfer with low-thrust engines, including four years under contract
with Thales Alenia Space (formerly Alcatel Space) in Cannes.

Technically, the reason for using these (ionic) low thrust engines, rather than chemical engines that deliver a
much higher thrust, is that they require much less “fuel”; this is decisive because the total mass is limited by
the capacity of the launchers: less fuel means more payload, while fuel represents today an impressive part of
the total mass.

From the control point of view, the low thrust makes the transfer problem delicate. In principle of course, the
control law leading to the right orbit in minimum time exists, but it is quite heavy to obtain numerically
and the computation is non-robust against many unmodelled phenomena. Considerable progress on the
approximation of such a law by a feedback has been carried out using ad hoc Lyapunov functions.These
approximate surprisingly well time-optimal trajectories. The easy implementation of such control laws makes
them attractive as compared to genuine optimal control. Here the n — 1 first integrals are an easy means to
build control Lyapunov functions since any function of these first integrals can be made monotone decreasing
by a suitable control. See [58] and the references therein.

5. Software

5.1. The Tralics Translator

Participant: José Grimm.
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The development of the LaTeX to XML translator, named Tralics, was continued (see section 6.1). A
new version was sent to the APP in February 2007, its IDDN number is InterDepositDigitalNumber =
IDDN.FR.001.510030.001.S.P.2002.000.31235. Binary versions are available for Linux, Windows and Ma-
cOS X. Its web page is http://www-sop.inria.fr/apics/tralics. It is now licensed under the CeCILL license
version two, see http://www.cecill.info. Latest release is version 2.13.5, dated 17-11-2008.

5.2. RARL2

Participants: Jean-Paul Marmorat, Martine Olivi [corresponding participant].

RARL?2 (Réalisation interne et Approximation Rationnelle L2) is a software for rational approximation (see
section 3.1.4) http://www-sop.inria.fr/apics/RARL2/rarl2-eng.html.

This software takes as input a stable transfer function of a discrete time system represented by

e cither its internal realization,
e or its first NV Fourier coefficients,

e or discretized values on the circle.

It computes a local best approximant which is stable, of prescribed McMillan degree, in the L? norm.

It is akin to the arl2 function of Endymion from which it differs mainly in the way systems are represented: a
polynomial representation is used in Endymion, while RARL?2 uses realizations, this being very interesting in
certain cases. It is implemented in Matlab. This software handles multi-variable systems (with several inputs
and several outputs), and uses a parametrization that has the following advantages

e it incorporates the stability requirement in a built-in manner,
e it allows the use of differential tools,

e it is well-conditioned, and computationally cheap.

An iterative research strategy on the degree of the local minima, similar in principle to that of arl2, increases
the chance of obtaining the absolute minimum (see section 6.3) by generating, in a structured manner, several
initial conditions.

RARL2 performs the rational approximation step in our applications to filter identification (section 4.3) as well
as sources or cracks recovery (section 4.2). It was released to the universities of Delft, Maastricht, Cork and
Brussels. The parametrization embodied in RARL?2 was recently used for a multi-objective control synthesis
problem provided by ESTEC-ESA, The Netherlands (section 6.3). An extension of the software to the case of
triple poles approximants is now available. It gives nice results in the source recovery problem (section 6.2.2).

5.3. RGC

Participants: Fabien Seyfert [corresponding participant], Jean-Paul Marmorat.

The identification of filters modeled by an electrical circuit that was developed by the team (see section 4.3)
led us to compute the electrical parameters of the underlying filter. This means finding a particular realization
(A, B, C, D) of the model given by the rational approximation step. This 4-tuple must satisfy constraints that
come from the geometry of the equivalent electrical network and translate into some of the coefficients in
(A, B,C, D) being zero. Among the different geometries of coupling, there is one called “the arrow form”
[55] which is of particular interest since it is unique for a given transfer function and also easily computed. The
computation of this realization is the first step of RGC. Subsequently, if the target realization is not in arrow
form, one can nevertheless show that it can be deduced from the arrow-form by a complex- orthogonal change
of basis. In this case, RGC starts a local optimization procedure that reduces the distance between the arrow
form and the target, using successive orthogonal transformations. This optimization problem on the group
of orthogonal matrices is non-convex and has a lot of local and global minima. In fact, there is not always
uniqueness of the realization of the filter in the given geometry. Moreover, it is often interesting to know all
the solutions of the problem, because the designer cannot be sure, in many cases, which one is being handled,
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and also because the assumptions on the reciprocal influence of the resonant modes may not be equally well
satisfied for all such solutions, hence some of them should be preferred for the design. Today, apart from the
particular case where the arrow form is the desired form (this happens frequently up to degree 6) the RGC
software gives no guarantee to obtain a single realization that satisfies the prescribed constraints. The software
Dedale-HF (see 5.6), which is the successor of RGC, solves in a guaranteed manner this constraint realization
problem.

5.4. PRESTO-HF

Participant: Fabien Seyfert.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for microwave filters http://www-
sop.inria.fr/apics/personnel/Fabien.Seyfert/Presto_web_page/presto_pres.html. In order to allow the industrial
transfer of our methods, a Matlab-based toolbox has been developed, dedicated to the problem of identification
of low-pass microwave filter parameters. It allows one to run the following algorithmic steps, either individu-
ally or in a single shot:

e determination of delay components, that are caused by the access devices (automatic reference plane
adjustment);

e automatic determination of an analytic completion, bounded in modulus for each channel,
e rational approximation of fixed McMillan degree;

e determination of a constrained realization.

For the matrix-valued rational approximation step, Presto-HF relies either on hyperion (Unix or Linux only)
or RARL2 (platform independent), both rational approximation engines were developed within the team.
Constrained realizations are computed by the RGC software. As a toolbox, Presto-HF has a modular structure,
which allows one for example to include some building blocks in an already existing software.

The delay compensation algorithm is based on the following strong assumption: far off the passband, one can
reasonably expect a good approximation of the rational components of S1; and Sao by the first few terms of
their Taylor expansion at infinity, a small degree polynomial in 1/s. Using this idea, a sequence of quadratic
convex optimization problems are solved, in order to obtain appropriate compensations. In order to check the
previous assumption, one has to measure the filter on a larger band, typically three times the pass band.

This toolbox is currently used by Thales Alenia Space in Toulouse and a license agreement has been recently
negotiated with Thales airborne systems. XLim (University of Limoges) is a heavy user of Presto-HF among
the academic filtering community and some free license agreements are currently being considered with the
microwave department of the University of Erlangen (Germany) and the Royal Military College (Kingston,
Canada).

5.5. Endymion

Participant: José Grimm.

The development of Endymion, http://www-sop.inria.fr/apics/endymion/index.html has been pursued. It is
a software licensed under the CeCILL license version two, see http://www.cecill.info. It was developed on
Linux, but works as well on MacOS (PowerPC and Intel processors). The core of the system is formed
by a library that handles numbers (short integers, arbitrary size rational numbers, floating point numbers,
quadruple and octuple precision floating point numbers, arbitrary precision real numbers, complex numbers),
polynomials, matrices, etc. Specific data structures for the rational approximation algorithm arl2 and the
bounded extremal problem bep are also available. One can mention for instance splines, Fourier series,
Schur matrices, etc. These data structures are manipulated by dedicated algorithms (matrix inversion, roots
of polynomials, a gradient-based algorithm for minimising 1), Newton method for finding a critical point of 1},
etc), and input-ouput functions that allow one to save data on disk, restore them, plot them, etc.
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The software is interactive. Basically there is a Lisp interpreter: one says (getcoef P 2) if one wants the
coefficient of 22 in P. A symbolic interpreter is based on top of the Lisp interpreter, for instance one can say
P [2] ++; this increments the quantity P, which is the coefficient of z2 in P if P is a polynomial, or the third
element if P is a list, or whatever, etc. There is also a compiler, that transforms a file containing symbolic
instructions into a file containing Lisp instructions.

Lets us discuss one algorithm: arl2 with poles of multiplicity k. The problem is to find p and ¢ such that
f — p/q is of minimal norm, where f is given. One can easily eliminate p, so that the problem consists in
finding ¢ minimising v ¢(q). The same problem holds in the non-scalar case, where the Douglas-Shapiro-
Shields factorization is used (see section 3.1.4). In the scalar case, q is a polynomial defined by its coefficients,
in the non-scalar case, 1 is a function of ), a matrix determined by its Schur parameters. One can add the
constraint that all poles have the same multiplicity k. This means that ¢ = r* for some polynomial 7. The
algorithm works in the case where the denominator is a scalar (in the multi-input multi-output case, this
means that there is a single input or a single output), irrespective of whether ¢ is given by its coefficients
or Schur parameters. Note that the program computes the derivatives of ¢ from the derivatives of r using
automatic differentiation rules in direct and reverse mode. Clearly ¢’ = kr’ r*=1 but in reverse mode, things
are less easy, and we compute s = 2 then either ¢ = s, ¢ = rs or ¢ = s2. This means that the algorithm is
only implemented for & < 4.

5.6. Dedale-HF

Participant: Fabien Seyfert.

Dedale-HF is a software meant to solve exhaustively the coupling matrix synthesis problem in reasonable time
for the users of the filtering community. For a given coupling topology the coupling matrix synthesis problem
(C.M. problem for short) consists in finding all possible electromagnetic coupling values between resonators
that yield a realization of a given filter characteristics (see section 6.7). Solving the latter problem is crucial
during the design step of a filter in order to derive its physical dimensions as well as during the tuning process
where coupling values need to be extracted from frequency measurements (see Figure 3).

Dedale-Hf consists in two parts: a database of coupling topologies as well as a dedicated predictor-corrector
code. Roughly speaking each reference file of the database contains, for a given coupling topology, the
complete solution to the C.M. problem associated to a particular filtering characteristics. The latter is then
used as a starting point for a predictor-corrector integration method that computes the solution to the C.M.
problem of the user, i.e. the one corresponding to a user-specified filter characteristics. The reference files
are computed off line using Groebner basis techniques or numerical techniques based on the exploration of a
monodromy group. The use of such a continuation technique combined with an efficient implementation of
the integrator produces a drastic reduction of the computational time, say, by a factor of 20.

Access to the database and integrator code is done via the web on http://www-sop.inria.fr/apics/Dedale/WebPages.
The software is free of charge for academic research purposes: a registration is however needed in order

to access full functionality. Up to now 90 users have registered among the world (mainly: Europe, U.S.A,
Canada and China) and 4000 reference files have been downloaded.

As mentioned in 6.7 an extension of this software that handles symmetrical networks is under construction.

5.7. OreModules Library

Keywords: Constructive algebraic analysis, Grobner bases, constructive homological algebra, control the-
ory, linear functional systems, mathematical physics, mathematical systems theory.

Participants: Thomas Cluzeau [ENSIL, Limoges], Anna Fabianiska [U. of Aachen, Germany], Alban Quadrat
[corresponding participant], Daniel Robertz [U. of Aachen, Germany].

The OREMODULES library of Ore_algebra (Ore_algebra is a part of the commercial release of Maple) is
dedicated to the study of linear functional systems defined over certain Ore algebras of functional operators
and their applications in mathematical systems theory and mathematical physics.
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Figure 3. Overall view of the design and tuning process of a microwave filter
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The main novelty of OREMODULES is to combine the recent developments of the Grobner bases over some
non-commutative polynomial rings with new algorithms of algebraic analysis in order to effectively check
classical properties of module theory (e.g., existence of a non-trivial torsion submodule, torsion-freeness,
reflexiveness, projectiveness, stably freeness, freeness), give their system-theoretical interpretations (existence
of autonomous elements or successive parametrizations, existence of minimal/injective parametrizations or
Bézout equations) and compute important tools of homological algebra (e.g., (minimal) free resolutions, split
exact sequences, extension functors, projective or Krull dimensions, Hilbert power series).

The abstract language of homological algebra used in the algebraic analysis approach carries over to the
implementations in OREMODULES: up to the choice of the domain of functional operators which occurs in
a given system, all algorithms are stated and implemented in sufficient generality such that linear systems
defined over the Ore algebras developed in the Maple package of Ore_algebra are covered at the same time.
Applications of the OREMODULES package to mathematical systems theory are illustrated in a large library
of examples.

The STAFFORD package of OREMODULES contains an implementation of constructive versions of
J. T. Stafford’s famous but difficult theorem stating that every ideal over the Weyl algebras A,,(k) and B,, (k)
(k is a field of characteristic 0) can be generated by two generators. Based on this implementation and on
algorithmic results recently obtained by the authors of this package, two algorithms have been implemented
which compute bases of free modules over the Weyl algebras A, (Q) and B,,(Q).

The forthcoming QUILLEN-SUSLIN package of OREMODULES, developed by A. Fabiariska (University of
Aachen) with the help of A. Quadrat, contains an implementation of the famous Quillen-Suslin theorem. In
particular, this implementation allows us to compute bases of free modules over a commutative polynomial
ring with coefficients in the field Q and in the principal ideal domain Z.

The OREMORPHISMS package of OREMODULES was developed by T. Cluzeau (ENSIL, Limoges) and
A. Quadrat in order to handle some homological tools such as computations of some morphisms between
two finitely presented modules over Ore algebras, compute kernel, coimage, image and cokernel of such
morphisms and projectors. Using the packages STAFFORD and QUILLEN-SUSLIN, these results allow us to
compute factorizations as well as finding some decompositions of linear systems over Ore algebras. In terms
of module theory, the OREMORPHISMS package gives some methods to test if two modules are isomorphic,
if a given module contains a submodule (reducible modules) or if it can be written as the direct sum of
two submodules. Applications of the OREMORPHISMS package to mathematical physics and mathematical
systems theory are illustrated in a library of examples.

5.8. FindSources3D

Participants: Rania Bassila, Maureen Clerc [EPI Odyssée], Juliette Leblond [corresponding participant],
Jean-Paul Marmorat.

FindSources3D is a software, being implemented (see http://www-sop.inria.fr/apics/FindSources3D/) dedi-
cated to source recovery for the inverse EEG problem, in 3 layers spherical settings, from pointwise data.
Through the algorithm described in section 4.2, it makes use of RARL2 (section 5.2) for the rational approx-
imation step in plane sections. The data transmission preliminary step (“cortical mapping”) is solved using
boundary element methods through the software OpenMEEG (its CorticalMapping features) developed by the
Odyssée Team (see http://www-sop.inria.fr/odyssee/software/OpenMEEG/). A first release of FindSources3D
will be available soon, which will be demonstrated and distributed within the medical teams we are in contact
with (see figure 4).

6. New Results

6.1. Tralics: a LaTeX to XML Translator
Keywords: HTML, LaTeX, MathML, XML.
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Figure 4. Views of the potential for one source and of poles on plane sections in FindSources3D

Participant: José Grimm.

The major use of Tralics remains the production of the RAWEB (Scientific Annex to the Annual Activity
Report of Inria), as explained schematically on figure 5. The input is a LaTeX file, converted by Tralics into
an XML file; this file is converted to another XML file, conforming to a new DTD, via xslrproc; this new file
is converted to HTML or XSL-FO via the use of style sheets; the XSL-FO file formatted into Pdf by pdfTeX,
thanks to the xmitex package that teaches TeX the subtleties of XML and utf-8 encoding, and two packages for
the XSL-FO and MathML commands. This process is completely automatic: it suffices to call make; another
possibility consists in sending a tar file with the sources to iRAbot (the Inria Raweb Robot). Once authors
have finished writing their contributions, all files are sent to a common place, and processed by a tool named
RalyX. Since 2002, a lot of people have worked on these tools, for instance M.P. Durollet, J. Grimm, C. Rossi,
B. Marmol, A.M. Vercoustre, A. Benveniste, 1. Vatton, J.-P. Verjus, J.-C. Le Moal, L. Pierron.

Other applications of Tralics consist in putting scientific papers on the Web; for instance Cedram (http:/www.
cedram.org (Centre de diffusion de revues académiques mathématiques), that publishes the Journal de théorie
des nombres de Bordeaux, uses Tralics for the abstracts and plans to translate full papers; on the other hand
the Connexions project of the Rice University is a environment for collaboratively developing, freely sharing,
and rapidly publishing scholarly content on the Web, it uses it as LaTeX importer.

The main philosophy of Tralics is to have the same parser as TeX, but the same semantics as LaTeX. This
means that commands defined in the eTeX binary, including \chardef, \catcode, \csname, detokenize
etc., behave in Tralics. On the other hand, the semantics of most LaTeX commands are preserved; some
command were re-implemented this year in order to take into account certain details (including local and
global float placement instructions).

Two major versions have been released this year, namely 2.12 in April and 2.13 in October. The documentation
consists in some technical reports [35] and [72], [71], [70], they are regularly updated, especially the HTML
version (produced by Tralics). Some new packages were added to the system (graphicx, xkeyval, color),
and for efficiency reasons, part of the code is implemented in the C++ kernel. The referencing system was
completely rewritten, so that for instance the XML document contains the same equation numbers as the
PostScript version (in the Raweb case, equation numbers are computed by the XML-to-HTML style sheet).
The raweb preprocessor was removed: all commands specific to the Activity Report are now defined in package
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files, the kernel containing some primitives that can check the validity of some arguments versus a keyword
list defined in the configuration file.

rawebhtml.xsl

Figure 5. A diagram that explains how the raweb operates. Rectangular boxes contain tools, diamond-shape boxes
are style sheets, and circles contain language names. The name ‘XML’ is in a double circle, it is the central object;
the arrow labelled ‘D4’ that connects it to itself indicates conversion from one DTD to the other, used in 2004. The
box containing ‘em’ represents the Perl script extract-math.pl that handles the math formulas; it uses tools
borrowed from latex2html. This figure was made using the ‘pgf’ package, a new portable graphic format, not yet
understood by Tralics.

6.2. Inverse Problems for 2-D and 3-D elliptic operators

Keywords: Beltrami equation, Laplacian, inverse problems, non destructive control, nuclear fusion, tomog-
raphy.

Participants: Laurent Baratchart, Maureen Clerc [EPI Odyssée], Yannick Fischer, José Grimm, Mohamed
Jaoua, Juliette Leblond, Moncef Mahjoub, Jean-Paul Marmorat, Ana-Maria Nicu, Jonathan R. Partington,
Stéphane Rigat, Edward Saff, Meriem Zghal.

6.2.1. 3-D boundary value problems for Laplace equation

Solving overdetermined Cauchy problems for the Laplace equation on a spherical layer (in 3-D) in order
to treat incomplete experimental data is a necessary ingredient of the team’s approach to inverse source
problems, in particular for applications to EEG since the latter involves propagating the initial conditions
from the boundary to the center of the domain where the singularities (i.e. the sources) are sought. Here, the
domain is typically made of several homogeneous layers of different conductivities.

Such problems offer an opportunity to state and solve extremal problems for harmonic fields for which
an analog of the Toeplitz operator approach to bounded extremal problems [46] has been obtained. Still,
a best approximation on the subset of a general vector field by a harmonic gradient under a L? norm
constraint on the complementary subset can be computed by an inverse spectral equation for some Toeplitz
operator. Constructive and numerical aspects of the procedure (harmonic 3-D projection, Kelvin and Riesz
transformation, spherical harmonics) and encouraging results have been obtained on numerically simulated
data [34].



6.2.2.

6.2.3.

22 Activity Report INRIA 2008

Issues of robust interpolation on the sphere from incomplete pointwise data are also under study (splines,
spherical harmonics, spherical wavelets, spherical Laplace operator, ...), in order to improve numerical
accuracy of our reconstruction schemes.

The analogous problem in LP, p # 2, is considerably more difficult. A collaborative work with A. Bonami
and S. Grellier (université d’Orléans) in the framework of the ANR project AHPI is going on, aiming mainly
at the case p = co. It was obtained that the BMO distance between a bounded vector field on the sphere
and a bounded harmonic gradient is within a constant of the norm of a Hankel-like operator, acting on L?
divergence-free vector fields with values in L? gradients. Estimating the constant requires solving further
extremal problems in L' on the best approximation of a gradient by a divergence free vector field. This issue
is currently being studied in LP where it leads to analyze particular solutions to the the p-Laplacian on the
sphere.

Sources recovery in 3-D domains, application to MEEG inverse problems

The problem of sources recovery can be handled in 3-D balls by using best rational approximation on 2-D
cross sections (disks) from traces of the boundary data on the corresponding circles (see section 4.2).

The team started to consider more realistic geometries for the 3-D domain under consideration. A possibility
is to parametrize it in such a way that its planar cross-sections are quadrature domains or R-domains. In this
framework, best rational approximation can still be performed in order to recover the singularities of solutions
to Laplace equations, but complexity issues are delicate. The preliminary case of an ellipsoid, which requires
the preliminary computation of an explicit basis of ellipsoidal harmonics, has been studied in [24] and is one
of the topics of the PhD thesis of M. Zghal.

In 3-D, epileptic regions in the cortex are often represented by pointwise sources that have to be localized
from measurements on the scalp of a potential satisfying a Laplace equation (EEG, electroencephalography).
A breakthrough was made which makes it possible now to proceed via best rational approximation on a
sequence of 2-D disks along the inner sphere [5]. A dedicated numerical software “FindSources3D” (see
section 5.8) is being developed (R. Bassila), in collaboration with the team Odyssée.

Also, magnetic data from MEG (magneto-encephalography) will soon become available, which should
enhance sources recovery. Indeed, the radial component of the magnetic field on the boundary also reflects
the presence of current dipoles in the domain. This is the topic of A.-M. Nicu’s PhD thesis. Magnetic sources
localization by analytic and rational approximation on plane sections is currently analyzed from experimental
SQUID data, from Vanderbilt University Physics Dept. (also within M. Zghal’s thesis).

Further, it appears that in the rational approximation step of these schemes, multiple poles possess a nice
behaviour with respect to the branched singularities (see figure 6). This is due to the very basic physical
assumptions on the model (for EEG data, one should consider triple poles). Though numerically observed,
there is no mathematical justification why these multiple poles have such strong accumulation properties,
which remains an intriguing observation.

2-D boundary value problems for conductivity equations, application to plasma control

In collaboration with the CMI-LATP (University Marseille I) and in the framework of the ANR AHPI, the
team considers 2-D diffusion processes with variable conductivity. In particular its complexified version,
the so-called real Beltrami equation, was investigated. In the case of a smooth domain, and for a smooth
conductivity, we analyzed the Dirichlet problem for solutions in Sobolev and then in Hardy classes [50].

Their traces merely lie in LP (1 < p < 0o) of the boundary, a space which is suitable for identification from
pointwise measurements. Again these traces turn out to be dense on strict subsets of the boundary. This allows
us to state Cauchy problems as bounded extremal issues in L? classes of generalized analytic functions, in
a reminiscent manner of what was done for analytic functions as discussed in section 3.1.1. Recently, dual
formulations were obtained and some multiplicative (fibered) structure for the solution was obtained based on
old work by Bers and Nirenberg on pseudo-analytic functions. An article is being written on these topics.
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Figure 6. Localization of two sources (the red circles at sections z = —0.4, z = 0.5) by a single triple pole in plane

sections (blue points).

The case of a conductivity that is merely in L°°, which is important for inverse conductivity problems, is under
examination (PhD thesis of S. Chaabi). There, it is still unknown whether solutions exist for all p.

The application that initially motivated this work comes from free boundary problems in plasma confine-
ment (in tokamaks) for thermonuclear fusion. This work was started in collaboration with the Laboratoire
J. Dieudonné (University of Nice) and is now the topic of a collaboration with two teams of physicists from
the CEA-IRFM (Cadarache).

In the transversal section of a tokamak (which is a disk if the vessel is idealized into a torus), the so-called
poloidal flux is subject to some conductivity outside the plasma volume for some simple explicit smooth
conductivity function, while the boundary of the plasma (in the Tore Supra Tokamak) is a level line of this flux
[57]. Related magnetic measurements are available on the chamber, which furnish incomplete boundary data
from which one wants to recover the inner (plasma) boundary. This free boundary problem (of Bernoulli type)
can be handled through the solutions of a family of bounded extremal problems in generalized Hardy classes
of solutions to real Beltrami equations, in the annular framework. Such approximation problems also allow
us to approach a somewhat dual extrapolation issue, raised by colleagues from the CEA for the purpose of
numerical simulation. It consists in recovering magnetic quantities on the outer boundary (the chamber) from
an initial guess of what the inner boundary (plasma) is.

In the particular case at hand, it seems possible to explicitly compute a basis of solutions (Bessel functions)
that should greatly help the computations, see [49]. This is the topic of the PhD thesis of Y. Fischer.

In the most recent tokamaks, like Jet or ITER, an interesting feature of the level curves of the poloidal flux is
the occurrence of a cusp (a saddle point of the poloidal flux, called an X point), and it is desirable to shape the
plasma according to a level line passing through this X point for physical reasons relating to the efficiency of
the energy transfer. This will be the topic of future studies.

6.3. Interpolation and parametrizations of transfer functions
Participants: Bernard Hanzon, Jean-Paul Marmorat, Martine Olivi, Ralf Peeters [Univ. Maastricht].
We mentioned in section 3.1.4 the role of parameters defining an atlas of charts in rational matrix approxima-

tion. Charts for the class of lossless systems were obtained from interpolation theory [10],[11] which lead to a
simple and robust computation of balanced realizations and form the basis of RARL?2 (see section 5.2).
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This year, a particular attention was paid to some (local) canonical forms presenting a particular structure,
the subdiagonal pivot structure. These forms generalize the well-known Hessenberg form in discrete-time and
Schwarz-Ober form in continuous-time, which are involved in the estimation of physical quantities in many
applications. A very flexible, straightforward algorithm to put any system into these canonical forms under
state isometries was obtained. These results have been presented at the ERNSI meeting and at the regular
seminar of the Cambridge University Engineering Department. For the class of lossless discrete-time systems,
these forms are precisely those computed from a backward Schur algorithm in which the interpolation points
are at zero and the interpolation directions standard basis vectors. In continuous-time, the relevant interpolation
problem in connection with these forms happens to be a boundary interpolation problem: the interpolation
points are still at zero, which is no longer in the analyticity domain but on its boundary. In the SISO case,
the parameters in the Ober-Schwarz canonical form can be interpreted as boundary interpolation values in a
recursive Schur type algorithm [28]. To our knowledge, boundary interpolation has never been used in the
description or in the parametrization of stable systems and this approach seems to be promising.

6.4. Schur rational approximation
Participants: Laurent Baratchart, Vincent Lunot, Stanislas Kupin, Martine Olivi.

Passive devices play an important role in a lot of application areas: telecommunication, chemical process
control, economy, biomedical processes. Network simulation software packages (as ADS or SPICE) require
passive models for their components. However, identifying a passive model from band limited frequency data
is still an open and challenging problem. Schur rational approximation is a new way to approach this problem
and was the subject of the Phd Thesis of Vincent Lunot [12]. In this work, a parametrization of all strictly
Schur rational functions of degree n is constructed from a multipoint Schur algorithm, the parameters being
both the interpolation values and interpolation points. Examples are computed by an L? norm optimization
process and the results are validated by comparison with the unconstrained L? rational approximation. Last
year, the results of [75] on the hyperbolic convergence of the classical Schur algorithm were generalized to the
case of the multipoint Schur algorithm. Orthogonal rational functions and a recent generalization of Geronimus
theorem were used [37]. This year, an analog of the Szego theorem was obtained where the interpolation points
tend to the boundary, provided the approximated function is continuous and less than 1 in a neighborhood of
the accumulation set of the interpolation points. It generalizes the results in [62] and is of novel type since
the n-th orthogonal rational function inverts the Szegd function modulo the Poisson kernel. This provides one
with a rather unexpected theorem on the behaviour of certain orthogonal polynomials with varying weight.
This research is partly contained in V. Lunot’s doctoral dissertation, and an article is being written on the
results.

Yet the case where the function attains 1 in modulus is very important since it justifies much of the use of
the Schur algorithm. Indeed, it is difficult to obtain Schur approximants to a function which is Schur but not
of modulus strictly less than 1, because approximants tend to wind around the function thereby producing
overshoot. This situation is now our next goal. We proved already that if the value 1 is matched slowly enough
at an isolated place, the result continues to hold. It depends on Littlewood-Paley type estimates of the error.

6.5. Rational and meromorphic approximation

Participants: Laurent Baratchart, Vincent Lunot, Edward Saff, Maxim Yattselev.

The results of [4] and [6] were extensively used over the last years to prove the convergence in capacity
of LP-best meromorphic approximants on the circle (i.e. solutions to problem (Pp) of section 3.1.2) when
p > 2, for those functions f that can be written as Cauchy transforms of complex measures supported on a
hyperbolic geodesic arc G [17], [16], [26]. A rational function can also be added to f without modifying the
results, which is useful for applications to inverse sources problems. Some mild conditions (bounded variation
of the argument and power-thickness of the total variation) were required on the measure. Here, we recall
that convergence in capacity means that the (logarithmic) capacity of the set where the error is greater than
goes to 0 for each fixed € > 0. This convergence can be quantified, namely it is geometric with pointwise rate
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exp{—1/C — G} where C is the capacity of the condensor (7', §) and G the Green potential of the equilibrium
measure. The results can be adapted to somewhat general interpolation schemes [17], [16]. From this work
it follows that the counting measures of the poles of the approximants converge, in the weak-* sense, to the
Green equilibrium distribution on J. In particular the poles cluster to the endpoints of the arc, which is of
fundamental use in the team’s approach to source detection (see section 6.2.2).

The technique we just described only yields convergence in capacity and n-th root asymptotics. To obtain
strong asymptotics, additional assumptions must usually be made on the approximated function. This year,
we proved strong asymptotics of appropriate interpolants to Cauchy integrals over arbitrary analytic arcs,
when the density of the measure with respect to a positive power of the equilibrium distribution on the arc
is Dini-smooth. Moreover, if the density is Holder-continuous, the result holds without restrictions, that is,
the power of the equilibrium distribution to which we compare the density needs no longer be positive (in
the language of orthogonal polynomials, this means we can handle arbitrary Jacobi weights). In addition, the
density may in fact vanish in finitely many points like a small fractional power of the distance to these point
[15]. This result is a significant achievement in the theory of Padé approximation, in that it is the first asserting
that uniform convergence holds, for a quite large class of functions, when the interpolation points are chosen
in some appropriate manner (symmetric with respect to the weighted equilibrium potential on the contour).
Moreover, the polar singularities of the function, if any, are asymptotically reproduced by the approximants
with their multiplicities. This is important for inverse problem of mixed type, like those mentioned in section
6.2.2, where monopolar and dipolar sources are handled simultaneously. Some convergence even holds on
the support of the measure. Moreover, this yields bounds on the multiplicity of the singular values of the
underlying Hankel operators [26].

The method is to translate the critical point equation into a Riemann-Hilbert problem on an analytic curve
where harmonic analysis techniques can be used. Analyzing the solution in terms of Hankel and Toeplitz
spectral equations, the conclusion ultimately follows from estimates on the essential spectrum of Hankel
operators. In the case of non-positive Jacobi powers, 0 estimates and Muckenhoupt weights are also needed.

In another collection, the results of [9] have been carried over for analytic approximation to the matrix case
in [14]. The surprising fact was that not every matrix valued function generates a vectorial Hankel operator
meeting the AAK theorem when p < oco. This led us to the generalization of the latter based on Hankel
operators with matrix argument.

6.6. Behavior of poles

Participants: Laurent Baratchart, Edward Saff, Herbert Stahl [TFH Berlin], Maxim Yattselev.

It is known after [9] that the denominators of best rational of meromorphic approximants to a function f in the
LP norm on a closed curve (say the unit circle 7 to fix ideas) satisfy for p > 2 a non-Hermitian orthogonality
relation when f is the Cauchy transform of a complex measure on a curve y (the locus of singularities)
contained in the unit disk D. Using the previous results, this allows one to assess the asymptotic behavior of
the poles of the best uniform meromorphic approximants on J when + is a hyperbolic geodesic arc and of
certain multipoint Padé approximants when -y is an arbitrary analytic arc.

Specifically, under weak regularity conditions on the measure, the counting measure of the poles converges
weak-star to the equilibrium distribution of the condenser (7',+y) in the case of meromorphic approximants,
and of the condenser (v,~) where v is the support of the asymptotic distribution of the interpolation points
if one deals with convergent Padé approximants [17], [16], [15]. The more general situation where + is a so-
called “minimal contour” for the Green potential (of which a geodesic arc is the simplest example) has been
settled with the same conclusion. This technical result is still under writing. Below, we illustrate numerically
these facts which are of particular significance to locate several 2-D sources or piecewise analytic cracks from
overdetermined boundary data (see sections 3.1.3 and 6.2).

Figure 7 shows the location of the poles of various approximants to the function:
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Figure 7. Approximations to the function F': Padé and AAK at degree 30, then arl2 at order 13.

6.7. Circuit realisations of filter responses: determination of canonical forms

and exhaustive computations of constrained realisations

Participants: Smain Amari [RMC, Kingston, Canada], Jean Charles Faugere [project SALSA, Rocquen-
court], Stéphane Bila [XLim, Limoges], Fabien Seyfert.

Groomed by industrial users like Thales Alenia-Space, we made some progress in the analysis of the
realizations of 2x2 lossless scattering systems whose scattering response (.9; ;) satisfies the so-called auto-
reciprocal condition S7 1 = S3 2. It was shown that auto-reciprocal inner responses admit a canonical circuit
realisation of the form of Fig. 8. The length difference (m — [) of the two antennas of Fig. 8 is equal to the
Cauchy index on the imaginary axes of the filter function to be realised. Surprisingly enough this form appears
to be central in the new modal framework S.Amari is currently developing on dual mode filters ( [39]). It was
shown that the classical folded form can be advantageously replaced by the latter yielding a design procedure
with nearly no tuning required (all the physical dimensions of the filter can be computed exactly from the
circuit parameters): a paper has been submitted on this topic and is currently being reviewed. In future work,
we will focus on the practical implementation of this analysis within the software Dedale-Hf 5.6.

We also made some progress on the problem of circuit realisations with mixed type (inductive or capacitive)
coupling elements. An algebraic formulation of the synthesis problem of circuits with mixed type elements
has been obtained which relies on a set of two matricial equations. As opposed to the classical low pass case
with frequency independent couplings the unknown is no longer a similarity transform but a general non-
singular matrix acting on two coupling matrices: the capacitive and the inductive one. Special structures of
the underlying equations are being studied and approaches relying on the efficient use of Groebner basis and
continuation techniques will be investigated.

Finally a general survey on applications of our work to microwave filters synthesis has been published [80] as
well as an application to insertion loss minimization [23].
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6.8. The Zolotarev problem and multi-band filter design

Participants: Vincent Lunot, Fabien Seyfert.

This is part of V. Lunot’s doctoral work. The theoretical developments took place over the last two years, while
deepenings of the numerical aspects were carried out in 2007. This study was conducted under contract with
the CNES and Thales-Alenia-Space (Toulouse). The problem goes as follows. On introducing the ratio of the
transmission and reflexion entries of a scattering matrix, the design of a multi-band filter response (see section
4.3) reduces to the following optimization problem of Zolotarev type [79]:

letting: B, (K, K') = {p € P,(K),q € P,(K') such that Vz € I, pEx;’ <1},
q(z
) . |P
solve: max min ’ (D
(p,q)EEnz,n(KvK/)weJ q

where I = JI; (resp. J =JJ;) is a finite union of compact intervals I; of the real line corresponding
to the pass-bands (resp. stop-bands), and P,,(K) stands for the set of polynomials of degree less than
m with coefficients in the field K. Depending on the physical symmetry of the filter, it is interesting to
solve problem (1) either for K = K’ = R (“real” problem) or K = C, K’ = R (“mixed” problem), or else
K = K' = C (“complex” problem). The “real” Zolotarev problem can be decomposed into a sequence of
concave maximization problems, whose solution we were able to characterize in terms of an alternation
property. Based on this, a Remez-like algorithm has been derived in the polynomial case (i.e. when the
denominator g of the scattering matrix is fixed), which allows for the computation of a dual-band response
(see Figure 10) according to the frequency specifications (see Figure 9 for an example from the spacecraft
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SPOTS5 (CNES)). We have designed an algorithm in the rational case which, unlike linear programming, avoids
sampling over all frequencies. This raises the issue of the “generic normality” (i.e. the maximum degree) of the
approximant with respect to the geometry of the intervals. This question remains open. The design of efficient
procedures to tackle the “mixed” and “‘complex” cases remains a challenge. A preliminary version of easyFF,
the software by V. Lunot to treat the complex case has been released this year to our academic partners:
Xlim and the Royal Military College of Canada. Applications of the Remez algorithm to filter synthesis are

described in [56], [76]. An article on the general approach based on linear programming has been published
[22].

WAFTATICH 1M EL E4LZE AL

EDDD MR L17d UL AR Hedd alb-uiig L I w

| L83 BTV o]
-0 R H
Ll
e T

A AR

Figure 9. SPOT) specifications

Rejection-Retum Loss (db)
B
0

— —— ———
2 -1 o 1 2
Prototype Frequency

Figure 10. 7 order dual-band response and its critical points

6.9. Synthesis and Tuning of broad band microwave filters
Participants: Smain Amari, Magued Bekheit [RMC, Kingston, Canada], Fabien Seyfert.

Some important results have been obtained in order to handle tuning and synthesis of broad band filters.
One of the major problems when dealing with wide band filters is the break down of the classical low pass
model which relies on a narrow band assumption. We showed however that there exists a unifying “low pass
formalism” which is valid in the narrow band as well as in the wide band situations. The latter relies on the

following remark. Let S be any inner, real, symmetric (S* = S), rational matrix, which is identity at infinity
and has MacMillan degree n. Then the rational matrix S, defined by:
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is again an inner, complex, symmetric matrix, which is identity at infinity, and has MacMillan degree n. It can
be shown that S is entirely characterised by the knowledge of its reduced “complex” version S,.. Measurements
of S on two conjugate frequency bands are mapped to measurements of S, on a single band, which up to the
use of a linear frequency transformation can be cast to the normalized band [—1, 1]. Usual techniques used
to recover rational models from low pass responses measured on a single frequency interval can therefore
be used to recover high pass responses via the use of the generalized reduced response S,.. Implementation
attempts of the latter in the Presto-Hf software were started and encouraging results where obtained for the
tuning of an ultra-wide band filter realized with suspended strip lines. Figure 11 shows data and their rational
approximation of this 10th order filter (reduced order 5) with a bandwidth ratio of approximately 10% (in
collaboration with the university of Ulm, Germany).

Concerning the synthesis of the response of such filters we had already shown that the latter amounts to
a Zolotarev problem with a non-polynomial weight (with a square root singularity). For fixed transmission
zeros we were however able to derive explicit formulas for the optimal (in the Chebychev sense) filter function
F,:

F,(w) = cosh (cosh_1 (‘J”i}w)) + icosh—l (fk(w))> » Jr(w) = m ©
k=1

where T is a suitable parabolic frequency transformation and the z, s are prescribed transmission zeros.
Recurrence formulas for the practical computation of F have been derived and implemented as part of the
Dedale-Hf software package. We also made progress about the realizability of such responses.

In collaboration with the RMC and possibly with XLIM and ST-Microelectronics (Tours) our goal is now to
test the validity of our unified approach on real examples. Data collection campaigns obtained during tuning
phases are scheduled. Joint publications about the topic are also in progress.

6.10. Frequency approximation and OMUX design

Participants: Laurent Baratchart, Jean-Paul Marmorat, Fabien Seyfert.

An OMUX (Output MUItipleXor) can be modeled in the frequency domain through scattering matrices of
filters, like those described in section 4.3, connected in parallel onto a common guide. The problem of
designing an OMUX with specified performance in a given frequency range naturally translates into a set
of constraints on the values of the scattering matrices and of the phase shift introduced by the guide in the
considered bandwidth.

An OMUX simulator on a Matlab platform was designed last year and checked against a number of designs
proposed by Thales Alenia Space. Under the terms of a contract with Thales Alenia Space (see section 7.2),
it has been used to design a dedicated software to optimize OMUXes whose second release to AAS has taken
place this year..

The software proceeds by adding channels recursively, applying to the new channel the above short-circuit
and reflection-in-the bandwidth rules. This yields an initial guess for the global “optimizer” which seems
to regularly outperform those currently used by AAS. More extensive tests are being conducted. A natural
sequel should consist of the study of the so-called “manifold-peaks” that may impede a design based on ideal
assumptions of losslesness.

6.11. Necessary conditions for dynamic equivalence
Participant: Jean-Baptiste Pomet.
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Figure 11. Bode diagramm of the response of an ultra-wide band filter and its rational approximation of degree 10

6.12.

- Frequencies are in GHz

As mentioned in section 3.2.2, dynamic equivalence is more general than static. Also, no necessary conditions
for equivalence are known, so that it is in general difficult to prove that two systems are not dynamic equivalent.

If two control systems on manifolds of the same dimension are dynamic equivalent, we prove in [25] that either
they are static equivalent —i.e. equivalent via a classical diffeomorphism— or they are both ruled; for systems
of different dimensions, the one of higher dimension must be ruled. A ruled system is one whose equations
define at each point in the state manifold, a ruled submanifold of the tangent space. Dynamic equivalence
is also known as equivalence by endogenous dynamic feedback, or by a Lie-Béicklund transformation when
control systems are viewed as underdetermined systems of ordinary differential equations; it is very close to
absolute equivalence for Pfaffian systems.

It was already known that a differentially flat system must be ruled; this is a particular case of the present
result, in which one of the systems is “trivial” (i.e. linear controllable).

Average control systems
Participants: Alex Bombrun [Univ. of Heidelberg], Jean-Baptiste Pomet.

In the terminology of [58], [59], a Kepler control system is a system in dimension n whose drift has n — 1
first integral and compact trajectories and where the control is “small” in the sense that we are interested in
asymptotic properties as the bound on the control tends to zero. It is the case in low thrust orbital transfer, see
section 4.4, for negative energy, i.e. in the so-called elliptic domain.

For this class of systems, a notion of average control system is introduced in [58], [59]. Using averaging
techniques in this context is rather natural, since the free system produces a fast periodic motion and the small
control a slow one; averaging is a widespread tool in perturbations of integrable Hamiltonian systems, and the
small control is in some sense a “perturbation”. In some recent literature, one proceeds as follows: the control
is pre-assigned, for instance to time optimal control via Pontryagin’s Maximum Principle or else to some
feedback designed beforehand. Then, averaging is performed on the resulting ordinary differential equation,
whose limit behavior is analyzed when the control magnitude tends to zero.
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The novelty of [58] (see also [60]) is to average before assigning the control, hence getting a control system
that describes the limit behavior better. For that reason, the average control system is a convenient tool when
comparing different control strategies.

It allowed us to answer an open question stated in [63] on the minimum transfer-time between two elliptic
orbit when the thrust magnitude tends to zero, see [61].

Under some controllability conditions that are trivially satisfied in the case at hand, we proved that the average
system is one where the velocity set has nonempty interior, i.e. all velocity directions are allowed at any point,
and the constraint is convex; mathematically this yields a Finsler structure (in the same way as a controllable
system without drift with a quadratic constraint on the control yields a sub-Riemannian structure). An article
is in progress, reporting on these results [59].

6.13. Computational methods in mathematical systems theory

Participants: Mohamed S. Boudellioua [Sultan Qaboos University, Oman], Thomas Cluzeau [ENSIL, Limo-
ges], Alban Quadrat, Daniel Robertz [RWTH-Aachen, Germany].

6.13.1. Factorization, reduction & decomposition problems

The problems of factoring, reducing and decomposing a linear system of ordinary differential (ODEs) or
difference equations with varying coefficients have long been studied in mathematical literature. In [19],
[32], we recast these problems within the algebraic analysis framework developed in [65] and extend them
to general functional linear systems (e.g., determined/overdetermined/underdetermined linear systems of
ODE:s, PDE:s, difference equations, differential time-delay equations). Based on endomorphism computations
of a finitely presented left module over a noncommutative polynomial ring of functional operators (e.g.,
differential, shift, time-delay, difference operators) associated with the linear functional system, general
conditions for the existence of non-trivial factorizations, reductions and decompositions are obtained in [19],
[32]. Moreover, under certain conditions of freeness, the linear functional system is then equivalent to a
block triangular or a block diagonal system. We prove that endomorphisms of the module define Galois-
like transformations of the corresponding linear functional system and show how to compute quadratic first
integrals of motion/conservation laws of linear differential systems. The different algorithms are implemented
in the package OREMORPHISMS ([33]). Using the packages STAFFORD ( [78]) and QUILLENSUSLIN ( [66]),
we can then constructively study the factorization, reduction and decomposition problems for general linear
functional systems. Explicit examples coming from engineering sciences, control theory and mathematical
physics illustrate OREMORPHISMS. Finally, a very efficient method for reducing linear functional systems is
developed in [31] and the corresponding algorithms will be soon implemented in a package called SERRE.

6.13.2. Extension problem

Using algebraic analysis and the so-called Baer extensions, we constructively solve in [30] the following
open problem in mathematical systems theory: given two linear systems S and So, parametrize all the linear
functional systems S which contain S; as a subsystem and satisfy that the quotient S/S is isomorphic to S3. In
particular, these results are applied to parametrize all the equivalence classes of linear systems .S which admit
a fixed parametrizable subsystem S; and satisfy that S/.S; is isomorphic to a fixed autonomous system Ss.
The different algorithms are implemented in the package OREMORPHISMS ([33]) and illustrated on different
classical examples appearing in the literature of differential time-delay systems. Finally, these results have
other interesting applications we are now developing.

Finally, the writing of a book untitled “Systems and Structures: An algebraic analysis approach to mathemat-
ical systems theory” by A. Quadrat has recently been finished and some parts have been taught in a series of
lectures at the Korea Institute for Advanced Studies (KIAS) and presented at a semi-plenary talk at the Eigh-
teenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), Virginia
Tech (USA) ([29]).
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7. Contracts and Grants with Industry

7.1. Contracts CNES-IRCOM-INRIA

Contract (reference Inria: 2470, CNES: 60465/00) involving CNES, XLIM and Inria, whose objective is to
work out a software package for identification and design of microwave devices. The work at Inria concerns
the design of multiband filters with constraints on the group delay. The problem is to control the logarithmic
derivative of the modulus of a rational function, while meeting specifications on its modulus.

7.2. Thales Alenia Space (Toulouse)

A contract (reference Inria: 1931, AAS: B00375) has been signed between Inria and Thales Alenia Space
(branch of Toulouse), in which Inria will design and provide a software for OMUX simulation with efficient
initial condition for an optimisation algorithm based on recursive tuning of the channels.

8. Other Grants and Activities

8.1. Scientific Committees
L. Baratchart is a member of the editorial board of Computational Methods and Function Theory and Complex
Analysis and Operator Theory.

J. Leblond was a member of the scientific committee of the conference PICOF’08 (4th International Confer-
ence on Inverse Problems, Control and Shape Optimization, Marrakech, april 2008).

A. Quadrat is an associate editor of the journal Multidimensional Systems and Signal Processing (Springer).

8.2. ANR project “AHPI”

AHPI (Analyse Harmonique et Problémes Inverses), is a “Projet blanc” in Mathematics involving Inria-Sophia
(L. Baratchart coordinator), the Université de Provence (LATP), the Université Bordeaux I (LATN), the Uni-
versité d’Orléans (MAPMO), Inria-Bordeaux (Magique 3D), the Université de Pau. It aims at developing
Harmonic Analysis techniques to approach inverse problems in seismology, Electro-encephalography, tomog-
raphy and nondestructive control.

8.3. ANR project “FILIPIX”

FILIPIX (FILtering for Innovative Payload with Improved fleXibility) is a “Projet Thématique en Télécom-
munications”, involving Inria-Sophia (Apics), XLIM, Thales Alenia Space (Centre de Toulouse, coordinator).

8.4. Other national or international actions

EPSRC research grant EP/F020341/1 (Operator theory in function spaces on finitely-connected domains),
with Leeds University (UK) and the University Lyon I, 2007-2009.

Equipe associée Enée links the LAMSIN-ENIT (Tunis) to three INRIA teams: Anubis, Poems and Apics.
NSF EMS21 RTG is a students exchange program with Vanderbilt University.
Apics is linked with the CEA-IRFM (Cadarache), through the Région PACA, for the thesis of Y. Fischer.

Apics is part of the regional working group SBPI (Signaux, bruits, problemes inverses) (Signal, Noise, Inverse
Problems) whose aim is to find methods for reducing noise in Virgo http://www-sop.inria.fr/apics/sbpi.
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8.5. The Apics Seminar
The following scientists gave a talk at the seminar:

Laurent Baratchart, Extremal problems for the Beltrami equation.

Frédéric Boyer (IRCCyN), De la dynamique de Lagrange a celle de Poincaré.

Yves Dermenjian (CMI-LATP), Une application d’une inégalité de type Carleman au controle dans
un milieu stratifié.

Bruno Fabre, Transformations de Radon complexes et réelles.

Sandrine Grellier (Département de Mathématiques, Université d’Orléans), Opérateurs de Hankel et
équation de Schrodinger non linéaire.

Bernard Hanzon (University College Cork), Dynamic State-Space Models with Co-integration.
Johan Karlsson (KTH, Stockholm), The Inverse Problem and Weight Selection for Degree-
Constrained Rational Analytic Interpolation.

Stéphanie Nivoche (UNSA), Généralisation du Théoréme de Hilbert sur les Lemniscates

Yannick Privat (Institut Elie Cartan, Nancy), Quelle est la forme optimale d’un tuyau ?.

Eva Sincich (RICAM), Stabilité et reconstruction pour certains problemes liés a la corrosion et a la
diffusion inverse.

9. Dissemination
9.1. Teaching

Courses
— L. Baratchart, DEA Géométrie et Analyse, LATP-CMI, University Marseille I.
— J. Leblond, Centre Montessori, college, Mouans-Sartoux.
— M. Olivi, Mathématiques pour 1’ingénieur (Fourier analysis and integration), section
Mathématiques Appliquées et Modélisation, 3éme année, Ecole Polytechnique Nice-
Sophia Antipolis.
—  A. Quadrat, ISIA, Master affiliated to the Ecole des Mines de Paris (computer algebra).

Ph.D. Students

—  Slah Chaabi, « Problemes extrémaux pour 1’équation de Beltrami réelle 2-dimensionnelle
et application a la détermination de frontieres libres », since October.

— Ahed Hindawi « Transport optimal en contrdle », started in October.

—  Yannick Fischer, « Problemes inverses pour 1’équation de Beltrami et extrapolation de
quantités magnétiques dans un Tokamak », since October (région PACA-Inria).

— Vincent Lunot, « Techniques d’approximation rationnelle en synthese fréquentielle :
probléeme de Zolotarov et algorithme de Schur », defended in May, [12].

— Moncef Mahjoub, “Approximation harmonique dans une couronne et application a la
résolution numérique de quelques problemes inverses”, defended in February, [13].

— Ana-Maria Nicu, « Inverse potential problems for MEG/EEG », since November (MEN).

— Meriem Zghal, « Constructive aspects of some inverse problems (Cauchy, sources) for
Laplace equation in ellipsoidal domains », co-tutelle with Lamsin-ENIT (Tunis, Imageen-
Erasmus Mundus).

Committees
— L. Baratchart was a member of the HDR defense committee of S. Kupin, Univ. de
Provence, Marseille.
— J. Leblond was a member of the HDR defense committee of P. Gaitan, Univ. Méditerranée,
Marseille.

9.2. Community service

L. Baratchart is Inria’s representative at the « conseil scientifique » of the Université de Provence.
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J. Grimm is a representative at the « comité de centre ».

J. Leblond is a member of the « Commission d’évaluation » (CE) of Inria. She is a member of the
« Commission d’Animation Scientifique » (CAS) of the Research Center, and participates to the working
group « Méditerranée 343 ».

M. Olivi is a member of the CSD (Comité de Suivi Doctoral) of the Research Centre of Sophia Antipolis.
J.-B. Pomet is a representative at the « comité technique paritaire » (CTP).

F. Seyfert is a member of the CDL (Comité de Développement Logiciel) of the Research Centre of Sophia
Antipolis.

9.3. Conferences and workshops

L. Baratchart, J. Leblond and M. Yattselev presented communications and a poster at the workshop Approxi-
mation, Modélisation Géométrique et Applications, CIRM (Luminy, Marseille, France), Nov.

L. Baratchart and J. Leblond respectively presented a communication and attended the conference PICOF’ 08
(Marrakech, April). They participated to the meeting of the ANR project AHPI (Orleans, Sept.). L. Baratchart
and M. Yattselev delivered talks at the International Workshop on Orthogonal Polynomials and Approximation
Theory (Madrid, Spain, Sept.).

L. Baratchart was an invited speaker at the conference “Hilbert spaces of entire functions”, CRM Montreal,
Dec., at the colloquium of Newcastle University, Apr., and at the « journées d’approximation », Lille, May.
He also delivered a talk at the conference “Foundations of Constructive Mathematics”, Hong-Kong, June.

J. Grimm gave a talk at the Journée GUTenberg 2008 (Paris) [73].

J. Leblond gave presentations at the working group « gt-signal-meeg » (organized by the Odyssée team),
March, at the seminar EDP of IECN (Institut Elie Cartan de Nancy), April, for the Comité directeur de la
fédération sur la fusion magnétique (UNSA, labo. JAD), and at CEA-IRFM (Cadarache), Nov.

M. Olivi gave a talk at CDC 2008, Cancun, Mexico.
M. Olivi and J. B. Pomet attended the 2008 ERNSI Meeting in Sigtuna (Sweeden).
J.-B. Pomet gave a talk at the seminar in Université de Mulhouse, Mathematics Department.

A. Quadrat gave a presentation at the Groupe de Travail EDP of GDR MACS (Lyon, France). He was invited to
the Premier colloque Franco-Maghrébin de Calcul Formel (Iles de Kerkennah, Tunisa), where he gave a talk.
He was semi-plenary speaker at the 18th International symposium on Mathematical Theory of Networks and
Systems (MTNS) (Virginia Tech, USA), where he also presented two articles and was invited to the Conference
“Mathematics, Algorithms and Proofs (MAP)”, The Abdus Salam International Centre for Theoretical Physics
(Trieste, Italy) and at “A workshop on linear systems theory: model reduction” (Sde Boker, Israel) where he
presented his recent works. Finally, he was invited at Korea Institute for Advanced Study (KIAS) at Seoul
(South Korea) to give four lectures and develop a collaboration.

F. Seyfert co-organized with P. Machiarella (Politecnico, Milano) the workshop “Multiband Filters: Design
and Application” at the IEEE International Microwave Symposium in Atlanta, USA, June. He also gave a talk
at this conference on the synthesis of filter responses with global optimality conditions.

M. Yattselev attended the conference “Théorie spectrale des opérateurs et applications”, CIRM (Luminy,
Marseille, France) and he gave talks at the Departamento de Matemadticas Colloquium, U. Carlos III (Madrid,
Spain, Oct.) together with the following seminars: Séminaire Analyse et Géométrie, U. Provence, Marseille,
France, Nov., Seminaro de Matematica Aplicada, U. Almeria, Spain, Oct., Computational Analysis Seminar,
Vanderbilt U., USA, Apr., Seminaro de Matematica Aplicada, U. Almeria, Spain, March.

M. Zghal presented a poster at the 10th International Workshop on Optimization and Inverse Problems in
Electromagnetism (OIPE 2008), Ilmenau, Germany, September.
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