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2. Overall Objectives

2.1. Introduction
Keywords: Artificial Perception, Autonomous Navigation, Bayesian Programming, Dynamic World con-
straints, Learning, Motion Planning, Reasoning under Uncertainty, Robotics.

Main challenge: The project-team e-Motion aims at developing models and algorithms allowing us to build
“artificial systems” including advanced sensorimotors loops, and exhibiting sufficiently efficient and robust
behaviors for being able to operate in open and dynamic environments (i.e. in partially known environments,
where time and dynamics play a major role), while leading to various types of interaction with humans.
This Challenge is part of a more general challenge that we call Robots in Human Environments. Recent
technological progress on embedded computational power, on sensor technologies, and on miniaturised
mechatronic systems, make the required technological breakthroughs potentially possible (including from the
scalability point of view).
Approach and research themes: In order to try to reach the previous objective, we combine the respective
advantages of computational geometry and of the theory of probabilities. We are also working in cooperation
with neurophysiologists on sensorimotor systems, for trying to apply and experiment some biological models.
This approach leads us to study, under these different points of view, three strongly correlated fundamental
research themes:

• Perception and multimodal modelling of space and motion. The basic idea consists in continuously
building (using preliminary knowledge and current perceptive data) several types of models having
complementary functional specialisations (as suggested by neurophysiologists). This leads us to
address the following questions : how to model the various aspects of the real world ? how to
consistently combine a priori knowledge and flows of perceptive data ? how to predict the motions
and behaviors of the sensed object ?

• Motion planning and autonomous navigation in the physical world. The main problem is to simul-
taneously take into account various constraints of the physical world such as non-collision, environ-
ment dynamicity, or reaction time, while mastering the related algorithmic complexity. Our approach
for solving this problem consists in addressing two main questions : how to construct incrementally
efficient and reliable space-time representations for both motion planning and navigation ? how to
define an iterative motion planning paradigm taking into account kinematics, dynamics, time con-
straints, and safety issues ? How to integrate Human-Robot interactions into the decisional processes
?

• Learning, decision, and probabilistic inference. The main problem to solve is to be able to correctly
reason about prior and learned knowledge, while taking explicitely into account the related uncer-
tainty. Our approach for addressing this problem is to use and develop our bayesian programming
paradigm, while collaborating with neurophysiologists on some particular topics such as the model-
ing of human navigation mechanisms or of biological sensorimotors loops. The main questions we
are addressing are the followings : how to model sensorimotor systems and related behaviors ? how
to take safe navigation decisions under uncertainty ? What kind of models and computational tools
are required for implementing the related bayesian inference paradigms ?

2.2. Highlights of the year
• Co-organization (with J.P. Merlet of INRIA Sophia-Antipolis ans R. Chatila of LAAS-CNRS) of

IEEE/RSJ IROS 2008 conference in Nice (around 1400 participants).

• Publication of the book "Probabilistic Reasoning and Decision Making in Sensory-Motor Systems",
P. Bessière, C. Laugier, R. Siegwart.

• C. Laugier invited to be Keynote speaker at the FSR’09 conference (Cambridge).
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• Signature of an agreement with Probayes SAS for the valorization of the already patented BOF
Technology.

• A. Martinelli has been appointed as an associated editor of the journal IEEE Transaction of Robotics.

• Publication of special issues in the following journals : JFR 2008, IJRR 2009, IJVAS 2008, IEEE
Trans on ITS 2009.

3. Application Domains

3.1. Introduction
The main applications of our research are those aiming at introducing advanced and secured robotized systems
into human environments (i.e. “Robots in human environments”). In this context, we are focussing onto the
following application domains: Future cars and transportation systems, Service and intervention robotics,
Potential spin-offs in some other application domains.

3.2. Future cars and transportation systems.
This application domain should quickly change under the effects of both new technologies and current
economical and security requirements of our modern society. Various technologies are currently studied and
developed by research laboratories and industry. Among these technologies, we are interested in ADAS1

systems aimed at improving comfort and safety of the cars users (e.g. ACC, emergency braking, danger
warnings ...), and in Automatic Driving functions allowing fully automatic displacements of private or public
vehicles in particular driving situations and/or in some equipped areas (e.g. automated car parks or captive
fleets in downtown centres).

3.3. Service and intervention robotics.
This application domain should really explode as soon as robust industrial products, easily usable by non-
specialists, and of a reasonable cost will appear on the market. One can quote in this field of application,
home robots, active surveillance systems (e.g. surveillance mobile robots, civilian or military safety, etc.),
entertainment robots, or robotized systems for assisting elderly and/or disabled people. The technologies we
are developing should obviously be of a major interest for such types of applications.

3.4. Potential spin-offs in some other application domains.
The software technologies we are developing (for bayesian programming) should also have a potential impact
on a large spectrum of application domains, covering fields as varied as the interaction with autonomous
agents in a virtual world (e.g.. in the video games), the modelling of some biological sensory-motor systems
for helping neurophysiologists to understand living systems, or applications in economic sectors far away from
robotics like those of finance or plant maintenance (applications currently covered by our start-up Probayes
commercializing products based on Bayesian programming).

1Advanced Driver Assistance Systems
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4. Software

4.1. Advanced Software
• ProBT.

People involved : Juan-Manuel Ahuactzin, Kamel Mekhnacha, Pierre Bessière, Emmanuel Mazer,
Manuel Yguel, Jean-Marc Bollon.
ProBT is both available as a commercial product (ProBAYES.com) and as a free library for public re-
search and academic purposes (http://emotion.inrialpes.fr/BP/spip.php?rubrique6) Formerly known
as OPL, ProBT is a C++ library for developing efficient Bayesian software. It is available for Linux,
Unix, PC Windows (Visual C++), MacOS9, MacOSX and Irix systems. The ProBT library (http://
www.probayes.com/spip.php?rubrique57) has two main components: (i) a friendly Application Pro-
gram Interface (API) for building Bayesian models, and (ii) a high-performance Bayesian Inference
Engine (BIE) allowing to execute all the probability calculus in exact or approximate way. ProBT is
now commercialized by our start-up Probayes; it represents the main Bayesian programming tool of
the e-Motion project-team, and it is currently used in a variety of external projects both in the aca-
demic and industrial field (e.g. for the European project BACS and for some industrial applications
such as Toyota or Denso future driving assistance systems).

• Cycab Simulator and programming toolbox.
People involved : Christophe Braillon, Amaury Nègre, participation of the SED team.
In order to perform pre-test and to provide help for Cycab developers, a robot simulator has been
developed. This simulator is intended to simulate hardware and low-level drivers, in order to produce
a temporal behaviour (refresh frequency, scheduling...) similar to what can be found on real robots
with real sensors.

A middleware called Hugr has been developed to allow easy switching between simulated and real
platform. Application that uses this middleware do not need to be recompiled when going from the
simulator to the real hardware. Moreover Hugr makes it easy to design distributed application. It
uses network to share data between applications that are not located on the same machine as easily
as if they were on the same one.

Several sensors and robots have been simulated, among them the most original ones are catadioptric
and fisheye cameras. Realistic models have been developed for laser sensors, GPS, cameras, ... All
these models rely on state-of-the-art GPU techniques. Computing most of the simulated data on
the GPU means that the CPU is free for applications. Therefore there is practically no difference
between simulation and real sensors or robots.

Applications written and tested on the simulated robot can then be settled to the real one without
any modification. Sensors and environment are also simulated, so that complete applications can be
developed on this test bed.
The simulator project is available on the INRIA Forge (http://gforge.inria.fr/projects/cycabtk).

• Bayesian Occupation Filter (BOF) Toolbox.
People involved: Kamel Mekhnacha, Tay Meng Keat Christopher, C. Laugier, M. Yguel, Pierre
Bessière, Thierry Fraichard.
The BOF toolbox is a C++ library that implements the Bayesian Occupation Filter. It is often used
for modelling dynamic environments. It contains the relevant functions for performing bayesian
filtering in grid spaces. The output from the BOF toolbox are the estimated probability distributions
of each cell’s occupation and velocity. Some basic sensor models such as the laser scanner sensor
model or gaussian sensor model for gridded spaces are also included in the BOF toolbox. The sensor
models and BOF mechanism in the BOF toolbox provides the necessary tools for modelling dynamic
environments in most robotic applications. This toolbox is patented under two patents : “Procédé
d’assistance à la conduite d’un véhicule et dispositif associé ” n. 0552735 (9 september 2005) and

http://emotion.inrialpes.fr/BP/spip.php?rubrique6
http://www.probayes.com/spip.php?rubrique57
http://www.probayes.com/spip.php?rubrique57
http://gforge.inria.fr/projects/cycabtk
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“Procédé d’assistance á la conduite d’un véhicule et dispositif associé amélioré” n. 0552736 (9
september 2005) and commercialized by ProBayes.

• ColDetect.
People involved : Christian Laugier, Kenneth Sundaraj.
This library has been implemented for providing robust and efficient collision detection, exact
distance computation, and contact localisation of three-dimensional polygonal objects. It is patented
under the french APP patent #IDDN.FR.001.280011.000.S.P.2004.000.10000. This library is still
available on the web and used by several researchers from differents countries.

4.2. Old Software
Related to close field of research of the e-Motion team-project, these softwares are not used anymore by the
researchers of our research team.

• Grid Occupany Wavelets (GROW).
People involved : Manuel Yguel, Francis Colas, David Raulo.
These software components are C++ libraries for designing applications that build dense representa-
tion of the occupancy function of a environment from telemetric sensor measurements either 2D or
3D. It is available for Linux. This Grid Occupany Wavelets software components are declared under
the french APP declaration and has been used to scientific experiments.

• VisteoPhysic.
People involved : Cesar Mendoza, Kenneth Sundaraj, Christian Laugier.
This library provides efficient tools for deformable object simulation. It is patented under the french
APP patent #IDDN.FR.001.210025.000.S.P.2004.000.10000.

• Markov models toolbox.
People involved : Olivier Aycard.
This toolbox is a C++ library for prototyping applications for interpretation of temporal sequences
of noisy data. It is available for Linux and PC Windows (Visual C++). The Markov models
toolbox has two main components: (i) a definition of Markov models and learning of its parameters
component. This component permits to manually define the topology of a Markov model, and to
automatically learns the parameters of the defined model. Original learning algorithms have also
been developped to automatically build the topology of the model and estimate its parameters.
The result of this part is a set of Markov models, where each model is trained (ie, estimated) to
recognize a particular type of temporal sequence of noisy data. (ii) an interpretation component.
Its goal is to interpret a temporal sequence of noisy data and to determine the most probable
corresponding Markov models. This Markov models toolbox is patented under the french APP patent
#IDDN.FR.001.280011.000.S.P.2004.000.10000 and has been used to perform a preliminay study of
recognition of behaviours of a car driver in cooperation with TOYOTA and also to interpret sequence
of noisy sensor data of mobile robots.

5. New Results

5.1. Dynamic World Perception and Evolution Prediction
5.1.1. Visual Dynamic Obstacles detection using Change of Scale

Participants: Amaury Nègre, Guillem Alenyà Ribas, Christian Laugier, Jim Crowley.

To navigate safely in a dynamic environment (with moving pedestrians, vehicles or other obstacles), it is
necessary to detect and characterize dangerous objects. In this aim, we developed a visual method that consists
in detecting and tracking interesting elements in a camera image and evaluating the time-to-contact to estimate
the collision risks.
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Our detector extracts ridge segments in a Laplacian Scale Space. Such segments correspond to elongated
contrasted areas in the image and are particularly interesting because their describe well object’s structure and
because the detector is invariant to affine changes. This detector can be define as an extantion of the Laplacian
interest point detector as it extracts lines where the Laplacian value is maximum.

After having extracted these ridge segments in a single image, we track them using a particle filter in order to
evaluate the motion and the change of scale [28]. Change in scale is known to be used by humans to navigate
as a growing motion in the image is related to an approaching motion in the 3D world [92]. Here, we use this
change of scale to compute the time to collision (TTC is the time remaining before contact with an obstacle).
The TTC computed for each tracked element give us a precious information about their dangerousness of an
obstacle (a small positive TTC corresponds to a dangerous approaching obstacle).

Our current work consists in using these tracked features in a reactive navigation framework. The set of tracked
objects and their associated TTC is used to define a probability distribution describing the restricted area in
the robot commands domain (linear and angular speed). A Bayesian fusion between this distribution and
the desired command distribution can then define the final command than is used to control the robot (see
Figure 1).

(a) An example of ridge segment tracking and TTC
estimation in the camera image (red discs indicate a short

TTC).

(b) Vehicle trajectory with obstacle avoidance.

Figure 1. Object tracking for Time-To-Collision estimation and vehicle navigation with obstacle avoidance using
position and TTC of tracked ridge segments.

In order to have video rate performance, and so can use our method on line, all algorithms have been
implemented on the graphic processor (GPU) which is well adapted to parallel tasks like image processing
(Scale space filtering, segment’s extraction) and particles filter (each particle can be processed in parallel).

To experiment the visual navigation task, we also designed an artificial landmark very robust and easy to track.
This landmark has been used with an autonomous underwater vehicle for docking [10].

This work was done in collaboration with Guillem Alenya of the IRI laboratory (UPC, Barcelona).

5.1.2. Data-Driven Markov Chain Monte Carlo for Moving Object Tracking
Participants: Trung-Dung Vu, Olivier Aycard.
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Recent years have seen many research works using laser scanners to detect and track moving objects. On one
hand, existing methods usually separate the detection and tracking as two independent procedures, this is what
we have done in 2007.

Since detection at one time instant usually results in ambiguities that make the data association become more
difficult with missing detections and false alarms. In 2008, we proposed to solve the detection and tracking
in a whole process that allows object detection to make use of temporal information and facilitates robust
tracking. On the other hand, due to occlusions or laser-absorbed surfaces, an object can be divided into several
segments. This makes object detection and tracking much harder when dealing with object merging and track
grouping. We introduce a model-based approach and will discuss how using object models to interpret the
laser measurements can overcome these problems.

Figure 2. Example of a model-based interpretation of moving objects from laser data. (a) four scans consecutive: in
blue is current scan and in green are scans in the past; (b) one possible solution including seven tracks of four cars
and one bus represented by red boxes and one pedestrian represented by red dots which are imposed on the range

data; (c) situation reference.

We formulate the detection and tracking problem as finding the most likely trajectories of moving objects
given laser measurements over a sliding window of time (Fig. 2). An object trajectory (track) is regarded as
a sequence of shapes of a predefined model produced in the spatio-temporal space by an object satisfying
constraints of the measurement model and the smoothness in motion from frame to frame. In this way, our
approach can be seen as a batch method searching the global optimum solution taking into account all past
measurements. Due to the high computational complexity of such a scheme, we employ a Data-driven Markov
chain Monte Carlo (DDMCMC) method to explore the solution space.

The detection results from our previous works [108] [32] are employed to help driving the DDMCMC search
effeciently. The detection results are moving evidences detected based on the occupancy grid constructed
around the vehicle. Starting from these identified dynamic segments, by fitting suitable object models to
each segment, we generate all hypotheses possiblely corresponding to potential moving objects. These rough
hypotheses provide initial proposals for the DDMCMC process that performs a finer search over the spatio-
temporal space to find the most likely trajectories of moving objects.
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The proposed approach is tested on the Navlab datasets [109]. We implement the described algorithm as an
online process within a sliding window of 10 frames. From our initial evaluations, the DDMCMC detection
and tracking outperforms the detection and tracking using MHT in our previous work [108] [32] in terms of
higher detection rates and less false alarms. In addition, with the use of object models, segmented objects
caused by laser discontinuities are no longer a problem and tracking results are more accurate. Furthermore,
moving objects are naturally classified. The average computational time for the total detection and tracking
process is about 60 ms on P4 3.0 GHz PC with unoptimized codes so that it can fulfill the real time requirement
(Fig. 3). The result is submitted to ICRA09 [31].

A comparative evaluation of our proposed algorithm with other detection and tracking approaches using MHT
is being carried out. We also intend to integrate a road detection procedure in order to provide prior information
on moving objects that will certainly improve the effectiveness of the detection and tracking process. An
optimization of code to reduce the computational time is ongoing.

Figure 3. Moving object detection and tracking in action.

5.1.3. Fast Clustering and Tracking of Moving Objects in Dynamic Environments
Participants: Yong Mao, Kamel Mekhnacha, David Raulo, Christian Laugier.

Perceiving of the surrounding physical world reliably is a major demanding of the driving assistant systems
and the autonomous mobile robots. The dynamic environment need to be perceived and modeled according
to the sensor measurements which could be noisy. The major requirement for such a system is a robust target
tracking algorithm. Most of the existing target tracking algorithms [103] use an object-based representation
of the environment. However, these existing techniques have to take into account explicitly data association
and occlusion problems which are the major challenges of the performances. In view of these problems, a grid
based framework, the Bayesian occupancy filter (BOF) [105] [62] has been presented in our previous works.
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In the BOF framework, concepts such as objects or tracks do not exist. It decompose the environment into a
grid based representation. Thanks to the grid decomposition, the complicated data association and occlusion
problems do not exist. Another advantage of the BOF is that the multiple sensor fusion task could be easily
achieved. Uncertainties of multiple sensors are specified in the sensor models and are fused into the BOF grid
naturally with solid mathematical ground.

Despite of the aforementioned advantages, a lot of applications demand the explicit object-level representation.
In our former work, we suggested a hierachical structure where a joint probabilistic data association filter
(JPDAF) [103] based object detecting and tracking algorithm was implemented above the BOF layer. However,
the computational complexity of this algorithm increases exponentially to the number of objects detected and
tracked which prevented it from being applied in the cluttered environment. To overcome this, in 2008 we
proposed a novel object detecting and tracking algorithm for the BOF framework [25], [24]. This algorithm
takes the occupancy/velocity grid of the BOF as input and extracts the objects from the grid with a clustering
module which takes the prediction of the tracking module as a feedback. Thus, the clustering module
avoids searching in the entire grid which guarantees the performance. A re-clustering and merging module
is employed to deal with the ambiguous data associations. The extracted objects are then tracked and managed
in a probabilistic way. The computational cost of this approach is linear to the number of dynamic objects
detected, so as to be suitable for scenes in cluttered environment.

Figure 4. The distance error of the target to the GPS data.

We applied our novel method on the real world experimental dataset collected with the Cycab platform and
also on realworld traffic datasets provided by our industrial parners (Denso in particular). Taking the GPS data
as the ground truth, we compared our algorithm with the JPDAF based algorithm. Figure 4 shows our method
achieved comparable accuracy. Meanwhile, an experiment on simulated data shows the computational cost of
our method is 0.0003 seconds per frame and increases linearly with the number of targets in scene. Compared
with the NNJPDA algorithm which consumes 0.075 seconds per frame with an average of 11 targets and
18 clusters, but 5 seconds per frame with an average of 22 targets and 28 clusters, our method is extremely
effective. Another example of the proposed method is shown in figure 5. These figures illustrate that the BOF
based fast clustering and tracking algorithm can detect and track the moving objects consistently and robustly
even when occlusions of the targets occur [25].

5.1.4. Object Extraction using Self Organizing Networks and Statistical Background Detection
Participants: Thiago Bellardi, Alejandro Dizan Vasquez Govea, Agostino Martinelli, Christian Laugier.
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Figure 5. top: The two persons are walking towards each other in the perpendicular direction to the Cycab, middle:
An occlusion takes place, Bottom: The occlusion lasts for several frames and finishes.
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In many computer vision related applications it is necessary to distinguish between the background of an
image and the objects that are contained in it. This is a difficult problem because of the double constraint on
the available time and the computational cost of robust object extraction algorithms.

For the specific problem of finding moving objects from static cameras, the traditional segmentation approach
is to separate pixels into two classes: background and foreground. This is called Background Subtraction [74]
and constitutes an active research domain (see [96]). Having the classified pixels, the next processing step
consists of merging foreground pixels to form bigger groups corresponding to candidate objects, this process
is known as object extraction.

In previous work, we introduced a novel clustering approach for object extraction based on Self Organizing
Networks (SON). We have applied this algorithm to images [106] and occupancy grids [107], and shown that
it is able to produce good results in real time. Later improvements in the object extraction algorithm made
possible the use of a continuous foreground representation instead of binary. The algorithm complexity is
linear in respect to the number of pixels in the image, keeping the capability of processing at the frame rate.

(a) Initial SON (b) Original Image (c) Difference Image and
resulting grid

(d) Extracted objects

Figure 6. Approach overview. Enlarged views showing the different steps of our algorithm using CAVIAR data.

From 2007 to 2008 we start to focus on the background/foreground classifier exploring the new capability
of the extraction algorithm. We implemented a statistical classifier [12], that produces a continuous output
between 0 and 1, for each pixel in a frame, corresponding to our believe that the pixel belong to the foreground.
Comparing with the previous results, the detections became more robust to noise and we observed less false
negative and false positive detections.

(a) Original image (b) Grayscale foreground (c) Detection results

Figure 7. Object detection using the statistical background/foreground classifier. The grayscale foreground is
passed as it to the object detector.
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Future work includes continuing our experimental work, in particular by improving the back-
ground/foreground classifier. Other possibilities include taking into account temporal information by
updating the state of the SON when a new input image is available, instead of working in a frame per frame
fashion. Finally, we would like to explore the use use of our SON to perform data fusion on a multicamera
system.

This work is implied in the BACS project.

5.1.5. Moving Objects’ Future Motion Prediction
Participants: Alejandro Dizan Vasquez Govea, Thiago Bellardi, Agostino Martinelli, Thierry Fraichard,
Olivier Aycard, Christian Laugier.

To navigate or plan motions for a robotic system placed in an environment with moving objects, reasoning
about the future behaviour of the moving objects is required. In most cases, this future behaviour is unknown
and one has to resort to predictions.

Most prediction techniques found in the literature are limited to short-term prediction only (a few seconds at
best) which is not satisfactory especially from a motion planning point of view.

We have first started to explore the problem of medium-term motion prediction for moving objects. As a
result, we have proposed a novel cluster-based technique that learns typical motion patterns using pairwise
clustering and use those patterns to predict future motion. We have developed a new learn and predict approach
which addresses issues that were not solved by our first proposal: (a) Prediction of unobserved patterns and
(b) On-line/adaptive learning. The new approach represents motion on the basis of a proposed extension to
the well-known Hidden Markov Models framework, that we have named Growing Hidden Markov Models
(GHMM). Basically, the extension allows incremental, adaptive, real time learning of the models parameters
and structure. Incorporating final positions, objects’ goals, in the GHMM state several motion patterns can be
represented with a single GHMM.

During 2008, we have performed further experimental validation of GHMMs by comparing them against
two state of the art techniques [71], [56]. In our experiments, our approach has exhibited considerably better
performance than the other two concerning prediction accuracy and model parsimony. This work has been the
subject of an invited journal paper which is now in the review process.

This work is implied in the BACS project.

5.1.6. Interpretation and Prediction in Dynamic Environments
Participants: Christopher Tay Meng Keat, Christian Laugier, Chiara Fulgenzi.

A model of dynamic objects at a longer term (usually several seconds) are especially useful in environments
where movements of objects exhibit certain structures or motion patterns. In these cases, it is possible to
construct motion exemplaires that characterizes the motion patterns which are then used for performing longer
term motion prediction. This is performed by construction models of each motion exemplaires and learning
the parameters of the models based on data collected from a certain scene. The ability to perform motion
prediction on a longer time scale is beneficial for robotic applications such as target tracking or collision
avoidance.

Most existing methods in the literature requires a discretization of the state space. To overcome this, in 2007
we proposed a novel [104] motion model based on Gaussian Processes (GP). A GP is a generalization of
the gaussian distribution to function spaces where a gaussian distribution is placed on functions. Not only
discretization issues are avoided in using GP, it provides a theoretically sound bayesian framework in which
one can obtain probability distributions of motion in space as well as a proper way of performing motion
prediction in a fully probabilistic manner.

We model the scene using a mixture of GP where each GP represents a motion pattern. The mixture of GP
then corresponds to the different motion patterns in a certain scene. An example is shown in figure 8 where
the shaded bars represent the covariances of motion patterns and the mean of the of the motion pattern as a red
line.
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Another advantage of using GP to represent exemplaire paths is the representation of uncertainty in when
performing motion prediction. The uncertainty in motion prediction can be simply calculated by marginalizing
the gaussian distribution representing the path, given a set of observations. An illustration of the prediction is
in figure 9. The figure shows the various GP components corresponding to the predicted paths starting from a
certain point. Part of this work is done in the scope of our long-term collaboration with Toyota.

Figure 8. Representations of GP paths. Red lines represent GP mean. Covariances are represented by the green
bars

Figure 9. Prediction path means and covariances

As the notion of GPs is able to represent motion patterns in a probabilistic manner, it is thus a natural candidate
for applications such as probabilistic motion planning. Such motion planners search for a risk averse motion
which avoids potential collisions with dynamic objects in the environment. The GPs are able to give the
probability of collision for each considered trajectory by the motion planner. Experimental results have been
obtained in 2008 in a joint work [19] ( see section 5.3.4 ) where a Rapidly-exploring Random Tree was used
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to perform a risk averse motion planning in dynamic environment using the GP predictions to measure the risk
of a certain trajectory.

5.2. Localization and Mapping
5.2.1. Simultaneous Odometry and Extrinsic Camera Calibration

Participant: Agostino Martinelli.

This activity is the follow up of a collaboration with the ETHZ in Zurich in the frame-work of the European
project BACS. In particular, during the last years, methods to perform on-line sensor calibration have been
developed in the frame work of this collaboration [86], [84], [87], [83]. Furthermore, always in the frame-work
of this collaboration (in this case also with the help of the BlueBotics company in Lausanne), new methods to
extract features from the environment have been introduced [90][30]. During 2008, the problem of sensor self-
calibration in mobile robotics by only using a single point feature (e.g. a vertical line) has been considered. In
particular, the considered problem was the estimation of the extrinsic parameters of a vision sensor mounted
on a mobile platform and simultaneously the estimation of the parameters describing the systematic error in
the odometry system. In [22] special attention was devoted to investigate the dependence of the observability
properties of these parameters on the chosen robot trajectory. The main contribution provided in [22] was the
analytical derivation of the combinations of these parameters which are observable for a given robot trajectory.
This derivation requires to perform a local decomposition of the system, based on the theory of distributions.
Experiments have also been performed to validate the results.

Figure 10. One ofthe estimated parameters describing the extrinsic calibration of an omnidirectional camera
mounted on a mobile platform.

Starting from the previous local decomposition, in [9] the observation function has been directly integrated and
an analytical expression for this function has been derived. It has been shown that for special trajectories, this
observation function is a periodic function whose characteristics (e.g. period, maxima, minima etc.) are simply
related to the parameters that have to be estimated in order to perform the calibration. Since the evaluation of
these characteristics can be easily done starting from the observation function, a very efficient and powerful
approach to perform the calibration has been introduced. Experiments will be performed to validated the
approach. Preliminary results are shown in figure 10 where one of the parameters describing the extrinsic
calibration of an omnidirectional camera is plotted vs time. This work has been done in the scope of the BACS
european project.

5.2.2. SLAM and Cooperative SLAM
Participant: Agostino Martinelli.
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This activity is the follow up of the activity carried out since the beginning of 2006 about the problems of
simultaneous localization and mapping [82], [80], [85] and cooperative localization [81]. While during 2007
the previous problems have been faced by using a filter approach, a distributed Maximum A Posteriori (MAP)
estimator has been introduced in order to better deal with the system non linearities and also to deal with
communication issues.

This activity was carried out in collaboration with prof. Stergios Roumeliotis from the Minnesota State
University in Minneapolis. In particular, Dr. Agostino Martinelli has spent two months in his lab to acquire
the necessary knowledge and to start this collaboration.

As opposed to centralized MAP-based Cooperative Localization, the proposed algorithm reduces memory
requirements and computational complexity by distributing data and computations amongst the robots.
Specifically, a distributed data-allocation scheme is presented that enables robots to simultaneously process
and update their local data. Additionally, a distributed Conjugate Gradient algorithm is employed that reduces
the cost of computing the MAP estimates while utilizing all available resources in the team, and increasing
robustness to singlepoint failures. Finally, a computationally efficient distributed marginalization of past robot
poses is introduced for limiting the size of the optimization problem. Extensive simulations studies validate
the performance of the distributed MAP estimator and also compare its better accuracy to that of existing
approaches. The main results have been submitted [27]. This work has been done in the scope of the BACS
european project. It is also at the heart of our participation into the sFly european project.

5.2.3. 2D/3D efficient environment reconstruction using point-based representation
Participants: Manuel Yguel, Olivier Aycard, Christian Laugier.

In 2007 we have started to explore a new mapping approach that uses a point-based representation that is able
to compress the structure of the map. One of the objective was to give a theoretical framework to the point
based map. This part is not yet published but already finished and a map reference vector is constituted by a
couple formed by a point and a Mahalanobis matrix representing the local shape of the map. In 3D, for instance
the map could be locally spherical and the Mahalanobis matrix is the identity for point based landmarks or
can be locally planar and the Mahalanobis matrix is nnT where n is the normal to the plane or the map can
be locally linear and the Mahalanobis matrix is I − uuT where u is a unit vector of the 3D line. The same
framework is also valid in 2D, but only spherical and planar Mahalanobis matrices exist.
The other objective was to design a localization algorithm, this part was done and lead to two submitted
publications: a conference paper to ICRA 2009 and a journal paper to PAMI in collaboration with the
“Perception” EPI. Moreover a research report was published on the subject. The algorithm used is robust
and can handle local geometry through the use of Mahalanobis matrices (see fig. 11).

A multi-scale compression framework and a multi-scale localization algorithm have been developped also and
presented in the PhD thesis of Manuel Yguel (to be defended at the beginning of 2009). The next steps of this
work are: to publish the theoretical framework developped, to develop the theory for hybrid maps based on
this framework, to publish the multi-scale compression framework and the multi-scale localization algorithm
developped for this map. This work is done is the scope of the BACS FP7 European project.

One other aim of this work is to provide a data-structure that would be efficient to use with fast-slam algorithms
where a lot of maps are drawn in a multiple hypothesis framework. This kind of SLAM algorithms, among the
top efficient ones, were developped in [89].

5.3. Motion planning and Autonomous Navigation in the physical world
5.3.1. Partial Motion Planning

Participants: Rodrigo Benenson, Thierry Fraichard, Kristijan Macek.
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Figure 11. A point registration procedure, a H shape is observed and there is a H shape in the map, however some
part of the map blue dots are not observed whereas some part of the observations, the small circles, are not part of

the map. Even with those outliers, the pose registration is accurate.

Dynamic environments, ie environments with moving objects, impose a strict upper-bound on the time
available to a robotic system in order to determine its future course of action. This constraint is henceforth
called the decision time constraint. The decision time available is a function of what is called the dynamicity
of the environment which is directly related to the dynamics of both the moving objects and the robotic system.
Failure to meet the decision time constraint may put a robotic system in a situation where a collision eventually
occurs. Lately, a number of motion planning-based navigation schemes dealing with dynamic environments
have been proposed, eg [59], [70], [111], [64]. Unlike earlier reactive navigation schemes (that seeks to
determine the motion to execute during the next time-step only), they aim at computing a complete motion all
the way to the goal. To do so, they rely upon the most efficient motion planning techniques available today,
namely randomised techniques such as the Probabilistic Roadmap [72] or the Rapidly Exploring Random
Tree [76], whose average running times are low enough so that they can be used on-line. This type of approach
is very enticing since it makes up for the lack of lookahead of reactive navigation schemes. However, it is
argued that the decision time constraint can be such that it prevents the use of such schemes since the running
time of a randomised technique cannot be upper bounded.

Given the intrinsic complexity of motion planning in dynamic environments (see the complexity results
established in [101] and [60]), it seems unlikely that a hard decision time constraint could ever be met
in realistic situations. We advocate instead the Partial Motion Planning principle [94] as a general way to
handle the decision time constraint and to address autonomous navigation in dynamic environments. Partial
Motion Planning (PMP) is an interruptible planning scheme: when the time available is over, it returns either
a complete motion to the goal or a partial motion only, ie a motion that may not necessarily reach the goal.
This partial motion is then passed along to the navigation system of the robot for execution. Of course, since
only a partial motion is computed, it is necessary to iterate the partial motion planning process until the
goal is reached. The iterative nature of PMP is doubly required when the robotic system at hand is placed
in a uncertain dynamic environment, ie an environment for which everything is not known in advance (in
particular, the future behaviour of the moving objects). Indeed, motion planning means reasoning about the
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future. When the future is unknown, one has to resort to predictions, predictions whose validity duration is
limited in most cases. An iterative planning scheme permits to take into account the unexpected changes of the
environment by updating the predictions at a given frequency (which is also determined by the environment
dynamicity). Like reactive approaches, PMP faces two issues, namely the convergence and the safety issues:

Convergence. What guarantee do we have that the goal will ever be reached?

Safety. What guarantee do we have that the robotic system will never found itself in a dangerous
situations?

As for the convergence issue, the unrealistic convergence conditions established in [79] leave little hope (it
is hardly surprising if the system is placed in an environment with no a priori information about the moving
obstacles). To address the safety issue, a solution relying upon the concept of Inevitable Collision States
is explored (cf section 5.3.2). To address the safety issue, different solutions are explored, mainly centered
around the concept of Inevitable Collision States (cf section 5.3.2).

Figure 12. PMP-based navigation in a simulated dynamic environment.

In 2008, work on PMP has mostly been furthered in the scope of the sabbatical stay of Thierry Fraichard at the
Swiss Federal Institute of Technology in Zurich (within Prof. Roland Siegwart’s group). A PMP module has
been developed and integrated in the navigation architecture developed in Zurich. The PMP module is coupled
with a route planner and connected with the control, perception and environment modelling modules of the
architecture.

Figure 13. The SmartTer experimental vehicle (ETH Zurich).
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A diffusion technique is used to build a tree of admissible trajectories embedded in the state×time space of
the robotic system and to extract from this tree a partial motion that is used during the next time cycle to drive
the system towards its goal. From a theoretical point of view, the safety of the system is guaranteed if and
only each partial motion is ICS-free up to the time that corresponds to the initial state of the partial motion
that is to be computed at the next navigation cycle), because then, at the next navigation cycle, the navigation
module always has a safe evasive manoeuvre available. Now, checking whether a given state is an ICS or
not requires in theory the full knowledge of the environment of and its future evolution. In practice however,
one has to deal with the sensors’ limited field of views and the elusive nature of the future. Knowledge about
the environment of the system is thus limited both spatially and temporally. This is the very reason why it
is impossible to guarantee an absolute level of safety (absolute in the sense that it can be guaranteed that the
system will never crash eventually). This intrinsic impossibility compels us to settle for weaker levels of safety.
Although weaker, the important thing is that such levels of safety will be guaranteed given the information
that the system knows about its environment. We have explored two different levels of safety:

Passive Safety. The first safety level we have seeked to enforce is the simplest one maybe. It guarantees
that, should a collision ever occur, the system will be at rest. In other words, if a collision is
inevitable, it can be guaranteed that the system always have the possibility to brake down and stop
before the collision occurs.

Passive Friendly Safety. In an environment where the moving objects are assumed to be friendly, ie
seeking to avoid collisions, and for which a certain knowledge about their dynamic properties is
available, it can be desirable to enforce a stronger level of safety. This second safety level guarantees
that, should a collision ever occur, the system will be at rest and the colliding object would have had
the time to slow down and stop before the collision had it wanted to.

Other safety levels could be proposed. The ultimate one of course is to determine safety with respect to the set
of ICS defined by the current environment model. Given the complexity of characterizing this ICS set, Passive
Safety and Passive Friendly Safety constitutes interesting alternatives in the sense that they can be computed
efficiently and provide an adequate level of safety. Fig. 12 illustrates PMP-based navigation in a simulated
dynamic environment. This work has already yielded two publications in international conferences [21], [20]
Experiments with the SmartTer platform (Fig. 13) are underway. They will be documented in Kristijan Macek’s
Ph.D thesis.

5.3.2. Inevitable Collision States
Participants: Thierry Fraichard, Luis Martinez-Gomez.

Autonomous mobile robots/vehicles navigation has a long history by now. Remember Shakey’s pioneering
efforts in the late sixties [91]. Today, the situation has dramatically changed as illustrated rather brilliantly
by the 2007 DARPA Urban Challenge2. The challenge called for autonomous car-like vehicles to drive 96
kilometers through an urban environment amidst other vehicles (11 self-driving and 50 human-driven). Six
autonomous vehicles finished the race thus proving that autonomous urban driving could become a reality.
Note however that, despite their strengths, the Urban Challenge vehicles have not yet met the challenge of
fully autonomous urban driving (how about handling traffic lights or pedestrians for instance?). Another point
worth mentioning is that at least one collision took place between two competitors. It raises the important
issue of motion safety, ie the ability for an autonomous robotic system to avoid collision with the objects of its
environment.

To address this issue, we have explored the novel concept of Inevitable Collision States (ICS) since 2002. An
ICS for a given robotic system is a state for which, no matter what the future trajectory followed by the system
is, a collision with an object eventually occurs. For obvious safety reasons, a robotic system should never ever
end up in an ICS. ICS have already been used in a number of applications: (i) mobile robot subject to sensing
constraints, ie a limited field of view, and moving in a partially known static environment [67], (ii) car-like
vehicle moving in a roadway-like environment [94][2], (iii) spaceship moving in an asteroid field [61]. In all

2http://www.darpa.mil/grandchallenge.

http://www.darpa.mil/grandchallenge
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cases, the future motion of the robotic system at hand is computed so as to keep the system away from ICS.
To that end, an ICS-Checker is used. As the name suggests, it is an algorithm that determines whether a given
state is an ICS or not. Similar to a Collision-Checker that plays a key role in path planning and navigation
in static environments, it could be argued that an ICS-Checker is a fundamental tool for motion planning and
navigation in dynamic environments. Like its static counterpart, an ICS-Checker must be computationally
efficient so that it can meet the real-time constraint imposed by dynamic environments.

Since 2007, we have been working on generic and efficient ICS-Checker for planar robotic systems with
arbitrary dynamics moving in dynamic environments. The efficiency is obtained by applying three principles:
(a) reasoning on 2D slices of the state space of the robotic system, (b) precomputing off-line as many things
as possible, and (c) exploiting graphics hardware performances. A preliminary version of the ICS-Checker
was presented at the 2007 IEEE Int. Conf. on Robotics and Automation (ICRA) [93]. A final version have
been presented in 2008 at the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems (IROS) wherein the
ICS-Checker was applied to two different robotic systems: a car-like vehicle and a spaceship.

Figure 14. ICS-AVOID in action: the black regions are forbidden states (ICS).

Next, we moved to design an ICS-based collision avoidance scheme, ie a decision-making module whose
primary task is to keep the robotic system at hand safe from collisions. To that end, the ICS-Checker proposed
in [23] is used. This collision avoidance scheme, henceforth called ICS-AVOID, guarantees motion safety
with respect to the model of the future which is used. To demonstrate the efficiency of ICS-AVOID, it has
been extensively compared with two state-of-the-art collision avoidance schemes, both of which have been
explicitly designed to handle dynamic environments. The first one has been proposed by [102] and is a
straightforward extension of the popular Dynamic Window approach [66]. The second one builds upon the
concept of Velocity Obstacle concept [65].

If ICS-AVOID were provided with full knowledge about the future, it would guarantee motion safety no matter
what. Given the elusive nature of the future, this assumption is unrealistic. In practice, knowledge about the
future is limited. However, the results obtained show that, when provided with the same amount of information
about the future evolution of the environment, ICS-AVOID performs significantly better than the other two
schemes. The first reason for this has to do with the respective time-horizon of each collision avoidance
scheme thus emphasizing the fact that, reasoning about the future is not nearly enough, it must be done with
an appropriate time horizon. The second reason has to do with the decision part of each collision avoidance
scheme. In all cases, their operating principle is to first characterize forbidden regions in a given control space
and then select an admissible control. Accordingly motion safety also depends on the ability of the collision
avoidance scheme at hand to find a such an admissible control. In the absence of a formal characterization
of the forbidden regions, all schemes resort to sampling (with the inherent risk of missing the admissible
regions). In contrast ICS-AVOID, through the concept of Safe Control Kernel, is the only one for which it
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is guaranteed that, if an admissible control exists, it will be part of the sampling set (thus guaranteeing safe
transitions between non-ICS states). A paper describing the results of this comparison has been submitted to
the 2009 IEEE Int. Conf. on Robotics and Automation (ICRA).

5.3.3. Trajectory Deformation
Participants: Vivien Delsart, Thierry Fraichard, Luis Martinez-Gomez.

Where to move next? is a key question for an autonomous robotic system. This fundamental issue has been
largely addressed in the past forty years. Many motion determination strategies have been proposed. They can
broadly be classified into deliberative versus reactive strategies: deliberative strategies aim at computing a
complete motion all the way to the goal, whereas reactive strategies determine the motion to execute during
the next time-step only. Deliberative strategies have to solve a motion planning problem [78]. They require a
model of the environment as complete as possible and their intrinsic complexity is such that it may preclude
their application in dynamic environments. Reactive strategies on the other hand can operate on-line using local
sensor information: they can be used in any kind of environment whether unknown, changing or dynamic, but
convergence towards the goal is difficult to guarantee.

To bridge the gap between deliberative and reactive approaches, a complementary approach has been proposed
based upon motion deformation. The principle is simple: a complete motion to the goal is computed first using
a priori information. It is then passed on to the robotic system for execution. During the course of the execution,
the still-to-be-executed part of the motion is continuously deformed in response to sensor information acquired
on-line, thus accounting for the incompleteness and inaccuracies of the a priori world model. Deformation
usually results from the application of constraints both external (imposed by the obstacles) and internal
(to maintain motion feasibility and connectivity). Provided that the motion connectivity can be maintained,
convergence towards the goal is achieved.

Figure 15. Path deformation problem: in response to the approach of the moving disk, the path is increasingly
deformed until it snaps.

The different motion deformation techniques that have been proposed [97], [73], [58], [77], [110] all performs
path deformation. In other words, what is deformed is a geometric curve, ie the sequence of positions that the
robotic system is to take in order to reach its goal. The problem with path deformation techniques is that, by
design, they cannot take into account the time dimension of a dynamic environment. For instance in a scenario
such as the one depicted in Fig. 15, it would be more appropriate to leave the path as it is and adjust the
velocity of the robotic system along the path so as to avoid collision with the moving obstacle (by slowing
down or accelerating). To achieve this, it is necessary to depart from the path deformation paradigm and resort
to trajectory deformation instead. A trajectory is essentially a geometric path parametrized by time. It tells
us where the robotic system should be but also when and with what velocity. Unlike path deformation wherein
spatial deformation only takes place, trajectory deformation features both spatial and temporal deformation
meaning that the planned velocity of the robotic system can be altered thus permitting to handle gracefully
situations such as the one depicted in Fig. 15.
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(a) t = 5 (b) t = 20 (c) t = 30

Figure 16. Double Integrator system: the snapshots depicts the path at different time instants (x× y view).

In 2007, we presented the first trajectory deformation scheme [75]. It operates in two stages (collision
avoidance and connectivity maintenance stages) and is geared towards manipulator arms. Since then, we have
been working on a novel trajectory deformation scheme, henceforth called Teddy (for Trajectory Deformer).
It operates in one stage only and is designed to handle arbitrary robotic systems. Teddy is designed to be
one component of an otherwise complete autonomous navigation architecture. A motion planning module is
required to provide Teddy with the nominal trajectory to be deformed. Teddy operates periodically with a
given time period. At each cycle, Teddy outputs a deformed trajectory which is passed to a motion control
module that determines the actual commands for the actuators of the robotic system.

Teddy was initially developed in the scope of the Master’s thesis of Vivien Delsart [63] that addressed the case
of a double integrator system (linear dynamics). This work was presented at the 2008 EUROS Conference [17]
and yielded a journal article due to appear in 2009 [6]. Results of the trajectory deformation process are
depicted in Fig. 16.

(a) x× y view (b) x× y × t view (c) x× y × v view

Figure 17. Steering method: examples of trajectories generated for different goal state-times.

In 2008, we have studied the case of a car-like system (non-linear dynamics). The computation of the internal
forces for such a system becomes complex since it requires the characterization of its set of reachable states,
complex to the point that it may be incompatible with the real-time requirements of a dynamic environment. To
solve this problem, we have decided instead to base the internal forces computation upon a steering method, ie
a function that computes a feasible trajectory between arbitrary pairs of states. To that end, we have developed
a novel steering method derived from that of [69]. Unlike standard steering methods, ours must be able
to compute feasible trajectories between states with a fixed time component. Examples of the trajectories
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generated are depicted in Fig. 17. This work yielded a presentation at the 2008 Int. Conf. on Intelligent Robots
and Systems (IROS) [16] and a submission at the 2009 Int. Conf. on Robotics and Automation (ICRA).

5.3.4. Goal oriented navigation in dynamic uncertain environment
Participants: Chiara Fulgenzi, Christopher Tay Meng Keat, Anne Spalanzani, Christian Laugier.

The problem of autonomous navigation in dynamic environment is a real challenge for nowadays robotics.
Many techniques have been developed to address navigation in known static environment (path planning
algorithms) and for exploration tasks. In dynamic environment, the developed approaches are usually based
on reactive algorithms which make the assumption that the local environment is perfectly known and that use
a static representation that is updated on-line with the new observations. A minor part of reactive techniques
(Velocity Obstacles [68] [65] and Dynamic Object Velocity) and partial planning take explicitly into account
the fact that the obstacles are moving and make the hypothesis that the robot knows exactly the trajectory of
this last ones. Our aim is then to put in relation the decision about motion and the on-line uncertain perception
of the world: the uncertainty and incompleteness of the information of the static and dynamic world cannot be
ignored and is not possible to compute a full plan in advance.
At first we focused our attention on a reactive method based on the Velocity Obstacle approach. We developed
a novel technique and integrate the velocity obstacles with a probabilistic perception of the occupation of the
space and of the velocity of the obstacles. A space-time occupancy grid estimates the occupation of the space
and a probability distribution over velocities for each object in the environment; the probability of collision in
time can be estimated and a safe control is chosen. The algorithm takes into account uncertainty coming from
sensors limited range and error probability, occluded space, uncertain velocity estimation, unknown obstacle
shape. Our results were published at ICRA 2007 [68] and used in the LOVe project.
These last two years we worked with the purpose to develop a more complex navigation structure which could
integrate medium-term prediction, short-term prediction and reactive behaviour. While reactive behaviour
is based on the previously described algorithm, short-term and medium-term prediction are used within a
partial planner which takes into account the different accuracy and reliability of prediction to find safe control
sequences. We developed a search method which is a novel extension of the Rapidly-exploring Random Trees
algorithm for the case of probabilistic uncertainty. For each partial path searched, a probability of success is
computed on the basis of the environment information and probabilistic prediction. The search is biased not
only by the goal direction but also by the likelihood of the paths. This search method has been integrated
with a partial planning algorithm, which accounts for safety issues and chooses an output partial path. Short-
term predictions are given by a multi-target tracking algorithm. These predictions are reliable only within a
short period and are represented by one or more Gaussians (respectively in the case of Kalman Filter tracking
or of Multi Hypotheses Tracking) with covariance growing in time. We tested the partial planner with real
data acquired with the Cycab (Fig. 18(a)); The environment is observed with a laser range finder: the static
environment is mapped in an occupancy grid, while moving pedestrians are tracked with a Kalman filter (Fig.
18(b)); our navigation algorithm searches the space and provides a safe partial path: in Fig 18(c) the cones
represent the 1 standard deviation ray uncertainty in obstacle prediction, the green and red lines represent the
partial paths explored and a threshold has been applied to show safe and unsafe nodes. The blue line is the
chosen path. The partial paths issued at each timestep have been then tested with the real observations acquired
and have been proved to be consistent with the predictions.

However, the motion model estimated by the tracking is valid only in a short-time period. So, medium-term
prediction is based on pre-learned typical patterns. The moving obstacles are supposed to be intelligent agents
moving with the intention to reach a specific goal. With this hypothesis it is possible to observe the environment
in order to learn the typical behaviour of the obstacles and predict their future motion with a certain confidence.
We consider that the system has already learnt a set of typical patterns. We integrated our search algorithm with
two different representations of typical patterns developed in the team: Markov graphs by Dizan Vasquez [11]
and Gaussian Processes by Christopher Tay ( see section 5.1.6 ). In the case of Markov graphs, the obstacles
trajectories are represented by discrete nodes and the prediction is made estimating the state of the obstacle
and letting the graph evolve. For each future time step a discretized distribution is obtained, represented by a
set of particles with weight proportional to their probability. In the case of Gaussian Processes representation,
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(a) (b) (c)

Figure 18. (a) Estimated occupancy grid and tracked pedestrians; (b) The prediction, the searched space and the
path chosen; (c) Test of a partial path with the real observation.

obstacles trajectories are represented by continuous functions each characterised by a mean function and a
covariance function. To predict the future state, the sequence of observations is considered and the probability
that an object is following one or the other pattern is estimated. The probability distribution is so given by
a Gaussian mixture at each time instant. Differently from the Multi Hypothesis Tracking, the Gaussians do
not grow indefinitely with time, but follow the typical patterns (Fig. 19(a)). Our algorithm is able to integrate
these different kinds of predictions and to update on-line the probabilistic information to give a safe an goal
solution with the current information. These algorithm have been tested on the Cycabtk simulator with real
and simulated trajectories acquired in collaboration with Dizan Vasquez and Christopher Tay (Fig. 19(b)). Our
results have been published in IROS 2008 ([19])

(a) (b)

Figure 19. (a) Typical patterns represented by Gaussian Processes and predictions of two moving obstacles. (b)
The prediction for a moving obstacle and the partial path chosen.

This work is supported by a grant from the European Community under the Marie-Curie project VISITOR
and implied in the LOVe and BACS projects.

5.4. Bayesian Modelling of Sensorimotor Systems and Behaviors
5.4.1. Task Learning for SensoriMotor Based Wheelchair Navigation

Participants: David Partouche, Anne Spalanzani, Christian Laugier.
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The goal of this project is to have a robotic wheelchair being able to autonomously navigate in an indoor
dynamic environment. The robot learns to navigate by observing the instructor trying to reproduce and
generalize the given task. To reach this goal, many points have to be settled: how the user and the robot
communicate, what is a simple behavior, how complex behaviors can be created combining simple ones, how
associate a behavior to a task.

In 2007, a list of behaviors to be learnt have been identified, and clustered in three groups: reflex (collision,
wandering...), reactive (obstacle avoidance, wall following...) and cognitive (human tracking, path following
...) behaviors. Some of these behaviors have been implemented using Fuzzy Neural Networks.

In 2008, Growing Hidden Markov Models (GHMM) have been used to generate sequences of behaviors [11].
Each node in the GHMM represents a behavior, and the behaviors are linked between them in a temporal
order. For a behavior to occur, the robot must have executed the precedent behaviors already. Each behavior
can be linked to one or more behaviors, and each link has a probability to be used, the probability will depend
of the past behaviors the robot executed. These probabilities are calculated during learning, observing which
behavior the instructor is using the more often.

Experiments have been initiated for a very simple environment (a corridor going to a rectangular room).
The robot starts in the corridor, and then the user drives the robot through the corridor, then crosses the
room by following the wall on its right side. The goal of this experiment is to choose, from a set of 4
hardcoded behaviors (fuzzy systems incoding: corridor following, left wall following, right wall following,
goal reaching), two different behaviors needed to solve the task: corridor following and right wall following.
The interaction is done via a poor interface. A map of the environment is presented to the user, who can then
click directly on the map to control the robot. A module with an obstacle avoidance system controls the robot
for reaching the goal. Once the instructor has shown the task to be accomplished, the system must be able to
analyze these instructions. The first step is to decouple this complex task into a sequential list of more basic
behaviors. Once the task has been segmented, we have to recognize the behaviors used during the task. The
behaviors are encoded in a fuzzy system and new behaviors are learned by the GenSoYager-FNN, a fuzzy
neural network developed at the Center for Computational Intelligence (C2I, http://www.c2i.ntu.edu.sg). We
are actually developing the behavior recognition algorithm.

This work is implied in the BACS project.

5.4.2. Brain Controlled Wheelchair
Participants: Brice Rebsamen, Christian Laugier.

This work has been done at the NTU of Singapore and in cooperation with the NUS Singapore. It is also
implied in the BACS project. A brain-computer interface (BCI) is a system that allows direct control of a
computer by thought. BCIs have the potential to help people with various disabilities, e.g. individuals suffering
from amyotrophic lateral scleroses (ALS), severe cerebral palsy, head trauma, multiple sclerosis, and muscular
dystrophies, to communicate or perform ordinary tasks. BCI applications range from typing words, moving a
cursor over the screen, gaming, or controlling a TV.

Robotic applications are a different story: controlling a robotic device, such as a wheelchair or a prosthesis,
requires continuous and accurate commands. However, due to the poor and noisy signal, information from
BCIs can typically be extracted only at a very slow pace (up to several seconds), or with a very high uncertainty.
A solution to this conflicting situation is to endow the system with enough autonomy to avoid dangerous
situations.

Hence, in [95], an EEG BCI based on recognition of three mental states (providing frequent signals but
with a relatively low confidence) interacts continuously with automatic behaviors of an autonomous robotic
wheelchair to successfully maneuver in the environment. However, this approach requires the user to be
constantly alert, which is likely to cause stress.

Our solution [100] relies on motion guidance and destination selection: virtual guiding paths connect locations
of interest in the environment (see figure 22). These paths can be traced automatically if an accurate map of
the environment is available, or manually by simply pushing the wheelchair once along the desired trajectory.

http://www.c2i.ntu.edu.sg
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Once a network of guiding paths is available, navigating in the environment simply consists in selecting the
desired destination.

For destination selection we use a BCI based on the P300 signal. The user focuses his or her attention on
an item within a list of 20 or more while the items are presented in random order (see figure 21). A peak
of potential appears in the EEG about 300ms after the item of interest was presented (see figure 20). Upon
detection of the P300 signal, the target is traced back as the item that was presented 300ms earlier. For greater
accuracy and reliability the process can be repeated several times. Typically, this kind of interface can achieve
a response time in between 10 to 20 seconds with an accuracy close to 100%.

This strategy has the important benefit of requiring minimal input from the subject, therefore minimizing
concentration effort, thus fatigue. Moreover, since the trajectories are repeated over time, the predictability
of the motion adds confidence in the machine. Lastly, because no complex sensor is required to perceive and
interpret the environment, the price of the robotic system is very low, thus allowing a larger number of disabled
to afford it.

Two faster BCIs were developped for issuing stop commands within a few seconds. The first one is a modified
version of the P300 selection interface: only one out the nine buttons is active (the stop button). With this
configuration the false acceptance rate is greatly reduced, thus allowing to reduce the P300 detection threshold,
thereby reducing the response time [98]. The second stop interface relies on a different brain signal: by
imagining left or right limb movements, subjects can modify synchronization of the µ and β rhythms in
the pre-motor cortex. This type of interface is typically used for 1D or 2D control of a cursor on screen. In
our configuration, a stop command is issued when the amount of µβ desynchronization goes beyond a certain
threshold. Visual feedback can be provided in the form of a cursor moving left or right proportionally to the
amount of desynchronization.

Both interfaces yield a similar response time (approximately 5 seconds) but they have their pros and cons: the
P300 stop interface is easy to use but suffers from a relatively high false positive rate (1.3 per 100 seconds);
the µβ interface does not suffer from any false positive, however it is relatively difficult to use and may require
a long training. It therefore left to the user to decide which interface is more suitable according to his ability.

The slow but accurate P300 selection interface is combined with one of the two interfaces for stopping to form
an hybrid BCI. Switching between modalities is controlled by a simple state machine as illustrated on figure
23.

This work led to the following publications [99], [100], [98] as well as a PhD thesis [1].

5.4.3. Bayesian Modelling of Sensorimotor Systems: Application to Handwriting
Participants: Estelle Gilet, Pierre Bessière, Julien Diard.

The goal of the PhD of Estelle Gilet, is to define a Bayesian model of the whole sensorimotor loop involved
in handwriting, from visual sensors to the control of the effector [35]. We aim to implement a simulation of
handwriting based on three points: the perception, the representation and the production of letters.

In 2007, we studied the state-of-the-art of the modeling of sensorimotor systems, focusing more precisely
on handwriting movements. We focused on the state-of-the-art of the perception of hand trajectory and we
examined studies of the kinematic and dynamic aspects of human arm movements.

In 2008, we focused on how the central nervous system represents the sensorimotor plans associated with
writing movements. In the motor theories of perception, the perception and the production share the same set
of invariants and they must be linked. The model is structured around an abstract internal representation of
letters, which acts as a pivot between motor models and sensors models. We assume that a letter is internally
represented by a sequence of viapoints, that are part of the whole X, Y trajectory of the letter. We restrict
via-points to places in the trajectory where either the X derivative or the Y derivative, or both, are zero. The
representation of letters is independent of the effector usually used to perform the movement.
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Figure 20. (left : Photograph of the prototype brain controlled wheelchair based on a standard powered
wheelchair. A laptop is connected in between the joystick and the power drivers, and rotary encoders mounted on
glide wheels fixed below the seat are used for odometry. right :The top panel shows the raw EEG signal from ten
electrodes. The vertical lines mark the times of stimuli, the red line corresponding to a target stimulus. Bottom:
when several epochs are averaged, uncorrelated noise is canceled out; the EEG signal shows a potential peak

300ms after the target is presented (red curve), whereas it remains relatively flat at other times or when other items
are presented (green curve).

Figure 21. Context dependent menu for selection of the next move. When the wheelchair reaches a destination, the
commands displayed to the subject are updated to the new destination. Note that the number of commands is not

limited to nine: in can be on the order of tens.

Figure 22. Example of a map with guiding path in a home environment. The paths are defined by a small number of
control points which have a clear geometric meaning as attraction points of a B-splines, and can be used to modify
the path. For example the figure shows how the path in the kitchen is modified to avoid a large object which makes

obstacle.
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Figure 23. The P300 destination selection interface and the stopping interface are used alternatively. The stopping
interface can be either the fast P300 stop BCI (top), or the µβ-BCI (bottom) depending on user preference.

The sensor model (vision) concerns the extraction of via-points from trajectories, using their geometric
properties. The motor model concerns general trajectory formation. It is expressed in a cartesian reference
frame. An acceleration profile is chosen, that constrains the interpolation. In our case, we used a bang-bang
profile, where the arm first applies a maximum force, followed by a maximum negative force. The effector
model is made of two parts, related to the geometry of the considered effector (kinematic model) and the
control of this effector for general movement production (dynamic model).

Thanks to Bayesian inference, the joint probabilistic distribution can be used to automatically solve cognitive
tasks. We define a cognitive task by a probabilistic term to be computed, which we call a question. Our model
allows to solve a variety of tasks, like letter reading, recognizing the writer, and letter writing (with different
effectors).

This work is done under the joint supervision of Pierre Bessière and Julien Diard of the LPNC laboratory
(Laboratoire de Psychologie et NeuroCognition, CNRS, Grenoble). Is is implied in the BACS european
project.

5.4.4. Models and Tools for Bayesian Inference
Participants: Juan-Manuel Ahuactzin, Pierre Bessière, Emmanuel Mazer, Manuel Yguel.

This work has been done in collaboration with our Start-up Probayes. ProBT is a C++ library for developing
efficient Bayesian software [88] [14]. This library has two main components: (i) a friendly Application
Program Interface (API) for building Bayesian models and (ii) a high-performance Bayesian inference and
learning engine allowing execution of the probability calculus in exact or approximate ways.

The aim of ProBT is to provide a programming tool that facilitates the creation of Bayesian models and their
reusability (http://www.probayes.com/spip.php?rubrique57). Its main idea is to use “probability expressions”
as basic bricks to build more complex probabilistic models. The numerical evaluation of these expressions is
accomplished just-in-time: computation is done when numerical representations of the corresponding target
distributions are required. This property allows designing advanced features such as submodel reuse and
distributed inference. Therefore, constructing symbolic representations of expressions is a central issue in
ProBT.

Since a few years the main development of ProBT has been carried out by Probayes: a spin-off born from
the e-motion project. Both, e-motion and Probayes, are part of the European project Bayesian Approach to
Cognitive Systems (BACS). The development of ProBT has been effectuated taking into account the goals of
the BACS project partners.

5.4.5. Bayesian modelling of the superior colliculus
Participants: Pierre Bessière, Francis Colas.

http://www.probayes.com/spip.php?rubrique57
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Among the various possible criteria guiding eye movement selection, we investigate the role of position
uncertainty in the peripheral visual eld. In particular, we suggest that, in everyday life situations of object
tracking, eye movement selection probably includes a principle of reduction of uncertainty.

To do so, we confront the movement predictions of computational models with human results from a
psychophysical task. This task is a freely moving eye version of the Multiple Object Tracking task with the
eye movements possibly compensating for lower peripheral resolution.

We design several Bayesian models of increasing complexity, whose layered structures are inspired by the
neurobiology of the brain areas implied in eye movement selection.

Finally, we compare the relative performances of these models with regard to the prediction of the recorded
human movements, and show the advantage of taking explicitly into account uncertainty for the prediction of
eye movements.

This work as been done in collaboration with LPPA-Collège de France and with the Max Planck Institute in
Tuebingen. A common publication in Biological Cybernetics (in press) describes this work in details [5].

5.4.6. Biochemical Probabilistic Inference
Participant: Pierre Bessière.

Biochemical Probabilistic Inference is a new area of research which started in 2008 in close collaboration with
LPPA-College de France and ProBAYES.

Living organisms need to quickly react without waiting for a perfect evaluation of the consequences of their
action. For instance, we perceive objects from retinal stimulation without the need for a complete knowledge
of the underlying light-matter interactions. To account for this ability to reason with incomplete knowledge, it
has been recently proposed that the brain works as a probabilistic machine, evaluating probability distribution
over cognitively relevant variables. A number of Bayesian models have been shown to efficiently account
for perceptive and behavioural tasks. However, little is known about the way subjective probabilities are
represented and processed in the brain.

Numerous biochemical cellular signalling pathways have now been unravelled. These mechanisms involve
the strong coupling of macromolecular assemblies, membrane voltage and diffusible messengers, including
intracellular Ca2+ and other chemical substrates like cyclic nucleotides. Since transition between allosteric
states and messenger diffusion are mainly powered by thermal agitation, descriptive models at the molecular
level are also based on probabilistic relationships between biophysical and biochemical state variables.

Our proposal is based on the existence of a deep structural similarity between the probabilistic computation
required at the macroscopic level to account for cognitive, perceptive and sensory motor abilities and
the biochemical interactions of macromolecular assemblies and messengers involved in cellular signalling
mechanisms.

Our working hypothesis is then that biochemical processes constitute the nanoscale components of cognitive
Bayesian inferences.

To prove this hypothesis, we plan to develop: 1. A comprehensive and coherent formalism to handle both
macroscopic and microscopic levels of description, 2. A software package to emulate complex biochemical
interactions and to demonstrate the plausibility of our working hypothesis.

Finally, we wish to explore, through the search for new partners for future projects, the possibility to design
artificial systems mimicking the biochemical interactions and working on similar principles and nanoscale
space-time grain. In the future, this could open the way to the development of revolutionary probabilistic
machines. An ADR proposal has been submitted on this topic.

6. Contracts and Grants with Industry
6.1. Cybercars 2

[January 2006-December 2008]
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European project IST Cybercars 2, “Close Communications for Cooperation between Cybercars”.

(http://www.cybercars.org).

This Project is driven by the vision that, in the short term future, Cybernetic Transport Systems (CTS) based on
fully automated urban vehicles (the cybercars) will be seen on city roads and on new dedicated infrastructures.
Such systems have been developed and evaluated in the scope of the CyberCars (http://www.cybercars.org)
and CyberMove (http://www.cybermove.org) projects of the 5th FWP and are now being deployed. However,
presently these CTS can only operate in low demand environments where little interaction between vehicles
is anticipated. In order for these systems to address high demands, more cooperation between vehicles is
needed. This is the topic of this Project, based on vehicle-vehicle and vehicle-infrastructure communications
and vehicles coordination. We will address in particular the cooperation between vehicles running at close
range (platooning) and at intersections (merging, crossing). The contribution of e-Motion to Cybercars 2
focuses on cooperative driving.

6.2. Profusion
[February 2004-April 2008]

European project, PreVENT Programme (Preventive and Active Safety Applications) Profusion, “Project for
Robust and Optimized Perception by Sensor Data Fusion”. The goal was to develop new concepts, methods
and theories for sensor data fusion for Automotive Industry. These solutions allow to perceive the environment
surrounding a car and automatically build a model of this environment. This model will be interpreted in order
to assist the car driver. The resulting prototypes have been tested and validated on European car demonstrators
(on a Volvo truck and a Mercedes-DaimlerChrysler car). The Profusion phase2 consortium is constitued of 10
european car manufacturers, suppliers and research institutes: (BMW, CRF, DaimlerChrysler, Delphi, Forwiss,
ICCS, INRIA, Sagem, TUC, Volvo).

6.3. Toyota Motors Europe
[Feb 2006 - Jan 2009]

The contract with Toyota Motors Europe is a joint collaboration involving Toyota Motors Europe, INRIA and
ProBayes. It follows a first successful short term collaboration with Toyota in 2005.

This contract aims at developing innovative technologies in the context of automotive safety. The idea is
to improve road safety in driving situations by equipping vehicles with the technology to model on the fly
the dynamic environment, to sense and identify potentially dangerous traffic participants or road obstacles,
and to evaluate the collision danger. The sensing is performed using sensors commonly used in automotive
applications such as cameras and lidar.

6.4. Denso
[Sept 2007 - Sept 2008]

Industrial contract “Application of Bayesian Occupancy Filter technology to DENSO LIDAR data” involving
INRIA, Denso and Probayes.

This contract is the follow up of a previous contract signed in 2006 by Denso and INRIA for evaluating the
applicability of the “Bayesian Occupancy Filtering” (BOF)3 technology on Denso Lidar data. After having
tested during four months the produced software on a Lidar mounted on a vehicle, Denso has proposed a
second contract for completing the software. The main functionnalities studied in this second contract concern
the clustering of the detected obstacles points (using both position and velocity data), and the study of the
effects of the ego-motion parameters. The next collaboration topic is currently under discussion with Denso.

3The BOF has initially been developed by INRIA (see C. Coué Thesis and related INRIA publications); then, it has been improved in
collaboration with the Probayes company, and patented in 2006.

http://www.cybercars.org
http://www.cybercars.org
http://www.cybermove.org
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6.5. ADT ArosDyn
[Nov 2008 - Oct 2011]

Technological Development Action (ADT) supported by INRIA DDT (Direction of the Technological De-
velopment). This project involves the following partners: EPI e-Motion (C. Laugier is the coordinator), EPI
Perception (E. Boyer), SED Rhône-Alpes; it also involve individual collaborators (E. Malis from EPI Arobas
and J. Crowley from EPI Prima) and a spin-off company (Probayes). Some international companies of the
automotive domain are also involved has potential customers for the produced technologies.

The main objective of ArosDyn is to develop an embedded system for robust dynamic scene analysis and
danger assessment in road and urban traffic situations. This system will be used in the scope of a Driver
Assistance System.

6.6. LOVe
[December 2005-December 2009]

National project, Predit Programme LOVe “Logiciel d’Observation des Vulnérables”. (http://love.univ-
bpclermont.fr/) The goal of this project is to develop new methods and prototypes for improving vulnera-
ble security and car driver’s confort. Artificial perception algorithms will be developped for the localization
of the road and for the detection, localization, recognition and tracking of mobile objects using different
kind of sensors (lidar, radar, cameras). This project is constituted of 14 french partners (Renault, Valéo, IN-
RETS/LCPC/LIVIC, INRIA (emotion, icare, imara), CEA List, Université Paris Sud, CNRS/heudiasyc, LAS-
MEA, Armines (CNN, CAOR)).

6.7. sFly “Swarm of Micro Flying Robot”
[January 2009 - December 2011]

sFly is an European research project involving 4 research laboratories and 2 industrial partners. This project
will focus on micro helicopter design, visual 3D mapping and navigation, low power communication including
range estimation and multi-robot control under environmental constraints. It shall lead to novel micro flying
robots that are:

• Inherently safe due to very low weight ( <500g) and appropriate propeller design;
• Capable of vision-based fully autonomous navigation and mapping;
• Able of coordinated flight in small swarms in constrained and dense environments.

The contribution of e-Motion to sFly focuses on autonomous cooperative localization and mapping in open
and dynamic environments.

6.8. HAVEit
[February 2008 - January 2011]

European project ICT-212154 HAVEit “Highly Automated Vehicles for Intelligent Transport”. (http://www.
haveit-eu.org).

HAVEit aims at the realization of the long-term vision of highly automated driving for intelligent transport.
The project will develop, validate and demonstrate important intermediate steps towards highly automated
driving.

HAVEit will significantly contribute to higher traffic safety and efficiency usage for passenger cars, busses
and trucks, thereby strongly promoting safe and intelligent mobility of both people and goods. The significant
HAVEit safety, efficiency and comfort impact will be generated by three measures:

• Design of the task repartition between the driver and co-drivingsystem (ADAS) in the joint system.
• Failure tolerant safe vehicle architecture including advanced redundancy management.
• Development and validation of the next generation of ADAS directed towards higher level of

automation as compared to the current state of the art.

http://love.univ-bpclermont.fr/
http://love.univ-bpclermont.fr/
http://www.haveit-eu.org
http://www.haveit-eu.org
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The contribution of e-Motion to HAVEit focuses on safe driving.

7. Other Grants and Activities

7.1. European projects
7.1.1. BACS (Bayesian Approach to Cognitive Systems)

FP6-IST-027140 [january 2006-february 2011]

Despite very extensive research efforts contemporary robots and other cognitive artifacts are not yet ready
to autonomously operate in complex real world environments. One of the major reasons for this failure in
creating cognitive situated systems is the difficulty in the handling of incomplete knowledge and uncertainty.
In this project we will investigate and apply Bayesian models and approaches in order to develop artificial
cognitive systems that can carry out complex tasks in real world environments. We will take inspiration from
the brains of mammals including humans and apply our findings to the developments of cognitive systems. The
conducted research shall result in a consistent Bayesian framework offering enhanced tools for probabilistic
reasoning in complex real world situations. The performance will be demonstrated through its applications to
drive assistant systems and 3D mapping, both very complex real world tasks. P. Bessière, C. Laugier and R.
Siegwart edited a book titled “Probabilistic Reasoning and Decision Making in Sensory-Motor Systems” [36]
which regroups 12 different PhD theses defended within the BIBA and BACS European projects. See: [37],
[39], [41], [43], [46], [47], [48], [52], [50].

7.2. International projects
7.2.1. ICT-Asia “FACT” and ICT-Asia “City Home”

[October 2005-December 2007] and [november 2008 - December 2011]
The Fact project is a joint research project in the scope of the ICT-Asia programme founded by the French
Ministry of foreign affairs, the CNRS and INRIA. It aims at conducting common research activities in
the area of Intelligent Transportation Systems (ITS). The main objective is to develop new technologies
related to the concept of “Cybercar”. The project involves the following research teams : e-Motion project
at INRIA Rhône-Alpes (leader), Imara project at INRIA Rocquencourt, LASMEA Laboratory at Clermont-
Ferrand, SungKyunKwan University (Korea), Shangai Giao Tong University (China), Nanyang Technological
University (Singapore) and Tokyo University (Japan). This project has been prolongated by a new project
(named “City Home”) co-leaded by Ph. Martinet from LASMEA and C. Laugier from e-Motion/INRIA.
Several public demonstrations of the results have been planned in France (Clermont-Ferrand) and in China
(Shanghai).

7.3. National Collaborations
7.3.1. Collaboration with Institut de la Communication Parlée (ICP)

• Subject 1: Coordination of Orofacial and Gestural Sensori-motor maps Enabling the Emergence of
Communication between avatars and Humans. Common PhD thesis and commun publication: [51]

• Subject 2: Théorie de la "langue mère" de Ruhlen. Collaborative work and commun publication:
[38]

• Subject 3: Emergence of a language through deictic games within a society of sensori-motor agents
in interaction. Common PhD thesis and commun publications: [34], [26]

7.3.2. Collaboration with LPPA-Collège de France
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• Subject 1: Bayesian models of perception of shape by movment. Common PhD thesis and commun
publication: [4]

• Subject 2: Bayesian models of superior colliculus, see 5.4.5 and commun publications: [5] [33].

7.4. International Collaborations
7.4.1. Collaboration with Singapore

e-motion collaborate with the Nanyang Technological University of Singapore (NTU) and the National Uni-
versity of Singapore (NUS) since 1998 (MOV INRIA+NTV, MOV INRIA + NUS, PICS CNRS including the
LPPA (College de France, Alain Berthoz), ACT-Asia FACT) in the framework of the scientific collaboration
in the field of autonomous vehicles. This collaboration has brought: (a) an important number of crossed visits
and stays (one week to several months) of researchers, (b) Singaporeans students in Inria (level undergraduate
to graduate), (c) organization of workshops and (d) postdocs and codirected PhD students. Brice Rebsamen
will defend his phD Thesis in Singapore in January 2009; Christopher Meng Tay will defend his phD in
Grenoble in april 2009.

7.4.2. Collaboration with Japan, Korea, China
see the description of the ICT-ASIA “Fact” and “City Home” projects above.

7.4.3. Collaboration with Spain
Partner: UPC Barcelona. Subject: visual dynamic obstacle detection. Collaborative work, visiting scientist.

7.4.4. Collaboration with Mexico
The thematic network "Image et Robotique" has been implemented from the French-Mexican symposium in
C omputer Sciences and Control (JFMIA’99) which has been held in Mexico in March 1999. The main goal of
this network is to promote and increase the french-mexican cooperations in Image and Robotics in scientific,
academic and industrial fields. This network has been effectively settled in 2000. It supports a yearly school
(SSIR http://www.image-and-robotics.org/), students exchange, and crossed visits since 2000 (Prof Enrique
Sucar and Dr Ruben Garcia Raminez spent a few months a e-Motion in 2008).

7.4.5. Collaboration with Portugal
Partner: University of Coimbra Subject: Bayesian Models for Multimodal Perception of 3D Structure and
Motion Collaborative work and commun publications: [18], [29]

7.4.6. Collaboration with Brasil
e-motion collaborate with 2 universities: University of Brasilia. subject: Bayesian Robot programming.
Collaborative work an commun publication: A journal paper under review.

Catholic University of Brasilia. Subject: Corruption detection. Collaborative work, visiting professor.

7.4.7. Collaboration with Switzerland
Subject 1: Bayesian model of mentalizing. Partner: Les hôpitaux universitaires des Genève. Collaborative
work and commun publication: [7] Subject 2: Bayesian robotics. Partner: ETH Zurich. Collaborative work
and commun publications on bayesian Robotics.

http://www.image-and-robotics.org/
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8. Dissemination

8.1. Organization of scientific events
Some members of e-Motion participate to the organization of summer schools and conferences:

• C. Laugier and J.M. Ahuactzin participated to the organizing committee of the 2008 summer school
on “Image and Robotics” (SSIR) at the University Blaise Pascal, Clermont-Ferrant (July 2008).

• C. Laugier participates every year to the organization committees of the major international con-
ference on Robotics, in particular : IEEE International Conference on Robotics and Automation
(ICRA), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Interna-
tional Conference on Field and Service Robotics (FSR).

• C. Laugier was general chair of IEEE/RSJ IROS’97, Regional Program chair of IEEE/RSJ IROS’00,
Program chair of IEEE/RSJ IROS’02, Regional Program Chair of IEEE IV’06, General Chair of the
6th International conference on Field and Service Robotics in 2007, and Program Chair of IEEE/RSJ
IROS 2008.

• C. Laugier has organized several workshops on “Safe navigation in Dynamic environments” and
on “Intelligent Transportation Systems” in the scope of some major conferences of the domain
(IEEE ICRA’05, IEEE ICRA’07, IEEE/RSJ IROS’06, IEEE/RSJ IROS’07, IEEE/RSJ IROS’08) and
in the scope of the ICT-Asia network FACT (Seoul 2005, Tokyo 2006, Shanghai 2007). He will also
organize a workshop at IEEE ICRA’09.

• A Martinelli (since 2007) and C. Laugier (since 1999) are members of the permanent organization
committee of the Field Service Robotics

• Pierre Bessière organized in january 2008 the “Bayesian Cognition” international winter school
which gathered 80 students for a week in Chamonix.

8.2. Books and special issues publications
• Book “Autonomous navigation in dynamic environments”, Edited by C. Laugier and R. Chatila.

Springer Tracts in Advanced Robotics (STAR) volume 35, Springer-Verlag, July 2007.

• Book “Probabilistic Reasoning and Decision Making in Sensory-Motor Systems”, Edited by
P. Bessière, C. Laugier and R. Siegwart. Springer Tracts in Advanced Robotics (STAR) volume
46, Springer-Verlag, May 2008.

• Book “Field and Service Robotics. Results of the 6th International Conferenceâ, Edited by C.
Laugier and R. Siegwart. Springer Tracts in Advanced Robotics (STAR) volume 42, Springer-Verlag,
February 2008.

• Special issue of the International Journal of Vehicle Autonomous Systems (IJVAS) âAdvances in
Autonomous Vehicles Technologies for Urban Environmentâ, Guest Edited by D. Wang, S.Sam Ge,
and C. Laugier. Volume 6, 2008.

• Special issue of the Journal of Field Robotics (JFR) “Field and Service Robotics”, Guest Edited by
C. Pradalier, A. Martinelli, C. Laugier, and R. Siegwart. Volume 25, Issue 6/7, July 2008.

• Special issue of the International Journal of Robotics Research (IJRR) “Field and Service Robotics”,
Guest Edited by C. Laugier, A. Martinelli, C. Pradalier, and R. Siegwart. Publication scheduled for
the first trimester of 2009.

• Special issue of the IEEE Transactions on Intelligent Transportation Systems “Perception and
Navigation for Autonomous Vehicles”, Guest Edited by C. Laugier, U. Nunes, and A. Broggi.
Publication scheduled for the first trimester of 2009.
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8.3. Visiting scentists in abroad laboratories
Some members of e-Motion spent some time in foreign laboratories.

• A Martinelli spent a couple of months at the Minnesota State University to work with Prof Stergios
Roumeliotis on cooperative localization. During this stay, he also gave a seminar on his recent
research activity.

• T Fraichard spent a year at the Autonomous Systems Lab., Swiss Federal Institute of Technology,
Zurich (CH)

8.4. Academic Teachings
In addition to ponctual academic lectures, the members of e-Motion have tought the following lectures:

• Lecture “Robotics: Grand challenges, Research issues, and future Application domains” (every year
since 2000): Europe-France Summer school on “Image and Robotics” (SSIR). Teacher: C. Laugier.

• Lecture “Autonomous Robots”: International Master MOSIG (M2), INPG, Grenoble, (FR). Teach-
ers: C. Laugier, O. Aycard, Th. Fraichard, A. Martinelli, P. Bessière.

• Lecture “Robotics and Computer Vision”: International Master MOSIG (M1), INPG, Grenoble,
(FR). Teachers: C. Laugier, O. Aycard, E. Boyer, E. Arnaud.

• Lecture “Basic tools and models for Robotics” (every year): Cnam Grenoble. Teachers: C. Laugier
and J. Troccaz.

• Motion Planning course, Europe-France Summer School on Image and Robotics (SSIR): Clermont-
Ferrand (FR), June 2008. Teacher: Th. Fraichard.

• Lecture “Knowledge Modelling and Processing”: (every year): Master of Computer Science 2nd
year, University of Grenoble, (FR). Teachers: MC. Rousset, J. Gensel, O. Aycard, E. Arnaud.

• Lecture “Machine Learning”: (every year): Master of Computer Science 1st year, University of
Grenoble, (FR). Teachers: E. Gaussier, O. Aycard.

• Lecture “Machine Learning”: (every year): Master of Computer Science 2nd year, University of
Grenoble, (FR). Teachers: G. Bisson, A. Douzal, A. Guerin, O. Aycard.

• Lecture “Autonomous Robots”: (every year): International Master of Computer Science 2nd year,
University of Grenoble, (FR). Teachers: C. Laugier, O. Aycard.

• Lecture “Computer Vision and Autonomous Robots”: (every year): International Master of Com-
puter Science 1st year, University of Grenoble, (FR). Teachers: C. Laugier, O. Aycard, E. Arnaud,
E. Boyer.

• Lecture “Knowledge Modelling and Processing”: Ecole Polytechnique de Grenoble, filière Traite-
ment de l’Information pour la Santé, University of Grenoble, (FR). Teachers: D. Ziebelin, and O.
Aycard.

• Lecture “Bayesian techniques in vision and perception”: France-Mexico Summer school on “Image
and Robotics” (every year). Teachers: O. Aycard, E. Sucar.

• A. Martinelli held a couple of lectures on the behalf of the course “Autonomous Robots” for master
students at the ENSIMAG

• A. Martinelli held a couple of lectures on the behalf of the course “Model Identification” for master
students at the University of L’Aquila (Italy)

• “Bayesian models of sensory-motor systems” course, Bayesian Cognition winter school. Teacher: P.
Bessière

• “Bayesian models of sensory-motor systems” course, Summer School on Image and Robotics
(2008). Teacher: P. Bessière
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8.5. Consulting
• Pierre Bessière works 20% of his time for the ProBAYES company (http://www.probayes.com) in

the scope of a CNRS/Probayes agreement and with the authorization of the French Deontology
commitee.

• Christian Laugier is a scientific consultant of the Probayes compagny in the scope of an IN-
RIA/Probayes agreement and with the authorization of the French Deontology commitee (since oct
2008).

8.6. Conference and workshop committees, invited conferences
• C. Laugier is a member of the steering-advisory committee of IEEE/RSJ IROS (Intelligent Robots

and Systems) international conference since 1997. He is also a member of the advisory committee
of the ICARCV International conference on Control, Automation, Robotics and Vision.

• C. Laugier is co-chair (with U. Numes and A. Broggi) of the IEEE Technical Committee on
“Intelligent Transportation Systems and Autonomous vehicles” (since 2005).

• C. Laugier was the coordinator of the ICT-Asia Network on ITS named FACT including partners
from France, Singapore, Japan, Korea, and China (2005-2008). He is now co-coordinator with
Philippe Martinet of the new ICT-Asia project “City Home” (2008-2011).

• C. laugier is a member of the permanent organization committee of the Field and Service Robotics
Conference (since 1997).

• C. laugier is a member of the editorial board of the journal “Intelligent Service Robotics” (since
2005). He is also a member of the editorial board of the national journal “Revue d’Intelligence
Artificielle” (since 1987). He is also invited associate editor of the journal IEEE Transactions on
Intelligent Transportation Systems.

• A Martinelli is a member of the editorial board of the IEEE Transaction on Robotics (since
November 2007)

• C. Laugier and A. Martinelli are guest editors for a special issue on IJRR journal (to be published in
2008/2009)

• C. Laugier and A. Martinelli are guest editors for a special issue on JFR journal (published in 2008)

• Th. Fraichard is a regular member of the programme committees of the ICRA and IROS conferences.
He is also Associate Editor for the ICRA 2009 edition. In 2008, he was also a member of the
following programme committee: Int. Symp. on Distributed Autonomous Robotic Systems (DARS),
Tsukuba (JP), Nov. 2008.

• O. Aycard is member of the programme committees of the ITSC’2008 conference.

• A. Spalanzani is part of the editorial commitee of the In Cognito cognitive sciences journal.

• P. Bessière is a member of the programme committees of the following conferences : Confer-
ence ESANN (European Symposium on Artificial Neural Networks), Conference RFIA (Reconnais-
sance des Formes et Intelligence Artificielle), Conference IEEE/ICRA (International Conference on
Robotics and Automation), Conference IEEE/IROS (International Conference on Intelligent Robots
and Systems), Conference EA (International Conference on Artificial Evolution)

• P. Bessière reviews regularly in the IEEE Transactions on Evolutionary Computation and Au-
tonomous Robots journals.

8.7. Invited talks
• C. Laugier “Bayesian approaches for autonomous mobile robots”, Tokyo University, december

2007.

http://www.probayes.com
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• C Laugier “Perception-based navigation for autonomous vehicles in open and dynamic environ-
ments”, Co-mobility Workshop, january 2008.

• C Laugier is invited to be Keynote speaker at the FSR’09 conference (The International Conference
2009 on Field and Service Robotics, Cambridge).

• Th. Fraichard “Motion Safety in Dynamic Environments”, Swiss Polytechnic Federal Inst., Zurich
(CH), Jan. 2008.

• Th. Fraichard “Dynamic Environments and Safe Motions”, University of Judea and Samaria, Ariel
(IL), Dec 07.

• Th. Fraichard “Safely Navigating in dynamic environments”, Simon Fraser University, Vancouver
(CA), Dec 07.

• P. Bessière was invited in japan for the conference ISRR 2007. The title of the talk was: "Bayesian
Programming: life science modeling and robotics applications" [57]
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