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2. Overall Objectives

2.1. Overall Objectives
The team MISTIS aims at developing statistical methods for dealing with complex problems or data. Our
applications consist mainly of image processing and spatial data problems with some applications in biology
and medicine. Our approach is based on the statement that complexity can be handled by working up from
simple local assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we focus on involve mixture models, Markov models,
and more generally hidden structure models identified by stochastic algorithms on one hand, and semi and
non-parametric methods on the other hand.

Hidden structure models are useful for taking into account heterogeneity in data. They concern many areas
of statistical methodology (finite mixture analysis, hidden Markov models, random effect models, ...). Due
to their missing data structure, they induce specific difficulties for both estimating the model parameters and
assessing performance. The team focuses on research regarding both aspects. We design specific algorithms for
estimating the parameters of missing structure models and we propose and study specific criteria for choosing
the most relevant missing structure models in several contexts.

Semi and non-parametric methods are relevant and useful when no appropriate parametric model exists for
the data under study either because of data complexity, or because information is missing. The focus is on
functions describing curves or surfaces or more generally manifolds rather than real valued parameters. This
can be interesting in image processing for instance where it can be difficult to introduce parametric models
that are general enough (e.g. for contours).
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3. Scientific Foundations
3.1. Mixture models

Keywords: EM algorithm, clustering, conditional independence, missing data, mixture of distributions,
statistical pattern recognition, unsupervised and partially supervised learning.
Participants: Lamiae Azizi, Senan Doyle, Jean-Baptiste Durand, Florence Forbes, Gersende Fort, Stéphane
Girard, Vasil Khalidov.

In a first approach, we consider statistical parametric models, θ being the parameter possibly multi-
dimensional usually unknown and to be estimated. We consider cases where the data naturally divide into
observed data y = y1, ..., yn and unobserved or missing data z = z1, ..., zn. The missing data zi represents for
instance the memberships to one of a set of K alternative categories. The distribution of an observed yi can be
written as a finite mixture of distributions,

f(yi | θ) =
K∑

k=1

P (zi = k | θ)f(yi | zi, θ) . (1)

These models are interesting in that they may point out an hidden variable responsible for most of the
observed variability and so that the observed variables are conditionally independent. Their estimation is often
difficult due to the missing data. The Expectation-Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. It provides parameters estimation but
also values for missing data.

Mixture models correspond to independent zi’s. They are more and more used in statistical pattern recognition.
They allow a formal (model-based) approach to (unsupervised) clustering.

3.2. Markov models
Keywords: Bayesian inference, EM algorithm, Markov properties, clustering, conditional independence,
graphical models, hidden Markov field, hidden Markov trees, image analysis, missing data, mixture of dis-
tributions, selection and combination of models, statistical learning, statistical pattern recognition, stochastic
algorithms.
Participants: Lamiae Azizi, Senan Doyle, Jean-Baptiste Durand, Florence Forbes, Gersende Fort, Vasil
Khalidov.

Graphical modelling provides a diagrammatic representation of the logical structure of a joint probability
distribution, in the form of a network or graph depicting the local relations among variables. The graph
can have directed or undirected links or edges between the nodes, which represent the individual variables.
Associated with the graph are various Markov properties that specify how the graph encodes conditional
independence assumptions.

It is the conditional independence assumptions that give the graphical models their fundamental modular
structure, enabling computation of globally interesting quantities from local specifications. In this way
graphical models form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields. The
specificity of Markovian models is that the dependencies between the nodes are limited to the nearest neighbor
nodes. The neighborhood definition can vary and be adapted to the problem of interest. When parts of the
variables (nodes) are not observed or missing, we refer to these models as Hidden Markov Models (HMM).
Hidden Markov chains or hidden Markov fields correspond to cases where the zi’s in (1) are distributed
according to a Markov chain or a Markov field. They are natural extension of mixture models. They are widely
used in signal processing (speech recognition, genome sequence analysis) and in image processing (remote
sensing, MRI, etc.). Such models are very flexible in practice and can naturally account for the phenomena to
be studied.
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They are very useful in modelling spatial dependencies but these dependencies and the possible existence of
hidden variables are also responsible for a typically large amount of computation. It follows that the statistical
analysis may not be straightforward. Typical issues are related to the neighborhood structure to be chosen
when not dictated by the context and the possible high dimensionality of the observations. This also requires
a good understanding of the role of each parameter and methods to tune them depending on the goal in mind.
As regards, estimation algorithms, they correspond to an energy minimization problem which is NP-hard and
usually performed through approximation. We focus on a certain type of methods based on the mean field
principle and propose effective algorithms which show good performance in practice and for which we also
study theoretical properties. We also propose some tools for model selection. Eventually we investigate ways
to extend the standard Hidden Markov Field model to increase its modelling power.

3.3. Functional Inference, semi and non-parametric methods
Keywords: dimension reduction, extreme value analysis, functional estimation.

Participants: Caroline Bernard-Michel, Laurent Gardes, Stéphane Girard, Alexandre Lekina, Mathieu Fauvel.

We also consider methods which do not assume a parametric model. The approaches are non-parametric
in the sense that they do not require the assumption of a prior model on the unknown quantities. This
property is important since, for image applications for instance, it is very difficult to introduce sufficiently
general parametric models because of the wide variety of image contents. Projection methods are then a way
to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel methods which rely on
smoothing the data using a set of kernels (usually probability distributions), are other examples. Relationships
exist between these methods and learning techniques using Support Vector Machine (SVM) as this appears
in the context of level-sets estimation, see section 3.3.2. Such non-parametric methods have become the
cornerstone when dealing with functional data [46]. This is the case for instance when observations are
curves. They allow to model the data without a discretization step. More generally, these techniques are
of great use for dimension reduction purposes (section 3.3.3). They permit to reduce the dimension of
the functional or multivariate data without assumptions on the observations distribution. Semi-parametric
methods refer to methods that include both parametric and non-parametric aspects. Examples include the
Sliced Inverse Regression (SIR) method [51] which combines non-parametric regression techniques with
parametric dimension reduction aspects. This is also the case in extreme value analysis [45], which is based
on the modelling of distribution tails, see section 3.3.1. It differs from traditionnal statistics which focus on
the central part of distributions, i.e. on the most probable events. Extreme value theory shows that distributions
tails can be modelled by both a functional part and a real parameter, the extreme value index.

3.3.1. Modelling extremal events
Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of probability
distributions. More specifically, it focuses on the limiting distributions for the minimum or the maximum of
a large collection of random observations from the same arbitrary distribution. Let X1,n ≤ ... ≤ Xn,n denote
n ordered observations from a random variable X representing some quantity of interest. A pn-quantile of
X is the value xpn such that the probability that X is greater than xpn is pn, i.e. P (X > xpn) = pn. When
pn < 1/n, such a quantile is said to be extreme since it is usually greater than the maximum observation Xn,n

(see Figure 1).

To estimate such quantiles requires therefore dedicated methods to extrapolate information beyond the
observed values of X . Those methods are based on Extreme value theory. This kind of issues appeared in
hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting from
flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)
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Figure 1. The curve represents the survival function x → P (X > x). The 1/n-quantile is estimated by the
maximum observation so that x̂1/n = Xn,n. As illustrated in the figure, to estimate pn-quantiles with pn < 1/n, it

is necessary to extrapolate beyond the maximum observation.

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function `(x) acts as
a nuisance parameter which yields a bias in the classical extreme-value estimators developped so far. Such
models are often refered to as heavy-tail models since the probability of extreme events decreases at a
polynomial rate to zero. More generally, the problems that we address are part of the risk management theory.
For instance, in reliability, the distributions of interest are included in a semi-parametric family whose tails
are decreasing exponentially fast. These so-called Weibull-tail distributions [10] are defined by their survival
distribution function:

P (X > x) = exp {−xθ`(x)}, x > x0 > 0. (3)

Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family. An
important part of our work consists in establishing links between models (2) and (3) in order to propose
new estimation methods. We also consider the case where the observations were recorded with a covariate
information. In this case, the extreme-value index and the pn-quantile are functions of the covariate. We
propose estimators of these functions by using a moving window approach.

3.3.2. Level sets estimation
Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology, one
is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
population. Points outside this bound are considered as outliers compared to the reference population. Level
sets estimation can be looked at as a conditional quantile estimation problem which permits to benefit from
a non-parametric statistical framework. In particular, boundary estimation, arising in image segmentation as
well as in supervised learning, is interpreted as an extreme level-set estimation problem. Level sets estimation
can also be formulated as a linear programming problem [11]. In this context, estimates are sparse since they
involve only a small fraction of the dataset, called the set of support vectors.
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3.3.3. Dimension reduction
Our work on high dimensional data imposes to face the curse of dimensionality phenomenon. Indeed, the
modelling of high dimensional data requires complex models and thus the estimation of high number of
parameters compared to the sample size. In this framework, dimension reduction methods aim at replacing
the original variables by a small number of linear combinations with as small as possible loss of information.
Principal Component Analysis (PCA) is the most widely used method to reduce dimension in data. However,
standard linear PCA can be quite inefficient on image data where even simple image distorsions can lead to
highly non linear data. Two directions are investigated. First, non-linear PCAs can be proposed, leading to
semi-parametric dimension reduction methods [50]. Another field of investigation is to take into account
the application goal in the dimension reduction step. One of our approaches is therefore to develop new
Gaussian models of high dimensional data for parametric inference [43]. Such models can then be used
in a Mixtures or Markov framework for classification purposes. Another approaches consists in combining
dimension reduction, regularization techniques and regression techniques to improve the Sliced Inverse
Regression method [51].

4. Application Domains

4.1. Image Analysis
Participants: Caroline Bernard-Michel, Senan Doyle, Mathieu Fauvel, Florence Forbes, Laurent Gardes,
Stéphane Girard, Vasil Khalidov.

As regards applications, several areas of image analysis can be covered using the tools developed in the team.
More specifically, we address in collaboration with team Lear issues about object and class recognition and
about the extraction of visual information from large image data bases. In collaboration with team Perception,
we also address various issues in computer vision involving Bayesian modelling and probabilistic clustering
techniques. Other applications in medical imaging are natural. We work more specifically on MRI data. We
also consider other statistical 2D fields coming from other domains such as remote sensing. Also, in the context
of the ANR MDCO project, see section 8.2, we work on hyperspectral multi-angle images.

4.2. Biology, Environment and Medicine
Participants: Lamiae Azizi, Senan Doyle, Florence Forbes, Laurent Gardes, Stéphane Girard, Vasil Khalidov,
Alexandre Lekina.

A second domain of applications concerns biomedical statistics and molecular biology. We consider the use
of missing data models in population genetics. We also investigate statistical tools for the analysis of bacterial
genomes beyond gene detection. Applications in agronomy and epidemiology are also considered. Finally, in
the context of the ANR VMC project, see section 8.2, we plan to study the uncertainties on the forecasting
and climate projection for Mediterranean high-impact weather events.

4.3. Reliability
Participants: Laurent Donini, Jean-Baptiste Durand, Laurent Gardes, Stéphane Girard.

Reliability and industrial lifetime analysis are applications developed through collaborations with the EDF
research department and the LCFR laboratory (Laboratoire de Conduite et Fiabilité des Réacteurs) of CEA
/ Cadarache. We also consider failure detection in print infrastructure through collaborations with Xerox,
Meylan and the CIFRE PhD thesis of Laurent Donini, co-advised by Jean-Baptiste Durand and Stéphane
Girard.
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5. Software

5.1. The HDDA and HDDC toolboxes
Participant: Stéphane Girard.

Joint work with: Charles Bouveyron (Université Paris 1) and Gilles Celeux (Select, INRIA). The High-
Dimensional Discriminant Analysis (HDDA) and the High-Dimensional Data Clustering (HDDC) toolboxes
contain respectively efficient supervised and unsupervised classifiers for high-dimensional data. These classi-
fiers are based on Gaussian models adapted for high-dimensional data [43]. The HDDA and HDDC toolboxes
are available for Matlab and are included into the software MixMod [42].

5.2. The Extremes freeware
Participants: Sophie Chopart, Laurent Gardes, Stéphane Girard.

Joint work with: Diebolt, J. (CNRS) and Garrido, M. (INRA Clermont-Ferrand).

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme quantile
estimation procedures and model selection methods. This software results from a collaboration with EDF
R&D. It is also a consequence of the PhD thesis work of Myriam Garrido [49]. The software is written
in C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments.
It can be downloaded at the following URL: http://mistis.inrialpes.fr/software/EXTREMES/. Recently, this
software has been used to propose a new goodness-of-fit test to the distribution tail. Besides, Sophie Chopart
has developed a new interface in C++. The software is now independent of Matlab.

5.3. The SpaCEM3 program
Participants: Sophie Chopart, Senan Doyle, Florence Forbes.

The SpaCEM3 (Spatial Clustering with EM and Markov Models) program replaces the former, still available,
SEMMS (Spatial EM for Markovian Segmentation) program developed with Nathalie Peyrard from INRA
Avignon.

SpaCEM3 proposes a variety of algorithms for image segmentation, supervised and unsupervised classification
of multidimensional and spatially located data. The main techniques use the EM algorithm for soft clustering
and Markov Random Fields for spatial modelling. The learning and inference parts are based on recent
developments based on mean field approximations. The main functionalities of the program include:

The former SEMMS functionalities, ie.

• Model based unsupervised image segmentation, including the following models: Hidden Markov
Random Field and mixture model;

• Model selection for the Hidden Markov Random Field model;

• Simulation of commonly used Hidden Markov Random Field models (Potts models).

• Simulation of an independent Gaussian noise for the simulation of noisy images.

And additional possibilities such as,

• New Markov models including various extensions of the Potts model and triplets Markov models;

• Additional treatment of very high dimensional data using dimension reduction techniques within a
classification framework;

• Models and methods allowing supervised classification with new learning and test steps.

http://mistis.inrialpes.fr/software/EXTREMES/
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The SEMMS package, written in C, is publicly available at: http://mistis.inrialpes.fr/software/SEMMS.html.
The SpaCEM3 written in C++ is available at http://spacem3.gforge.inria.fr. Sophie Chopart started working on
the initial version of the software and included a user interface and other improvements. Also we started adding
the possibility to deal with mixtures of Poisson distributions in particular in the context of our application to
epidemiology.

5.4. The FASTRUCT software
Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former Post-doctoral fellow in Mistis).

The FASTRUCT program is dedicated to the modelling and inference of population structure from genetic
data. Bayesian model-based clustering programs have gained increased popularity in studies of population
structure since the publication of the software STRUCTURE [53]. These programs are generally acknowl-
edged as performing well, but their running-time may be prohibitive. FASTRUCT is a non-Bayesian imple-
mentation of the classical model with no-admixture uncorrelated allele frequencies. This new program relies
on the Expectation-Maximization principle, and produces assignment rivaling other model-based clustering
programs. In addition, it can be several-fold faster than Bayesian implementations. The software consists of
a command-line engine, which is suitable for batch-analysis of data, and a MS Windows graphical interface,
which is convenient for exploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at http://mistis.inrialpes.fr/
realisations.html.

The functionalities are further described in the related publication:

• Molecular Ecology Notes 2006 [44].

5.5. The TESS software
Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former post-doctoral fellow in Mistis).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial population genetics.
Is it particularly useful for seeking genetic barriers or genetic discontinuities in continuous populations. The
method is based on a hierarchical mixture model where the prior distribution on cluster labels is defined as a
Hidden Markov Random Field [47]. Given individual geographical locations, the program seeks population
structure from multilocus genotypes without assuming predefined populations. TESS takes input data files
in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE). It returns graphical
displays of cluster membership probabilities and geographical cluster assignments from its Graphical User
Interface.

The functionalities and the comparison with three other Bayesian Clustering programs are specified in the
following publication:

• Molecular Ecology Notes 2007

6. New Results

6.1. Mixture models
6.1.1. Taking into account the curse of dimensionality.

Participant: Stéphane Girard.

Joint work with: Bouveyron, C (Université Paris 1) and Celeux, G. (Select, INRIA).

http://mistis.inrialpes.fr/software/SEMMS.html
http://spacem3.gforge.inria.fr
http://mistis.inrialpes.fr/realisations.html
http://mistis.inrialpes.fr/realisations.html
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In the PhD work of Charles Bouveyron (co-advised by Cordelia Schmid from the INRIA team LEAR) [43],
we propose new Gaussian models of high dimensional data for classification purposes. We assume that the
data live in several groups located in subspaces of lower dimensions. Two different strategies arise:

• the introduction in the model of a dimension reduction constraint for each group,

• the use of parsimonious models obtained by imposing to different groups to share the same values
of some parameters.

This modelling yields a new supervised classification method called HDDA for High Dimensional Discrimi-
nant Analysis [3]. Some versions of this method have been tested on the supervised classification of objects in
images. This approach has been adapted to the unsupervised classification framework, and the related method
is named HDDC for High Dimensional Data Clustering [2]. In collaboration with Gilles Celeux and Charles
Bouveyron we are currently working on the automatic selection of the discrete parameters of the model.
Another part of the work of Charles Bouveyron and Stéphane Girard consists in extending this case to the
semi-supervised context or to the presence of label noise.

6.1.2. Audio-visual object localization using binaural and binocular cues
Participants: Florence Forbes, Vasil Khalidov.

Joint work with: Arnaud, E., Hansard, M., Horaud, R. and Narasimha, R. from the INRIA team Perception.

This work takes place in the context of the POP European project (see Section 8.3) and includes further
collaborations with researchers from University of Sheffield, UK. The context is that of multi-modal sensory
signal integration. We focus on audio-visual integration. Fusing information from audio and video sources
has resulted in improved performance in applications such as tracking. However, crossmodal integration
is not trivial and requires some cognitive modelling because at a lower level, there is no obvious way to
associate depth and sound sources. Combining expertise from team Perception and University of Sheffield,
we address the difficult problems of integrating spatial and temporal audio-visual stimuli using a geometrical
and probabilistic framework and attack the problem of associating sensorial descriptions with representation
of prior knowledge.
Geometric and probabilistic fusion of spatial visual and auditory cues. We first explain how we can
combine spatial visual and auditory cues in a geometric and probabilistic framework. This is done in order
to address the issues of detecting and localizing objects in a scene that are both seen and heard. To do so,
we used binaural and binocular sensors for gathering auditory and visual observations. It is shown that the
detection and localization problem can be recast as the task of clustering the audio-visual observations into
coherent groups. The proposed probabilistic generative model captures the relations between audio and visual
observations. This model maps the data into a common audio-visual 3D representation via a pair of mixture
models. The statistical method of choice for solving this problem is cluster analysis. We rely on low-level audio
and video features which makes our model more general and less dependent on supervised learning techniques,
such as face and speech detectors. The input data consists of M visual observations f = {f1, ..., fm, ..., fM} ,
and K auditory observations g = {g1, ..., gk, ..., gK}. This data is recorded over a time interval [t1, t2], which
is short enough to ensure that the audio-visual (AV) objects responsible for f and g are effectively stationary
in space. Then we address the estimation of the AV object sites S = {s1, ..., sn, ..., sN}, where each sn is
described by its 3D coordinates (xn, yn, zn)T . Note that in general N is unknown. A visual observation fm is
a 3D binocular coordinate (um, vm, dm)T , where u and v denote the 2D location in the Cyclopean image. The
scalar d denotes the binocular disparity at (u, v)T . Hence, Cyclopean coordinates (u, v, d)T are associated
with each point s = (x, y, z)T in the visible scene. We define a function F : R3 → R3 that maps S onto f . An
auditory observation gk is represented by an auditory disparity, namely the interaural time difference, or ITD.
To relate a location to an ITD value we define a function G : R3 → R that maps S on g. Given an observed
ITD we can deduce the surface that should contain the source.
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We address the problem of AV localization in the framework of unsupervised clustering. The rationale is
that observations form groups that correspond to the different AV objects in the scene. So the problem is
recast as a clustering task: an assignment of each observation to one of the clusters should be performed
as well as the estimation of cluster parameters, which include the N 3D positions sn of AV objects. To
account for the presence of observations that are not related to any AV object, we introduce an additional
background (outlier) class. Because of the different nature of the observations, clustering is performed via
two mixture models respectively in the audio (1D) and video (3D) observation spaces, subject to the common
parametrization provided by the positions sn. The next step is to devise a procedure that finds the best values
for the assignments and for the parameters. One possibility is to use a version of the EM algorithm, as it is
explained below.

Development of statistical methods for cross-modal integration. Given the probabilistic model defined
above, we wish to determine the AV objects that generated the visual and auditory observations, that is to
derive values of assignment vectors together with the AV object position vectors S (which are part of our
model unknown parameters). Direct maximum likelihood estimation of mixture models is usually difficult,
due to the missing assignments. The Expectation Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. In our specific context, difficulties arise
from the fact that it is necessary to perform simultaneous optimization in two different observation spaces,
auditory and visual. It involves solving a system of non-linear equations which does not yield a closed form
solution and the traditional EM algorithm cannot be performed. As an alternative, we considered instances of
the Generalized EM (GEM) algorithm which is more flexible and provided good results in our experiments.
This work has been published in the ICMI’08 conference [36] where more details as well as experiments can
be found.

6.2. Markov models
6.2.1. Cooperative clustering

Participant: Florence Forbes.

Joint work with: Scherrer, B. and Dojat, M (Grenoble Institute of Neuroscience).

Clustering is a fundamental data analysis step that consists in producing a partionning of the individuals to
account for the groups existing in the observed data. In this paper, we introduce an additional cooperative
aspect and propose a framework for more general tasks. We address cases in which the goal is to produce not
a single partionning but two or more partionnings using cooperation between them. Cooperation is expressed
by assuming the existence of two sets of missing assignment variables, representing two sets of labels which
are not independent but related in the sense that information on one of them is useful to find the other one.
We consider non trivial situations in which Markov random field models are used to deal with additional
interactions including dependencies between labels within each label sets. We show that our cooperative
setting can be formulated in terms of conditional models and propose then to simplify inference into alternating
and cooperative estimation procedures based on variants of the Expectation Maximization (EM) algorithm. We
illustrate the advantages of our approach by showing its ability to deal successfully with the complex task of
segmenting simultaneously and cooperatively tissues and structures from MRI brain scans. In particular this
framework is used in the work described in the next section.

6.2.2. Fully Bayesian Joint Model for MR Brain Scan Tissue and Structure Segmentation
Participant: Florence Forbes.

Joint work with: Scherrer, B., Dojat, M. (Grenoble Institute of Neuroscience) and Garbay, C. (LIG).
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Difficulties in automatic MR brain scan segmentation arise from various sources. The nonuniformity of image
intensity results in spatial intensity variations within each tissue, which is a major obstacle to an accurate
automatic tissue segmentation. The automatic segmentation of subcortical structures is a challenging task as
well. It cannot be performed based only on intensity distributions and requires the introduction of a priori
knowledge. Most of the proposed approaches share two main characteristics. First, tissue and subcortical
structure segmentations are considered as two successive tasks and treated relatively independently although
they are clearly linked: a structure is composed of a specific tissue, and knowledge about structures locations
provides valuable information about local intensity distribution for a given tissue. Second, tissue models are
estimated globally through the entire volume and then suffer from imperfections at a local level. Alternative
local procedures exist but are either used as a preprocessing step or use redundant information to ensure
consistency of local models. Recently, we reported good results using an innovative local and cooperative
approach [54]. It performs tissue and subcortical structure segmentation by distributing through the volume a
set of local Markov Random Field (MRF) models which better reflect local intensity distributions. Local MRF
models are used alternatively for tissue and structure segmentations. Although satisfying in practice, these
tissue and structure MRF’s do not correspond to a valid joint probabilistic model and are not compatible in that
sense. As a consequence, important issues such as convergence or other theoretical properties of the resulting
local procedure cannot be addressed. In addition, in [54], cooperation mechanisms between local models are
somewhat arbitrary and independent of the MRF models themselves. Our contribution [38] is then to propose a
fully Bayesian framework in which we define a joint model that links local tissue and structure segmentations
but also the model parameters so that both types of cooperations, between tissues and structures and between
local models, are deduced from the joint model and optimal in that sense. Our model has the following main
features: 1) cooperative segmentation of both tissues and structures is encoded via a joint probabilistic model
specified through conditional MRF models which capture the relations between tissues and structures. This
model specifications also integrate external a priori knowledge in a natural way; 2) intensity nonuniformity
is handled by using a specific parametrization of tissue intensity distributions which induces local estimations
on subvolumes of the entire volume; 3) global consistency between local estimations is automatically ensured
by using a MRF spatial prior for the intensity distributions parameters. Estimation within our framework is
defined as a Maximum A Posteriori (MAP) estimation problem and is carried out by adopting an instance of
the Expectation Maximization (EM) algorithm. We show that such a setting can adapt well to our conditional
models formulation and simplifies into alternating and cooperative estimation procedures for standard Hidden
MRF models. The approach is implemented using a multi-agent framework where each agent computes a local
MRF model and cooperates with its neighboring agents for model refinement. The evaluation performed using
a previously linearly registered atlas of 17 structures show good results. An illustration is given in Figure 2.

(a) (b) (c) (d)

Figure 2. Real 3T brain scan (a). Images (b) and (c): structure segmentation by our method and corresponding
improved tissue segmentation. Image (d): 3-D reconstruction of the 17 segmented structures: the two lateral

ventricules, caudates, accumbens, putamens, thalamus, pallidums, hippocampus, amygdalas and the brain stem.
The computational time was < 15min after the registration step.

6.2.3. Brain lesions segmentation from multiple MR sequences
Participants: Florence Forbes, Senan Doyle.
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Joint work with: Scherrer, B. Dojat, M. (Grenoble Institute of Neuroscience) and Garbay, C. (LIG).

The analysis of MR brain scans is a complex task that is further complicated if the observed data are themselves
multi-dimensional as it is the case when several MR channels can provide complementary information and
are considered simultaneously. Usually healthy subjects data do not address the same issues as pathological
data. This type of data rarely allows the use of automatic or generic approaches. Our goal is to extend our
current framework to MRIs with Multiple Sclerosis lesions and stroke lesions. We address the issue of fusing
the output of multiple MR sequences to robustly and accurately segment brain lesions. A key capability for
radiologists is to delineate lesions out from the rest of the brain tissues. To achieve this goal, radiologists make
usually use of multiple MR sequences. The use of multiple sequences not only provides more measurements
when segmenting the brain into regions, but crucially, different sequences may be complementary in that one
may succeed when another fails. To achieve the same goal automatically and robustly is not an easy task.
Overall system performance may be improved in two main ways, either by enhancing the processing of each
individual sequence, or by improving the scheme for integrating the information from the different sequences.
The contributions of this work concern the latter. We developed a model in which weights can be introduced to
account for the relative importance of each modality and propose a variant of the EM algorithm in a Bayesian
framework to estimate these weights iteratively and derive a segmentation of the lesions under consideration.
Promising results are observed on patients with Multiple Sclerosis lesions (see Figure 3).

Figure 3. Segmentation of MS lesions from 3 MR images. Our weighted EM procedure (last column) is able to
recover a large part of the lesions starting from an initial poor selected ROI (first column). The second and third

columns show that weighting is important and must be done adaptively.
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6.3. Semi and non-parametric methods
6.3.1. Modelling extremal events

Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Guillou, A. (Univ. Strasbourg), and Diebolt, J. (CNRS, Univ. Marne-la-vallée).

Our first achievement is the introduction of a new model of tail distributions depending on a function ϕ and
on an unknown parameter θ [40]. This model includes very different distribution tail behaviours from the
three classical maximum domains of attraction. In the particular cases of Pareto type tails or Weibull tails, our
estimators coincide with classical ones proposed in the literature, thus permitting to retrieve their asymptotic
normality in an unified way. Our second achievement is the development of new estimators dedicated to
Weibull-tail distributions (3): kernel estimators [19] and bias correction through exponential regression [16],
[17].

6.3.2. Conditional extremal events
Participants: Stéphane Girard, Laurent Gardes, Alexandre Lekina.

Joint work with: Amblard, C. (TimB in TIMC laboratory, Univ. Grenoble 1).

The goal of the PhD thesis of Alexandre Lekina is to contribute to the development of theoretical and
algorithmic models to tackle conditional extreme value analysis, ie the situation where some covariate
information X is recorded simultaneously with a quantity of interest Y . In such a case, the tail heaviness of Y
depends on X, and thus the tail index as well as the extreme quantiles are also functions of the covariate. We
combine nonparametric smoothing techniques [46] with extreme-value methods in order to obtain efficient
estimators of the conditional tail index [18] and conditional extreme quantiles [41]. Conditional extremes
are studied in climatology where one is interested in how climate change over years might affect extreme
temperatures or rainfalls. In this case, the covariate is univariate (the time). Bivariate examples include the
study of extreme rainfalls as a function of the geographical location. The application part of the study will
be joint work with the LTHE (Laboratoire d’étude des Transferts en Hydrologie et Environnement) located in
Grenoble.

More future work will include the study of multivariate extreme values. To this aim, a research on some
particular copulas [1],[11] has been initiated with Cécile Amblard, since they are the key tool for building
multivariate distributions [52].

6.3.3. Level sets estimation
Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Daouia, A. (Univ. Toulouse I), Jacob, P. and Menneteau, L. (Univ. Montpellier II).

The boundary bounding the set of points is viewed as the larger level set of the points distribution. This is
then an extreme quantile curve estimation problem. We propose estimators based on projection as well as on
kernel regression methods applied on the extreme values set [21], for particular set of points. Our work is
to define similar methods based on wavelets expansions in order to estimate non-smooth boundaries, and on
local polynomials estimators to get rid of boundary effects. Besides, we are also working on the extension
of our results to more general sets of points. To this end, we focus on the family of conditional heavy tails.
An estimator of the conditional tail index has been proposed [18] and the corresponding conditional extreme
quantile estimator has been derived [41]. This work has been initiated in the PhD work of Laurent Gardes [48],
co-directed by Pierre Jacob and Stéphane Girard and in [22] with the consideration of star-shaped supports.

6.3.4. Dimension reduction
Participants: Stéphane Girard, Laurent Gardes, Caroline Bernard-Michel, Mathieu Fauvel.
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To overcome the curse of dimensionality arising in high-dimensional regression problems, one way consists in
reducing the problem dimension. To this end, Sliced Inverse Regression (SIR) is an interesting solution. The
original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity
between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a
regularization technique has to be used. We thus develop a new approach [13], [12] based on a Fisher Lecture
given by R.D. Cook where it is shown that SIR axes can be interpreted as solutions of an inverse regression
problem. In this paper, a Gaussian prior distribution is introduced on the unknown parameters of the inverse
regression problem in order to regularize their estimation. We show that some existing SIR regularizations can
enter our framework, which permits a global understanding of these methods. Three new priors are proposed
leading to new regularizations of the SIR method.

This technique has been applied in particular in a collaboration with bioMerieux (see Section 7.1). We co-
advised the internship of Lamiae Azizi who applied SIR in the context of quantitation procedures developed
at bioMerieux.

6.3.5. Nuclear plants reliability
Participants: Laurent Gardes, Stéphane Girard.

Joint work with: Perot, N., Devictor, N. and Marquès, M. (CEA).

One of the main activities of the LCFR (Laboratoire de Conduite et Fiabilité des Réacteurs), CEA Cadarache,
concerns the probabilistic analysis of some processes using reliability and statistical methods. In this context,
probabilistic modelling of steels tenacity in nuclear plants tanks has been developed. The databases under
consideration include hundreds of data indexed by temperature, so that, reliable probabilistic models have
been obtained for the central part of the distribution. However, in this reliability problem, the key point is to
investigate the behaviour of the model in the distribution tail. In particular, we are mainly interested in studying
the lowest tenacities when the temperature varies (Figure 4).

Figure 4. Tenacity as a function of the temperature.

This work is supported by a research contract (from december 2008 to december 2010) involving MISTIS and
the LCFR.

6.3.6. Quantifying uncertainties on extreme rainfall estimations
Participants: Caroline Bernard-Michel, Laurent Gardes, Stéphane Girard.
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Joint work with: Molinié, G. from Laboratoire d’Etude des Transferts en Hydrologie et Environnement
(LTHE), France.

Extreme rainfalls are generally associated with two different precipitation regimes. Extreme cumulated rainfall
over 24 hours results from stratiform clouds on which the relief forcing is of primary importance. Extreme
rainfall rates are defined as rainfall rates with low probability of occurrence, typically with higher mean return-
levels than the maximum observed level. For example Figure 5 presents the return levels for the Cévennes-
Vivarais region. It is then of primary importance to study the sensitivity of the extreme rainfall estimation to
the estimation method considered. A preliminary work on this topic is available in [25]. MISTIS got a Ministry
grant for a related ANR project (see Section 8.2).
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Figure 5. Map of the mean return-levels (in mm) for a period of 10 years.

6.3.7. Retrieval of Mars surface physical properties from OMEGA hyperspectral images using
Regularized Sliced Inverse Regression.
Participants: Caroline Bernard-Michel, Mathieu Fauvel, Laurent Gardes, Stéphane Girard.

Joint work with: Douté, S. from Laboratoire de Planétologie de Grenoble, France in the context of the
VAHINE project (see Section 8.2).

Visible and near infrared imaging spectroscopy is one of the key techniques to detect, to map and to charac-
terize mineral and volatile (eg. water-ice) species existing at the surface of the planets. Indeed the chemical
composition, granularity, texture, physical state, etc. of the materials determine the existence and morphol-
ogy of the absorption bands. The resulting spectra contain therefore very useful information. Current imaging
spectrometers provide data organized as three dimensional hyperspectral images: two spatial dimensions and
one spectral dimension. Our goal is to estimate the functional relationship F between some observed spectra
and some physical parameters. To this end, a database of synthetic spectra is generated by a physical radiative
transfer model and used to estimate F . The high dimension of spectra is reduced by Gaussian regularized sliced
inverse regression (GRSIR) to overcome the curse of dimensionality and consequently the sensitivity of the in-
version to noise (ill-conditioned problems). This method is compared with the more classical SVM approach.
GRSIR has the advantage of being very fast, interpretable and accurate. Recall that SVM approximates the
functional F : y = F (x) using a solution of the form F (x) =

∑n
i=1 αi K(x, xi) + b, where xi are sam-

ples from the training set, K a kernel function and ((αi)
n
i=1, b) are the parameters of F which are estimated

during the training process. The kernel K is used to produce a non-linear function. The SVM training entails
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minimization of
[

1
n

∑`
i=1 l (F (xi), yi) + λ‖F‖2

]
with respect to ((αi)

n
i=1, b), and with l (F (x), y) = 0 if

|F (x)− y| ≤ ε and |F (x)− y| − ε otherwise. Prior to running the algorithm, the following parameters need
to be fitted: ε which controls the resolution of the estimation, λ which controls the smoothness of the solution
and the kernel parameters (γ for the Gaussian kernel).

6.3.8. Statistical analysis of hyperspectral multi-angular data from Mars
Participants: Caroline Bernard-Michel, Mathieu Fauvel, Florence Forbes, Laurent Gardes, Stéphane Girard.

Joint work with: Douté, S. from Laboratoire de Planétologie de Grenoble, France in the context of the
VAHINE project (see Section 8.2).

A new generation of imaging spectrometers is emerging with an additional angular dimension, in addition to
the three usual dimensions, two spatial dimensions and one spectral dimension. The surface of the planets will
now be observed from different view points on the satellite trajectory, corresponding to about ten different
angles, instead of only one corresponding usually to the vertical (0 degree angle) view point. Multi-angle
imaging spectrometers present several advantages: the influence of the atmosphere on the signal can be better
identified and separated from the surface signal on focus, the shape and size of the surface components and the
surfaces granularity can be better characterized. However, this new generation of spectrometers also results in
a significant increase in the size (several tera-bits expected) and complexity of the generated data. We started
to investigate the use of statistical techniques to deal with these generic sources of complexity in data beyond
the traditional tools in mainstream statistical packages.

Preliminary experiments carried out by Camille Neels during her 2 month internship in the team pointed out
that, previous to any classification task or other analyses, some pre-processing of the images was required.
We pointed out the existence in the data of a so-called spectral smile issue which we are currently trying to
correct. Spectral smile refers to an artefact commonly encountered in spectral images acquired with Push-
broom spectrometers. It is due to the fact that the wavelength-channel association is not constant across the
spatial dimension. Regarding classification tasks, it induces artificial inhomogeneities due to sampling issues.

7. Contracts and Grants with Industry

7.1. Contracts
We signed in december 2006 a three-year CIFRE contract with Xerox, Meylan, regarding the PhD work of
Laurent Donini about statistical techniques for mining logs and usage data in a print infrastructure. The thesis
is co-advised by Stéphane Girard and Jean-Baptiste Durand.

We developed a new collaboration with bioMerieux in Grenoble. We signed a 6 month contract including the
co-advising of Lamiae Azizi who was at that time doing an internship at bioMerieux.

We signed a 4 month contract with Veolia-eau in Lyon including the co-advising of Luce Ponsar hired by
Veolia for an internship. The goal was to study and possibly detect groups of individuals in time series
describing various quantities linked to water consumption and billing in the Lyon area.

8. Other Grants and Activities

8.1. Regional initiatives
MISTIS participates to the weekly statistical seminar of Grenoble, F. Forbes is one of the organizers and several
lecturers have been invited in this context.
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8.2. National initiatives
MISTIS got Ministry grants for two projects supported by the French National Research Agency (ANR):

• MDCO (Masse de Données et Connaissances) program. This three-year project is called "Visuali-
sation et analyse d’images hyperspectrales multidimensionnelles en Astrophysique" (VAHINE). It
aims at developing physical as well as mathematical models, algorithms, and software able to deal
efficiently with hyperspectral multi-angle data but also with any other kind of large hyperspectral
dataset (astronomical or experimental). It involves the Observatoire de la Côte d’Azur (Nice), and
several universities (Strasbourg I and Grenoble I). For more information please visit the associated
web site: http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php.

• VMC (Vulnérabilité : Milieux et climats) program. This three-year project is called "Forecast
and projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation
on environment" (MEDUP) and deals with the quantification and identification of sources of
uncertainties associated with the forecast and climate projection for Mediterranean high-impact
weather events. The propagation of these uncertainties on the environment is also considered, as
well as how they may combine with the intrinsic uncertainties of the vulnerability and risk analysis
methods. It involves Météo-France and several universities (Paris VI, Grenoble I and Toulouse III).
(http://www.cnrm.meteo.fr/medup/).

MISTIS is also involved into two projects in the Cooperative Research Initiative (ARC) program supported by
INRIA:

• The ChromoNet project is coordinated by Marie-France Sagot from team HELIX. It aims at the
computational inference and analysis of inter-chromosomal interaction networks. The additional
partners are the SSB (Statistiques des Séquences Biologiques) group at INRA and the Nuclear
Organisation team at MRC, Imperial College London.

• The SeLMIC project (http://r2-d2.ujf-grenoble.fr/selmic/doku.php) is coordinated by Florence
Forbes and aims at developping new statistical methods for the segmentation of multidimensional
MR sequences corresponding to different types of MRI modalities and longitudinal data. The ap-
plications include the detection of brain abnormalities and more specifically strokes and Multiple
Sclerosis lesions. The partners involved are team VisAGeS from INRIA Rennes, the INSERM Unit
U594 (Grenoble Institute of Neuroscience) and LIG.

8.3. International initiatives
8.3.1. Europe

F. Forbes and S. Girard are members of the Pascal Network of Excellence.

S. Girard is a member of the European project (Interuniversity Attraction Pole network) “Statistical techniques
and modelling for complex substantive questions with complex data”,
Web site : http://www.stat.ucl.ac.be/IAP/frameiap.html.

S. Girard has also joint work with Prof. A. Nazin (Institute of Control Science, Moscow, Russia).

MISTIS is involved in a European STREP proposal, named POP (Perception On Purpose) coordinated by
Radu Horaud from INRIA team Perception. The three-year project started in January 2006. Its objective is
to put forward the modelling of perception (visual and auditory) as a complex attentional mechanism that
embodies a decision taking process. The task of the latter is to find a trade-off between the reliability of
the sensorial stimuli (bottom-up attention) and the plausibility of prior knowledge (top-down attention). The
MISTIS part and in particular the PhD work of Vasil Kalidhov is to contribute to the development of theoretical
and algorithmic models based on probabilistic and statistical modelling of both the input and the processed
data. Bayesian theory and hidden Markov models in particular will be combined with efficient optimization
techniques in order to confront physical inputs and prior knowledge.

http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php
http://www.cnrm.meteo.fr/medup/
http://r2-d2.ujf-grenoble.fr/selmic/doku.php
http://www.stat.ucl.ac.be/IAP/frameiap.html
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The final review of the project was held on December 11 and 12, 2008 with in particular a live demo running
on the POP audio-visual head regarding multispeaker localisation using binoral and binocular cues. Further
details on the project web site http://perception.inrialpes.fr/POP/

8.3.2. North Africa
S. Girard has joint work with M. El Aroui (ISG Tunis).

8.3.3. North America
F. Forbes has joint work with C. Fraley and A. Raftery (Univ. of Washington, USA).

9. Dissemination

9.1. Leadership within scientific community
F. Forbes is member of the group in charge of incentive initiatives (GTAI) in the Scientific and Technological
Orientation Council (COST) of INRIA.

F. Forbes is part of an INRA (French National Institute for Agricultural Research) Network (MSTGA) on
spatial statistics.

She is also part of an INRA committee (CSS MBIA) in charge of evaluating INRA researchers once a year.

S. Girard is member of the committee in charge of examining applications to research scientist (CR) positions
at INRIA.

F. Forbes and S. Girard are members of the committees (Commissions de Spécialistes) in charge of examining
applications to Faculty member positions respectively at Institut Polytechnique de Grenoble (INPG) and at
University Pierre Mendes France (UPMF, Grenoble II) and University Montpellier II.

F. Forbes was involved in the PhD committee of Benoit Scherrer from INSERM and Grenoble Institut des
Neurosciences. The thesis title was "Segmentation des tissus et structures sur les IRM cerebrales: agents
markoviens locaux cooperatifs et formulation Bayesienne" and the defence held on December 12, 2008.

S. Girard was involved in the PhD commitee of Sonia Hedli-Griche from University Grenoble II "Estimation
de l’opérateur de régression pour des données fonctionnelles et des erreurs corrélées" (January 2008) and of
Matthieu Brucher from University Strasbourg I "Représentations compactes et apprentissage non supervisé de
variéés non linéaires. Applications au traitement d’image" (October 2008).

9.2. University Teaching
F. Forbes lectured a graduate course on the EM algorithm at Univ. J. Fourier, Grenoble I.

L. Gardes and M.J. Martinez are faculty members at Univ. P. Mendes-France.

L. Gardes and S. Girard lectured a graduate course on Extreme Value Analysis at Univ. J. Fourier, Grenoble I.

J.B. Durand is faculty member at INPG, Grenoble.
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