
c t i v i t y

te p o r

2008

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team caps

Compilation, architectures des processeurs
superscalaires et spécialisés

Rennes - Bretagne-Atlantique

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/caps.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Panorama 2
3.2. Uniprocess architecture 2
3.3. Exploiting task parallelism on a single chip: multicore and SMT processors 3
3.4. Compiling and optimizing for embedded applications 4

4. Application Domains .5
5. Software . 5

5.1. Panorama 5
5.2. ATMI 5
5.3. HAVEGE 6

6. New Results . 6
6.1. Processor Architecture 6

6.1.1. Null blocks management on the memory hierarchy 7
6.1.2. Quality of service on multicores 7
6.1.3. Mitigating temperature impact through activity migration for fast sequential execution 7
6.1.4. Online compression of cache-filtered address traces 7
6.1.5. Scheduling issues on a heterogeneous single ISA multicore 8
6.1.6. Branch prediction and instruction fetch 8
6.1.7. Exploiting confidence in SMT processors 8

6.2. Compilers and software environment for high performance embedded or special purpose
architectures 9

6.2.1. Compilers and software environment for high performance embedded or special purpose
architectures 9

6.2.1.1. Speculative thread extraction for SOCs with Astex 9
6.2.1.2. Automatically exploiting GPU with ASTEX 10

6.2.2. Compiler optimizations 10
6.2.2.1. Data Locality Analysis of Parallel C Programs 10
6.2.2.2. Backend optimizations: Sofan for the Terops project 10

6.2.3. Enabling high performance applications on emerging architectures 11
6.2.3.1. Porting highly demanding applications on hardware accelerators 11
6.2.3.2. H.264 SVC decoder for multicore architectures 12

6.3. Around processor virtualization 12
6.3.1. Analysis and transformation of Java codes 12
6.3.2. Performance portability through virtualization 12

6.4. WCET estimation 13
6.4.1. WCET analysis of data accesses 13

6.4.1.1. Static timing analysis of data caches. 13
6.4.1.2. Software-control of static on-chip memories (scratchpad memories). 13

6.4.2. Predictable virtual memory for real-time applications 13
6.4.3. Timing analysis of multi-level caches 14
6.4.4. Impact of cache replacement policy on the tightness of WCET estimation 14

7. Contracts and Grants with Industry . 14
7.1. Research grant from Intel 14
7.2. Start-up 14
7.3. QCDNext 14
7.4. Sceptre project 15
7.5. Ter@ops project 15

2 Activity Report INRIA 2008

7.6. Scalimages 15
7.7. Mascotte 15
7.8. PARA 15
7.9. POPS 16
7.10. Serenitec: SEcurity analysis and Refactoring ENvironment for Internet TEChnology 16
7.11. GaLogic 16

8. Other Grants and Activities . 16
8.1. NoEs 16
8.2. IP-Fet European project Sarc 16

9. Dissemination . 17
9.1. Scientific community animation 17
9.2. University teaching and responsabilities 17
9.3. Workshops, seminars, invitations, visitors 17
9.4. Miscelleanous 18

10. Bibliography .18

1. Team
Research Scientist

André Seznec [Research Director Inria, team leader, HdR]
Pierre Michaud [Research scientist]
François Bodin [External collaborator, HdR]

Faculty Member
Jacques Lenfant [Professor, University of Rennes 1, HdR]
Isabelle Puaut [Professor, University of Rennes 1, HdR]

Technical Staff
Erven Rohou [from 01/10/08]
Florence Dru [till 31/08/08]
Sylvain Leroy
Guillaume Papauré
Robin Schmutz [till 14/11/08]
Khaled Ibrahim [from 01/06/08 till 30/11/08]
Damien Fétis [from 01/03/08]
Thomas Piquet [from 10/02/08]

PhD Student
Christophe Levointurier [Cifre AQL]
Jean-François Deverge [MENRT allocation, until 31/08/08]
Julien Dusser [Inria Allocation]
Robert Guziolowski [Inria Allocation]
Damien Hardy [MENRT Allocation]
Eric Petit [Inria allocation till 30/11/08]

Post-Doctoral Fellow
Khaled Ibrahim [till 31/05/08]

Administrative Assistant
Evelyne Livache [TR Inria]

2. Overall Objectives

2.1. Overall Objectives
High performance microprocessors are used in various information technology applications ranging from
supercomputers, high-end multiprocessor servers, to PCs and workstations, but also high-end embedded
applications (avionics, networks, as well as consumer products such as automotive, set-top boxes or cell
phones). The theoretical performance of these processors has been increasing continuously for the past two
decades. This trend continues at the cost of a rising hardware complexity (transistor count, power consumption,
design cost). At the same time, extracting a significant part of this theoretical performance becomes more and
more difficult for the end user, even with the assistance of a compiler.

Research in the CAPS project-team ranges from processor architecture to software platforms for performance
tuning, including compiler/architecture interactions, to processor simulation techniques and worst case execu-
tion time (WCET) evaluation techniques. Peak performance is one of the objectives, however finding tradeoffs
between hardware complexity and performance, performance and power consumption (or code size) is also
a major issue, while accurately evaluating (more precisely majoring) the execution time is the challenge for
embedded real time systems.

2 Activity Report INRIA 2008

Our research in computer architecture covers memory hierarchy, branch prediction, superscalar implementa-
tion, as well as SMT and multicore processors. In the recent past, we have proposed several new complexity-
effective structures for caches and branch predictors[2], [11], and we are still very active in these areas (cf.
6.1.1, 6.1.6). We pursue researchs on architecture exploiting thread level parallelism on a single chip (cf. [5],
6.1.5). At the same time, power consumption and temperature hot spot management have become major is-
sues for all processors. We have initiated a research activity on temperature management at architectural level
(cf. 6.1.3). We are also studying how the compiler and the architecture can interact to optimize the power
consumption/performance tradeoff [10].

Performance, but also power consumption or hardware system cost depends on the processor architecture but
can also be managed at the compiler/code generation level. We are exploring thread extraction for the different
hardware components for heterogeneous SOCs (System On a Chip) featuring special purpose hardware and
one or more execution cores (cf. 6.2.1.1).

In hard real-time embedded systems the task WCETs must be correctly evaluated, so that it can be proven that
task temporal constraints (typically, deadlines) will be met. Our research concerns methods for automatically
computing upper bounds of the execution time of applications on a given hardware platform. Embedded
platforms may now feature caches, branch predictors, complex pipeline, A particular focus is put on
hardware-level analysis (static analysis based on timing models) and compiler-directed schemes aimed at
improving predictability. Our studies concern WCET-oriented (as opposed to average-performance oriented)
compilation and measurement-based WCET estimation (cf 6.4).

Our research is partially supported by industry (Intel). We also participate in several institutionally funded
projects (NoE HIPEAC, IP Fet project SARC, ANR funded QCDnext, GaLogic, Para, Mascotte, PetaQCD,
and “Pôles de compétitivités” funded Scalimages, Sceptre,Terops, POPS and Serenitec). Some of the research
prototypes developed by the project during the past few years have been transferred to industry through the
CAPS Entreprise start-up (cf. 7.2).

3. Scientific Foundations

3.1. Panorama
Research activities by the CAPS team range from highly focused studies on specific processor architecture
components to software environments for performance tuning on embedded systems. In this context, the
compiler/architecture interaction is at the heart of the team research.

In this section, we briefly present the remaining challenges in uniprocess architecture, the new challenges
and opportunities for architects created by single-chip hardware thread parallelism, and the challenges for
compilers on embedded processors.

3.2. Uniprocess architecture
Keywords: branch prediction, memory hierarchy, speculative execution, superscalar processor.

The gap between processor cycle time and main memory access time is increasing at a tremendous rate and
is reaching up to 1000 instruction slots. At the same time, the instruction pipeline depth is also increasing
and several instructions can be executed within a single cycle. A branch misprediction will soon lead to a
100-instruction slots penalty.

Over the past 10 years, research results have allowed to limit the performance loss due to these two phenomena.
The average effective performance of processors has remained in the range of one instruction per cycle, while
these two gaps were increasing by an order of magnitude.

Project-Team caps 3

The use of a complex memory hierarchy has been generalized over the past decade. On modern microproces-
sors, both software and hardware prefetching are now widely used to enable the on-time presence of data and
instructions in the memory hierarchy. Highly efficient, but complex data hardware prefetch mechanisms, have
been proposed to hide several hundreds of instruction slots [47]. The challenge for computer architects is to
reduce the complexity of these hardware mechanisms to enable simpler implementations. Another challenge
is to propose new prefetch mechanisms that can hide several thousands of instruction slots.

Over the past decade, efficient branch prediction mechanisms have been proposed and implemented [44][11].
Both branch directions and targets (even indirect jump targets) [36] are predicted. Most of these predictors
exploit either local or global branch history. The accuracy of the prediction seems to be reaching a plateau.

The complexity of many components in the processor (in terms of silicon area, power consumption and re-
sponse time) increases superlinearly (and often quadratically) with the issue width e.g. register renaming, in-
struction scheduling, bypass network and register file access. These components are becoming the bottlenecks
that limit the issue width and the cycle time [50].

It is now possible to integrate several processors on a single chip. One of the main issues in uniprocessor
design is to define a processor core architecture that will be able to achieve high performance both on
uniprocess workloads and on multiprocess workloads. On uniprocess workloads, the processor must exploit
all the resources (memory bandwidth, caches) of the system, while these resources are shared and should not
be wasted on a multiprocess workload.

While complexity of the processors is steadily increasing, predicting, understanding and explaining the effec-
tive behavior of the architecture is becoming a major issue, in particular for embedded systems. Unfortunately,
high performance often comes with high unpredictability and variability in performance. Designing architec-
tures with predictable and high performance will become a major challenge for computer architects as well as
compiler designers in the next few years.

3.3. Exploiting task parallelism on a single chip: multicore and SMT
processors
Keywords: multicore processor.

It becomes more and more difficult to exploit higher degrees of instruction-level parallelism on superscalar
processors. Thus, it has been proposed to exploit task-level parallelism. Two different approaches exist, namely
the multicore approach and the simultaneous multi-threading (SMT) approach. Task parallelism is actually a
simple way to increase the execution throughput in certain contexts : embedded applications, servers, multi-
programmed systems, scientific computing, ...

The straightforward way to implement task parallelism is to use multiple distinct processors. Current tech-
nology is able to put one billion transistors on a single die. This allows to integrate several high-performance
computing cores on the same chip, and provides several advantages.

General purpose multicore processors are already available and will become mainstream in the next few years.
On a multicore, the tasks execute on distinct processing units. Resource sharing concerns only one or several
on-chip cache levels, and chip pins. This is to be contrasted with SMT processors, on which all resources are
shared apart a few buffers [58]. However, the main difficulty for the design of SMT processors is the design of
a very wide issue superscalar processor. Though SMT and multicore approaches both exploit task parallelism,
they are orthogonal, as illustrated by the dual-core SMT Pentium 4 and the dual core SMT IBM Power 5.

A key issue concerning SMT / multicore processors is whether they can improve sequential execution.
Among possible improvements, one may seek to obtain a more reliable execution (for instance [53] by
redundant execution), or more performance. A few ideas have been recently proposed to speed-up sequential
task execution, like for instance speculative threads [41], exception handling [63], helper threads for branch
prediction [37], helper threads for memory prefetching [48], etc. Among solutions already proposed, it is not
yet clear which are viable and which are not. It will depend on the performance gain / hardware complexity
tradeoffs. Ongoing research on this topic will decide the scope of future SMT/multicore processors.

4 Activity Report INRIA 2008

3.4. Compiling and optimizing for embedded applications
Keywords: Code Optimization, Compilation, Embedded processors, High Performance, ISA Simulation.

Embedded processors range from very small, very low-power systems (for instance for telemetry counter
sensors which must run on one battery for 10 years) to power hungry high-end processors used in radars or
set-top boxes. The spectrum of softwares range from very small code kernels (a few Kinstructions) to millions
of code lines including a real time operating system. The constraints on the code quality vary from “just no
bugs” to safety critical with hard real time problems, but may also be to achieve a determined performance
level at the smallest possible hardware cost or the smallest possible power consumption. Therefore embedded
processors are presenting many new challenges [43] to the hardware and compiler research community.

Code optimization for embedded processors does not directly fit in the traditional "best speed effort at any
price” assumption used for supercomputers and workstations. The “common case” paradigm is not relevant
for the design of compiler optimizations for an embedded processor: one must concentrate on the few
optimizations that will bring performance on the few relevant target applications. Execution time is not the
only and ultimate criterion. In many cases, execution time may be less important than memory size or power
consumption. Binary compatibility, while often important, is not completely mandatory.

Many challenges have to be addressed at the compiler/optimizer level. These include compiling under
constraints and mastering the optimization interactions.

Finding a tradeoff between binary code size and execution time [62], [39] is a major issue in many applications.
For small micro-controllers, “the smaller the code, the faster” is an effective rule of thumb. However, for recent
embedded processors featuring instruction level parallelism (e.g., VLIW processors), faster code generally
means larger code size [4]. To master code size, code compression techniques [35] can also be used to reduce
memory size of infrequently executed code regions.

In the context of real time systems, average performance is often not a critical issue, but the worst case
execution time (WCET) may be critical. WCET estimations can be either obtained by measurements or by
static analysis of programs. However these techniques are challenged by recent processors whose behavior is
fundamentally difficult to predict [54]. A better synergy between compilers and hardware must be set up and
supported by performance debugging tools.

Power consumption is becoming a major issue on most processors. For a given processor, power consumption
is highly related to performance: in most cases, a compiler optimization reducing execution time also reduces
power consumption [57]. A more interesting issue arises with configurable hardware, for instance cache
memories that can vary in size or associativity. In that case, the compiler can trade off performance for power
consumption [60], [59].

While many optimizations and code transformations have been proposed over the past two decades, the
interactions between these optimizations are not really understood. The many optimizations used in modern
compilers sometimes annihilate each other [38], [46]. Performance tuning is therefore an important and time
consuming task. For embedded systems, developers must perform this tuning while preserving code size or
power consumption. New software environments must be designed for this performance tuning [42], [49],
[61]. An associated challenge is to preserve the link between aggressively optimized low level code and the
source code [56]. As an alternative (or a complement) to performance tuning, automatic iterative compilation
techniques [45] address the interactions of optimizations through the use of feedback, to find efficient code
transformation sequences.

Time-to-market is a major challenge for embedded processor designers. Wide spectrum of possible derived
hardware platforms (configurations, co-processors, etc.) is also a major issue for embedded system designers.
Defining or dimensioning an embedded system (hardware, compiler and application) requires to explore
a large solution space for the best cost/performance/application. Retargetable compiler infrastructures key
issues to support design exploration. Compiled simulation is one of the promising technique for very fast ISA
simulation. These simulators can be used to retarget the compiler very early in the design process.

Project-Team caps 5

Finally, many embedded platforms are now built using System-On-a-Chip (SoC) components. A SoC may
feature several different processors along with various hardware accelerators. The design of an application
for such a SoC must first handle the partitioning of the applications, i.e., one must determine which part of
the application is mapped on the different computing units of the SoC. Although the fine grain parallelism
is exploited by various automatic optimizations, such as SIMD or loop transformations, the extraction of the
coarse-grain parallelism in applications is still performed by the programmer. Automatic or semi-automatic
parallelisation for these platforms is one of the software challenges of the next decade.

4. Application Domains

4.1. Application Domains
Keywords: biology, compilers, engineering, environment, health, multimedia, performance, processor archi-
tecture, telecommunications, transportation.

The Caps team is working on the foundation technologies for computer science: processor architecture and
performance oriented compilation. The research results have impacts on any application domain that requires
high performance executions (telecommunication, multimedia, biology, health, engineering, environment, ...),
but also on many embedded applications that exhibit other constraints such as power consumption, code size
and guaranteed response time. Our research activity implies the development of software prototypes (cf. 5.1,
6.2)

5. Software

5.1. Panorama
The CAPS team is developing several software prototypes for research purposes: compilers, architectural
simulators, programming environments,

Among the many prototypes developed in the project, we describe here ATMI, a microarchitecture tempera-
ture model, and HAVEGE, an unpredictable random number generator, two softwares developed by the team.

5.2. ATMI
Keywords: Microarchitecture temperature model.

Participant: Pierre Michaud.

Contact : Pierre Michaud

Status : Registered with APP Number IDDN.FR.001.250021.000.S.P.2006.000.10600, Available under GNU
General Public License

Research on temperature-aware computer architecture requires a chip temperature model. General purpose
models based on classical numerical methods like finite differences or finite elements are not appropriate
for such research, because they are generally too slow for modeling the time-varying thermal behavior of a
processing chip.

We have developed an ad hoc temperature model, ATMI (Analytical Model of temperature in MIcroproces-
sors), for studying thermal behaviors over a time scale ranging from microseconds to several minutes. ATMI
is based on an explicit solution to the heat equation and on the principle of superposition. ATMI can model
any power density map that can be described as a superposition of rectangle sources, which is appropriate for
modeling the microarchitectural units of a microprocessor.

Visit http://www.irisa.fr/caps/projects/ATMI or contact Pierre Michaud

http://www.irisa.fr/caps/projects/ATMI

6 Activity Report INRIA 2008

5.3. HAVEGE
Keywords: Unpredictable random number generator.

Participant: André Seznec.

Contact : André Seznec

Status : Registered with APP Number IDDN.FR.001.500017.001.S.P.2001.000.10000. Available under the
LGPL license.

An unpredictable random number generator is a practical approximation of a truly random number generator.
Such unpredictable random number generators are needed for cryptography. Modern superscalar processors
feature a large number of hardware mechanisms that target performance improvements: caches, branch
predictors, TLBs, long pipelines, instruction level parallelism,.... The state of these components is not
architectural (i.e., the result of an ordinary application does not depend on it), it is also volatile and cannot be
directly monitored by the user. On the other hand, every invocation of the operating system modifies thousands
of these binary volatile states.

HAVEGE (HArdware Volatile Entropy Gathering and Expansion) is a user-level software unpredictable
random number generator for general-purpose computers that exploits these modifications of the internal
volatile hardware states as a source of uncertainty. HAVEGE combines on-the-fly hardware volatile entropy
gathering with pseudo-random number generation.

The internal state of HAVEGE includes thousands of internal volatile hardware states and is merely unmoni-
torable. HAVEGE can reach an unprecedented throughput for a software unpredictable random number gen-
erator: several hundreds of megabits per second on current workstations and PCs.

The throughput of HAVEGE favorably competes with usual pseudo-random number generators such as
rand() or random(). While HAVEGE was initially designed for cryptology-like applications, this high
throughput makes HAVEGE usable for all application domains demanding high performance and high quality
random number generators, e.g., Monte Carlo simulations.

HAVEGE is currently distributed as user-level library as well as Linux driver.

Last, but not least, more and more modern appliances such as PDAs or cell phones are built around low-power
superscalar processors (e.g., StrongARM, Intel Xscale) and feature complex operating systems. HAVEGE can
also be implemented on these platforms. A HAVEGE demonstrator for such a PDA featuring PocketPC2002
OS and a Xscale processor is available.

Visit http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html or contact André Seznec.

6. New Results

6.1. Processor Architecture
Keywords: Processor, branch prediction, cache, locality, memory hierarchy, multicore, power, temperature.

Participants: Julien Dusser, Robert Guziolowski, Pierre Michaud, Thomas Piquet, André Seznec.

Our research in computer architecture covers memory hierarchy, branch prediction, superscalar implemen-
tation, as well as SMT and multicore issues. In the recent past, we have proposed several new complexity-
effective cache and branch predictor structures [2], [11], [14]. We are still refining, analyzing and exploring
new cache management policies (cf. 6.1.1), but also proposing new cache management policies for multicores
(cf. 6.1.2). New directions in branch prediction and instruction fetch have been explored (cf. 6.1.6). We are
also exploring new directions of heterogeneous multicore architectures (cf. 6.1.5).

Power consumption and temperature management have become a major concern for high performance
processor design. We are pursuing research to migitigate temperature issues on single-chip parallel processors
(cf. 6.1.3).

http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html

Project-Team caps 7

6.1.1. Null blocks management on the memory hierarchy
Participants: Julien Dusser, André Seznec.

It has been observed that some applications manipulate large amounts of null data. Moreover these zero data
often exhibit high spatial locality. On some applications more than 20% of the data accesses concern null data
blocks. Representing a null block in a cache on a standard cache line is clearly a waste of resources.

We propose the Zero-Content Augmented cache, the ZCA cache [32]. A ZCA cache consists of a conventional
cache augmented with a specialized cache for memorizing null blocks, the Zero-Content cache or ZC cache.
In the ZC cache, the data block is represented by its address tag and a validity bit. Moreover, as null blocks
generally exhibit high spatial locality, several null blocks can be associated with a single address tag in the
ZC cache. For instance, a ZC cache mapping 32MB of zero 64-byte lines uses less than 80KB of storage.
Decompression of a null block is very simple, therefore read access time on the ZCA cache is in the same
range as on a conventional cache. On applications manipulating large amount of null data blocks, such a ZC
cache allows to significantly reduce the miss rate and memory traffic, and therefore to increase performance
for a small hardware overhead.

Moreover, we are now studying a new hardware compression scheme exploiting the high rate of null blocks in
memory to increase the useful main memory size as well as increasing the useful bandwidth from memory to
processors.

6.1.2. Quality of service on multicores
Participants: Pierre Michaud, André Seznec.

The presence of shared caches in current multicore processors may generate a lot of performance variability
when several applications execute simultaneously. For the programmer of an application with quality-of-
service goals, this performance variability may lead to a very pessimistic tuning. To solve this problem, there
must be a way for the programmer to define a reasonable performance target and make sure that the actual
performance is greater than or close to the target. We propose that the performance target be defined as the
performance measured when each core runs a copy of the application, which we call self-performance. We
have characterized self-performance and shown how the shared-cache replacement policy can be modified for
self-performance to be meaningful [34].

6.1.3. Mitigating temperature impact through activity migration for fast sequential execution
Participant: Pierre Michaud.

On each new technology generation, miniaturization permits putting twice as many computing cores on the
same silicon area, potentially doubling the processor performance. However, if sequential execution is not
accelerated at the same time, Amdahl’s law will eventually limit the actual performance. Hence it will be
beneficial to have asymmetric multicores where some cores are specialized for fast sequential execution. This
specialization may be achieved by architectural means, but it may also be achieved by specializing transistors,
voltage, and clock frequency. In the latter case, one of the main constraints is that the power consumption of
fast cores is not increased across technology generations. Yet this implies that the instantaneous heat flux in
fast cores be potentially doubled on each new generation. High instantaneous heat fluxs can be tolerated by
doing periodic activity migration. This requires to double the number of fast cores on each new generation,
even though only a single fast core can be used at a given time. To keep the chip temperature below the limit,
the migration interval must be divided approximately by four on each new generation. We have shown that this
will eventually decrease the apparent level-2 cache size, and we propose to tackle this problem by preparing a
certain number of cores before they become active [33].

6.1.4. Online compression of cache-filtered address traces
Participant: Pierre Michaud.

8 Activity Report INRIA 2008

Trace-driven simulation is potentially much faster than cycle-accurate simulation. However, one drawback is
the large amount of storage that may be necessary to store traces. Trace compression techniques are useful for
decreasing the storage space requirement. But the compression ratio of existing trace compressors is limited
because they implement lossless compression. We propose two new methods for compressing cache-filtered
address traces. The first method, bytesort, is a lossless compression method that achieves high compression
ratios on cache-filtered address traces. The second method is a lossy one, based on the concept of phase. We
have combined these two methods in a trace compressor called ATC. Our experimental results show that ATC
gives high compression ratio while keeping the memory-locality characteristics of the original trace.

6.1.5. Scheduling issues on a heterogeneous single ISA multicore
Participants: Robert Guziolowski, André Seznec.

Single ISA multicores have become mainstream in general purpose computing. These multicores generally
replicate a standard processor. However, this approach struggles with relatively high temperature dissipation
and relatively high power consumption. Using multicores featuring different ISAs on distinct processors is
often considered to be more power effective, but suffers from difficult software issues.

In 2007, we studied scheduling issues for multiprogrammed workloads on such heterogeneous platforms.
This year we continued this work, but targetting multithreaded parallel workloads. As a benchmark suite, the
ALPBench (http://www.cs.uiuc.edu/alp/alpbench was adopted. In particular, we are targeting workloads that
mix several parallel applications running concurently.

6.1.6. Branch prediction and instruction fetch
Participants: Pierre Michaud, André Seznec.

Branch prediction feeds a speculative execution processor core with instructions. Branch mispredictions are
inevitable and have negative effects on performance and energy consumption. With the advent of highly
accurate conditional branch predictors,[14], non-conditional branch instructions are gaining importance.

We have addressed the prediction of procedure returns. On modern processors, procedure returns are predicted
through a return address stack (RAS). The overwhelming majority of the return mispredictions are due
to RAS overflows and/or overwriting the top entries of the RAS on a mispredicted path. These sources
of misprediction were addressed by previously proposed speculative return address stacks. However, the
remaining misprediction rate of these RAS designs is still significant when compared to state-of-the-art
conditional predictors.

We have presented [21] two low-cost corruption detectors for return address stack (RAS) predictors. They
respectectively detect RAS overflows and wrong path corruption with 100 % coverage. As a consequence,
when such a corruption is detected, another source can be used for predicting the return. On processors
featuring a branch target buffer (BTB), this BTB can be used as a free backup predictor for predicting returns
when corruption is detected.

This study was done in collaboration with Hans Vandierendonck from University of Ghent.

6.1.7. Exploiting confidence in SMT processors
Participants: Pierre Michaud, André Seznec.

Balancing resource usage among the threads is one of the main issues on SMT processor [58]. Resource usage
objectives may vary from delivering the maximum total performance to achieving maximum performance on
a high priority thread while still delivering some performance on the other threads. Even when maximum
throughput is the main objective, fairness is also often desired, i.e., one would like that each thread gets a
reasonable part of the computing power.

http://www.cs.uiuc.edu/alp/alpbench

Project-Team caps 9

In a previous study [16], we introduced the use of Speculative Instruction Window Weighting (SIWW) for
optimizing power consumption on superscalar processor. SIWW can be also used for managing SMT fetch
policy. SIWW estimates for each thread the amount of outstanding work in the processor pipeline. Fetch
proceeds for the thread with the least amount of work left. With SIWW, each instruction is assigned a weight
at fetch time. SIWW can then use and combine virtually any of the indicators that were previously proposed
for guiding the instruction fetch policy (number of inflight instruction instructions, number of low confidence
branchs, number of predicted cache misses, ..). Therefore, SIWW is an approach to designing SMT fetch
policies, rather than a particular fetch policy.

Moreover, SIWW can be adapted to achieve different objectives such as maximizing the overall performance
but also ensuring high quality of service for a high priority thread while maximizing performance on the other
thread.

This study was done in collaboration with Hans Vandierendonck from University of Ghent.

6.2. Compilers and software environment for high performance embedded or
special purpose architectures
Keywords: compilation, optimization platform, performance debugging, thread extraction.

Participants: François Bodin, Florence Dru, Khaled Ibrahim, Christophe Levointurier, Sylvain Leroy, Guil-
laume Papauré, Eric Petit, Erven Rohou, Robin Schmutz, André Seznec.

6.2.1. Compilers and software environment for high performance embedded or special purpose
architectures
Participants: François Bodin, Eric Petit, Guillaume Papauré, Robin Schmutz.

The new trend in computer architecture is to design multi-core heterogeneous platforms using very specific
hardware accelerators. Mapping an application on such a platform is a challenge. For these heterogeneous
platforms, we are defining and developing the ASTEX approach (Automatic Speculative Thread EXtractor).
ASTEX aims at the extraction of speculative threads for the different hardware components of a SoC. We
apply ASTEX for automatically exploiting a GPU.

Highly demanding scientific applications are using specific supercomputing facilities. We are studying
optimization strategies for specific architectures as well as new parallelization strategies for porting high end
scientific applications on new non-standard platforms such as GPUs.

6.2.1.1. Speculative thread extraction for SOCs with Astex
Participants: François Bodin, Eric Petit, Robin Schmutz, Guillaume Papauré.

Systems on a chip (SoCs) are highly integrated architectures which combine multiple heterogeneous comput-
ing units. A main processor runs the application. Coprocessors which may feature their own memory, are used
to speedup the processing of some parts of the application. A SoC implementing such configuration aims at
exploiting each processing unit. Typically, coprocessors run computation intensive sections of an application.
The design of an application for such a SoC begins with the partitioning of the applications in threads that are
then mapped onto the computing units of the SoC. In ASTEX, Automatic Speculative Thread EXtractor we
address the problem of partitioning C code into threads for heterogeneous SoCs. The same approach is used
for out of core accelerator usage, like FPGA or GPU.

ASTEX first performs a profile measurement to identify hotpaths on the application. Based on the identified
hotpaths, sets of possible speculative threads are then evaluated; the objective is to maximize the intersection
between the detected threads code coverage and the capabilities of each co-processor. Since the threads are
computed from a profile, speculation arises at two levels. At control flow level: the thread is a subset of the
possible paths in the execution of the application program. At data dependency level: the data dependency
between the threads and the main program must be preserved. After the hotpath detection, ASTEX builds
an executable C version of the code with the speculative threads. At this step, the instrumented program is
exercised against many different input data and ASTEX determines a third level of speculation: a speculative

10 Activity Report INRIA 2008

memory usage model. The last step, according to execution results, evaluates the characteristics of the potential
threads and refines the selection if needed. Due to speculative nature of the threads, the data structures used by
the thread must be copied in the local memory of the coprocessor. The speculative thread must test its validity
and returns an error on any misspeculation: control flow, data dependency and memory usage.

This year we manage the technological transfer of ASTEX to the industry. The program is now fully automatic
for a very large set of benchmarks and the effective results in output of Astex match the awaited one. Other
developments concerned the use of ASTEX, mostly with GPUs.

6.2.1.2. Automatically exploiting GPU with ASTEX
Participants: Eric Petit, François Bodin.

Because of their high potential computing power, Graphical Processing Units (GPU) look very attractive to
speed up programs, even if they are difficult to program. Porting code to the GPU is generally done manually.
Our objective is to define and develop programming tools able to exploit GPUs in the context of general
programming. GPU usage as a coprocessor is a convenient paradigm of automatically exploiting hardware
accelerator.

ASTEX is used to implement a dynamic analysis that detects speculative threads which contains computing
kernels with a potential speedup on the GPU. However recognizing these kernels is not sufficient. The effective
performance of GPUs as hardware accelerators on general-purpose applications is highly dependent on the
communication overhead between the main memory and the GPU memory. Optimizing this communication
is an error prone process. The programmer must decide when to prefetch, update or download the remote data
while ensuring that the GPU data are coherent when the remote procedure call is performed on the GPU. We
are studying an automatic technique for inserting software data prefetching and upload for compute intensive
kernels remotely executed on a GPU. The first technique we propose [8] relies on an hybrid approach that
mixes speculative data collected via the thread analysis environment ASTEX and usual static program analysis.

In 2008, we designed a more accurate and efficient solution, also based on hybrid analysis. Our implementation
works on C source codes and deals with pointer aliasing issues.

6.2.2. Compiler optimizations
Participants: François Bodin, Guillaume Papauré, Damien Fétis.

High performance necessitates the compiler to be efficient on managing parallelism at every level, i.e., source
code as well as assembly level.

6.2.2.1. Data Locality Analysis of Parallel C Programs
Participants: François Bodin, Guillaume Papauré.

OpenMP programs are composed of sequential and parallel code sections. The performance of each section
can be impacted by the data layout in memory. This impact is particularly important on multicores. Cache
block sharing or invalidations may severely degrade performance.

In order to tackle this issue, we have defined and developed a software prototype profiling tool to detect at
runtime implicit data redistributions among threads in OpenMP programs. Instrumentation is added on source
code. For each thread, our protototype computes at runtime the sections of the arrays accessed by the thread.
The resulting analysis is a directed acyclic graph (DAG) representing the data accessed by the threads at
execution, and the dynamic redistribution of data from thread to thread are the edges of this DAG (figure 1).
The DAGs can be used to detect data sharing patterns. The knowledge of these patterns can then be used by
the application developers to identify performance bottlenecks associated with implicit data redistribution.

6.2.2.2. Backend optimizations: Sofan for the Terops project
Participants: François Bodin, Damien Fétis.

In the context of the ApeNEXT project [1], CAPS has developed over the last few years SOFAN (Software
Optimizer for ApeNEXT). This software optimizer attempts to explore different back end optimization
strategies for ApeNEXT applications. In 2007, a production version of SOFAN was delivered to the users
of APEnext.

Project-Team caps 11

Figure 1. DAG representation of data locality and movements.

In the context of the Ter@ops project, SOFAN has been retargeted towards one of the accelerators of the
Ter@ops machine, the Thomson FIRE EVO coprocessor. FIRE EVO is SIMD coprocessor with an array of 16
VLIW processing units. A gcc code generator was developed by the Alchemy EPI for this accelerator. SOFAN
was adapted to realise the control flow and data flow analysis of SIMD assembly code. It also optimizes the
VLIW Processing Units resources utilisation.

6.2.3. Enabling high performance applications on emerging architectures
Participants: François Bodin, Florence Dru, Khaled Ibrahim, André Seznec.

6.2.3.1. Porting highly demanding applications on hardware accelerators
Participants: François Bodin, Khaled Ibrahim, André Seznec.

Simulation of Lattice QCD is a challenging computational problem that conventionally requires building spe-
cial supercomputing machines. One of the objectives of the ANR QCDNext project is to explore architectural
alternatives, including hardware accelerators, to build cost effective machine for simulating the Lattice QCD.
We explored the use of GPUs [20], the Cell broadband engine [25], [19], as well as other general-purpose
processors [26] to implement the most time consuming kernel of the computation.

Studying Lattice QCD computation on GPUs [20], we found that the granularity of the thread of execution
has a great impact on performance. For the Lattice QCD, threads of finer granularity usually perform better
because more resources are allocated per thread of execution. On the other hand, fine-granularity thread
assignment may lead to different computations to perform. We proposed multiple code transformations to
make the computations more homogeneous for all the fine-grained threads, thus improving the performance
on GPUs.

In our study of Lattice QCD on the Cell broadband engine [25], we devised a novel technique to efficiently
vectorize the code on the Cell synergetic processing elements. In this technique, we fuse the data accessed
from different sites of the lattice to form data units that can be treated efficiently with SIMD instructions.
We also explored multiple implementations with different memory access patterns to find the most suitable
method for direct memory access (DMA) management. We were able to reduce the pressure on the memory
bandwidth by removing redundancy and we suggested memory access technique that improves the contiguity
of data access.

12 Activity Report INRIA 2008

We explored multiple code optimizations on general-purpose architectures [26]; e.g., Intel x86 and Intel
Itanium. The performance achieved on the Cell broadband engine is at least an order of magnitude better
than the performance on the studied general-purpose processors.

6.2.3.2. H.264 SVC decoder for multicore architectures
Participants: François Bodin, Damien Fétis.

The goal of the Scalim@ges project is to study and implement scalable video coding/decoding chain. This
new encoding technology aims at providing a solution to the exponential growth in the volume of broadcasted
content, the multiplication of reception platforms, and the diversity of the means of transport and broadcasting.

Video decoding is a computationnally demanding domain. In this project, CAPS is in charge of analyzing the
potential parallelism in the H.264 SVC decoder and then of proposing and implementing a solution for parallel
decoding on multicore architectures. The analysis is performed through profiling an available implementation,
the JSVM (Joint Scalable Video Model) software.

6.3. Around processor virtualization
Participants: François Bodin, Christophe Levointurier, Sylvain Leroy, Erven Rohou, André Seznec.

The usage of the Java language has been generalized in the past few years. Applications are now very large
and are deployed on many different platforms, since they are highly portable. However ensuring code quality
maintenance and code security on those applications is challenging. To address these issues, we are defining a
refactoring platform for Java. Java has popularized the distribution of software through bytecodes. Functional
portability is the main argument for such a usage of bytecodes. With the new diversity of multicore platforms,
functional, but also performance portability will become the major issue in the next 10 years. We have initiated
a research effort to efficiently compile towards bytecodes.

6.3.1. Analysis and transformation of Java codes
Participants: François Bodin, Sylvain Leroy, Christophe Levointurier.

All along its lifetime, an application software evolves. Development rules that were initially defined are often
progressively ignored or forgotten. Development rules may even evolve. Therefore one generally observes
deterioration of the quality of the code. In particular, ignoring some design rules may affect the code security
or its overall performance. To avoid this deterioration, automatic refactoring has been proposed [40]. Code is
automatically transformed through enforcing development rules.

Within the Serenitec project, we are developing a framework for automatic refactoring of Java codes. Our
framework has been first directed towards the audit of code rules. It can analyze large applications featuring a
million java code lines or more. Automatic java to java transformations will be addressed later.

One of our objectives is to analyse Java web applications security through an automatic process. Nowadays
static code analysis methods exist to detect invalid pointers, code injections or possible data buffer overflows.
Those failures are commonly used in successful attacks of web applications. However in many cases, the
tests produce lots of false positive alerts. This renders the use of these tests impractical in large application
development. Automatic discrimination between real security breaches and false positive alerts is a major
issue. We are addressing this issue through a new system built on top of our automatic refactoring framework.
This system is based on complex pattern detection derived from the SWARP approach [9] coupled with a case
database. The result accuracy is improved through the use of case-based reasoning to discriminate against false
positives.

6.3.2. Performance portability through virtualization
Participants: Erven Rohou, André Seznec.

Applications have a much longer lifetime than hardware. It will become increasingly important to be able to
run applications on architectures with a higher degree of parallelism than they were designed for, and with
different kinds of processors.

Project-Team caps 13

Virtualization can be of a great help to provide functional and performance portability on the new multicore
systems. The final code generation occurs at run time, mapping and scheduling of computations can be
performed across all available processing nodes, independently from their underlying architectures.

In the fall 2008, we have initiated a research action on combine processor virtualization and split compilation
to address the problem of application portability, in terms of both functionality and performance.

6.4. WCET estimation
Participants: Jean-François Deverge, Damien Hardy, Thomas Piquet, Isabelle Puaut.

Predicting the amount of resources required by embedded software is of prime importance for verifying that
the system will fulfill its real-time and resource constraints. A particularly important point in hard real-time
embedded systems is to predict the Worst-Case Execution Times (WCETs) of tasks, so that it can be proven
that task temporal constraints (typically, deadlines) will be met. Our research concerns methods for obtaining
automatically upper bounds of the execution times of applications on a given hardware. A particular focus is
put on hardware-level analysis (static analysis based on timing models) and compiler-directed schemes aimed
at augmenting software predictability.

In 2008, our new results concern the analysis and/or software control of the memory hierarchy (instruction
and data caches, cache hierarchies, static on-chip memory, virtual memory).

6.4.1. WCET analysis of data accesses
Participants: Jean-François Deverge, Isabelle Puaut.

6.4.1.1. Static timing analysis of data caches.

Comparatively to the worst-case timing behavior for instruction caches, which has been extensively studied,
the worst-case timing behavior for data and unified caches has been the subject of a lower number of studies.
In particular, most previous approaches have focused on predictable memory access patterns. In [17] we
have developed a new data cache analysis method that supports arbitrary memory access patterns, supports
multiple replacement policies (LRU, PLRU, MRU) and applies to data caches, instruction caches and unified
caches. The tightness of the method has been demonstrated for a StrongARM-110 processor for different
cache architectures (see [17] for details).

6.4.1.2. Software-control of static on-chip memories (scratchpad memories).

An alternative to caches for on-chip storage is scratchpad memory. Scratchpad memories are small on-chip
static RAMs that are mapped onto the address space of the processor at a predefined address range. Their
inherent predictability have made them popular in real-time systems. Significant effort has been invested in
developing efficient allocation techniques for scratchpad memories. However, except [55], all these techniques
aim to reduce the average execution time (ACET) of programs using memory access profiles. In [17] we have
proposed a solution for WCET-oriented allocation of data in scratchpad memories. The allocation problem
(selection of the variables to be loaded into scratchpad memory and selection of load points) is formulated
using Integer Linear Programming (ILP). One property of our allocation strategy is that the granularity of
placement of memory transfers can be parametrized (function or basic block boundaries). This flexibility
allows to trade-off between the complexity of allocation and its quality.

6.4.2. Predictable virtual memory for real-time applications
Participants: Damien Hardy, Isabelle Puaut.

There is a need for using virtual memory in real-time applications: using virtual addressing provides isolation
between concurrent processes; in addition, paging allows the execution of applications whose size is larger
than main memory capacity, which is useful in embedded systems where main memory is expensive and thus
scarce. However, virtual memory is generally avoided when developing real-time and embedded applications
due to predictability issues.

14 Activity Report INRIA 2008

We have previously proposed in [51] a compiler approach to introduce a predictable form of paging of code
pages, in which page-in and page-out points are selected at compile-time. The problem under study was
formulated as a graph coloring problem, as in register allocation within compilers. The work presented in [51]
was improved in two directions: support for paging of data ; improvement of the quality of page allocation,
using an Integer Linear Programming (ILP) formulation instead of graph coloring. We have demonstrated in
[23] that the ILP formulation outperforms our previous approach with regard to page allocation quality, with
a still reasonable page allocation time even for the biggest applications.

6.4.3. Timing analysis of multi-level caches
Participants: Damien Hardy, Thomas Piquet, Isabelle Puaut.

With the advent of increasingly complex hardware in realtime embedded systems (processors with perfor-
mance enhancing features such as pipelines, cache hierarchy, multiple cores), many processors now have a
set-associative L2 cache. Thus, there is a need for considering cache hierarchies when validating the temporal
behavior of real-time systems, in particular when estimating tasks WCETs. In [24], we propose a safe static
instruction cache analysis method for multi-level non-inclusive caches. The proposed method is experimented
on medium-size and large programs. We show that the method is reasonably tight. We further show that in
all cases WCET estimations are much tighter when considering the cache hierarchy than when considering
only the L1 cache. An evaluation of the analysis time is conducted, demonstrating that analyzing the cache
hierarchy has a reasonable computation time.

6.4.4. Impact of cache replacement policy on the tightness of WCET estimation
Participants: Damien Hardy, Thomas Piquet, Isabelle Puaut.

Recently Reineke et. al have proposed in [52] new theoretical results about the predictability of cache
replacement policies, through the introduction of metrics (evict - eviction distance, mls - minimal life span)
for different replacement policies. In [27], we have integrated these results in a static WCET estimation
tool in order to quantify the impact of cache replacement policy (LRU/PLRU/Random) on the tightness of
WCET estimation, for medium-size benchmarks. As expected, the LRU replacement policy can be analyzed
more tightly than the PRLU replacement policy, which itself can be analyzed more tightly than the Random
replacement policy. However, when the loops in the applications are small enough, there are no difference
between the tightness of the analyses. One can also notice than the higher the cache associativity, the larger
the difference between the tightness of the analyses.

7. Contracts and Grants with Industry

7.1. Research grant from Intel
Participants: Julien Dusser, André Seznec.

The researches on content conscious cache management (cf. 6.1.1), and on branch prediction (cf. 6.1.6) are
partially supported by the Intel company through a research grant.

7.2. Start-up
Participants: François Bodin, André Seznec.

The collaboration has been pursued in 2008 with the start-up company CAPS Entreprise that was created in
2003 by members of the research team. This collaboration addresses topics such as very high performance
code generation for complex processors (IA64 for instance) and compilation for ASIP.

7.3. QCDNext
Participants: François Bodin, Khaled Ibrahim, André Seznec.

Project-Team caps 15

The QCDNext (“programme blanc of ANR”) combines the efforts of physicists, computer scientists and elec-
trical engineers to propose the architecture of a low cost next generation computer system for highly demand-
ing scientific applications. This ANR funded project is strongly related with the ApeNEXT collaboration.

7.4. Sceptre project
Participants: François Bodin, Robin Schmutz.

The goal of the project is to develop a toolkit for helping the implementation of multimedia algorithms on a
reconfigurable multiprocessor network. In particular, this toolkit should help to explore and analyze hardware
/ software tradeoffs. The goal is to drastically reduce application port time and to obtain flexible realizations
over a family of algorithms, thus increasing the lifespan of each development.

This project is funded by the “Pôle de compétitivité Minalogic”.

7.5. Ter@ops project
Participants: François Bodin, Damien Fétis.

Ter@ops aims at defining and developing a large-scale embedded multi-core architectures. In this project,
CAPS adapts the backend optimizer SOFAN to a SIMD architecture part of the Ter@ops project.

This project is funded by the “Pôle de compétitivité SYSTEMATIC”.

7.6. Scalimages
Participants: François Bodin, Florence Dru.

The goal of this project is to study and implement scalable video encoding. This new encoding technology
aims at providing a solution to the exponential growth in the volume of broadcasted content, the multiplication
of reception platforms, and the diversity of the means of transport and broadcasting. In this project, CAPS is
working on code optimization techniques.

This project is funded by the “Pôle de compétitivité Images et réseaux”.

7.7. Mascotte
Participants: Isabelle Puaut, Thomas Piquet.

MasCotTE (http://www.projet-mascotte.org/) is an acronym for “MAîtriSe et COnTrôle des Temps
d’Exécution” (Estimation and control of execution times). MasCotTE is funded by the Predit program of the
ANR.

The aim of MasCotTE is to design the methods, techniques and tools required for controlling the execution
times of automotive embedded real-time software (through static analysis and/or testing). Emphasis is put on
the study of the impact of performance enhancing features on the predictability of embedded software. The
project defines some guidelines on how to use such performance enhancing features in a predictable manner.

7.8. PARA
Participants: François Bodin, Khaled Ibrahim.

The objective of the PARA project is to study and develop optimization techniques in order to fully exploit all
kind of parallelism found in modern computer architectures. This is done by associating different public and
private research communities (application developers, compilation and operating system experts and system
conceptors).

PARA is funded by the ANR program “Calcul Intensif et Grilles de Calcul”.

http://www.projet-mascotte.org/

16 Activity Report INRIA 2008

7.9. POPS
Participants: François Bodin, Khaled Ibrahim, Guillaume Papauré.

POPS “Pour une nouvelle génération de serveurs et d’applications intensives á l’échelle du PetaFlops” is
a project of the Pôle de compétitivité Systematics. The partners of the project are BULL, Caps enterprise,
CS Systèmes d’information, EDF, ESI, Eurodecision, Medit, NewPhenix, Resonate, CEA DAM, CEA LIST,
Ecole centrale de Paris, IFP, INRIA, INT, Université d’Evry, Université de Paris Sud, Université de Versailles
St Quentin. The project aims at building supercomputers achieving Petaflop effective performance range.

In the project, we study programming environment to exploit the hybrid multicore architecture.

7.10. Serenitec: SEcurity analysis and Refactoring ENvironment for Internet
TEChnology
Participants: François Bodin, Christophe Levointurier, Sylvain Leroy.

Serenitec aims at analyzing and improving security of Java Web applications. To achieve its goals, the project
mixes a set of techniques from static program analysis, case based reasoning and refactoring techniques.
Security analysis are based on the work of the Open Web Application Security Project. To validate the
techniques, large web analysis will be used (500 kloc to 1 Mloc).

In this project, CAPS studies basic analysis and refactoring techniques for Java codes. Serenitec is a project
of the Pôle de compétitivité Images et Réseaux. It is funded by the Region Bretagne and Rennes Métropole.
Partners of this project are Silicom-AQL, Caps Entreprise and Irisa/INRIA (prime).

7.11. GaLogic
Participants: François Bodin, Guillaume Papauré, Isabelle Puaut.

GaLogiC is a RTNL contract between STMicroelectronics, VERIMAG and IRISA. It proposes to integrate
three technologies: the worst-case execution time analysis for individual software components, the manage-
ment of real-time in a context of application control, and the programming of basic components. The part of
our team consists in the characterization of the worst case execution-time in each software component in order
to generate predictable code.

8. Other Grants and Activities

8.1. NoEs
Participants: François Bodin, Pierre Michaud, Erven Rohou, André Seznec.

• F. Bodin, P. Michaud, A. Seznec and E. Rohou are members of European Network of Excellence
HiPEAC2. HiPEAC2 addresses the design and implementation of high-performance commodity
computing devices in the 10+ year horizon, covering both the processor design, the optimising
compiler infrastructure, and the evaluation of upcoming applications made possible by the increased
computing power of future devices.

8.2. IP-Fet European project Sarc
Participants: Julien Dusser, Robert Guziolowski, Pierre Michaud, Eric Petit, André Seznec.

SARC is an integrated IP-FET project concerned with long term research in advanced computer architecture
http://www.sarc-ip.org/. It focuses on a systematic scalable approach to systems design ranging from small
energy critical embedded systems right up to large scale networked data servers.

http://www.sarc-ip.org/

Project-Team caps 17

The CAPS team is involved in the microarchitecture research, including temperature management and memory
hierarchy management, and the compiler research.

9. Dissemination

9.1. Scientific community animation
• Pierre Michaud was a member of the organization committee of the 2008 CEA-EDF-INRIA

Computing Summer school.

• Pierre Michaud has been a member of the program committees of MuCoCoS 2008 and CMP-MSI
2008.

• Isabelle Puaut has been a member of program committee of ECRTS 2008 (20th Euromicro Con-
ference on Real-Time Systems), WCET08 (8th Workshop on WCET analysis, held in conjunction
with ECRTS08), RTNS 2008 (16th International Conference on Real-Time and Network Systems),
RTCSA 2008 (14th IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications), the embedded systems track of HPCC07 (International Conference on High
Performance Computing and Communications), 2008 and 2009 editions of the Real-Time and (Net-
worked) Embedded Systems track of ETFA (13th and 14th IEE international conferences on Emerg-
ing Technologies and Factory Automation), and CARI 2008 (9e Colloque Africain sur la Recherche
en Informatique et en Mathématiques Appliquées). I. Puaut is member of the editorial board of In-
terstices (french on-line resources dedicated to the discovery of research in computer science, http://
interstices.info/).

• Isabelle Puaut is the program committee chair of ECRTS 2009 (21th Euromicro Conference on
Real-Time Systems), to be held in Dublin, July 2009.

• Isabelle Puaut was the chair of the work-in-progress session of the 29th IEEE Real-Time Systems
Symposium, held in Barcelona, Spain, december 2002.

• Isabelle Puaut was the general chair of RTNS 2008 (16th International Conference on Real-Time and
Network systems), Rennes, France, october 2008. Jean-François Deverge was the chair of the 2nd
Junior Researcher Workshop on Real-Time Computing, in conjunction with the 16th International
Conference on Real-Time and Network Systems (RTNS’08)

• André Seznec is a member of ISPASS’09, MULTIPROG’09 and MEDEA’ 08 program comittees. He
is a member of the editorial board of the HiPEAC Transactions (Transactions on High-Performance
Embedded Architectures and Compilers).

• André Seznec is the general co-chair of HiPEAC 2009 conference (Paphos, Cyprus, january 2009)

9.2. University teaching and responsabilities
• F. Bodin, A. Seznec, I. Puaut and E. Rohou are teaching computer architecture and compilation in

the master of research in computer sciences at University of Rennes I.

• I. Puaut teaches operating systems, real-time systems and real-time programming in the master
degree of computer science of the University of Rennes I. She teaches real-time systems in the
BSc degree Embedded automotive systems.

• I. Puaut is responsible of the 1st year of Master in computer science at University of Rennes I.

• Pierre Michaud is teaching computer architecture at the engineering degree in computer science
IFSIC, university of Rennes 1.

9.3. Workshops, seminars, invitations, visitors

http://interstices.info/
http://interstices.info/

18 Activity Report INRIA 2008

• Khaled Ibrahim presented an invited seminar at University of Toronto in April 2008 entitled “Parallel
computing from specialty to ubiquity,”.

• A. Seznec has presented a seminar on branch prediction at the ARM company in Cambridge in
december 2008 entitled “All you will never have wanted to know on branch prediction”.

• Pierre Michaud has given a seminar entitled "The implications of energetic and thermal constraints
on current and future processors" at the 2008 CEA-EDF-INRIA Computing Summer school.

9.4. Miscelleanous
• I. Puaut is member of the advisory board of the fundation M. Métivier (http://www.fondation-

metivier.org).

• J. Lenfant is a member of “académie des sciences et des technologies”.

• A. Seznec is an elected member of the scientific comittee of INRIA.

• CAPS is a member of the “pôle de compétitivité System@tic”, the “pôle de compétitivité réseau
image”, and the “pôle de compétitivité Minalogic”.

10. Bibliography
Major publications by the team in recent years

[1] F. BELLETTI, S. F. SCHIFANO, R. TRIPICCIONE, F. BODIN, P. BOUCAUD, J. MICHELI, O. PENE,
N. CABIBBO, S. DE LUCA, A. LONARDO, D. ROSSETTI, P. VICINI, M. LUKYANOV, L. MORIN, N.
PASCHEDAG, H. SIMMA, V. MORENAS, D. PLEITER, F. RAPUANO. Computing for LQCD: ApeNEXT, in
"Computing in Science and Engineering", vol. 8, no 1, 2006, p. 18–29.

[2] F. BODIN, A. SEZNEC. Skewed associativity improves performance and enhances predictability, in "IEEE
Transactions on Computers", May 1997.

[3] M. FOWLER, K. BECK, J. BRANT, W. OPDYKE, D. ROBERTS. Refactoring: improving the design of existing
code, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[4] K. HEYDEMANN, F. BODIN, P. KNIJNENBURG, L. MORIN. UFC : a Global Tradeoff Strategy for Loop
Unrolling for VLIW Architectures, in "CPC’2003", February 2003, p. 59-70.

[5] P. MICHAUD. Exploiting the Cache Capacity of a Single-chip Multi-core Processor with Execution Migration,
in "Proceedings of the 10th International Conference on High-Performance Computer Architecture (HPCA-10
2004)", IEEE Computer Society, January 2004.

[6] P. MICHAUD. A PPM-like, Tag-based Predictor, in "Journal of Instruction Level Parallelism", April 2005,
http://www.jilp.org/vol7.

[7] P. MICHAUD, Y. SAZEIDES, A. SEZNEC, T. CONSTANTINOU, D. FETIS. A study of thread migration in
temperature-constrained multi-cores, in "ACM Transactions on Architecture and Code Optimization", vol. 4,
no 2, 2007, 9.

[8] E. PETIT, F. BODIN, R. DOLBEAU. An Hybrid Data Transfer Optimization for GPU, in "Compilers for Parallel
Computers (CPC2007)", July 2007.

http://www.fondation-metivier.org
http://www.fondation-metivier.org
http://www.jilp.org/vol7

Project-Team caps 19

[9] G. POKAM, S. BIHAN, J. SIMONNET, F. BODIN. SWARP: a retargetable preprocessor for multimedia
instructions, in "Concurrency and Computation: Practice and Experience", vol. 16, no 2, 2004, p. 303–318.

[10] G. POKAM, O. ROCHECOUSTE, A. SEZNEC, F. BODIN. Speculative Software Management of Datapath-
width for Energy Optimization, in "proceedings of the Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’04)", June 2004.

[11] A. SEZNEC, S. FELIX, V. KRISHNAN, Y. SAZEIDES. Design trade-offs on the EV8 branch predictor, in
"Proceedings of the 29th International Symposium on Computer Architecture (IEEE-ACM), Anchorage", May
2002.

[12] A. SEZNEC, N. SENDRIER. HAVEGE: a user-level software heuristic for generating empirically strong
random numbers, in "ACM Transactions on Modeling and Computer Systems", October 2003.

[13] A. SEZNEC. Analysis of the O-GEHL branch predictor, in "Proceedings of the 32nd Annual International
Symposium on Computer Architecture", June 2005.

[14] A. SEZNEC. The L-TAGE Branch Predictor, in "Journal of Instruction Level Parallelism", May 2007, http://
www.jilp.org/vol9.

[15] A. SEZNEC, E. TOULLEC, O. ROCHECOUSTE. Register Write Specialization Register Read Specialization: A
Path to Complexity Effective of Wide Issue Superscalar Processors, in "Proceedings of the 35th International
Symposium on Microarchitecture (IEEE-ACM), Istanbul", November 2002.

[16] H. VANDIERENDONCK, A. SEZNEC. Fetch gating control through speculative instruction window weighting,
in "proceedings of the 2nd HIPEAC conference, LNCS 4327", January 2007, p. 120-135.

Year Publications
Doctoral Dissertations and Habilitation Theses

[17] J.-F. DEVERGE. Contributions à l’analyse du comportement temporel de la hiérarchie mémoire pour
l’estimation de pire temps d’exécution, Ph. D. Thesis, Université de Rennes I, July 2008.

[18] T. PIQUET. Gestion consciente du contenu de la hiérarchie mémoire., Ph. D. Thesis, Université de Rennes I,
May 2008.

Articles in International Peer-Reviewed Journal

[19] K. Z. IBRAHIM, F. BODIN. Efficient SIMDization and Data Management of the Lattice QCD Computation on
the Cell Broadband Engine, in "Journal of Scientific computing: special issue on high performance computing
on Cell B.E. processors", 2008.

[20] K. Z. IBRAHIM, F. BODIN, O. PENE. Fine-grained Parallelization of Lattice QCD Kernel Routine on GPUs,
in "Journal of Parallel and Distributed Computing", vol. 68, no 10, 2008, p. 1350-1359.

[21] H. VANDIERENDONCK, A. SEZNEC. Speculative Return Address Stack Management Revisited, in "ACM
Transactions on Architecture and Code Optimization", to appear, 2008.

http://www.jilp.org/vol9
http://www.jilp.org/vol9

20 Activity Report INRIA 2008

[22] R. WILHELM, J. ENGBLOM, A. ERMEDAHL, N. HOLSTI, S. THESING, D. WHALLEY, G. BERNAT, C.
FERDINAND, R. HECKMANN, F. MUELLER, I. PUAUT, P. PUSCHNER, J. STASCHULAT, P. STENSTRÖM.
The Determination of Worst-Case Execution Times—Overview of the Methods and Survey of Tools, in "ACM
Transactions on Embedded Computing Systems (TECS)", vol. 7, no 3, April 2008.

International Peer-Reviewed Conference/Proceedings

[23] D. HARDY, I. PUAUT. Predictable Code and Data Paging for Real Time Systems, in "Proc. of the 20th
Euromicro Conference on Real-Time Systems, Prague, Czech Republic", July 2008, p. 266–275.

[24] D. HARDY, I. PUAUT. WCET analysis of multi-level non-inclusive set-associative instruction caches, in "Proc.
of the 29th IEEE Real-Time Systems Symposium, Barcelona, Spain", December 2008.

[25] K. Z. IBRAHIM, F. BODIN. Implementing Wilson-Dirac Operator on the Cell Broadband Engine, in "The
22nd ACM/SIGARCH International Conference on Supercomputing", Jun. 2008, p. 4–14.

[26] K. Z. IBRAHIM, J. JAEGER, Z. LIU, L. POUCHET, P. LESNICKI, L. DJOUDI, D. BARTHOU, F. BODIN, C.
EISENBEIS, G. GROSDIDIER, O. PENE, P. ROUDEAU. Simulation of the Lattice QCD and Technological
Trends in Computation, in "arXiv:0808.0391, 2008, also appears in the 14th International Workshop on
Compilers for Parallel Computers (CPC’09)".

[27] A. JUNIER, D. HARDY, I. PUAUT. Impact of instruction cache replacement policy on the tightness of WCET
estimation, in "Proc. of the 2nd Junior Researcher Workshop on Real-Time Computing, in conjunction to
RTNS 2008, Rennes, France", October 2008, p. 5–8.

[28] M. TAWK, K. Z. IBRAHIM, S. NIAR. Multi-granularity Sampling for Simulating Concurrent Heterogeneous
Applications, in "The ACM/SIGBED international Conference on Compilers Architecture and Synthesis for
Embedded Systems (CASES’08)", Oct. 2008.

Books or Proceedings Editing

[29] G. BUTTAZZO, P. MINET, I. PUAUT (editors). Proceedings of the 16th International Conference on Real-Time
and Network Systems (RTNS’08), October 2008, http://hal.inria.fr/RTNS2008/en/.

[30] J.-F. DEVERGE (editor). Proceedings of the 2nd Junior Researcher Workshop on Real-Time Computing, in
conjunction with the 16th International Conference on Real-Time and Network Systems (RTNS’08), October
2008.

[31] I. PUAUT (editor). Proceedings of the Work in Progress session of the 29th IEEE Real-Time Systems
Symposium, December 2008.

Research Reports

[32] J. DUSSER, T. PIQUET, A. SEZNEC. Zero-Content Augmented Caches, Research Report, no RR-6705, INRIA,
2008, http://hal.inria.fr/inria-00337742/en/.

[33] P. MICHAUD. Periodic activity migration for fast sequential execution in future heterogeneous multicore
processors, Technical report, no PI-1909, IRISA, November 2008.

http://hal.inria.fr/RTNS2008/en/
http://hal.inria.fr/inria-00337742/en/

Project-Team caps 21

[34] P. MICHAUD. Replacement policies for shared caches on symmetric multicores : a programmer-centric point
of view, Technical report, no PI-1908, IRISA, November 2008.

References in notes

[35] A. BESZÉDES, R. FERENC, T. GYIMÓTHY, A. DOLEN, K. KARSISTO. Survey of Code-size reduction
methods, in "ACM Computing Survey", vol. 35, no 3, September 2003, p. 223-267.

[36] P.-Y. CHANG, E. HAO, Y. N. PATT. Target Prediction for Indirect Jumps, in "Proceedings of the 24th Annual
International Symposium on Computer Architecture", may 1997.

[37] R. S. CHAPPELL, J. STARK, S. P. KIM, S. K. REINHARDT, Y. N. PATT. Simultaneous Subordinate Mi-
crothreading (SSMT), in "Proceedings of the 26th Annual International Symposium on Computer Architec-
ture", May 1999.

[38] K. CHOW, Y. WU. Feedback-Directed Selection and Characterization of Compiler Optimizations, in
"Proc.2nd workshop on Feedback-Directed Optimization", November 1999.

[39] S. DEBRAY, W. EVANS. Profile-Guided Code Compression, in "ACM PLDI’02", vol. 37, no 5, 2002.

[40] M. FOWLER, K. BECK, J. BRANT, W. OPDYKE, D. ROBERTS. Refactoring: improving the design of existing
code, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[41] L. HAMMOND, ET AL.. The Stanford Hydra CMP, in "IEEE Micro", vol. 20, no 2, March 2000.

[42] C.-H. HSU, U. KREMER. IPERF: A Framework for Automatic Construction of Performance Prediction
Models, in "In Workshop on Profile and Feedback-Directed Compilation (PFDC)", October 1998.

[43] M. JACOME, G. DE VECIANA. Design challenges for new application specific processors, in "IEEE Design
and Test of Computers", vol. 17, no 2, 2000, p. 40–50.

[44] R. E. KESSLER. The Alpha 21264 microprocessor, in "IEEE Micro", vol. 19, no 2, 1999.

[45] T. KISUKI, P. KNIJNENBURG, M. O’BOYLE, H. WIJSHOFF. Iterative compilation in program optimization,
in "Compilers for Parallel Computers 2000", 2000, p. 35–44.

[46] P. KULKARNI, W. ZHAO, H. MOON, K. CHO, D. WHALLEY, J. DAVIDSON, M. W. BAILEY, Y. PAEK, K.
GALLIVAN. Finding Effective Optimization Phase Sequences, in "LCTES’03", 2003, p. 12-23.

[47] A.-C. LAI, C. FIDE, B. FALSAFI. Dead-Block Prediction & Dead-Block Correlating Prefetchers, in "Proceed-
ings of the 28th Annual International Symposium on Computer Architecture Computer Architecture News",
June 2001.

[48] C.-K. LUK. Tolerating memory latency through software-controlled pre-execution in simultaneous multi-
threading processors, in "Proceedings of the 28th annual international symposium on Computer architecture",
june 2001.

22 Activity Report INRIA 2008

[49] J. MELLOR-CRUMMEY, R. FOWLER, D. WHALLEY. Tools for application-oriented performance tuning,
in "Proceedings of the 15th international conference on Supercomputing", ACM Press, 2001, p. 154–165,
http://doi.acm.org/10.1145/377792.377826.

[50] S. PALACHARLA, N. P. JOUPPI, J. E. SMITH. Complexity-Effective Superscalar Processors, in "Proceedings
of the 24th Annual International Symposium on Computer Architecture", 1997.

[51] I. PUAUT, D. HARDY. Predictable paging in real-time systems: a compiler approach, in "Proc. of the 19th
Euromicro Conference on Real-Time Systems, Pisa, Italy", July 2007, p. 169–178.

[52] J. REINEKE, D. GRUND, C. BERG, R. WILHELM. Timing predictability of cache replacement policies, in
"Real-Time Systems Journal", vol. 37, no 2, 2007, p. 99–122.

[53] S. K. REINHARDT, S. MUKHERJEE. Transient fault detection via simultaneous multithreading, in "Proceed-
ings of the International Symposium on Computer Architecture", 2000.

[54] C. ROCHANGE, P. SAINRAT. Difficulties in Computing the WCET for Processors with Speculative Execution,
in "2nd Intl. Workshop on Worst Case Execution Time Analysis", June 2002.

[55] V. SUHENDRA, T. MITRA, A. ROYCHOUDHURY, T. CHEN. WCET Centric Data Allocation to Scratchpad
Memory, in "Real Time Systems Symposium 05", December 2005.

[56] C. TICE, S. GRAHAM. Key Instructions: Solving the Code Location Problem for Optimized Code, 2000,
Tech. Report 164, Compaq Systems Research Center, Palo Alto, CA.

[57] V. TIWARI, S. MALIK, A. WOLFE. Compilation techniques for low energy: An overview, in "Proceedings of
the IEEE Symposium on Low Power Electronics", October 1994.

[58] D. TULLSEN, S. EGGERS, H. LEVY. Simultaneous multithreading : maximising on-chip parallelism, in "22nd
Annual International Symposium on Computer Architecture", June 1995, p. 392-403.

[59] S.-H. YANG, M. POWELL, B. FALSAFI, K. ROY, T. VIJAYKUMAR. An Integrated Circuit/Architecture
Approach to Reducing Leakage in Deep-Submicron High Performance I-caches, in "Proceedings of the
International Symposium on High Performance Computer Architecture", January 2001.

[60] C. ZHANG, F. VAHID, W. NAJJAR. A Highly Configurable Cache Architecture for Embedded Systems, in
"Proceedings of the 30th International Symposium on Computer Architecture", June 2003.

[61] W. ZHAO, B. CAI, D. WHALLEY, M. W. BAILEY, R. VAN ENGELEN, X. YUAN, J. D. HISER, J. W.
DAVIDSON, K. GALLIVAN, D. L. JONES. VISTA: a system for interactive code improvement, in "Proceedings
of the joint conference on Languages, compilers and tools for embedded systems", ACM Press, 2002, p.
155–164, http://doi.acm.org/10.1145/513829.513857.

[62] H. ZHOU, T. M. CONTE. Code Size Efficiency in Global Scheduling for VLIW/EPIC Style Embedded
Processors, in "The 6th Annual Workshop on Interaction between Compilers and Computer Architectures
(INTERACT-6) held in conjunction with HPCA-8", Feburary 2002.

http://doi.acm.org/10.1145/377792.377826
http://doi.acm.org/10.1145/513829.513857

Project-Team caps 23

[63] C. ZILLES, J. EMER, G. SOHI. The use of multithreading for exception handling, in "Proceedings of the
International Symposium on Microarchitecture", 1999.

