
c t i v i t y

te p o r

2008

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team LogNet

Logical Networks: Self-organizing Overlay
Networks and Generic Overlay Computing

Systems

Sophia Antipolis - Méditerranée

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/lognet.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. LogNet’s Motto and Logo 1
2.2. Overall objectives 2
2.3. Highlights 2

3. Scientific Foundations .3
3.1. Lognet’s general context 3
3.2. General definitions 4
3.3. Background 1: Arigatoni overlay network computer 5

3.3.1. Arigatoni units 5
3.3.2. Virtual organizations 7
3.3.3. Resource discovery protocol (RDP) 7
3.3.4. Virtual Intermittent Protocol (VIP) 8
3.3.5. Two simple examples 8

3.4. Background 2: SmartTools service-oriented overlay software factory 10
3.4.1. SmartTools units 10
3.4.2. SmartTools into Eclipse 10
3.4.3. The SmartTools’ evolution 11
3.4.4. The new SmartTools’ functional units 11

3.5. General research directions 11
3.5.1. On Virtual organizations 13
3.5.2. On Resource discovery 13
3.5.3. Execution model 14

4. Application Domains .16
4.1. Panorama 16
4.2. Potential applications 17

5. Software . 18
5.1. Ariwheels 18

5.1.1. Simulator 18
5.1.2. Network client 19

5.2. PiNet 21
5.3. ArchiNet 22
5.4. SmartTools 23
5.5. Arigatoni simulator 23
5.6. BabelChord simulator 23
5.7. iRho and Snake interpreters 24

6. New Results . 25
6.1. Programmable overlay networks with ArchiNet 25
6.2. Strong typed communication with PiNet 25
6.3. DHT formal specification 26
6.4. Social overlay networks 26

6.4.1. Features 27
6.4.2. Suitable applications 27

6.5. P2P resource discovery 27
6.6. SmartTools into Eclipse 28
6.7. Ariwheels: an overlay architecture for vehicular networks 28
6.8. Powerful resource discovery for Arigatoni 30
6.9. Conditional Logical Framework 30
6.10. Adding trait inheritance to the Java language 31

2 Activity Report INRIA 2008

6.11. iRho: An Imperative Rewriting-calculus 32
7. Other Grants and Activities . 34

7.1. Regional Initiatives 34
7.2. National Initiatives 34
7.3. European Initiatives 34

7.3.1. Ph.D. Exchanges founded by Italian Research Founding Agency 34
7.3.2. FP6 FET Global Computing: IST AEOLUS, 2005-2009 34
7.3.3. FP6 TEMPUS, 2007-2009 34

7.4. Visitors 35
7.4.1. IN 35
7.4.2. OUT 35

8. Dissemination . 35
8.1. Participation in committees 35
8.2. Workshop organization 35
8.3. Participation in conference committees 36
8.4. Theses 36
8.5. Referees 36
8.6. Teaching 36
8.7. Invited talks 36
8.8. Participation in scientific meetings 36
8.9. Participation in conferences 37
8.10. Spare presentations 37

9. Bibliography .37

LogNet is an Inria team. The team has been created on January the 1st, 2008.

1. Team
Research Scientist

Luigi Liquori [Head, Research associate, CR INRIA, HdR]
Didier Parigot [Research associate, CR INRIA, HdR]
Bernard Serpette [Research associate, CR INRIA]
Michel Cosnard [CEO INRIA, external collaborator]

Technical Staff
Baptiste Boussemart [INRIA engineer (until September 2009)]

PhD Student
Francesco Bongiovanni [INRIA-PACA fellow (since October 1st 2008), defense planned in 2011]
Petar Maksimovic [INRIA-TEMPUS fellow (since December 1st 2008), defense planned in 2011]

Post-Doctoral Fellow
Cedric Tedeschi [INRIA postdoctoral fellown (since October 1st 2008)]

Administrative Assistant
Corinne Mangin [INRIA]

2. Overall Objectives

2.1. LogNet’s Motto and Logo
Our Motto is “Computer is moving on the edge of the Network...” by Jan Bosch, Nokia Labs, [LNCS 4415,
2007] and our logo is in Figure 1.

Figure 1. Our logo

2 Activity Report INRIA 2008

2.2. Overall objectives
We propose foundations for generic overlay networks and overlay computing systems. Such overlays are
built over a large number of distributed computational agents, virtually organized in colonies, and ruled by
a leader (broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators
(primus inter pares). Every agent asks the broker to log in the colony by declaring the resources that can
be offered (with variable guarantees). Once logged in, an agent can ask the broker for other resources.
Colonies can recursively be considered as evolved agents who can log in an outermost colony governed
by another super-leader. Communications and routing intra-colonies goes through a broker-2-broker PKI-
based negotiation. Every broker routes intra- and inter- service requests by filtering its resource routing table,
and then forwarding the request first inside its colony, and second outside, via the proper super-leader (thus
applying an endogenous-first-estrogen-last strategy). Theoretically, queries are formulæ in first-order logic
equipped with a small program used to orchestrate and synchronize atomic formulæ (atomic services). When
the client agent receives notification of all (or part of) the requested resources, then the real resource exchange
is performed directly by the server(s) agents, without any further mediation of the broker, in a pure peer-
to-peer fashion. The proposed overlay promotes an intermittent participation in the colony, since peers can
appear, disappear, and organize themselves dynamically. This implies that the routing process may lead to
failures, because some agents have quit or are temporarily unavailable, or they were logged out manu militari
by the broker due to their poor performance or greediness. We aim to design, validate through simulation, and
implement these foundations in a generic overlay network computer system.

2.3. Highlights

Figure 2. The Ariwheels simulator and the European Commission point of view.

• The Ariwheels overlay network is being proposed as a publish & subscribe protocol in the vehicular
platform under development in the VICSUM project (2Meur, founded by the Regione Piemonte)
led by Politecnico di Torino and involving the Centro Ricerche Fiat (CRF) and the Centro Super-
calcolo Piemonte [20], [22]. (Successful) results will be suitable to be integrated in the new BLUE-
TOOTH system device Blue&MeTM by Fiat&Microsoft. The project will exploit the availability of
existing urban infrastructure and public transportation vehicles (pledged by GTT – Gruppo Torinese
Trasporti, the Torino’s public bus and metro In the simulator the color’s semantics is:

– BLUE = Car already logged to a Broker (Bus Stop).

– PINK = Car that has lost WIFI connection with the Broker (Bus Stop).

– GREEN = Car that is looking for a Broker (Bus Stop).

Team LogNet 3

• This year, the Arigatoni and the Ariwheels projects have been highlighted in the third year report of
the IST Project AEOLUS covering period from 01/09/2007 to 31/08/2008 (Figure 2).

3. Scientific Foundations

3.1. Lognet’s general context
Keywords: Overlay networks, query routing, resource discovery, social networks, virtual organizations.

Participants: Luigi Liquori, Didier Parigot, Bernard Serpette.

The explosive growth of the Internet gives rise to the possibility of designing large overlay networks and
virtual organizations consisting of Internet-connected computers units, able to provide a rich functionality of
services that makes use of aggregated computational power, storage, information resources, etc. We would
like to start our first activity report with the standard definition of Computer System.

Definition 1 (Computer System)
A computer system is composed by a computer hardware and a computer software.

• A Computer Hardware is the physical part of a computer, including the digital circuitry, as distin-
guished from the computer software that executes within the hardware. The hardware of a computer
is infrequently changed, in comparison with software and data.

• A Computer Software is composed by three parts, namely, system software, program software, and
application software.

– The System Software helps run the computer hardware and computer system. Examples
are operating systems (OS), device drivers, diagnostic tools, servers, windowing systems...

– The Program Software usually provides tools to assist a programmer in writing computer
programs and software using different programming languages. Examples are text editors,
compilers, interpreters, linkers, debuggers for general purpose languages...

– The Application Software allows end users to accomplish one or more specific (non
computer related) tasks industrial automation, business software, educational software,
medical software, databases, computer games...

Starting from the previous basic skeleton definition, we elaborate the LogNet’s vision of what an Overlay
Network Computer System is. The reader can focus on the tiny but crucial differences.

Definition 2 (Overlay Computer System)
An overlay computer system is composed by an overlay computer hardware and an overlay computer software.

• An Overlay Computer Hardware is the physical part of an overlay computer, including the digital
circuitry, as distinguished from the overlay computer software that executes within the hardware.
The hardware of an overlay computer changes frequently and it is distributed in space and in time.
Hardware is organized in a network of collaborative computing agents connected via IP or ad-hoc
networks; hardware must be negotiated before being used.

• An Overlay Computer Software is composed by three parts, namely, overlay system software,
overlay program software, and overlay application software.

– The Overlay System Software helps run the overlay computer hardware and over-
lay computer system. Examples are network middleware playing as a distributed opera-
ting system (dOS), resource discovery protocols, virtual intermittent protocols, security
protocols, reputation protocols...

4 Activity Report INRIA 2008

– The Overlay Program Software usually provides tools to assist a programmer in writing
overlay computer programs and software using different overlay programming languages.
Examples are compilers, interpreters, linkers, debuggers for workflow-, coordination-, and
query-languages.

– The Overlay Application Software allows end users to accomplish one or more spe-
cific (non-computer related) tasks industrial automation, business software, educational
software, medical software, databases, and computer games...Those classes of applica-
tions deal with computational power (Grid), file and storage retrieval (P2P), web services
(Web2.0), band-services (VoIP), computation migrations...

Therefore, LogNet’s objectives can be summarized as follows:

• to provide adequate notions and definitions of a generic overlay network computer; from a desktop
distributed calculator to a programmable distributed overlay computer;

• on the basis of these definitions, to propose a precise architecture of a generic overlay network
computer and implement it;

• on the basis of these definitions, to implement an overlay software factory suitable to help the logical
and software assembling of an overlay network computer.

3.2. General definitions
An overlay network is a computer network which is built on top of another network. Overlay networks can be
constructed in order to permit routing messages to destinations not specified by an IP address. In what follows,
we briefly describe the main entities underneath a virtual organization.
Agents. An agent in the overlay is the basic computational entity of the overlay: it is typically a device, like
a PDA, a laptop, a PC, or smaller devices, connected through IP or other ad hoc communication protocols in
different fashions (wired, wireless). Agents in the overlay can be thought of as being connected by virtual or
logical links, each of which corresponds to a path, through many physical links, in the underlying network.
For example, many peer-to-peer networks are overlay networks because they run on top of the Internet.
Colonies and colony’s leaders. Agents in the overlay are regrouped in Colonies. A colony is a simple virtual
organization composed by exactly one leader, offering some broker-like services, and some set of agents. The
leader, being also an agent, can be an agent of a colony different of the one it manages. Thus, agents are
simple computers (think it as an amoeba), or sub-colonies (think it as a protozoa). Every colony has exactly
one leader and at least one agent (the leader itself). Logically an agent can be seen as a collapsed colony, or a
leader managing itself. The leader is the only one who knows all agents of its colony. One of the tasks of the
leader is to manage (un)subscriptions to its colony.
Resource discovery. By adhering a colony, an agent can expose resources it has and/or ask for resources it
needs. Another task of a leader is to manage the resources available in its colony. Thus, when an agent of
the overlay needs a specific resource, it makes a request to its leader. A leader is devoted to contacting and
negotiating with potential servers, to authenticating clients and servers, and to route requests. The rationale
ensuring scalability is that every request is handled first inside its colony, and then forwarded through the
proper super-leader (thus applying an endogenous-first-exogenous-last strategy).
Orchestration. When an agent receives an acknowledgment of a service request from the direct leader, then
the agent is served directly by the server(s) agents, i.e. without a further mediation of the leader, in a pure
P2P fashion. Thus, the “main” program will be run on the agent computer machine that launched the service
request and received the resources availability: it will orchestrate and coordinate data and program resources
executed on others agent computers.

Team LogNet 5

3.3. Background 1: Arigatoni overlay network computer
As suggested by our previous definitions, we are mainly concerned by three topics: network organization,
resource discovery and orchestration. These topics are studied in complementary way by Arigatoni (work
started by Luigi Liquori and Michel Cosnard) and SmartTools and ArchiNet and PiNet (work started by Didier
Parigot and Bernard Serpette). Indeed Arigatoni and SmartTools are both built around a similar concept of
virtual organization (colonies of agents for Arigatoni and colonies of “software components” for SmartTools).
In this section and the next one we will describe the current status of Arigatoni and SmartTools.

The Arigatoni overlay network computer [1], [2], [10], [9], [4], [5], [11], and [14] developed since 2006
in the Mascotte Project Team by Luigi Liquori and Michel Cosnard, and then in the LogNet team, is
a structured multi-layer overlay network which provides resource discovery with variable guarantees in a
virtual organization where peers can appear, disappear, and self-organize themselves dynamically. Arigatoni
is universal in the sense of Turing machines, or generic as the von Neumann computer architecture is.

Every agent asks the broker to log in the colony by declaring the resources that it provides (with variable
guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively
be considered as evolved agents who can log in an outermost colony governed by another super-leader.
Communications and routing intra-colonies go through a broker-2-broker PKI-based negotiation. Every broker
routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request
first inside its colony, and second outside, via the proper super-leader (thus applying an endogenous-first-
estrogen-last strategy).

Theoretically, queries are formulæ in first-order logic. When the client agent receives notification of all (or
part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents,
without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes
an intermittent participation in the colony. Therefore, the routing process may lead to failures, because some
agents have quit, or are temporarily unavailable, or they were logged out by the broker due to their poor
performance or greediness.

Arigatoni features essentially two protocols: the resource discovery protocol dealing with the process of an
agent broker to find and negotiate resources to serve an agent request in its own colony, and the virtual
intermittent protocol dealing with (un)registrations of agents to colonies.

Dealing essentially with resource discovery and peers’ churn has one important advantage: the complete
generality and independence of any offered and requested resource. Arigatoni can fit with various scenarios
in the global computing arena, from classical P2P applications (file- or bandwidth-sharing), to new Web2.0
applications, to new V2V and V2I over MANET applications, to more sophisticated Grid applications, until
possible, futuristic migration computations, i.e. transfer of a non-completed local run to another agent, the
latter being useful in case of catastrophic scenarios, like fire, terrorist attack, earthquake, etc.

Since 2008, Bernard Serpette is working on the foundation and implementations of an overlay network
computer based on an evolution of the Arigatoni network model (see Software Section and New Results).

3.3.1. Arigatoni units
In what follows, we briefly introduce the logic units underneath a generic overlay network. Peers’ participation
in Arigatoni’s colonies is managed by the Virtual Intermittent Protocol (VIP); the protocol deals with the
dynamic topology of the overlay, by allowing agent computers to login/logout to/from a colony (using the
SREG message). Due to this high node churn, the routing process may lead to failures, because some agents
have logged out, or because they are temporarily unavailable, or because they have logged out manu militari
by the broker for their poor performance or greediness.

The total decoupling between peers in space (peers do not know other peers’ locations), time (peers do not
participate in the interaction at the same time), synchronization (peers can issue service requests and do
something else, or may be doing something else when being asked for services), and encapsulation (peers
do not know each other) are key features of Arigatoni’s scalability.

6 Activity Report INRIA 2008

Agent computer (AC). This unit can be, e.g., a cheap computer device composed by a small RAM-ROM-HD
memory capacity, a modest CPU, a ≤ 40 keystrokes keyboard (or touchscreen), a tiny screen (≤ 4 inch), an
IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a USB port, and very few programs
installed inside, e.g. one simple editor, one or two compilers, a mail client, a mini browser... Our favorite
device actually is the Internet terminal Nokia N810. Of course an AC can be a supercomputer, or an high
performance PC-cluster, a large database server, an high performance visualizer (e.g. connected to a virtual
reality center), or any particular resource provider, even a smart-dust. The operating system (if any) installed
in the AC is not important. The computer should be able to work in local mode for all the tasks that it could do
locally, or in global mode, by first registering itself to one or many colonies of the overlay, and then by asking
and serving global requests via the colony leaders. In a nutshell, the tasks of an AC are:

• Discover the address of one or many agent brokers (ABs), playing as colony leaders, upon its arrival
of itself in a “connected area”; this can be done using the underlay network and related technologies;

• Register on one or many ABs, so entering de facto the Arigatoni’s virtual organization;
• Ask and offer some services to others ACs, via the leaders ABs;
• Connect directly with other ACs in a P2P fashion, and offer/receive some services. Note that an AC

can also be a resource provider. This symmetry is one of the key features of Arigatoni. For security
reasons, we assume that all AC come with their proper PKI certificate.

Agent Broker (AB). This unit can be, e.g., a computer device made by a high speed CPU, an IP or ad hoc
connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a high speed hard-disk with a resource routing table
to route queries, and an efficient program to match and filter the routing table. The computer should be able
to work in global mode, by first registering itself in the overlay and then receiving, filtering and dispatching
global requests through the network. The tasks of an AB are:

• Discover the address of another super-AB, representing the super-leader of the super-colony, where
the AB colony is embedded. We assume that every AB comes with its proper PKI certificate. The
policy to accept or refuse the registration of an AC with a different PKI is left open to the level of
security requested by the colony;

• Register/unregister the proper colony on the leader AB which manages the super-colony;
• Register/unregister clients and servants AC in its colony, and update the internal resource routing

table, accordingly;
• Receive the request of service of the client AC;
• Discover the resources that satisfy an AC request in its local base (local colony), according to its

resource routing table;
• Delegate the request to an AB leader of the direct super-colony in case the resource cannot be satisfied

in its proper colony; it must register itself (and by product its colony) to another super-colony;
• Perform a combination of the above last two actions;
• Deal with all PKI intra- and inter-colony policies;
• Notify, after a fixed timeout period, or when all ACs failed to satisfy the delegated request, to the AC

client the denial of service requested by the AC client;
• Send all the information necessary to make the AC client able to communicate with the AC servants.

This notification is encoded using the resource discovery protocol. (Finally, the AC client will
directly talk with the ACs servants).

Agent Router (AR). This unit implements all the low-level overlay network routines, those which really have
access to the IP or to the ad-hoc connections. In a nutshell, an AR is a shared library dynamically linked with
an AC or an AB. The AR is devoted to the following tasks:

• Upon the initial start-up of an AC (resp. AB) it helps to register the unit with one or many AB that it
knows or discovers;

• Checks the well-formedness and forwards packets of the two Arigatoni’s protocols across the overlay
toward their destinations.

Team LogNet 7

3.3.2. Virtual organizations
Agent computers communicate by first registering to the colony and then by asking and offering services.
The leader agent broker analyzes service requests/responses, coming from its own colony or arriving from a
surrounding colony, and routes requests/responses to other agents. Agent computers get in touch with each
other without any further intervention from the system, in a P2P fashion. Peers’ coordination is achieved by a
simple program written in an orchestration/business language à la BPEL, or JOpera.

Symmetrically, the leader of a colony can arbitrarily unregister an agent from its colony, e.g., because of its bad
performance when dealing with some requests or because of its high number of “embarrassing” requests for
the colony. This strategy, reminiscent of the Roman do ut des, is nowadays called, in Game Theory, Rapoport’s
tit-for-tat strategy [46] of cooperation based on reciprocity. Tit-for-tat is commonly used in economics, social
sciences, and it has been implemented by a computer program as a winning strategy in a chess-play challenge
against humans (see also the well known prisoner dilemma). In computer science, the tit-for-tat strategy is the
stability (i.e. balanced uploads and downloads) policy of the Bittorrent P2P protocol.

Once an agent computer has issued a request for some service, the system finds some agent computers (or,
recursively, some sub-colonies) that can offer the resources needed, and communicates their identities to the
(client) agent computer as soon as they are found.

The model also offers some mechanisms to dynamically adapt to dynamic topology changes of the overlay
network, by allowing an agent (computer or broker, representing a sub-colony) to login/logout in/from a
colony. This essentially means that the process of routing request/responses may lead to failure, because some
agents logged out or because they are temporarily unavailable (recall that agents are not slaves). This may
also lead to temporary denials of service or, more drastically, to the complete logout of an agent from a given
colony in the case where the former does not provide enough services to the latter.

3.3.3. Resource discovery protocol (RDP)
Kind of discovery. The are mostly two mechanisms of resource discovery, namely:

• The process of an AB to find and negotiate resources to serve an AC request in its own colony;
• The process of an AC (resp. AB) to discover an AB, upon physical/logical insertion in a colony.

The first discovery is processed by Arigatoni’s resource discovery protocol, while the second is processed
out of the Arigatoni overlay, using well-known network protocols, like DHCP, DNS, the service discovery
protocol SLP of BLUETOOTH, or Active/Passive Scanning in WIFI.

The current RDP protocol version allows the request for multiple services and service conjunctions. Adding
service conjunctions allows an AC to offer several services at the same time. Multiple services requests can
be also asked to an AB; each service is processed sequentially and independently of others. As an example of
multiple instances, an AC may ask for three CPUs, or one chunk of 10GB of HD, or one gcc compiler. As
an example of a service conjunction, an AC may ask for another AC offering at the same time one CPUs, and
one chunk of 1GB of RAM, and one chunk of 10GB of HD, and one gcc compiler. If a request succeeds, then,
using a simple orchestration language, the AC client will use all resources offered by the servers ACs.

The RDP protocol proceeds as follows: suppose an AC X registers – using the intermittent protocol VIP
presented below – to an AB and declares its availability to offer a service S, while another AC Y, already
registered, issues a request for a service S′. Then, the AB looks in its routing table and filters S′ against S. If
there exists a solution to this filter equation, then X can provide a resource to Y. For example, the resource
S

M= [CPU = Intel,Time ≤ 10sec] filters against S′ M= [CPU = Intel,Time ≥ 5sec], with attribute values Intel
and Time between 5 and 10 seconds.
Routing tables in RDP. In Arigatoni, each AB maintains a routing table T locating the services that are
registered in its colony. The table is updated according to the dynamic registration and unregistration of ACs
in the overlay; thus, each AB maintains a partition of the data space. When an AC asks for a resource (service
request), then the query is filtered against the routing tables of the ABs where the query is arrived and the AC
is registered; in case of a filter-failure, the ABs forward the query to their direct super-ABs. Any answer of the
query must follow the reverse path.

8 Activity Report INRIA 2008

Thus, resource lookup overhead reduces when a query is satisfied in the current colony. Most structured
overlays guarantee lookup operations that are logarithmic in the number of nodes. To improve routing
performance, caching and replication of data and search paths can be adopted. Replication also improves
load balancing, fault tolerance, and the durability of data items.

3.3.4. Virtual Intermittent Protocol (VIP)
There are essentially two ways AC can register to an AB (sensible to its physical position in the network
topology), the latter being not enforced by the Arigatoni model (see [5]):

1. Registration of an AC to an AB belonging to the same current administrative domain;

2. Registration via tunneling of an AC to another AB belonging to a different administrative domain.

If both registrations apply, the AC is de facto working in local mode in the current administrative domain and
working in global mode in another administrative domain. Symmetrically, an AC can unregister according to
the following simple rules “d’étiquette”:

• Unregistration of an AC is allowed only when there are no pending services demanded or requested
to the leader AB of the colony: agent computers must always wait for an answer of the AB or for
a direct connection of the AC requesting or offering the promised service, or wait for an internal
timeout (the time-frame must be negotiated with the AB);

• (As a corollary of the above) an AB cannot unregister from its own colony, i.e. it cannot discharge
itself. However, for fault tolerance purposes, an AB can be faulty. In that case, the ACs unregister
one after the other and the colony disappear;

• Once an AC has been disconnected from a colony belonging to any administrative domain, it can
physically migrate in another colony belonging to any other administrative domain;

• Selfish agents in P2P networks, called “free riders”, that only utilize other peers’ resources without
providing any contribution in return, can be fired by a leader; if the leader of a colony finds that the
agent’s ratio of fairness is too small (≤ ε for a given ε), it can arbitrarily decide to fire that agent
without notice. Here, the VIP protocol also checks that the agent has no pending services to offer,
or that the timeout of some promised services has expired, the latter case means that the free rider
promised some services but finally did not provide any service at all (not trustfulness).

Registration policies in VIP. VIP registration policies are usually not specified in the protocol itself; thus
every agent broker is free to choose its acceptance policy. This induces different self-organization policies and
allow to reason on colony’s load-balancing and kind of colonies. Possible politics and are:

• (mono-thematic) An agent broker accept an agent in its colony if the latter offer resources S that the
colony already have in quantity ≥ ε, for a given ε;

• (multi-thematic) An agent broker accept an agent if the latter offer resources that the colony have
in quantity ≤ ε, for a given ε;

• (unbalanced) An agent broker accept an agent always;

• (pay-per-service) An agent broker accept only agents that accept to pay some services;

• (metropolis/village) An agent broker accept an agent in its colony only if the number of citizens is
greater/lesser than N ;

• (custom) An agent broker accept an agent following a mix of the above politics.

3.3.5. Two simple examples
To give an idea of possible usage of the Arigatoni generic overlay network we present two examples; the first
one has a Grid-computing flavor while the second is a nice interweaving of the Arigatoni overlay seated on
the top of both IP and MANET underlay network. For more information the interested reader can have a look
on [1] [20], [22].

Team LogNet 9

Figure 3. Arigatoni Overlay Network for a Grid Seismic Monitoring Application

GRID: scenario for seismic monitoring. John, chief engineer of the SeismicDataCorp Company, Taiwan,
on board of the seismic data collector ship, has to decide on the next data collect campaign. For this he
would like to process the 100 TeraBytes of seismic data that have been recorded on the data mass recorder
located in the offshore data repository of the company to be processed and then analyzed. He has written the
processing program for modeling and visualizing the seismic cube using some parallel library like e.g. MPI or
PVM: his program can be distributed over different machines that will compute a chunk of the whole calculus;
however, the amount of computation is so big that a supercomputer and a cluster of PC has to be rented by the
SeismicDataCorp company. John will ask also for bandwidth in order to get rid of any bottleneck related to
the big amount of data to be transferred. Then, the processed data should be analyzed using the Virtual Reality
Center, (VRC) based in Houston, U.S.A. by a specialist team and the resulting recommendations for the next
data collect campaign have to be sent to John. As such:

1. John logs on the Arigatoni Overlay Network in a given colony in Taiwan, and sends a quite
complicated service request in order for the data to be processed using his own code. Usually the AB
leader of the colony will receive and process the request;

2. If the Resource Discovery performed by the AB succeeds, i.e. a supercomputer and a cluster and an
ISP are found, then the data are transferred at a very high speed and the “Sinfonia” begins;

3. John will also ask (in the RDP request) to the AC containing the seismic data to dispatch suitable
chunks of data to the supercomputer and the cluster designated by the AB to perform some pieces of
computation;

4. John will also ask (in the RDP request) to the supercomputer the task of collecting all intermediate
results so calculating the final result of the computation, like a “Maestro di Orchestra”;

5. The processed data are then sent from the supercomputer, via the high speed ISP, to the Houston
center for being visualized and analyzed;

6. Finally, the specialist team’s recommendations will be sent to John’s laptop.

This scenario is pictorially presented in Figure 3 (we suppose a number of sub-colonies with related leaders
AB, all registered as agents to a super-AB;for example the John’s AB could be elected as the super-leader). For
simplify security issues, all AB’s are trusted using the same PKI, making de facto in common all resources
of their colonies. An animation of the coordination program, written in the visual language JOpera can be
downloaded at http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv.

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv

10 Activity Report INRIA 2008

3.4. Background 2: SmartTools service-oriented overlay software factory
With the increasing dependency on the Internet and the proliferation of new component and distributive
technologies, the design and implementation of complex applications must take into account standards, code
distribution, deployment of components and reuse of business logic. To cope with these changes, applications
need to be more open, adaptable and capable of evolving. To accommodate to these new challenges, Didier
Parigot introduced in 2000 a new development approach based on generators associated with domain-specific
languages, each of the latter related to one possible concern useful when building an application. It relies on
Generative Programming, Component Programming and Aspect-Oriented Programming. A software factory,
called SmartTools [44], [34], [35], [33], has been developed using this new approach. The main objective of
this well established research vein are i) to build software of better quality and to enable rapid development
due to Generative Programming and, ii) to facilitate insertion of new facets and the portability of applications
to new technologies or platforms due to business logic and technology separation. In a nutshell:

• The SmartTools’ Service-Oriented Architecture (SOA), is based on a set of adaptable components
helping the construction of component-based application;

• On the conceptual level, SmartTools is based on the Domain-Specific Language (DSL) approach to
model the various concerns;

• On the implementation level, SmartTools use techniques of Generative Programming.

3.4.1. SmartTools units
The important units of the SmartTools service oriented software factory are:

• A Component Description Meta-Language (CDML) for describing services of component in a
neutral format (XML);

• A Component Generator (CG) that from CDML description generates the component’s containers;

• A Component Manager (CM) controlling the life-cycle of components (loads, activations, etc.).

The main features of the SmartTools software factory are that

• The communications between components are based on asynchronous message passing;

• Each component is executed in a thread;

• The data are exchanged between components with a neutral XML format;

• The connections between components are established by the CM with an Activation protocol;

• Dynamic services are supported.

It is worth to notice that the role of a CM shares some similarities with the role of an Arigatoni’s AB. The
CM controls a set of components and manage service tables available in every colony. A component demand
access to a particular service through this Component Manager. In contrast to Arigatoni, the SOA specify,
for each resource, all the methods (pieces of code implementing services. This defines the execution model
between components (point-to-point).

3.4.2. SmartTools into Eclipse
Recently [45], [48], the SmartTools software factory was ported into the Eclipse environment, the latter being
based on the OSGi framework. The port is available since October 2007 in the SmartTools V1.2 software
release. In [37], we have studied the benefits of our service-oriented architecture on top of an OSGi-based
Eclipse framework. To better understand the reasons of this choice, we quickly introduce Eclipse and OSGi.
Eclipse - an open development platform. Eclipse is an open source community whose projects are focused
on building an open development platform including extensible frameworks, tools and run-time for building,
deploying and managing software across the life-cycle. A large and vibrant ecosystem of major technology
vendors, start-ups, universities, research institutions, complement and support the Eclipse platform.

Team LogNet 11

OSGi - a dynamic module system for Java. The OSGi technology, is a component integration platform
with a service-oriented architecture and life cycle capabilities that enable dynamic delivery of services. These
capabilities greatly increase the value of a wide range of computers and devices that use the Java platform.
The OSGi specifications provide the platform for universal middleware. The OSGi Alliance is a worldwide
consortium of technology innovators that advances a proved and mature process to assure interoperability of
applications and services based on its component integration platform. The OSGi Service Platform is delivered
in many Fortune Agent 100 company products and services and in diverse markets including enterprise,
mobile, home, telematics and consumer.

3.4.3. The SmartTools’ evolution
As we said before, the current version of SmartTools V1.2 do not take into account distributed components
nor overlay network issues. In other words, it is not suitable for a software factory of programmable overlay
networks. Next releases of the new SmartTools factory will take into account this kind of applications.

To do this, we plan to expand the service-oriented architecture with service discovery and virtual service
organizations. More precisely, the new SmartTools architecture will scale-up to a virtual organization of several
service-oriented components, related to each others with a component manager playing the same role of an
Arigatoni’s super-broker and organized in a virtual service organization. Registration between (distributed)
service-oriented components will be featured on the basis of the same logic of the Arigatoni’s VIP protocol.
Analogously, service discovery will be featured on the basis of the same logic of the Arigatoni’s RDP protocol.

3.4.4. The new SmartTools’ functional units
We briefly presents the functional units of the new SmartTools overlay software factory.
Component Service (CS). This unit is the basic computational entity of the virtual service organization. A
component service implements all services associated with a resource. It is an autonomous entity. Every CS
register the list of services it can offer to the component manager described below.
Component Manager (CM). This unit represent the leader of the virtual service organization. CMs are
organized hierarchically, as presented in Figure 4 (right).
Component Router (CR). This unit is the basic unit close to CMs and CSs that is devoted to sending
and receiving packets of the service registration, the services discovery and the activation protocols. The
connection CM-CR is ensured via a suitable API. Figure 4 gives an overview of the actual SOA (left) and the
new one (right).

Very recently, a small experiment of making a flat organization virtual services has been done in the night-
build distribution of SmartTools V1.2.1. In [43], we clearly show the need for a service discovery protocol,
a virtual intermittent protocol, and an ad hoc activation and communication protocols. By using the R-OSGi
library, a virtual organization (i.e. several CMs running on different Java Virtual Machines) has been partially
validated with a very simple application. The R-OSGi library is based on a Service Location Protocol (SLP)
used for service discovery and a Message Oriented Middleware for communication between CSs based on
asynchronous messages. This first experience showed that a hierarchical organization is useful to avoid an
overload of communication on each colony.

3.5. General research directions
Following our main three topics, network organization, resource discovery and orchestration, Arigatoni and
SmartTools share the same concepts but are complementary: Arigatoni goes deeper in the network organization
and the resource discovery (VIP and RDP) while SmartTools concentrates in orchestration.

Thus the short term project will combine in a same framework Arigatoni and SmartTools. We will make an
implementation of the VIP and RDP protocols which can be used by SmartTools bringing to Arigatoni a way
to resource orchestration. For middle and long term research, we envisage the following studies.

12 Activity Report INRIA 2008

Figure 4. SmartTools on top of Eclipse OSGi Framework and the new virtual service organization of SmartTools

Team LogNet 13

3.5.1. On Virtual organizations

• Trees vs. graphs: a conflict without a cause. In the first versions of Arigatoni, the network topology
was tree- or forest-based. But since agents are not slaves, multiple registrations are in principle
possible and unavoidable. This weaves the network topology into a dynamic graph [38], where
nodes do not have a complete knowledge of the topology itself. As an immediate consequence,
our protocols must deal with multiple registrations of the same agent in different colonies, with the
natural consequence of resource overbooking, routing table update loops (when a service update
request comes back to the broker that generates the request itself), and resource discovery loops
(when a resource service request comes back to the agent that generates the request itself), see [10].

As an example of resource overbooking, suppose an agent computer registers to two colonies, by
declaring and offering the same resource S twice, i.e. once for each colony. This phenomenon
is well known in the telecommunications industry, as in the “frame-relay” world. For the record,
overbooking in telecommunications means that a telephone company has sold access to too many
customers who basically flood the telephone company lines, resulting in an inability for some
customers to use what they purchased. Other examples of overbooking can be found in the domain
of transportation (airlines) and hotel reservations.

Resource discovery is a non-trivial problem for large distributed systems featuring a discontinuous
amount of resources offered by agent computers and their intermittent participation in the overlay.
Peers’ intermittence lead also to design new routing algorithms and protocols stable to agent churn;
this scenario can modeled using dynamic graph theory.

• Fault tolerance. The virtual organization model offers some mechanisms to dynamically adapt
to dynamic topology changes of the overlay network, by allowing an agent (computer or broker,
representing a sub-colony) to login/logout in/from a colony. This essentially means that the process
of routing requests and responses may lead to failure, because some agents logged out or because
they are temporarily unavailable (recall that agents are not slaves). This may also lead to temporary
denials of service or, more drastically, to the complete “delogging” of an agent from a given colony
in the case where the former does not provide enough services to the latter.

3.5.2. On Resource discovery

• Parametricity and universality. Dealing only with resource discovery has one important advan-
tage: the complete generality and independence of any offered and requested resource. Thus, Ariga-
toni can fit with various scenarios in the agent computing arena, from classical P2P applications, like
file- or band-sharing, to more sophisticated Grid applications, like remote and distributed big (and
small) computations, until possible, futuristic migration computations, i.e. transfer of a non com-
pleted local run in another agent computer, the latter being useful in case of catastrophic scenarios,
like fire, terrorist attack, earthquake, etc., in the vein of agent programming languages à la Obliq or
Telescript. We could envisage at least the following scenarios to be a tight fit for our model:

– Ask for computational power (i.e. the Grid);

– Ask for memory space (i.e. distributed storage);

– Ask for bandwidth (i.e. VoIP);

– Ask for a distributed file retrieving (i.e. standard P2P applications);

– Ask for a (possibly) distributed web service (i.e. query à la Google or any service available
via web-oriented protocols);

– Orchestration of a distributed execution of an algorithm (i.e. a kind of distributed von
Neumann machine);

– Ask for a computation migration (i.e. transfer one partial run in another agent computer,
saving the partial results, as in a truly mobile ubiquitous computation);

14 Activity Report INRIA 2008

– Ask for a human computer interaction (the human playing the role of an agent)...

• Social model underneath an overlay network computer. The Arigatoni overlay network computer
defines mechanisms for devices to inter-operate, by offering services, in a way that is reminiscent to
Rapoport’s tit-for-tat strategy of co-operation based on reciprocity. This way to understand common
behavior of virtual organizations has some theoretical basis on Game Theory. Classical results from
game theory are based on the assumption that a shared amount of resources is available and then
users have an incentive to collaborate. The very first design of Arigatoni forced each AC to register
to only one AB. But, recent studies showed that the Arigatoni overlay can be smoothly scaled up to
a more general topology where each AC may simultaneously be registered to several AB, and where
a colony is just one possible social scheme [28].

This means that Arigatoni fits with motivations and cooperation behavior of different communities. It
tries to be policy neutral, leaving policy choices for each agent at the implementation or configuration
level, or at the community or organization level. Policy domains can overlap (one agent can define
itself as belonging “much” to colony foo and “a little bit” to colony bar). This denotes a decentralized
non-exclusive policy model. As such, one question can arise: who is Arigatoni designed for? We
believe the overlay is flexible enough to serve a mix of different “social structures” and “end-users”:

– Independent end-user connecting through his ISP or migrating from hot-spot to hot-spot;

– Cooperative communities of disseminated agents;

– More regulated or hierarchical communities (maybe a better view of a corporate network);

– Cooperative or competitive resource providers and resource brokers.

• Quality metrics underneath an overlay network computer. The Arigatoni overlay network
computer is suitable to support various extended trust models. Moreover, reputation score could be
expanded to a multi-dimensional value, for example adding a score for quality of the service offered
by an agent. However, Arigatoni encourages cooperation and enables gratuitous resource offering.
But it may also suit for business extensions, e.g.:

– An agent computer can sell resource usage, creating a resource business;

– An agent broker can sell a resource discovery service, creating a brokering business (“I
point you to the best resources, more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of service extensions: among others:

– How to create and call third party services for on-line payment of services;

– How to exchange digital cash for payment of services;

– How to negotiate service conditions between client and servants, including price and
quality of service.

The one-to-many nature of the RDP protocol service request (SREQ) are of particular interest in
this case. Another possible Arigatoni extension may define how to join a third party auction server.
Candidate servants for a SREQ would contact the auction server and make their bid. The trusted
auction server chooses the elected candidate and service conditions based on auction terms. The
agent would then contact the auction server and get this information. Those extensions may take
advantage of the RDP optional fields [1], for example to transmit location and parameter information
to call a third party system.

3.5.3. Execution model

• Programming an overlay network computer. Once resources (hardware, software...) have been
discovered, the agent computer that made the request may wish to use and manipulate it; to
do this, the agent computer has written a (distributed) program in a new language (à la BPEL,
LINDA, YAWL, JOpera...), let’s call it Ivonne, in honor to the great scientist John von Neumann.

Team LogNet 15

Those languages are often called (terminology often overlaps), coordination- workflow- dataflow-
orchestration- composition- metaprogramming- languages. Ivonne will have ad hoc primitives to
express sequences, iterators, cycles, parallel split, joins, synchronization, exclusive/multi/deferred
choice, simple/multi/synchronizing merge, discriminators, pipelining, cancellation, implicit termi-
nation, exception handling... [49].

The “main” of an Ivonne program will be runned on the agent computer machine that launched the
service request and received the resources availability: it will orchestrates and coordinates data and
program resources executed on others agent computers.

In case of failure of a remote service – due to a network problem or simply because of the
unreliability or untrustability of the agent that promised the resource – an exception handling
mechanism will send a resource discovery query on the fly to recover a faulty peer and the actual
state of the run represented, in semantic jargon, by the current continuation.

We also envisage to design a run-time distributed virtual machine, built on the top of a virtual
or hardware machine, in order to scale-up from local to distributed computations and to fit with
the distributed nature of an overlay network computer. Communication between agent computers
will performed thru a logic bus, using Web technologies, like SOAP or AJAX protocols, or a
combination of Java-based JNI+RMI-protocols, or .NET, XPCOM, D-BUS, OLE bus protocols, or
even by enriching the Arigatoni protocol suite with an ad hoc control-flow and data-flow protocol,
and permitting to use it directly inside Ivonne.

The Ivonne language can be both interpreted or compiled. In the latter case we envisage the design
of an intermediate low-level distributed assembler language where Ivonne could be compiled. The
intermediate machine code will recast the assembler pseudo code
move R0 R1
à la Backus [27] in
move dataR0 from ipR0:portR0 to ipR1:portR1
where of course latency is an non-trivial issue, or the assembler pseudo code
op R0 R1 R2 in
op on ipR0 with ipR0:portR0:dataR0 and ipR1:portR1:dataR1 and
stockin ipR2:portR2:dataR2.
Resuming, an overlay program will be a smooth combination of an overlay network connectivity
dealing with virtual organizations and discovery protocols, a computation of an algorithm resulting
of the summa of all algorithms running on different computer agents, and the coordination of all
computer agents, made by an Ivonne program.

• Programming with SmartTools’ SOA

Using our activation protocol of services, SmartTools SOA provides an execution model (pro-
grammable model) on a flat organization.

To achieve the goal of “Programmable Overlay Network”, it will be necessary that SmartTools
component manager use directly the VIP and RDP protocols. Moreover, the activation protocol
(discovery and launch SmartTools components) and the transport (communication) protocol will
have to be adapted to this new virtual organization. To facilitate future evolutions, this new version
of our SOA will be based on the definition of our own protocols (activation and transport) without
complicated libraries (as R-OSGi).

All of these research elements will allow to develop a concept of dynamic SOA to meet the demands
of applications on such virtual organization.

Our approach is characterized by a dynamic topology, and P2P communication between compo-
nents. The classical concept of workflow induces often a static topology of services and a centralized
orchestration. Therefore, we want to introduce a new concept of dynamics and decentralized orches-
tration. When carrying relationship of resources (components), the constraints of use should allow

16 Activity Report INRIA 2008

to define the mechanisms (forced) of communications, which define locally the workflow. Finally,
the global workflow of the application results from the combination of local workflow.

However this solution must be able to integrate or collaborated solutions with more conventional
orchestration. Indeed it can be assumed that a orchestration with large grains will finally be useful.

• Trust and security. In order to work securely, the Arigatoni overlay network computer needs to be
able to offer the following guarantees to its components:

– The communication between two agents must be secured;

– The role played by an agent (i.e. client AC, servant AC or AB) must be certified by a
third party trusted by the agents that communicate with this particular agent. A way to
implement those constraints is to use PKI certificates. A Certification Authority delivers
certificates, and couples of private and public keys for ACs and ABs which attest of their
distinctive roles. The whole mechanisms involved by a PKI is out of the scope of this
research statement, but good use of PKIs and an implementation compliant with RFC2743
can provide all the necessary security, namely the trustfulness on the identity of the peers,
and the trustfulness of all the transmitted data, i.e. secrecy, authenticity, and integrity;

– In addition to PKIs, a more “liquid” trust model could be built, based on reputation
mechanisms. Reputation represents the amount of trust an agent in the overlay has in
another agent based on its partial view. In a nutshell:

* Each agent maintains a reputation score for each agent it knows;

* Each agent maintains a reputation score for each resource it serves;

* Exchanges between agents update dynamically each other’s scores;

* Conflict between two or many agents are resolved by the brokers leaders of the
colonies to which agents belong;

* The computation of the reputation score (a trust metrics) and the way agents
exchange scores is left free to each single implementation.

A last word on implementation issues of the Arigatoni overlay network computer: it is well known
that two technical barriers are commonly used to block transmission over IP network in overlays:

– Firewalls to drop UDP flows (usually considered as suspects);

– NAT techniques to mask to the outside world the real IP addresses of inside hosts; a NAT
equipment changes the IP source address when a packet goes to outside, and it changes the
IP destination address when a packet comes from outside.

The usage of these mechanisms is very frequent on the Internet and they are barriers that can prevent
connections between inside and outside agents in Arigatoni. The implementation of RFC3489 could
be used to overcome such obstacles.

4. Application Domains

4.1. Panorama
Because of its generality, our overlay network can target many applications. We would like to list a small list
of useful programmable overlay networks case of study that can be considered as “LogNet Grand Challenges”
to help potential readers to understand the interest of our research program.

• New distributed models of computation

• Overlay networks over mobile ad hoc networks

• Reduce the digital divide

Team LogNet 17

4.2. Potential applications
Keywords: New distributed models of computation, mobile ad hoc networks, overlay networks, reduce the
digital divide.

From large-scale computing machines to large-scale overlay network machines (John von Neumann was
right before all). This challenge is inspired by the seminal talk by John von Neumann, given in May 1946,
“Principles of Large-Scale Computing Machines”, typesetted and reprinted in [50]. At that time, “large-scale”
meant the ENIAC computer, i.e., 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors,
10,000 capacitors, 5 million joint, 30 short tons, 2.4m x 0.9m x 30m, stored in a 167 m2 room, and 150 kW
to operate. Today, thanks to the Moore’s law and to the Internet, “large scale” means “worldwide scale”, i.e.
the computer hardware is distributed in space and in time and must be negotiated before being used. The main
inspirations of the programmable overlay network computer research’s vein are still contained in that article.

The term “von Neumann bottleneck” was coined by John Backus in his 1977 ACM Turing award lecture.
Bottleneck refers to the fact that, since data and program are stored on the same support (the memory),
the throughput (data transfer rate) between the CPU and the memory is very low. In current von Neumann
architecture the bottleneck is alleviated by using big cache memories. Since in overlay network computers the
bus can be modeled by an Internet connection, the data transfer is still more critical than on a single processor
machine. As such, we should probably look at new computer architectures, such as the Harvard one.

Needless to say that the “icing on the cake‘” will be to formalize this new distributed computational model
and architecture, together with a formal proof of its Turing completeness statement!
Developing a pedestrian/vehicular infrastructure based on an overlay network computer. We plan to
build an ad hoc vehicular network infrastructure using the Arigatoni overlay infrastructure. That network must
enable efficient and transparent access to the resources of on-board and roadside agents. In such a scenario,
commercial services and access to public information are available to vehicles transiting in specific areas
where such information is broadcast by roadside wireless gateways or by other vehicles. Data retrieved can
be stored on the on-board vehicle computer; then, they can be used and rebroadcast at a later time without the
need of persistent connectivity. These new features will offer innovative functions and services, such as:

• Distribution, from infrastructure to vehicle (I2V), and among vehicles (V2V), of safety and/or traffic-
related information;

• Collection, from vehicles to infrastructures (V2I), of data useful to perform traffic management;

• Exchange of information between private vehicles and public transportation systems (buses, vehi-
cles, road side equipments...) to support and, thus, foster inter-modality in urban areas;

• Distribution of real-time, updated information to enable dynamic navigation services.

In this scenario, vehicles/pedestrians play the role of agent computers, while Bus-stop stations equipped with
IP network, routing tables and WIFI access point play the role of agent brokers; Buses play the role of mobile
agent brokers, a sort of proxy of a unique bus-stop agent broker. Proxy load balancing policies are left to the
bus headquarter (HQ). See, for more details, the Arigatoni’s sub-project Ariwheels.
Programming services for the new mesh overlay network in the Campus STIC of Sophia Antipolis. The
future Campus STIC, grouping EPU, UNSA, Eurecom, CNRS, and INRIA will be ready in one year. It will
be equipped with a WIFI network infrastructure implementing 802.11a/b/g protocols, with potential evolution
to 802.11n protocol. The main objectives of such underlay network are to offer IP connection to all Campus
“citizens”: the network must guarantee the respect of French laws concerning public network connections
(décret 2006-358 sur l’offre de connexion au public loi 2006-64). To do this, it would be suitable that all users
get identified using, e.g., using the “pin” code of the student/employee-card. The infrastructure mainly targets
Internet access for all. The Campus STIC WIFI underlay network could be an unique opportunity to have a
real testbed into which put our programmable overlay at work. Arigatoni and Ariwheels could represent the
overlay network infrastructure to offer much more than simply an Internet connection: the LogNet vision can
provide a list of interesting high-level semantic (on demand) services, and a plausible way to implement it.

18 Activity Report INRIA 2008

Reducing the Digital Divide [Sources Wikipedia]. The digital divide is the troubling gap between those who
use computers and the Internet and those who do not. The term digital divide had a moving target: first, it
meant the ownership of a computer. Later and access to the Internet. Most recently it centers on broadband
access. In modern usage, the term also means more than just access to hardware, it also refers to the imbalance
that exists amongst groups of society regarding their ability to use information technology.

The digital divide tends to focus on access to hardware, access to the Internet. The writer Lisa J. Servon argued
in 2002 that the digital divide “is a symptom of a larger and more complex problem – the problem of persistent
poverty and inequality”. The four major components that contribute to digital divide are “socioeconomic status,
with income, educational level, and race among other factors associated with technological attainment”.

One area of significant focus was school computer access; in the 1990s, rich schools were much more likely
to provide their students with regular computer access. In the late 1990s, rich schools were much more likely
to have Internet access. In the context of schools, which has constantly been involved in the discussion of the
divide, current formulations of the divide focus more on how (and whether) computers are used by students,
and less on whether there are computers or Internet connections.

The USA E-rate program (officially the Schools and Libraries Program of the Universal Service Fund),
authorized in 1996 and implemented in 1997, directly addressed the technology gap between rich and poor
schools by allocating money from telecommunications taxes to poor schools without technology resources.
Though the program faced criticism and controversy in its methods of disbursement, it did provide over
100,000 schools with additional computing resources, and Internet connectivity.

Recently, discussions of a digital divide in school access have broadened to include technology related skills
and training in addition to basic access to computers and Internet access. An interesting example is that, in the
North of Italy, the town of Pordenone, 50,000 inhabitants, will be equipped with public local WIFI LAN (e.g.
see the declaration of the Major, in Italian, http://it.youtube.com/watch?v=zBTnkEnXTlc). Our vision could
contribute to reduce digital divide in our society and more contextually in the future Campus STIC.

5. Software

5.1. Ariwheels
Keywords: Mobile ad hoc networks, content-based networks.

Participants: Luigi Liquori [contact for the Ariwheels simulator], Claudio Casetti [Politecnico di Torino,
Italy], Diego Borsetti [Politecnico di Torino, Italy], Carla-Fabiana Chiasserini [Politecnico di Torino, Italy],
Diego Malandrino [Politecnico di Torino, Italy, contact for the Ariwheels client].

Ariwheels is an infomobility solution for urban environments, with access points deployed at both bus stops
(forming thus a wired backbone) and inside buses themselves. Such a network is meant to provide connectivity
and services to the users of the public transport system, allowing them to exchange services, resources and
information through their mobile devices. Ariwheels is both:

• a protocol, based on Arigatoni and the publish/subscribe paradigm;

• a set of applications, implementing the protocol on the different types of nodes;

• a simulator, written in OMNET++ and recently ported to the ns2 simulator.

5.1.1. Simulator
We implemented Ariwheels within the Omnet++ simulator, coding the overlay part and exploiting the existing
wireless underlay network modules. In the underlay, we used IEEE 802.11 at the MAC layer and the DYMO
routing protocol (an AODV-like reactive routing protocol).

http://it.youtube.com/watch?v=zBTnkEnXTlc

Team LogNet 19

We tested the performance of Ariwheels in a vehicular environment. We used a realistic mobility model
generated by the simulator VanetMobiSim, whose output (mobility traces) was fed to the Omnet++ simulator.
Vehicles travel in a 1 km2 city section over a set of urban roads, which include several road intersections
regulated by traffic lights or stop signs. In particular, we adopted the IDM-IM microscopic car-following
model [39], which allows us to reproduce real-world traffic dynamics as queues of vehicles decelerating
and/or coming to a full stop near crowded intersections.

We assumed that 60 vehicles enter the city section from one of the border entry/exit points, randomly choose
another border entry/exit point as their destination, compute the fastest path to it and then cross the city section
accordingly. A vehicle entering the topology is assigned a top speed of v m/s, that it tries to reach and maintain,
as long as traffic conditions and road signs allow it to. When a vehicle reaches its destination, it stops for a
random amount of time, uniformly distributed between 0 and 60 s, then it re-enters the city section. In our
simulations, we tested two different top speeds v: 9 m/s (approx. 32 km/s) and 15 m/s (approx. 54 km/s).

Upon entering the topology, a vehicle acting as Mobile Agent owns a set of 12 unitary services (e.g., files,
traffic informations, point of interests) randomly chosen from a set of 20 services. A Mobile Agent issues
a (SREQ) for a service it is missing and the inter-request time is supposed to be exponentially distributed
with parameter λ = 0.05 [req./s]. As typical in the publish/subscribe paradigm, where peers are not slaves,
upon receiving a SREQ for a service it owns, a Mobile Agent sends back a positive response with a certain
probability, which is set to 0.9 in our simulations.

The simulated city topology, features 6 bus stops with APs, each corresponding to a Broker. Furthermore, 3
buses acting as Mobile Brokers weave their own routes across the topology, among a population of as many as
60 vehicles acting as Mobile Agents. Each bus carries 10 passengers equipped with Mobile Agent capabilities,
and it associates to the Broker with the smallest colony at the time of departure from the bus station. Brokers
apply the unbalanced acceptance policy and filter the routing table against a received query by using the
liveliness information only.

5.1.2. Network client
Scenario. Ariwheels is designed for the scenario of urban public transportation. In such a scenario, a significant
number of users equipped with mobile devices spends significant amounts of time at the bus stops or inside
the bus themselves. The basic idea of Ariwheels is to exploit this situation to let the users exchange data or
services - more generally: resources - through their mobile devices.
Infrastructure. Ariwheels is based on the 802.11 wireless LAN protocols. Therefore, its infrastructure is
mostly made of access points, deployed both:

• at bus stops, forming a backbone;

• on the bus themselves, thus with an intermittent connection to the backbone.

The infrastructure also includes the IP network connecting the coverage areas of the access points, and some
higher-level coordination facilities. Nodes and software

Network nodes will be quite ubiquitous, including bus stops, buses and passengers, i.e. the ones equipped with
a suitable mobile device. Most nodes will be mobile (i.e. they move) and dynamic (i.e. they can suddenly be
turned off, or leave the network itself). Owing to the peculiarities of its nodes, the Ariwheels network falls in
the category of mesh networks.

All nodes will run ad hoc pieces of software. In other words, installing the Ariwheels software makes the
difference between a node of the underlay network (802.11, IP) and a node of the overlay Ariwheels network.
Solution. Ariwheels have four kinds of functional units, namely agents, brokers, mobile brokers, and proxies.

These units interact according to a protocol based on the publish/subscribe paradigm.

20 Activity Report INRIA 2008

Agent. The agent is a software - written in C# for better compatibility - running on the user’s device. It will
run in user space and unprivileged mode, in order to require no additional configuration or permissions. Using
appropriate sensing and probing mechanisms, the agent will look for a Broker. Once found one, it performs:

• the registration, which includes sending a list of the resources the agent has to offer;

• the request of the resources the agent needs.

Registration is performed only once - i.e. once every time the agents meets a broker. Resource requests are
usually repeated several times, until all the needed resources are found. In addition to this seeking activity, the
agent has to provide the services it claimed to be providing to the agents requesting them.
Broker. The broker is a program, written in C for better performance, running on a mid- or high-end device.
There must be (at least) one broker in each L2 network belonging to the Ariwheels system. The Broker
performs four main duties:

1. advertise its presence and the resources available through it;

2. receive, elaborate and acknowledge the registration requests coming from the Agents;

3. receive and (try to) answer the resource request coming from the Agents;

4. manage feedback and reputation.

Internally, the broker is equipped with an embedded database (namely SQLite), which is updated at each
received packet. The information contained in the packets, as well as the information represented by the
packet itself is combined in a (sort of) routing table. For each resource, it contains ID and IP address of the
agent which will be asked to provide it. This agent will be chosen among the ones providing the resources
according to a policy (hopefully) balancing availability and fairness. After identifying the agent which will
have to provide the resource, the broker pings it, in order to avoid committing the supplying of the resource to
an agent which is not active anymore.
Mobile broker. Mobile brokers are brokers with an intermittent connection to the rest of the network. A typical
example is a bus equipped with a wireless access point, connecting - when possible - to the infrastructure,
deployed at some stops. Mobile brokers are associated with a fixed broker. As soon as this broker becomes
available (i.e. the mobile broker can hear its Hello messages), the mobile broker sends it one or more Dump
messages, containing its routing table. The fixed broker replies dumping its own routing table. As a result,
both mobile and fixed brokers know which services are available through the other. As long as the connection
lasts, the two brokers will use this information to answer the service requests they cannot satisfy using their
own routing tables. The priority order is:

1. the broker’s own table;

2. the table dumped by mobile/fixed brokers;

3. forwarding the request to the proxy parent (see below), if any.

When the connection with a broker is lost, the routing entries relating to it are flushed.
Proxy. Proxies are the way Ariwheels copes with the need to access information outside the colony. The
following basic principles hold:

• brokers only store information about their own colony;

• brokers are the only entity storing information.

Team LogNet 21

As a consequence, there is no such thing as a super-broker, i.e. a node having global (or higher-level)
information about the network. The rationale for this is that the rate at which the network changes is
comparable to the time needed to propagate such information. Lacking super-brokers, agents still have the
opportunity to consume services provided outside the colony they belong to. The Proxy node will handle the
forwarding of SREQ’s and SRESP’s across colony borders, according to the schema:

1. brokers know in advance their parent proxy, and regularly send it Proxy packets;

2. if a broker is unable to answer a SREQ from one of its agents, it forwards it to its proxy;

3. the proxy forwards the SREQ to all its children brokers;

4. brokers reply to this forwarded SREQ only if they know how to gather the requested service;

5. if a SRESP arrives, the proxy forwards it to the broker having originated it;

6. otherwise, after a timeout, sends to the originating broker an empty SRESP;

7. the broker forwards the response it receives from the broker, either full or empty, to its agent.

Basic interaction. The most basic interaction between two agents and a broker foresees the following steps:

1. agent B registers with the broker, declaring to provide (among others) a given resource R;

2. agent A registers;

3. agent A queries the broker for resource R;

4. the broker looks up its routing table, and chooses B to provide R to A;

5. the broker transmits to A the details of B (basically, its IP address);

6. A contacts B, asking it for resource R;

7. B provides resource R to A.

Note that the actual data exchange between A and B happens in a fully peer-to-peer fashion, and does not
involve the broker. Additionally, the broker itself does not provide any service: it only knows who could
provide it. Advertising

Although not included in the basic interaction, the advertising mechanism - i.e. how does the Agent get to know
that there is a Broker out there? has an important role. The solution adopted in Ariwheels is an Hello/Probe
mechanism:

• the Brokers send, at random intervals, a Hello packet, which includes the list of the resources
available through them;

• the Agents which are interested in looking for a broker (either because they know none, or because
they want to change their current one) send a Probe packet;

• the Brokers receiving a Probe packet answer with a (unicast) Hello packet.

Advertising mechanisms usually foresee the usage of broadcast traffic. However, since Ariwheels is built upon
IP, it can profit by the often neglected feature of multicasting. Hello and Probe packets are sent to distinct, well-
known multicast addresses. The underlay network is expected to be configured in such a way that multicast
packets are not forwarded outside the L2 network they originate in. As a result, only agents interested in
knowing new brokers will join the Hello multicast group. Additionally, such a group will be also joined by
brokers interested in knowing other brokers. See the web page http://www-sop.inria.fr/members/Luigi.Liquori/
ARIGATONI/Ariwheels.htm and http://arigtt.altervista.org.

5.2. PiNet
Keywords: Distributed Hash Table.

Participant: Bernard Serpette [contact].

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://arigtt.altervista.org

22 Activity Report INRIA 2008

PiNet is a Java library (about 2K lines of code) whose main goal is to provide an abstract access to logical
networks. Its specific features are:

• every value can be made available in a network via a dedicated node; compared to RMI, an available
value does not need to inherit from a Remote class and there is no stub generation;

• each node has a unique thread of calculus (a sequencer), avoiding synchronized methods;

• provide functions to release the sequencer when blocking methods are needed;

• communications between nodes abstracts the transport layer, i.e. TCP, UDP or other protocols are
not hard coded in the library;

• strong typing of messages exchanged between nodes, a channel established between two nodes is
created to communicate values of a specific type;

• encourage the communication of functions, this feature has allowed the strong typing of channels,
the abstraction of transport protocol and the absence of stub generation;

• provide some predefined overlay networks such as Arigatoni or Distributed Hash Tables (DHT).

5.3. ArchiNet
Keywords: Service Oriented Architecture.

Participants: Didier Parigot [contact], Baptiste Boussemart.

ArchiNet is a framework to build a SOA on the top of an Overlay Network. Its specific features are:

• a resource is described by its input or output (required or provided) services;

• a resource is associated with the component that implements its services;

• on each node (agent) an instance of ArchiNet is launched;

• each ArchiNet client is connected to a overlay network (as PiNet);

• each ArchiNet manages the resources available (creation of a component) on the node, resource
available locally ;

• a resource available on a node is published on the overlay network by ArchiNet;

• ArchiNet asks a resource (component) to the overlay network if it does not exist locally;

• the sending or receiving services between components are transformed by asynchronous messages
(by the components themselves);

• the local or remote connection between component (composition of services) is established by the
ArchiNet associated to each component.

ArchiNet derives from the SmartTools software factory. This has induced the following transformations and
operations.

• a better separation between SOA and SmartTools itself (the generation tools of plugins);

• best decomposition of the component manager (ArchiNet) to take into account different communi-
cation protocols.

• creation of communication module for UDP and TCP protocol

• a connection to an overlay network as PiNet.

• creation of some examples for tested ArchiNet connected to PiNet, such as a Chat in a P2P mode;

• test on different OS (Linux, Windows, Mac) and on smaller devices such as the Nokia N800;

See the web page http://www-sop.inria.fr/lognet/pon.

http://www-sop.inria.fr/lognet/pon

Team LogNet 23

5.4. SmartTools
Keywords: Domain-Specific Languages, Service Oriented Architecture.

Participants: Didier Parigot [contact], Baptiste Boussemart.

The SmartTools software factory is a set of Domain-Specific Languages with associated tools used to develop
more rapidly Eclipse-based application. The main advantages of this SmartTools approach are:

• A set of models or Domain Specific Language (DSL) drives your plugins software development. The
DSL of your language can automatically produce the Java model (Javaclass to represented Abstract
Syntax Tree), and the parser for a particular concrete syntax and various graphical views;

• A Service-Oriented Architecture (SOA) on top of the Eclipse framework for your composition
plugins. Thank to particular DSLs (definition of the OSGi services), this SOA automatically manages
the communications (with asynchronous messages) between your plugins;

• The SmartTools approach is completely integrated into the Eclipse environment. SmartTools is a
complementary toolbox to the basic Eclipse framework.

The SmartTools software factory has been presented at Eclipse conference 2008 [21].

See the web page http://www-sop.inria.fr/lognet/SmartTools/eclipse and the INRIA GFORGE page http://
gforge.inria.fr/projects/smarttools.

5.5. Arigatoni simulator
Participants: Luigi Liquori [contact], Raphael Chand [Université de Geneva, Switzerland].

Figure 5. The Arigatoni simulator

We have implemented in C++ (∼2.5K lines of code) the Resource Discovery Algorithm and the Virtual
Intermittent Protocol of the Arigatoni Overlay Network. The simulator was used to measure the load when
we issued n service requests at Global Computers chosen uniformly at random. Each request contained a
certain number of instances of one service, also chosen uniformly at random. Each service request was then
handled by the Resource Discovery mechanism of Arigatoni networks.

5.6. BabelChord simulator
Participant: Cédric Tedeschi [contact].

http://www-sop.inria.fr/lognet/SmartTools/eclipse
http://gforge.inria.fr/projects/smarttools
http://gforge.inria.fr/projects/smarttools

24 Activity Report INRIA 2008

To better capture its relevance, we have conducted some simulations of the BabelChord approach. The
simulator, written in Python, works in two phases. First, a Babelchord topology is created, with the following
properties: (i) a fixed network size (the number of nodes) N , (ii) a fixed number of floors denoted F , (iii) a
fixed global connectivity, i.e., the number of floors each node belongs to, denoted C. As a consequence: (i)
The nodes are uniformly dispatched among the floors, i.e., each node belongs to C floors uniformly chosen
among the set of floors. (ii) Each resource provided by nodes is present at C floors. (iii) The average lookup
length within one given floor is log((N × C)/F)/2.

In a second time, the simulator computes the number of hops required to reach one of the node storing one
of the key of a particular resource. Results are given for different values of N , F , and C. Figure 6 shows the
number of synapses vs. the lookup success rate. Note that only 5% of synapses made of 2 (resp. 3, 5, 10)
floors connections in the whole node population is enough to achieve more than 50% (resp. 60%, 80%,
95%) of exhaustive lookups in the Babelchord network!

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

S
uc

ce
ss

 r
at

e

"Synapses" percentage

Lookup success rate (10000 nodes, 10 floors)

Connectivity = 2
Connectivity = 3
Connectivity = 5
Connectivity = 10

Figure 6. Exhaustiveness, N = 10000

5.7. iRho and Snake interpreters
Participants: Luigi Liquori [contact], Bernard Serpette.

iRho. We propose an imperative version of the Rewriting-calculus, a calculus based on pattern-matching,
pattern-abstraction, and side-effects, which we call iRho. We formulate a static and a big-step “call-by-value”
operational semantics of iRho. The operational semantics is deterministic, and immediately suggests how to
build an interpreter for the calculus. The static semantics is given via a first-order type system based on a form
of product-types, which can be assigned to terms like structures (i.e., records). The calculus is à la Church,
i.e. pattern-abstractions are decorated with the types of the free variables of the pattern. iRho is a good
candidate for a core of a pattern-matching imperative language, where a (monomorphic) typed store can be
safely manipulated and where fixed-points are built-in into the language itself. Properties such as determinism
of the interpreter and subject-reduction are completely checked by a machine-assisted approach, using the
Coq proof assistant. Progress and decidability of type-checking hold. The first interpreter for the imperative
rewriting calculus was written in Bigloo; the metatheory was proved using the proof assistant Coq.
Snake. version 1.1 of iRho. It was completely rewritten in Bigloo by Luigi Liquori (new parser, new syntactic
constructions, like, e.g., guards, anti-patterns, anti-expressions, exceptions and parametrized pattern matching.
Snake is a sugared version of iRho where all the keywords of the language are ASCII-symbols. It could be
useful to teach basic algorithms and pattern-matching to children. See the web page http://www-sop.inria.fr/
members/Luigi.Liquori/iRho/index.html.

http://www-sop.inria.fr/members/Luigi.Liquori/iRho/index.html
http://www-sop.inria.fr/members/Luigi.Liquori/iRho/index.html

Team LogNet 25

6. New Results

6.1. Programmable overlay networks with ArchiNet
Participants: Didier Parigot, Baptiste Boussemart.

To provide an execution model of Overlay Network, it is necessary to extend the run-time of SmartTools (only
Service Oriented Architecture of SmartTools). This new run-time, called ArchiNet, is underway of realization.
This run-time corresponds to a very small part of SmartTools. ArchiNet is a natural extension of the SmartTools
SOA to distributed execution on top of an overlay network. Specifically, on each machine, a JVM in our context,
an instance of ArchiNet is created. But, the resource discovery (component) is performed through an overlay
network. For the proper functioning of ArchiNet, each instance of Archinet on each machine is connected
to an overlay network, for example PiNet. In each instance ArchiNet, available components (service) are
published on the overlay network (PiNet). For all instances of ArchiNet into the Network, these components
will be accessible via the discovery services. As the execution model of the SOA SmartTools is based on
sending messages between components, ArchiNet lends naturally itself to a distributed execution. Given a set
of discovery queries (discovery components or services), ArchiNet gives naturally in a execution support for
these services (component) available on the network. As against the composition of these services remains the
responsibility of the programmer. A paper describing the system is ongoing. See the web page http://www-
sop.inria.fr/lognet/pon.

6.2. Strong typed communication with PiNet
Participants: Bernard Serpette, Didier Parigot.

In PiNet readers and writers on channels are described by abstract classes parametrized by the type of values
transferred in the channel:
public abstract class InFlow<T> {

public abstract T read();
}
public abstract class OutFlow<T> {

public abstract void write(T value);
}

Readers and writers are certainly objects encapsulating transport specific values: a socket created by a TCP
connexion for example. These values have a meaning only for the owned computer, they aren’t serializable.
Nevertheless, these readers and writers are built from simplest values (machine name, port number...) which
are serializables. It is then possible to encapsulate these simple values in objects which will circulate in the
network and will generate writers at the guessed place. In PiNet a writer generator is also described via an
abstract class:
public abstract class OutFlowGenerator<T> implements Serializable {

public abstract OutFlow<T> generate();
}

Here we mention explicitly, with the keyword Serializable, the fact that writer generators can be transferred
in a network. The final stage consists in associating a reader to a writer generator of the same type:
public class EndPointFlow<T> {

public InFlow<T> inFlow;
public OutFlowGenerator<T> outGenerator;

}

This the key point of typing communication in PiNet: a reader and the associated writer generator are built by
the same computer ensuring the soundness, i.e. readen values have the same types than the written one. This
result has been published in [25].

http://www-sop.inria.fr/lognet/pon
http://www-sop.inria.fr/lognet/pon

26 Activity Report INRIA 2008

6.3. DHT formal specification
Participants: Bernard Serpette, Cédric Tedeschi.

We have begun a formal specification associated to a PiNet implementation, of a DHT (Distributed Hash
Table) oriented network. The specification is done via a relation on network states (small step semantics). A
network state is the set of all individuals network nodes states. A node state consists of a, possibly sorted, set
of neighbors, i.e. the nodes known by a specific node, a local memory and a queue of messages received by the
node to be executed. The semantics describe the behavior of incoming messages in each nodes. The specificity
of the formalized DHT are:

• as in Chord, the path found between any two nodes of the network has a length which is in
O(Log(n)), where n is the number of nodes of the network;

• the graph induced by the neighbors is symmetric, i.e. if a node a can communicate with a node b,
then b can communicate with a. This fact is generally ensured by the transport layer (TCP, UDP...)
and thus the associated improvement (path lengths are divided by two) comes at a low price;

• the dynamic nature of such network, i.e., the fact that nodes can join and leave the network, requires
to readjust the neighbors of some nodes. This readjustment is called stabilization. In contrast to
Chord, where stabilization is done via a periodic background process which is hard to tune, our
stabilization is done during the routing of messages and thus 1) does not make any administrative
charge when the network is sleeping 2) uses only few words in already existing packets and so has a
very limited impact to the average network latency.

We plan to use Coq, as in a previous work [18], to prove some properties on this specification (non dead-lock,
reachability, stabilization convergence...).

6.4. Social overlay networks
Participants: Luigi Liquori, Cédric Tedeschi, Francesco Bongiovanni.

A significant part of today’s Internet traffic is generated by peer-to-peer (P2P) applications, used originally for
file sharing, and more recently for real-time multimedia communications and live media streaming.

Distributed hash tables (DHTs) or “structured overlay networks” have gained momentum in the last few years
as the breaking technology to implement scalable, robust and efficient Internet applications. DHTs provide a
lookup service similar to a hash table: (key, value) pairs are stored in the DHT, and any participating node
can efficiently retrieve the value associated with a given key. Responsibility for maintaining the mapping from
names to values is distributed among the nodes, in such a way that a change in the set of participants causes a
minimal amount of disruption. This allows DHTs to scale to extremely large numbers of nodes and to handle
continual node arrivals, departures, and failures.

Chord [47] is one of the simplest protocols addressing key lookup in a distributed hash table: the only operation
that Chord supports is that given a key it route onto a node which is supposed to host the entry (key,value).
Chord adapts efficiently as nodes join and leave the system. Theoretical analysis and simulations showed that
the Chord protocol scales up logarithmically with the number of nodes. In Chord, every node can join and
leave the system without any peer negotiation, even though this feature can be implemented at the application
layer. Chord uses consistent hashing in order to map keys and nodes’ addresses, hosting the distributed table,
to the same logical address space. All the peers knows a unique hash function, representing the only way to
map physical addresses and keys to an single logical address space. Peers can join the Chord just by sending a
message to any node belonging to the Chord overlay. No reputation mechanism is required to accept, reject, or
reward peers that are more reliable or more virtuous than others. Merging two Chord rings together is a costly
operation because of the induced message complexity and the substantial time the distributed finger tables
needs to stabilize. Both rings have to know their relative hash functions and have to decide which ring will
absorb the other one, the latter point being critical because of the politics and security reliance’s. We propose to
connect smaller Chord networks in an unstructured way via special nodes playing the role of neural synapses.

Team LogNet 27

6.4.1. Features
Schematically, the main Babelchord’s features are:
Routing over SW/HW-Barriers. Namely, the ability to route queries through different, unrelated, DHTs
(possibly separated by firewalls) by “crossing floors”. A peer “on the border” of a firewall can bridge two
overlays (having two different hash functions) that were not meant to communicate with each other unless
one wants to merge one floor into the other (operation with a complexity linear in the number of nodes). The
possibility to implement strong or weak security requirements makes Babelchord suitable to be employed in
Internet applications where software or social barriers are an important issue to deal with.
Social-based. Every peer has data structures recording peers and floors which are more “attractive” than
others. An “hot” node is a node which is stable (alive) and which is responsible for managing a large number
of (keys-values) in all hosted DHTs. An “hot” floor is a floor responsible of a high number of successful
lookups. Following a personal “good deal” strategy, a peer can decide to invite an hot node on a given
floor it belongs to, or to join an hot floor, or even create from scratch a new floor (and then invite some
hot nodes), or accept/decline an invitation to join an hot floor. This social-behavior makes the Babelchord
network topology to change dynamically. As observed in other P2P protocols, like Bittorrent, peers with
similar characteristics are more willing to group together on a private floor and thus will eventually improve
their overall communications quality. Finally, the “good deal” strategy is geared up to be further enhanced
with a reputation-system for nodes and floors.
Neural-inspired. Since every floor has a proper hash function, a Babelchord network can be thought as a sort
of meta overlay network or meta-DHT, where inter floors connections take place via crossroad nodes, a sort
of neural synapses, without sharing a global knowledge of the hash functions and without a time consuming
floor merging. The more synapses you have the higher the possibility of having successful routing is.

6.4.2. Suitable applications
Because of the above original features, the following are examples of applications for which Babelchord can
provide a good groundwork (in addition, of course, to all genuine Chord-based applications, like cooperative
mirroring, time-shared storage, distributed indexes and large-scale combinatorial search).
Anti Internet censorship applications. Internet censorship is the control or the suppression of the publishing
or accessing of information on the Internet. Many applications and networks have been recently developed
in order to bypass the censorship: among the many we recall Psiphon (http://psiphon.ca), Tor (http://www.
torproject.org), and many others. Babelchord can support such applications by taking advantage of intra-floor
routing in order to bypass software barriers.
Fully Distributed social-networks applications. Social-networks are emerging as one of the Web 2.0
applications. Famous social networks, such as Facebook or LinkedIn are based on a client-server architecture;
very often those sites are down for maintenance. Babelchord could represent a scalable and reliable alternative
to decentralize key search and data storage.
Large-scale brain model and simulations. (Via a distributed, neural-based, network.) As well explained by
R.D. DeGroot (Project founded by KNAW, Netherlands), supercomputers exist now with raw computational
powers exceeding that of a human brain. Technological and production advances will soon place such
computing power within the hands of cognitive and medical neuroscience research groups. For the first time it
will be possible to execute brain-scale simulations of cognitive and pharmacological processes over millions
and then billions of neurons - even at the biological model level. Babelchord could help modeling as a meta-
overlay network the human brain. A paper has been written and submitted to an international workshop [24].

6.5. P2P resource discovery
Participants: Cédric Tedeschi, Eddy Caron [EPI GRAAL INRIA], Frédéric Desprez [EPI GRAAL INRIA],
Franck Petit [EPI GRAAL INRIA].

http://psiphon.ca
http://www.torproject.org
http://www.torproject.org

28 Activity Report INRIA 2008

The Distributed Lexicographic Placement (DLP)-Table is a P2P approach for the service discovery within
large scale grids. It relies on a prefix tree structured overlay network. It provides load balancing, efficient
mapping of nodes of the tree onto processors of the network and fault-tolerance mechanisms, formally proved
to be self-stabilizing, i.e. converging to a correct topology in a finite time starting from an arbitrary topology
and memory state. It has been initially developed within the INRIA GRAAL project team.

In collaboration with Eddy Caron, Frédéric Desprez and Franck Petit of GRAAL, we have written a chapter
to appear in the future book entitled “Handbook of Research on P2P and Grid Systems for Service-Oriented
Computing: Models, Methodologies and Applications” and published by IGI Global [23]. This chapter gives
a more popularizing view of the system and its features.

6.6. SmartTools into Eclipse
Participants: Didier Parigot, Baptiste Boussemart.

All SmartTools features have been integrated into the Eclipse environment. This work demonstrates:

• The SmartTools features are not offered in the Eclipse environment (automatic generation of
components with small DSLs). There is a perfect complementarity between Eclipse and SmartTools.

• Eclipse is not built above or as an SOA. There is a strong coupling between plugins and there is no
use sending messages between plugins.

• The integration has been greatly facilitated by the SOA architecture of SmartTools. This shows that
the SOA concept allows this type of integration with a low coupling between the two entities.

• SmartTools was only slightly modified to make this integration possible.
• Until here, the SOA and DSL concepts were not used much in the Eclipse development itself.

Finally, this integration provides a novel and innovative proof of concept and a new paradigm on his way for
adoption by the community. This result has been presented at Eclipse conference 2008 [21].

6.7. Ariwheels: an overlay architecture for vehicular networks
Keywords: Mobile ad hoc networks, content-based networks.
Participants: Luigi Liquori [contact for the Ariwheels simulator], Claudio Casetti [Politecnico di Torino,
Italy], Diego Borsetti [Politecnico di Torino, Italy], Carla-Fabiana Chiasserini [Politecnico di Torino, Italy],
Diego Malandrino [Politecnico di Torino, Italy, contact for the Ariwheels client].

Arigatoni on wheels (Ariwheels for short) is an overlay architecture designed for a vehicular network underlay
environment. Ariwheels provides efficient, transparent advertising and retrieves resources carried by on-board
and roadside nodes. Consider an urban area in which a Mobile Ad hoc Network (MANET) is deployed.
Such MANET is populated by both mobile users, e.g. pedestrians with hand-held devices, cars equipped with
browsing/computational capabilities, public-transportation vehicles and roadside infrastructures such as bus
stops. All devices are supposed to have a wireless interface. Depending on their mobility, they may also be
equipped with a wired interface. Such is the case of wireless Access Points (APs), which are installed at a
bus stop, in order to provide connectivity either to users waiting for a bus or to the bus itself (hence to its
passengers). In such settings, devices carried by cars and pedestrians play the role of mobile agent computers;
roadside infrastructures (APs) and public transportation vehicles (buses, trams, cabs...) act as agent brokers,
although some distinctive behaviors have to be introduced.

An agent broker in Ariwheels is logistically represented by a bus stop, and its colony is composed by mobile
agent computers that have registered to it when they were within radio range of the AP installed at the bus
stop. However, to take into account the high mobility of the scenario and enhance its performance in terms
of load balancing and service response time, we introduce an additional, Ariwheels-specific entity, the mobile
agent broker (mAB). This unit is a public transport vehicle equipped with a scaled-down broker-like wireless
device. Every mobile agent broker is associated to (i.e., it has the same identity of) a single agent broker.
Such association exists at the overlay level and holds throughout its bus route. Clearly, at the underlay level,
connectivity between the mobile agent broker and the associated agent broker may at times be severed.

Team LogNet 29

The main aim of the mobile agent broker is to introduce the novel concept of “colony–room”: a small subset
of mobile agents computers with a wireless connection to the mobile agent broker (pedestrian users on the
bus, or pedestrian/vehicles around the bus or traveling along the same bus direction during a traffic jam...). In
addition, thanks to its mobility, the mobile agent broker can collect registrations from mobile agent computers
that were too far from the AP of the associated agent broker, and, therefore, might had never had the chance
to register to it. The mobile agent broker operates in tight coordination with infrastructure devices, i.e., with
agent brokers, and acts, in effect, as a colony-room for one of them.

The mobile agent broker collects (un)registrations, service requests and service offers from the agent com-
puters within the colony–room. When a wireless connection has been established between the mobile agent
broker and a roadside AP (not necessarily corresponding to the associated agent broker), the data path to the
associated agent broker is again available and an information exchange takes place resulting in the updating
of each other’s data. Specifically, the following actions occur. Firstly, the associated agent broker merges the
mobile agent broker’s routing table with the one it currently carries. Then, the associated agent broker handles
the registration/discovery information and generates the appropriate responses. Finally, depending on the re-
sponse time, the responses are returned to the mobile agent broker before it leaves the wireless AP coverage,
or the next time it connects to an AP: this will normally happen at the next bus stop.

Wireless devices may either be user terminals (laptops, hand-helds, sensors...) or higher-level units providing
connection to the entities within the Ariwheels architectures. mABs will be able to provide, via the RDP
protocol, identities of ACs in its local area offering (in a P2P fashion) various information specific to the area
where the bus stop is located, such as movie listings of local theaters, or lunch menus of nearby restaurants,
or traffic jams. Therefore, mobile devices carried by passengers on a bus act as ACs registered to a mAB (the
AP on the bus), and may primarily exchange information among themselves. If information cannot be found
among ACs in the subcolony, SREQs are relayed to the AB of which the mAB is a subcolony. As a consequence,
a mAB holds a subset of routing table entries that can be found on the AB. Mobile users may want to access
the wealth of information available through the ABs or the mAB, by first subscribing to the colonies governed
by ABs, and then by sending service requests to (mobile) agent brokers.

In the Ariwheels architecture,

B3
B4

mB1

B2B1

mB3
overlay

wireless coverage

HQ

Figure 7.

A central coordination entity is located at a headquarter (HQ), in our case corresponding to the local
transportation authority building. The coordination entity plays the role of a super-broker and it is provided
with a wired connection to each of the 4 roadside AP at bus stops (tagged B1 to B4). Mobile agent brokers
(tagged mB1 and mB3) shuttle between bus stops, each carrying a different broker association (tagged B1
and B3), while mobile agents (portable devices or on-board car devices in the figure) are either connected

30 Activity Report INRIA 2008

to brokers or mobile agent brokers, depending on their mobility. This figure also shows the simulated city
topology, that featured 6 bus stops with APs, each corresponding to an agent broker. Furthermore, 3 buses
acting as mobile agent brokers weave their own routes across the topology, among a population of as many
as 60 vehicles acting as mobile agent computers. Each bus carries 10 passengers equipped with mobile agent
computers capabilities, and it associates to the agent broker with the smallest colony at the time of departure
from the bus station. The results have been published in [20], [22]. See the web page http://www-sop.inria.fr/
members/Luigi.Liquori/ARIGATONI/Ariwheels.htm.

6.8. Powerful resource discovery for Arigatoni
Participants: Raphael Chand [Université de Geneva, Switzerland], Michel Cosnard, Luigi Liquori.

The version V1 of the RDP protocol [2] enabled one service at the time to be requested, e.g. a CPU, or a
specific file. In [4], the protocol was enhanced (V2) to take into account multiple instances of the same service.
Adding multiple instances is a non trivial task because the broker must keep track (when routing requests) of
how many resource instances were found in its own colony before delegating the rest of the instances to the
surrounding colonies.

The version V3 adds multiple services and service conjunctions. Adding service conjunctions allows a global
computer to offer several services at the same time. Multiple services requests can be also asked to a AB; each
service is processed sequentially and independently of others. As an example of multiple instances, a GC may
ask for 3 CPUs, or 4 chunks of 1GB of RAM, or one chunk of 10GB of HD, or one gcc compiler; as an
example of a service conjunction, a GC may ask for another GC offering at the same time one CPUs, and one
chunk of 1GB of RAM, and one chunk of 10GB of HD, and one gcc compiler.

If a request succeeds, then via the orchestration language of Arigatoni (not described in this paper), the AC
client can synchronize all resources offered by the servers AC’s. To sum up, we study

• A complete description of the resource discovery protocol RDP V3, which allows multiple instances,
multiple services, and service conjunctions.

• A new version of the simulator taking into account the non trivial improvements in the resource
discovery protocol.

• Simulation results that show that our enhanced protocol is scalable.

This result has been published in [14].

6.9. Conditional Logical Framework
Participants: Furio Honsell [Udine’s Major, Italy], Marina Lenisa [Università di Udine, Italy], Luigi Liquori,
Ivan Scagnetto [Università di Udine, Italy].

The Edinburgh Logical Framework LF of [40] was introduced both as a general theory of logics and as a
metalanguage for a generic proof development environment. In this paper, we consider a variant of LF, called
Conditional Logical Framework LF

K
, which allows to deal uniformly with logics featuring side-conditions on

the application of inference rules, such as Modal Logics. We study the theory of LF
K

and we provide proofs
for subject reduction, confluence, and strong normalization. We illustrate how special instances of LF

K
allow

for smooth encodings of Modal Logics both in Hilbert /Natural Deduction style.

The motivation for introducing LF
K

is that the type system of LF is too coarse as to the “side conditions”
that it can enforce on the application of rules. Rules being encoded as functions from proofs to proofs and rule
application simply encoded as lambda application, there are only roundabout ways to encode provisos, even as
simple as that appearing in a rule of proof. Recall that a rule of proof can be applied only to premises which do
not depend on any assumption, as opposed to a rule of derivation which can be applied everywhere. Also rules
which appear in many natural deduction presentations of Modal and Program Logics are very problematic in
standard LF. Many such systems feature rules which can be applied only to premises which depend solely on
assumptions of a particular shape [36], or whose derivation has been carried out using only certain sequences

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm

Team LogNet 31

of rules. In general, Modal, Program, Linear or Relevance Logics appear to be encodable in LF only encoding
a very heavy machinery, which completely rules out any natural Curry-Howard paradigm, see e.g. [26]. As
we will see for Modal Logics, LF

K
allows for much simpler encodings of such rules, which open up promising

generalizations of the proposition-as-types paradigm.

Apart from Modal Logics, we believe that our Conditional Logical Framework could also be very helpful
in modeling dynamic and reactive systems: for example bio-inspired systems, where reactions of chemical
processes take place only provided some extra structural or temporal conditions; or process algebras, where
often no assumptions can be made about messages exchanged through the communication channels. Indeed,
it could be the case that a redex, depending on the result of a communication, can remain stuck until a “good”
message arrives from a given channel, firing in that case an appropriate reduction (this is a common situation
in many protocols, where “bad” requests are ignored and “good ones” are served). Such dynamical behavior
could be hardly captured by a rigid type discipline, where bad terms and hypotheses are ruled out a priori. A
paper has been written and published [19], and the student Petar Maksimovic is starting a Ph.D. on extension
of Logical Frameworks.

6.10. Adding trait inheritance to the Java language
Participants: Luigi Liquori, Arnaud Spiwack [Ecole Politechnique].

“Inside every large language is a small language struggling to get out ...” [41] ... “ and inside every small
language is a sharp extension looking for better expressivity ...”

In the context of statically-typed, class-based languages [42], we investigate classes that can be extended with
trait composition. A trait is a collection of methods without state; it can be viewed as an incomplete stateless
class. Traits can be composed in any order, but only make sense when imported by a class that provides
state variables and additional methods to disambiguate conflicting names arising between the imported traits.
We introduce FeatherTrait Java (FTJ), a conservative extension of the simple lightweight class-based calculus
Featherweight Java (FJ) with statically-typed traits. In FTJ, classes can be built using traits as basic behavioral
bricks; method conflicts between imported traits must be resolved explicitly by the user either by (i) aliasing or
excluding method names in traits, or by (ii) overriding explicitly the conflicting methods in the class or in the
trait itself. We also introduce FeatherTrait Java with Interfaces (iFTJ), where traits need to be type-checked
only once, which is necessary for compiling them in isolation, and considering them as regular types, like
Java-interfaces with a behavioral content.

FeatherTrait Java (FTJ) and FeatherTrait Java with Interfaces (iFTJ), conservatively extends the simple
calculus of Featherweight Java (FJ) by Igarashi, Pierce, and Wadler with statically-typed traits. The main
aim is to introduce the typed trait-based inheritance in a class-based calculus à la Java; the calculus features
mutually recursive class declarations, object creation, field access, method invocation and override, method
recursion through this, subtyping and simple casting. Just as with FJ, some of the features of Java that
we do not model include assignment, interfaces, overloading, base types (int, boolean, String, etc.),
null pointers, abstract method declaration, shadowing of superclass fields by subclass fields, access control
(public, private, etc.), and exceptions. Since FTJ provides no operations with side effects, a method body
always consists of return followed by an expression.

The main contributions of this research vein are

1. We define the calculus FTJ, a conservative extension of FJ featuring trait inheritance. Multiple traits
can be inherited by one class, and conflicts between common methods defined in two or more
inherited traits must be resolved explicitly by the user either by (i) aliasing or excluding method
names in traits, or by (ii) overriding explicitly the conflicted methods in the class that imports those
traits or in the trait itself.

2. We define a simple type system for FTJ that type-checks traits when imported in classes, resulting
in a sharp and lightweight extension of the type system of FJ. This can be considered as a first step
in adding a powerful but safe form of trait-based inheritance to the Java language.

32 Activity Report INRIA 2008

3. We define the FeatherTrait Java with Interfaces calculus (iFTJ), a variation of FTJ and a conservative
extension of FJ, which allows traits to be type-checked only once. Traits in iFTJ look like Java-
interfaces with some partial behavior inside.

4. We define a type system for iFTJ that type-checks traits only once, in order to be compatible with
compilation in isolation. In a nutshell, every trait is type-checked using a judgment which lists the
signatures of methods that are required in order to complete the missing behavior of the trait itself.

An example of what traits can look like is

trait TA {String p(){return this.r()+this.s()+this.q();}

String s(){return ‘Java’;} String r() String q()}

trait TB {String r(){return ‘Hallo World, my name is’;}

String s(){return ‘FeatherTrait Java’;};}

Traits TA and TB are type-checked only once, thus could be compiled in isolation; trait TA “defines” method s,
and method p which “requires” methods r and q (declared as interfaces). They can be both imported in a class
declaration as follows

class Presentation extends Object imports TA TB

{;Presentation(){super();}

String ciao(){return this.p();}

String s(){return ‘FeatherTrait Java with Interfaces,’;}

String q(){return ‘I hope you will like me’;}}

Multiple traits can be imported by one class, and conflicts between common methods, defined in two or more
inherited traits, must be resolved explicitly by the user, either by aliasing or excluding method names in traits,
or by overriding the conflicted methods in the class that imports those traits or in the trait itself. As such, the
evaluation of (new Presentation()).ciao() will produce
“Hallo World, my name is FeatherTrait Java with Interfaces, I hope you will like me”.

The results have been published in [17], [16], and those papers are subject of study in the 21h CM course
module called Systèmes à objets given by Luigi Liquori in winter 08 to the ENS Lyon students.

6.11. iRho: An Imperative Rewriting-calculus
Participants: Luigi Liquori, Bernard Serpette.

Although rewriting-based languages are less popular than object-oriented languages such as Java, C#, etc., for
ordinary programming, they can serve as common typed intermediate languages for implementing compilers
for rewriting-based, functional, object-oriented, logic, and other high-level modern languages.

Pattern-matching has been widely used in functional and logic programming (ML, Haskell, Scheme, Curry, or
Prolog); it is generally considered to be a convenient mechanism for expressing complex requirements about
the function’s argument, rather than a basis for an ad hoc paradigm of computation.

One of the main advantages of rewriting-based languages is pattern-matching which allows one to discriminate
between alternatives. These languages permit non-determinism in the sense that they can represent a collection
of results. That is, pattern-matching need not be exclusive, multiple branches can be “fired” simultaneously.
An empty collection of results represents an application failure, a singleton represents a deterministic result,
and a collection with more than one element represents a non-deterministic choice in the collection.

Team LogNet 33

The Rewriting-calculus (Rho) [29], [30], [31], [32] integrates matching, rewriting, and functions in a uniform
way; its abstraction mechanism is based on rewrite rule formation: in a term of the form P → A, one abstracts
over all the free variables of the pattern P (instead over a simple variable as in the Lambda-calculus). The
Rewriting-calculus is a generalization of the Lambda-calculus since one may choose the pattern P to be a
variable. If an abstraction P → A is applied to the term B, then the evaluation mechanism is based on (1)
bind the free variables present in P to appropriate subterms of B to build a substitution θ, and (2) apply
θ to A. Indeed, this binding is achieved by matching P against B. In rewriting-based languages, pattern-
matching can be “customizable” with more sophisticated matching theories, e.g. building-in associativity
and/or commutativity of equality.

The original Rho calculus is computationally complete, and, thanks to pattern-matching, Lambda-calculus and
fixed-points can be encoded and type-checked by using ad hoc patterns. In fact, Rho is a direct generalization
of the core of a typed (rewriting-based and functional) programming language (of the ML∪Elan family) in
which, roughly speaking, an ML-like let becomes by default a let rec, by abstracting over a suitable pattern P ;
through pattern-matching, one can type-check many divergent terms (like Ω).

Table 1. Accessors and Destructors in Rho/Lambda Calculi
ops/form Rho-calculus Lambda-calculus

cons X → Y → (cons X Y) λX. λY. λZ.Z X Y
car (cons X Y) → X λZ.Z (λX. λY.X)
cdr (cons X Y) → Y λZ.Z (λX. λY. Y)

One of the main features of the Rewriting-calculus is that it can deal with structuring and destructuring
structures, like lists (we record only the names of the constructor and we discard those of the accessors).
Since structures are built into the calculus, it follows that the encoding of constructor/accessors is simpler
than the standard encoding in the Lambda-calculus. The Table 1 informally compares the untyped encoding
of accessors in the two formalisms.

We presents the first version of the Imperative Rewriting-calculus (iRho), an extension of Rho with references,
memory allocation, and assignment à la ML. To our knowledge, no similar study exists in the literature. The
iRho-calculus is a powerful calculus, both at the syntactic and at the semantic level. It includes all the features
of functional/rewriting-based languages with imperative aspects and pattern-matching facilities.

The controlled use of references, in the style of the ML language also gives the user the programming ease and
expressiveness that might not a priori be expected from such a simple calculus.

The crucial ingredients of iRho are the combination of (i) modern and safe imperative features, which give
full control over the internal data-structure representation, and of (ii) “matching power”, which provides the
main Lisp-like operations, like cons/car/cdr. The language iRho provides a good theoretical foundation for
an emerging family of languages combining rewriting, functions, and patterns with semi-structured XML-data
or combining object-orientation and patterns with semi-structured data.

With this goal in mind we have encoded in Coq the static and dynamic semantics of iRho. All subtle aspects,
which are usually “swept under the rug” on the paper, are here highlighted by the rigid discipline imposed
by the Logical Framework of Coq. This process has often influenced the design of the semantics. The
continuous interplay of mathematics and manual (i.e., pen and paper) vs. mechanical proofs, and prototype
implementations using high-level languages such as Scheme (and back) has been fruitful since the very
beginning of our project. Although our calculus is rather simple, we expect to scale-up to larger projects,
such as the certified implementation of compilers for a programming language of the C family.

Therefore, the main contributions of this research are:

• We provide a typed framework that enhances the functional language Rho, with imperative features
like referencing, dereferencing, and assignment operators, and

• we enrich the type system with dereferencing-types and product-types. The resulting calculus iRho
is a good candidate for giving a semantics to a family of functional, rewriting, and logic languages.

34 Activity Report INRIA 2008

This result has been published in [15]. See the web page http://www-sop.inria.fr/members/Luigi.Liquori/iRho/
index.html.

7. Other Grants and Activities

7.1. Regional Initiatives
7.1.1. PhD Grants PACA

Participant: Francesco Bongiovanni.

A Bourses Doctorales cofinancées Région-Europe Organismes de recherche (BDO) has been founded by the
region PACA for the period 2008-2011. The thesis title is Self-organizing overlay networks and generic
overlay computing systems.

7.2. National Initiatives
7.2.1. ANR blanc STAMP, 2007-2010

Participants: Didier Parigot, Ayoub Ait Lahcen [U. Rabat, Morocco and INRIA].

The overall objective of this ANR is to overcome present limitations of dynamic landscape model-
ing. The objective pursued by Didier Parigot is to explore new spatial and temporal primitives and the
potential benefits that recent advances in Model-Driven Engineering can bring into the field of land-
scape studies. This should help to build concepts that will be formalized into domain-specific languages
applicable to a wide range of landscape dynamics. See the web page http://tetis.teledetection.fr/index.
php?option=com_content&task=view&id=421&Itemid=121.

A Ph.D. student will start his thesis on this topic on January 2009.

7.3. European Initiatives
7.3.1. Ph.D. Exchanges founded by Italian Research Founding Agency

Participant: Luigi Liquori.

Internazionalizzazione del Sistema Universitario, a common joint PhD project between the University of
Udine, Siena, Pise (Italie), Valencia (Espagne), UNSA, Hyderabad (Inde). The project is founded by the Italian
Ministry of Research and Education.

7.3.2. FP6 FET Global Computing: IST AEOLUS, 2005-2009
Participant: Luigi Liquori.

Algorithmic principles for building efficient overlay computers, in collaboration with 21 European universities
and coordinated by University of Patras, Greece. LogNet participate to the package 2 (Resource management)
and to the package 2 (Extending global computing to wireless users). See also LogNet highlights.

7.3.3. FP6 TEMPUS, 2007-2009
Participants: Luigi Liquori, Petar Maksimovic, Bojan Marinkovic [Math. Institute of Belgrade, Serbia].

Doctoral School Towards European Knowledge Society. Main aim of this Project, in collaboration with
6 European universities, is to promote the current European landscape of doctoral programmes in Serbia.
Particularly, the Project will develop and implement a pilot Doctoral Programme according to the European
innovative recommendations with comprehensive approach to information technologies, where foundational
theories are fully integrated in a pragmatic engineering approach. LogNet is the head of the French chapter.

http://www-sop.inria.fr/members/Luigi.Liquori/iRho/index.html
http://www-sop.inria.fr/members/Luigi.Liquori/iRho/index.html
http://tetis.teledetection.fr/index.php?option=com_content&task=view&id=421&Itemid=121
http://tetis.teledetection.fr/index.php?option=com_content&task=view&id=421&Itemid=121
http://tetis.teledetection.fr/index.php?option=com_content&task=view&id=421&Itemid=121

Team LogNet 35

A Ph.D. student started his thesis on co-tutelle with the University of Novi Sad, and another Ph.D. will be
visiting us during 2009. LogNet will be in charge to organize in 2009 the third training meeting in France.

7.4. Visitors
7.4.1. IN

• Giovanni Chiola, professor, U. Genova, 1 dd

• Marina Ribaudo, professor, U. Genova, 1 dd

• Matteo dell’Amico, Ph.D., U. Genova, now Post Doc Eurecom, 1 dd

• Mariangiola Dezani Ciancaglini, professor, U. Torino, 1 dd

• Luca Paolini, researcher, U. Torino, 1 dd

7.4.2. OUT
Luigi Liquori visited the following sites:

• Carnegie Mellon University CMU, Campus Qatar, 2 dd

• U. Roma 2, Italy, 1 dd

• CITI lab, Lyon, 2 dd

• LIG U. Grenoble, 2 dd

• INRIA Grenoble, 2dd

• INRIA Nancy Grand Est, 2 dd

• U. Paris 7, 5 dd

• U. Paris 12, 1 dd

8. Dissemination

8.1. Participation in committees
• Luigi Liquori is member of the Commission de Spécialistes de la 27e section CNU of the University

of Nice Sophia Antipolis.

• Luigi Liquori is member of the Commission de Spécialistes de la 27e section CNU of the Ecole
Nationale Mines de Nancy.

• Luigi Liquori is member of the Commission de Spécialistes du jury CR2 INRIA Sophia Antipolis.

8.2. Workshop organization
Luigi Liquori was co-chair of the Workshop A journey through term rewriting and lambda-calculi, Colloquium
in Honor of Pierre Lescanne, see the web page http://www.loria.fr/equipes/cassis/PL60.

http://www.loria.fr/equipes/cassis/PL60

36 Activity Report INRIA 2008

8.3. Participation in conference committees
• Luigi Liquori is PC member of the Sixth International Workshop on Hot Topics in Peer-to-Peer

Systems HotP2P, 2009.

• Luigi Liquori is PC member of 3rd Conference on Algebra and Coalgebra in Computer Science,
CALCO 2009.

• Didier Parigot is member of the 9éme Colloque Africain sur la Recherche en Informatique et en
Mathématiques Appliquées, 2008.

• Cédric Tedeschi is PC member of the Eleventh International Symposium on Stabilization, Safety,
and Security of Distributed Systems, SSS 2009.

• Cédric Tedeschi is PC member of the the International Conference on Computational Science, ICCS
2009.

8.4. Theses
The following theses are in preparation:

• Francesco Bongiovanni: Self-organizing overlay networks and generic overlay computing systems,
since October 2008.

• Ayoub Ait Lahcen: Primitives spatiales, temporelles et multi échelles pour la modélisation des
paysages dynamiques, since January 2009.

• Petar Macsimovic: Dealing with uncertain knowledge in Logical Framework, since December 2008.

8.5. Referees
• Luigi Liquori was a referee of the PhD thesis of Cédric Tedeschi.

• Luigi Liquori was a referee for the 10th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming.

• Luigi Liquori was a referee for the 19th International Conference on Rewriting Techniques and
Applications.

• Luigi Liquori was a referee for the Quatriémes Journées Francophones de Programmation par
Contraintes.

• Didier Parigot was a referee of the PhD thesis of Gautier Loyauté.

8.6. Teaching
• Luigi Liquori gave a course on Systèmes à objets, 21h CM, Master, Ens-Lyon.

• Luigi Liquori gave a 12,5 TD course on Peer to peer, Master 2 UNSA.

• Didier Parigot gave a 2h CM course on Service Oriented Architecture, Master 2 UNSA.

8.7. Invited talks
• Luigi Liquori presented Toward Self-organizing Overlay Networks and Programmable Overlay

Computing Systems to the Carnegie Mellon University - Qatar (CMU-Q).

8.8. Participation in scientific meetings
• Luigi Liquori participated to the AEOLUS implementation meeting in Rome, Italy.

• Luigi Liquori participated to the AEOLUS preparation meeting in Athens, Greece.

• Luigi Liquori participated to the AEOLUS third year evaluation in Barcelone, Spain.

Team LogNet 37

• Luigi Liquori participated to the DEUKS second training meeting in Valencia, Spain.

8.9. Participation in conferences
• Luigi Liquori presented A Conditional Logical Framework, to the International Conferences on

Logic for Programming, Artificial Intelligence and Reasoning, LPAR 08, Doha, Qatar.

• Baptiste Boussemart and Didier Parigot presented the SmartTools Factory at Salon Linux, Paris.

• Didier Parigot presented the SmartTools Software Factory at EclipseCon 08, Santa-Clara, USA.

8.10. Spare presentations
• Luigi Liquori presented the LogNet team to the first INRIA-SAP Collaboration workshop.

• Luigi Liquori presented the LogNet team to a Chinese delegation (National University of Defense
Technology, East China Normal University).

• Luigi Liquori and Didier Parigot presented the LogNet team to the ENS Lyon’s students.

• Luigi Liquori and Didier Parigot presented the LogNet team to the Marseille Master’s students.

9. Bibliography
Major publications by the team in recent years

[1] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, in "JVA, John Vincent Atanasoff International Symposium on Modern Computing", IEEE, 2006,
p. 82–91.

[2] R. CHAND, M. COSNARD, L. LIQUORI. Resource Discovery in the Arigatoni Overlay Network, in "I2CS,
International Workshop on Innovative Internet Community Systems", Lecture Notes in Computer Science,
Springer-Verlag, 2006.

[3] R. CHAND, M. COSNARD, L. LIQUORI. Powerful resource discovery for Arigatoni overlay network, in "Future
Generation Computer Systems", vol. 1, no 21, 2008, p. 31–38.

[4] R. CHAND, L. LIQUORI, M. COSNARD. Improving Resource Discovery in the Arigatoni Overlay Network,
in "ARCS, International Conference on Architecture of Computing Systems", Lecture Notes in Computer
Science, vol. 4415, Springer-Verlag, 2007, p. 98-111.

[5] M. COSNARD, L. LIQUORI, R. CHAND. Virtual Organizations in Arigatoni, in "DCM, International Workshop
on Developpment in Computational Models. Electr. Notes Theor. Comput. Sci.", vol. 171, no 3, 2007.

[6] C. COURBIS, P. DEGENNE, A. FAU, D. PARIGOT. Un modèle abstrait de composants adaptables, in "TSI",
vol. 23, no 2, 2004.

[7] C. COURBIS, D. PARIGOT. La programmation générative pour le développement d’applications : les apports
pour l’architecture, in "ICSSEA", 2003.

[8] L. LIQUORI, D. BORSETTI, C. CASETTI, C.-F. CHIASSERINI. An Overlay Architecture for Vehicular
Networks, in "IFIP Networking, International Conference on Networking", Lecture Notes in Computer
Science, vol. 4982, Springer-Verlag, 2008, p. 60–71.

38 Activity Report INRIA 2008

[9] L. LIQUORI, M. COSNARD. Logical Networks: Towards Foundations for Programmable Overlay Networks and
Overlay Computing Systems, in "TGC, Trustworthy Global Computing", Lecture Notes in Computer Science,
vol. 4912, Springer-Verlag, 2007, p. 90–107.

[10] L. LIQUORI, M. COSNARD. Weaving Arigatoni with a Graph Topology, in "ADVCOMP, International
Conference on Advanced Engineering Computing and Applications in Sciences", IEEE Computer Society
Press, 2007.

[11] P. NAIN, C. CASETTI, L. LIQUORI. A Stochastic Model of an Arigatoni Overlay Computer, Research Report,
no to be given, Politecnico di Torino, 2007.

[12] D. PARIGOT, C. COURBIS. Domain-Driven Development: the SmartTools Software Factory, Technical report,
no RR-5588, INRIA Sophia Antipolis, 2006.

[13] L. RIDEAU, B. P. SERPETTE, X. LEROY. Tilting at windmills with Coq: Formal verification of a compilation
algorithm for parallel moves, in "Journal on Automated Reasoning", vol. 40, no 4, 2008, p. 307–326.

Year Publications
Articles in International Peer-Reviewed Journal

[14] R. CHAND, M. COSNARD, L. LIQUORI. Powerful resource discovery for Arigatoni overlay network, in
"Future Generation Computer Systems", vol. 24, no 1, 2008, p. 31-38.

[15] L. LIQUORI, B. P. SERPETTE. iRho: An Imperative Rewriting-calculus, in "MSCS, Mathematical Structures
in Computer Science", vol. 18, no 3, 2008, p. 467-500.

[16] L. LIQUORI, A. SPIWACK. Extending FeatherTrait Java with Interfaces, in "TCS, Theoretical Computer
Science", Calculi, types and applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi
Della Rocca, vol. 398, no 1-3, 2008, p. 243–260.

[17] L. LIQUORI, A. SPIWACK. FeatherTrait: A Modest Extension of Featherweight Java, in "TOPLAS, ACM
Transaction on Programming Languages and Systems", vol. 30, no 2, 2008.

[18] L. RIDEAU, B. P. SERPETTE, X. LEROY. Tilting at windmills with Coq: Formal verification of a compilation
algorithm for parallel moves, in "Journal on Automated Reasoning", vol. 40, no 4, 2008, p. 307–326.

International Peer-Reviewed Conference/Proceedings

[19] F. HONSELL, M. LENISA, L. LIQUORI, I. SCAGNETTO. A Conditional Logical Framework, in "LPAR, Logic
for Programming, Artificial Intelligence, and Reasoning", Springer-Verlag, 2008, p. 143-157.

[20] L. LIQUORI, D. BORSETTI, C. CASETTI, C.-F. CHIASSERINI. An Overlay Architecture for Vehicular
Networks, in "Networking", vol. 4982, Springer, 2008, p. 60-71.

Workshops without Proceedings

[21] D. PARIGOT. SmartTools Software Factory, in "EclipseCon’08, Short talk", 2008, http://www.eclipsecon.org/
2008/?page=sub/&id=57.

http://www.eclipsecon.org/2008/?page=sub/&id=57
http://www.eclipsecon.org/2008/?page=sub/&id=57

Team LogNet 39

Scientific Books (or Scientific Book chapters)

[22] D. BORSETTI, C. CASETTI, C.-F. CHIASSERINI, L. LIQUORI. Content Discovery in Heterogeneous Mobile
Networks, in "Heterogeneous Wireless Access Networks: Architectures and Protocols", E. HOSSAIN (editor),
Springer-Verlag, 2008.

[23] E. CARON, F. DESPREZ, F. PETIT, C. TEDESCHI. DLPT: A P2P tool for Service Discovery in Grid
Computing, in "Handbook of Research on P2P and Grid Systems for Service-Oriented Computing: Models,
Methodologies and Applications", N. ANTONOPOULOS, G. EXARCHAKOS, M. LI, A. LIOTTA (editors), To
appear, IGI Global, 2009.

Other Publications

[24] L. LIQUORI, C. TEDESCHI, F. BONGIOVANNI. Babelchord: a Social Tower of DHT-based Overlay Networks,
Submitted, 2008.

[25] D. PARIGOT, B. P. SERPETTE. Qui séme la fonction, récolte le tuyau typé, accepted at JFLA’09, 2008.

References in notes

[26] A. AVRON, F. HONSELL, M. MICULAN, C. PARAVANO. Encoding Modal Logics in Logical Frameworks, in
"Studia Logica", vol. 60, no 1, 1998, p. 161-208.

[27] J. W. BACKUS. The IBM 701 Speedcoding System, in "J. ACM", vol. 1, no 1, 1954.

[28] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, Technical report, no 5805, INRIA, 2006.

[29] H. CIRSTEA, C. KIRCHNER, L. LIQUORI. Matching Power, in "RTA, International Conference on Rewriting
Techniques and Applications", Lecture Notes in Computer Science, vol. 2051, Springer-Verlag, 2001, p.
77–92, http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/rta-01.ps.gz.

[30] H. CIRSTEA, C. KIRCHNER, L. LIQUORI. The Rho Cube, in "FoSSaCS, International Conference on
Foundations of Software Science and Computation Structures", Lecture Notes in Computer Science, vol.
2030, Springer-Verlag, 2001, p. 168–183, http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/fossacs-
01.ps.gz.

[31] H. CIRSTEA, C. KIRCHNER, L. LIQUORI. Rewriting Calculus with(out) Types, in "WRLA, International
Workshop on Rewriting Logic and its Applications. Electr. Notes Theor. Comput. Sci.", vol. 71, 2002, http://
www-sop.inria.fr/members/Luigi.Liquori/PAPERS/wrla-02.ps.gz.

[32] H. CIRSTEA, L. LIQUORI, B. WACK. Rewriting Calculus with Fixpoints: Untyped and First-order Systems, in
"TYPES, International Workshop on Types for Proof and Programs", Lecture Notes in Computer Science, vol.
3085, Springer-Verlag, 2003, p. 147–161, http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/types-03.
ps.gz.

[33] C. COURBIS, P. DEGENNE, A. FAU, D. PARIGOT. Un modèle abstrait de composants adaptables, in "TSI",
vol. 23, no 2, 2004.

http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/rta-01.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/fossacs-01.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/fossacs-01.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/wrla-02.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/wrla-02.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/types-03.ps.gz
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/types-03.ps.gz

40 Activity Report INRIA 2008

[34] C. COURBIS, P. DEGENNE, A. FAU, D. PARIGOT, J. VARIAMPARAMBIL. Un modèle de composants pour
l’atelier de développement SmartTools, in "Systèmes à composants adaptables et extensibles", 2002.

[35] C. COURBIS, D. PARIGOT. La programmation générative pour le développement d’applications : les apports
pour l’architecture, in "ICSSEA", 2003.

[36] M. CRESSWELL, G. HUGHES. A companion to Modal Logic, Methuen, 1984.

[37] H. V. DANG. Transformation de l’Architecture Orientée Service de SmartTools (SOA) en des bundles OSGi,
Masters thesis, 2006.

[38] D. EPPSTEIN, Z. GALIL, G. ITALIANO. Dynamic graph algorithms, in "Handbook of Algorithms and Theory
of Computation", chap. 22, CRC Press, 1998.

[39] M. FIORE, J. HÄRRI, F. FILALI, C. BONNET. Vehicular Mobility Simulation for VANETs, in "Annual
Simulation Symposium", 2007, p. 301-309.

[40] R. HARPER, F. HONSELL, G. PLOTKIN. A Framework for Defining Logics, in "Journal of the ACM",
Preliminary version in proc. of LICS’87, vol. 40, no 1, 1993, p. 143–184.

[41] A. IGARASHI, B. PIERCE, P. WADLER. Featherweight Java: A Minimal Core Calculus for Java and GJ, in
"ACM TOPLAS", vol. 23, no 3, 2001, p. 396-450.

[42] L. LIQUORI. Peter, le langage qui n’existe pas ... (Peter, the language that do not exists ...), Habilitation Thesis,
INPL, 2007, http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/HDR-Liquori.pdf.

[43] M. OUAZARA. Architecture-Orientée-Services Appliquée à la construction de RCPs réparties, Masters thesis,
2007.

[44] D. PARIGOT, C. COURBIS. Domain-Driven Development: the SmartTools Software Factory, Technical report,
no RR-5588, INRIA Sophia Antipolis, 2006.

[45] D. PARIGOT. Software Factory on top of Eclipse: SmartTools, in "Eclipse Technology eXchange workshop",
may 2006.

[46] A. RAPOPORT. Mathematical models of social interaction, vol. II, John Wiley and Sons, 1963, p. 493–579.

[47] I. STOICA, R. MORRIS, D. KARGER, M. KAASHOEK, H. BALAKRISHNAN. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications., in "ACM SIGCOMM", 2001, p. 149-160.

[48] S. TEAM. SmartTools: Eclipse Plugin Factory, October 2007, http://www-sop.inria.fr/teams/lognet/
SmartTools/eclipse/index.html.

[49] W. M. P. VAN DER AALST, A. H. M. TER HOFSTEDE. YAWL: yet another workflow language, in "Information
System", vol. 30, no 4, 2005, p. 245-275.

http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/HDR-Liquori.pdf
http://www-sop.inria.fr/teams/lognet/SmartTools/eclipse/index.html
http://www-sop.inria.fr/teams/lognet/SmartTools/eclipse/index.html

Team LogNet 41

[50] J. VON NEUMANN. The Principles of Large-Scale Computing Machines, in "IEEE Ann. Hist. Comput.", vol.
10, no 4, 1988, p. 243–256.

