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2. Overall Objectives

2.1. Overall objectives
The research activities of the NACHOS project-team are concerned with the formulation, analysis and
evaluation of numerical methods and high performance resolution algorithms for the computer simulation
of evolution problems in complex domains and heterogeneous media. The team concentrates its activities
on mathematical models that rely on first order linear systems of partial differential equations (PDEs) with
variable coefficients and more particularly, PDE systems pertaining to electrodynamics and elastodynamics
with applications to computational electromagnetics and computational geoseismics. These applications
involve the interaction of the underlying physical fields with media exhibiting space and time heterogeneities
such as when studying the propagation of electromagnetic waves in biological tissues or the propagation
of seismic waves in complex geological media. Moreover, in most of the situations of practical relevance, the
computational domain is irregularly shaped or/and it includes geometrical singularities. Both the heterogeneity
and the complex geometrical features of the underlying media motivate the use of numerical methods working
on non-uniform discretizations of the computational domain. In this context, ongoing research efforts of the
team aim at the development of unstructured (or hybrid unstructured/structured) mesh based methods with
activities ranging from the mathematical analysis of numerical methods for the solution of the systems of
PDEs of electrodynamics and elastodynamics, to the development of prototype 3D simulation software that
efficiently exploit the capabilities of modern high performance computing platforms.

In the case of electrodynamics, the mathematical model of interest is the full system of unsteady Maxwell
equations [35] which is a first-order hyperbolic linear system of PDEs (if the underlying propagation media
is assumed to be linear). This system can be numerically solved using so-called time domain methods among
which the Finite Difference Time Domain (FDTD) method introduced by K.S. Yee [43] in 1996 is the most
popular et which often serves as a reference method for the works of the team. In the vast majority of existing
time domain methods, time advancing relies on an explicit time scheme. For certain types of problems,
a time harmonic evolution can be assumed leading to the formulation of the frequency domain Maxwell
equations whose numerical resolution requires the solution of a linear system of equations (i.e in that case, the
numerical method is naturally implicit). Heterogeneity of the propagation media is taken into account in the
Maxwell equations through the electrical permittivity, the magnetic permeability and the electric conductivity
coefficients. In the general case, the electrical permittivity and the magnetic permeability are tensors whose
entries depend on space (i.e heterogeneity in space) and frequency (i.e physical dispersion and dissipation). In
the latter case, the time domain numerical modeling of such materials requires specific techniques in order to
switch from the frequency evolution of the electromagnetic coefficients to a time dependency. Moreover, there
exists several mathematical models for the frequency evolution of these coefficients (Debye model, Lorentz
model, etc.).

In the case of elastodynamics, the mathematical model of interest is the system of elastodynamic equations
[30] for which several formulations can be considered such as the velocity-stress system. For this system,
as with Yee’s scheme for time domain electromagnetics, one of the most popular numerical method is the
finite difference method proposed by J. Virieux [41] in 1986. Heterogeneity of the propagation media is taken
into account in the elastodynamic equations through the Lamé and mass density coefficients. A frequency
dependence of the Lamé coefficients allows to take into acount physical attenuation of the wave fields and
characterizes a viscoelastic material. Again, several mathematical models exist for expressing the frequency
evolution of the Lamé coefficients.

The research activities of the team are currently organized along four main directions: (a) arbitrary high
order finite element type methods on simplicial meshes for the discretization of the considered systems of
PDEs, (b) efficient time integration methods for dealing with grid induced stiffness when using non-uniform
(locally refined) meshes, (c) domain decomposition algorithms for solving the algebraic systems resulting
from the discretization of the considered systems of PDEs when a time harmonic regime is assumed or when
time integration relies on an implicit scheme and (d) adaptation of numerical algorithms to modern high



Project-Team nachos 3

performance computing platforms. From the point of view of applications, the objective of the team is to
demonstrate the capabilities of the proposed numerical methodologies for the simulation of realistic wave
propagation problems in complex domains and heterogeneous media.

2.2. Highlights of the year
Arbitrary high order in space and time Discontinuous Galerkin Time Domain (DGTD) methods on simplicial
meshes have been developed for the solution of the systems of time domain Maxwell and elastodynamic
equations in 2D and 3D. These methods extend our previous achievements by using a family of high order
leap-frog schemes for time integration.

For time domain electromagnetic simulations involving locally refined simplicial meshes, a hybrid ex-
plicit/implicit discontinuous Galerkin method has been designed which allows for a substantial gain in com-
puting time as compared to a fully explicit solution strategy, at the expense of a moderate memory overhead.

3. Scientific Foundations

3.1. Arbitrary high order discontinuous Galerkin methods on simplicial
meshes
Keywords: conforming mesh, discontinuous Galerkin, finite element, finite volume, hp-adaptivity, non-
confoming mesh, polynomial interpolation, simplicial mesh.

The applications in computational electromagnetics and computational geoseismics that are considered by the
team lead to the numerical simulation of wave propagation in heterogeneous media or/and involve irregularly
shaped objects or domains. The underlying wave propagation phenomena can be purely unsteady or they can
be periodic (because the imposed source term follows a time harmonic evolution). In this context, the overall
objective of the research activities undertaken by the team is to develop numerical methods that fulfill the
following features:

• Accuracy. The foreseen numerical methods should ideally rely on discretization techniques that best
fit to the geometrical characteristics of the problems at hand. For this reason, the team focusses
on methods working on unstructured, locally refined, even non-conforming, simplicial meshes.
These methods should also be capable to accurately describe the underlying physical phenomena
that may involve highly variable space and time scales. With reference to this characteristic, two
main strategies are possible: adaptive local refinement/coarsening of the mesh (i.e h-adaptivity) and
adaptive local variation of the interpolation order (i.e p-adaptivity). Ideally, these two strategies are
combined leading to the so-called hp-adaptive methods.

• Numerical efficiency. The simulation of unsteady problems most often rely on explicit time integra-
tion schemes. Such schemes are constrained by a stability criteria linking the space and time dis-
cretization parameters that can be very restrictive when the underlying mesh is highly non-uniform
(especially for locally refined meshes). For realistic 3D problems, this can represent a severe lim-
itation with regards to the overall computing time. In order to improve this situation, one possible
approach which is considered by the team consists in resorting to an implicit time scheme in regions
of the computational domain where the underlying mesh is refined while an explicit time scheme is
applied to the remaining part of the domain. The resulting hybrid explicit/implicit time integration
strategy raises several challenging questions both at the mathematical analysis level (stability and
accuracy, especially for what concern numerical dispersion), and from the computer implementation
viewpoint (data structures, parallel computing aspects). On the other hand, for implicit time integra-
tion schemes on one hand, and for the numerical treatment of time harmonic problems on the other
hand, numerical efficiency also refers to a foreseen property of linear system solvers.
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• Computational efficiency. Despite the ever increasing performances of microprocessors, the numer-
ical simulation of realistic 3D problems is hardly performed on a high-end workstation and parallel
computing is a mandatory path. Realistic 3D wave propagation problems lead to the processing of
very large volumes of data. The latter results from two combined parameters: the size of the mesh i.e
the number of mesh elements, and the number of degrees of freedom per mesh element which is itself
linked to the degree of interpolation and to the number of physical variables (for systems of partial
differential equations). Hence, numerical methods must be adapted to the characteristics of modern
parallel computing platforms taking into account their hierarchical nature (e.g multiple processors
and multiple core systems with complex cache and memory hierarchies). Appropriate parallelization
strategies need to be designed that combine distributed memory and shared memory programming
paradigms. Moreover, maximizing the effective floating point performances will require the design
of numerical algorithms that can benefit from the optimized BLAS linear algebra kernels.

The discontinuous Galerkin method (DG) was introduced in 1973 by Reed and Hill to solve the neutron
transport equation. From this time to the 90’s a review on the DG methods would likely fit into one page. In
the meantime, the finite volume approach has been widely adopted by computational fluid dynamics scientists
and has now nearly supplanted classical finite difference and finite element methods in solving problems of
non-linear convection. The success of the finite volume method is due to its ability to capture discontinuous
solutions which may occur when solving non-linear equations or more simply, when convecting discontinuous
initial data in the linear case. Let us first remark that DG methods share with finite volumes this property since
a first order finite volume scheme can be viewed as a 0th order DG scheme. However a DG method may be
also considered as a finite element one where the continuity constraint at an element interface is released.
While it keeps almost all the advantages of the finite element method (large spectrum of applications, complex
geometries, etc.), the DG method has other nice properties which explain the renewed interest it gains in
various domains in scientific computing as witnessed by books or special issues of journals dedicated to this
method [24]- [25]- [26]- [33]:

• it is naturally adapted to a high order approximation of the unknown field. Moreover, one may
increase the degree of the approximation in the whole mesh as easily as for spectral methods but,
with a DG method, this can also be done very locally. In most cases, the approximation relies on
a polynomial interpolation method but the DG method also offers the flexibility of applying local
approximation strategies that best fit to the intrinsic features of the modeled physical phenomena.

• When the discretization in space is coupled to an explicit time integration method, the DG method
leads to a block diagonal mass matrix independently of the form of the local approximation (e.g the
type of polynomial interpolation). This is striking difference with classical, continuous finite element
formulations. Moreover, the mass matrix is diagonal if an orthogonal basis is chosen.

• It easy handles complex meshes. The grid may be a classical conforming finite element mesh, a
non-conforming one or even a hybrid mesh made of various elements (tetrahedra, prisms, hexahedra,
etc.). The DG method has been proved to work well with highly locally refined meshes. This property
makes the DG method more suitable to the design of a hp-adaptive solution strategy (i.e where the
characteristic mesh size h and the interpolation degree p changes locally wherever it is needed).

• It is flexible with regards to the choice of the time stepping scheme. One may combine the DG spatial
discretization with any global or local explicit time integration scheme, or even implicit, provided
that the resulting scheme is stable,

• it is naturally adapted to parallel computing. As long as an explicit time integration scheme is used,
the DG method is easily parallelized. Moreover, the compact nature of DG discretization schemes
is in favor of high computation to communication ratio especially when the interpolation order is
increased.

As with standard finite element methods, a DG method relies on a variational formulation of the continuous
problem at hand. However, due to the discontinuity of the global approximation, this variational formulation
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has to be defined at the element level. Then, a degree of freedom in the design of a DG method stems from
the approximation of the boundary integral term resulting from the application of an integration by parts to
the elementwise variational form. In the spirit of finite volume methods, the approximation of this boundary
integral term calls for a numerical flux function which can be based on either a centered scheme or an upwind
scheme, or a blending between these two schemes.

For the numerical solution of the time domain Maxwell equations, we have first proposed a non-dissipative
high order DG method working on unstructured conforming simplicial meshes [5]-[2]. This DG method
combines a central numerical flux function for the approximation of the integral term at an interface between
two neighboring elements with a second order leap-frog time integration scheme. Moreover, the local
approximation of the electromagnetic field relies on a nodal (Lagrange type) polynomial interpolation method.
Recent achivements in the framework of the team deal with the extension of these methods towards non-
conforming meshes and hp-adaptivity [17]-[16], their coupling with hybrid explicit/implicit time integration
schemes in order to improve their efficiency in the context of locally refined meshes [18], and their extension
to the numerical resolution of the elastodynamic equations modeling the propagation of seismic waves [12].

3.2. Domain decomposition methods
Keywords: Schur complement method, Schwarz algorithm, artificial interface, non-overlapping algorithm,
overlapping algorithm, substructuring, transmission condition.

Domain Decomposition (DD) methods are flexible and powerful techniques for the parallel numerical solution
of systems of PDEs. As clearly described in [39], they can be used as a process of distributing a computational
domain among a set of interconnected processors or, for the coupling of different physical models applied in
different regions of a computational domain (together with the numerical methods best adapted to each model)
and, finally as a process of subdividing the solution of a large linear system resulting from the discretization
of a system of PDEs into smaller problems whose solutions can be used to devise a parallel preconditioner
or a parallel solver. In all cases, DD methods (1) rely on a partitioning of the computational domain into
subdomains, (2) solve in parallel the local problems using a direct or iterative solver and, (3) calls for an
iterative procedure to combine the local solutions to obtain the solution of the global (original) problem.
Subdomain solutions are connected by means of suitable transmission conditions at the artificial interfaces
between the subdomains. The choice of these transmission conditions greatly influences the convergence rate
of the DD method. One generally distinguish three kinds of DD methods:

• overlapping methods use a decomposition of the computational domain in overlapping pieces. The
so-called Schwarz method belongs to this class. Schwarz initially introduced this method for proving
the existence of a solution to a Poisson problem. In the Schwarz method applied to the numerical
resolution of elliptic PDEs, the transmission conditions at artificial subdomain boundaries are simple
Dirichlet conditions. Depending on the way the solution procedure is performed, the iterative process
is called a Schwarz multiplicative method (the subdomains are treated in sequence) or an additive
method (the subdomains are treated in parallel).

• non-overlapping methods are variants of the original Schwarz DD methods with no overlap between
neighboring subdomains. In order to ensure convergence of the iterative process in this case, the
transmission conditions are not trivial and are generally obtained through a detailed inspection of
the mathematical properties of the underlying PDE or system of PDEs.

• substructuring methods rely on a non-overlapping partition of the computational domain. They
assume a separation of the problem unknowns in purely internal unknowns and interface ones.
Then, the internal unknowns are eliminated thanks to a Schur complement technique yielding to the
formulation of a problem of smaller size whose iterative resolution is generally easier. Nevertheless,
each iteration of the interface solver requires the realization of a matrix/vector product with the Schur
complement operator which in turn amounts to the concurrent solution of local subproblems.
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Schwarz algorithms have enjoyed a second youth over the last decades, as parallel computers became more
and more powerful and available. Fundamental convergence results for the classical Schwarz methods were
derived for many partial differential equations, and can now be found in several books [39]- [38]- [40].

The research activities of the team on this topic aim at the formulation, analysis and evaluation of Schwarz
type domain decomposition methods in conjunction with discontinuous Galerkin approximation methods on
unstructured simplicial meshes for the solution of time domain and time harmonic wave propagation problems.
Ongoing works in this direction are concerned with the design of non-overlapping Schwarz algorithms for the
solution of the time harmonic Maxwell equations. A first achievement has been a Schwarz algorithm for the
time harmonic Maxwell equations, where a first order absorbing condition is imposed at the interfaces between
neighboring subdomains [4]. This interface condition is equivalent to a Dirichlet condition for characteristic
variables associated to incoming waves. For this reason, it is often referred as a natural interface condition
[19]. Beside Schwarz algorithms based on natural interface conditions, the team also investigates algorithms
that make use of more effective transmission conditions [15]-[14]. From the theoretical point of view, this
represents a much more challenging goal since most of the existing results on optimized Schwarz algorithms
have been obtained for scalar partial differential equations. For the considered systems of PDEs, the team plan
to extend the techniques for obtaining optimized Schwarz methods previously developed for the scalar partial
differential equations to systems of partial differential equations by using appropriate relationships between
systems and equivalent scalar problems [32].

3.3. High performance numerical computing
Keywords: SPMD model, distributed memory, hierarchical architecture, multicore, multiprocessor, parallel
computing, shared memory.

Beside basic research activities related to the design of numerical methods and resolution algorithms for the
wave propagation models at hand, the team is also committed to demonstrate the benefits of the proposed
numerical methodologies in the simulation of challenging three-dimensional problems pertaining to computa-
tional electromagnetics and computation geoseismics. For such applications, parallel computing is a manda-
tory path. Nowadays, modern parallel computing platforms most often take the form of clusters of multipro-
cessor systems which can be viewed as hybrid distributed-shared memory systems. Moreover, multiple core
systems are increasingly adopted thus introducing an additional level in local memory hierarchies. Developing
numerical algorithms that efficiently exploit such platforms raise several challenges, especially in the context
of a massive parallelism. In this context, the efforts of the team are towards the exploitation of multiple levels of
parallelism and the study hierachical SPMD (Single Program Multiple Data) strategies for the parallelization
of unstructured mesh based solvers.

4. Application Domains

4.1. Computational electromagnetics and bioelectromagnetics
Keywords: biological effects, electromagnetic compatibility, electromagnetic vulnerability, electromagnetic
waves, furtivity, living tissues, numerical dosimetry, telecommunications, transportation systems.

Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found and
continues to find applications in a wide array of areas, encompassing both industrial and societal purposes.
Applications of current interest include (among others) those related to communications (e.g transmission
through optical fiber lines), to biomedical devices and health (e.g tomography, power-line safety, etc.),
to circuit or magnetic storage design (electromagnetic compatibility, hard disc operation), to geophysical
prospecting, and to non-destructive evaluation (e.g crack detection), to name but just a few. Equally notable
and motivating are applications in defense which include the design of military hardware with decreased
signatures, automatic target recognition (e.g bunkers, mines and buried ordnance, etc.) propagation effects
on communication and radar systems, etc. Although the principles of electromagnetics are well understood,
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their application to practical configurations of current interest, such as those that arise in connection with the
examples above, is significantly complicated and far beyond manual calculation in all but the simplest cases.
These complications typically arise from the geometrical characteristics of the propagation medium (irregular
shapes, geometrical singularities), the physical characteristics of the propagation medium (heterogeneity,
physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

The significant advances in computer modeling of electromagnetic interactions that have taken place over
the last two decades have been such that nowadays the design of electromagnetic devices heavily relies on
computer simulation. Computational electromagnetics has thus taken on great technological importance and,
largely due to this, it has become a central discipline in present-day computational science. The team currently
considers two applications dealing with electromagnetic wave propagation that are particularly challenging
for the proposed numerical methodologies.
Interaction of electromagnetic waves with biological tissues. Electromagnetic waves are increasingly
present in our daily environment, finding their sources in domestic appliances and technological devices as
well. With the multiplication of these sources, the question of potential adverse effects of the interaction of
electromagnetic waves with humans has been raised in a number of concrete situations quite recently. It is
clear that this question will be a major concern for our citizens in a near future, especially in view of the ever-
rising adoption of wireless communication systems. Beside, electromagnetic waves also find applications in
the medical domain for therapeutic and diagnostic purposes. Two main reasons motivate our commitment to
consider this type of problem for the application of the numerical methodologies developed in the NACHOS
project-team:

• first, from the numerical modeling point of view, the interaction between electromagnetic waves and
biological tissues exhibit the three sources of complexity listed above and are thus particularly chal-
lenging for pushing one step forward the state-of-the art of numerical methods for computational
electromagnetics. The propagation media is strongly heterogeneous and the electromagnetic charac-
teristics of the tissues are frequency dependent. Interfaces between tissues have rather complicated
shapes that cannot be accurately discretized using cartesian meshes. Finally, the source of the signal
often takes the form of a complicated device (e.g a mobile phone or an antenna array).

• second, the study of the interaction between electromagnetic waves and living tissues finds appli-
cations of societal relevance such as the assessment of potential adverse effects of electromagnetic
fields or the utilization of electromagnetic waves for therapeutic or diagnostic purposes. It is widely
recognized nowadays that numerical modeling and computer simulation of electromagnetic wave
propagation in biological tissues is a mandatory path for improving the scientific knowledge of the
complex physical mechanisms that characterize these applications.

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great
majority of numerical studies have been conducted using the widely known FDTD method. In this method,
the whole computational domain is discretized using a structured (cartesian) grid. Due to the possible
straightforward implementation of the algorithm and the availability of computational power, FDTD is
currently the leading method for numerical assessment of human exposure to electromagnetic waves. However,
limitations are still seen, due to the rather dificult departure from the commonly used rectilinear grid and cell
size limitations regarding very detailed structures of human tissues. In this context, the general objective of
the works of the NACHOS project-team is to demonstrate the benefits of high order unstructured mesh based
Maxwell solvers fr a realistic numerical modeling of the interaction of electromagnetic waves and living
tissues.

Interaction of electromagnetic waves with charged particle beams. Physical phenomena involving charged
particles take place in various physical and technological situations such as in plasmas, semiconductor
devices, hyper-frequency devices, charged particle beams and more generally, in electromagnetic wave
propagation problems including the interaction with charged particles by taking into account self consistent
fields. The numerical simulation of the evolution of charged particles under their self-consistent or applied
electromagnetic fields can be modeled by the three dimensional Vlasov-Maxwell equations. The Vlasov
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equation describes the transport in phase space of charged particles submitted to external as well as self-
consistent electromagnetic fields. It is coupled non-linearly to the Maxwell equations which describe the
evolution of the self-consistent electromagnetic fields. The numerical method which is mostly used for the
solution of these equations is the Particle-In-Cell (PIC) method. Its basic idea is to discretize the distribution
function f of the particles which is the solution of the Vlasov equation, by a particle method, which consists
in representing f by a finite number of macro-particles and advancing those using the Lorentz equations of
motion. On the other hand, Maxwell equations are solved on a computational mesh of the physical space.
The coupling is done by gathering the charge and current densities from the particles on the mesh to get the
sources for the Maxwell equations, and by interpolating the field data on the particles when advancing them.
In summary the Particle-In-Cell algorithm, after the initialization phase, is based on a time loop which consists
of the following steps: 1) particle advance, 2) charge and current density deposition on the mesh, 3) field solve,
4) field interpolation at particle positions. More physics, like particle injection or collisions can be added to
these basic steps.

PIC codes have become a major research tool in different areas of physics involving self-consistent interaction
of charged particles, in particular in plasma and beam physics. Two-dimensional simulations have now become
very reliable and can be used as well for qualitative as for quantitative results that can be compared to
experiments with good accuracy. As the power of supercomputers was increasing three dimensional codes
have been developed in the recent years. However, even in order to just make qualitative 3D simulations,
an enormous computing power is required. Today’s and future massively parallel supercomputers allow to
envision the simulation of realistic problems involving complex geometries and multiple scales. In order to
achieve this efficiently, new numerical methods need to be designed. This includes the investigation of high
order Maxwell solvers, the use of hybrid grids with several homogeneous zones having their own structured or
unstructured mesh type and size, and a fine analysis of load balancing issues. These issues are studied in details
in the team in the context of discontinuous Galerkin discretization methods on simplicial meshes. Indeed, the
team is one of the few groups worldwide [36] considering the development of parallel unstructured mesh PIC
solvers for the three-dimensional Vlasov-Maxwell equations.

4.2. Computational geoseismics
Keywords: elastodynamic waves, environment, seismic hazard, seismic waves.

Computational challenges in geoseismics span a wide range of disciplines and have significant scientific and
societal implications. Two important topics are mitigation of seismic hazards and discovery of economically
recoverable petroleum resources. In the realm of seismic hazard mitigation alone, it is worthwhile to recall
that despite continuous progress in building numerical modeling methodologies, one critical remaining step
is the ability to forecast the earthquake ground motion to which a structure will be exposed during its
lifetime. Until such forecasting can be done reliably, complete success in the design process will not be
fulfilled. Our involvement in this scientific thematic is rather recent and mainly result from the setup of an
active collaboration with geophysicians from the Géosciences Azur laboratory in Sophia Antipolis. In the
framework of this collaboration, our objective is to develop high order unstructured mesh based methods for
the numerical solution of the time domain elastodynamic equations modeling the propagation of seismic waves
in heterogeneous media on one hand, and the design of associated numerical methodologies for modeling the
dynamic formation of a fault resulting from an earthquake.

To understand the basic science of earthquakes and to help engineers better prepare for such an event, scientists
want to identify which regions are likely to experience the most intense shaking, particularly in populated
sediment-filled basins. This understanding can be used to improve building codes in high risk areas and to
help engineers design safer structures, potentially saving lives and property. In the absence of deterministic
earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios is one the
most promising tools to mitigate earthquake related hazard. This requires intense modeling that meets the
spatial and temporal resolution scales of the continuously increasing density and resolution of the seismic
instrumentation, which record dynamic shaking at the surface, as well as of the basin models. Another
important issue is to improve our physical understanding of the earthquake rupture processes and seismicity.
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Large scale simulations of earthquake rupture dynamics, and of fault interactions, are currently the only means
to investigate these multi-scale physics together with data assimilation and inversion. High resolution models
are also required to develop and assess fast operational analysis tools for real time seismology and early
warning systems. Modeling and forecasting earthquake ground motion in large basins is a challenging and
complex task. The complexity arises from several sources. First, multiple scales characterize the earthquake
source and basin response: the shortest wavelengths are measured in tens of meters, whereas the longest
measure in kilometers; basin dimensions are on the order of tens of kilometers, and earthquake sources up to
hundreds of kilometers. Second, temporal scales vary from the hundredths of a second necessary to resolve
the highest frequencies of the earthquake source up to as much as several minutes of shaking within the
basin. Third, many basins have a highly irregular geometry. Fourth, the soils’ material properties are highly
heterogeneous. And fifth, geology and source parameters are observable only indirectly and thus introduce
uncertainty in the modeling process. Because of its modeling and computational complexity and its importance
to hazard mitigation, earthquake simulation is currently recognized as a grand challenge problem.

Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing
numerical software rely on finite element or finite difference methods. Among the most popular schemes,
one can cite the staggered grid finite difference scheme proposed by Virieux [41] and based on the first order
velocity-stress hyperbolic system of elastic waves equations, which is an extension of the scheme derived by
K.S. Yee [43] for the solution of the Maxwell equations. The use of cartesian meshes is a limitation for such
codes especially when it is necessary to incorporate surface topography or curved interface. In this context,
our objective is to solve these equations by finite volume or discontinuous Galerkin methods on unstructured
triangular (2D case) or tetrahedral (3D case) meshes. This is a recent activity of the team (launched in mid-
2004), which is conducted in close collaboration with the Déformation active, rupture et ondes team of the
Géosciences Azur laboratory in Sophia Antipolis. Our first achievement in this domain has been a centered
finite volume software on unstructured triangular meshes [1] which has been validated and evaluated on
various problems, ranging from academic test cases to realistic situations.

5. Software
5.1. MAXDGk

Keywords: Maxwell equations, discontinuous Galerkin, electromagnetic waves, parallel computing, time
domain.
Participants: Loula Fezoui, Stéphane Lanteri [correspondant].

The team develops the MAXDGk [27] software suite for the solution of the 2D and 3D Maxwell equations
in the time domain. This software implements a high order discontinuous Galerkin method on unstructured
triangular (2D case) or tetrahedral (3D case) meshes [5]. The local approximation of the electromagnetic field
currently relies on a nodal (Lagrange type) polynomial interpolation method. The underlying algorithms are
adapted to distributed memory parallel computing platforms [2].

5.2. MAXDGHk
Keywords: Maxwell equations, discontinuous Galerkin, electromagnetic waves, frequency domain, parallel
computing.
Participants: Victorita Dolean, Stéphane Lanteri [correspondant].

The team develops the MAXDGHk software suite for the numerical solution of the 2D and 3D Maxwell
equations in the frequency domain. This software currently implements a high order discontinuous Galerkin
method on unstructured triangular (2D case) or tetrahedral (3D case) meshes [13]. The local approximation
of the electromagnetic field currently relies on a nodal (Lagrange type) polynomial interpolation method.
The underlying algorithms are adapted to distributed memory parallel computing platforms. In particular,
the resolution of the sparse, complex coefficients, linear systems resulting from the discontinuous Galerkin
formulation is performed by a hybrid iterative/direct solver whose design is based on domain decomposition
principles [4].
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5.3. ELASTODGk
Keywords: discontinuous Galerkin, elastodynamic waves, finite volume, parallel computing, time domain,
velocity-stress system.

Participants: Loula Fezoui [correspondant], Nathalie Glinsky-Olivier, Stéphane Lanteri.

The team develops the ELASTODGk [27] software for the numerical resolution of the 2D and 3D velocity-
stress equations in the time domain. This software implements a high order discontinuous Galerkin method
on unstructured triangular (2D case) or tetrahedral (3D case) meshes [12]. The local approximation of the
electromagnetic field currently relies on a nodal (Lagrange type) polynomial interpolation method. The
underlying algorithms are adapted to distributed memory parallel computing platforms.

6. New Results

6.1. Electromagnetic wave propagation
6.1.1. Arbitrary high order DGTD method on simplicial meshes

Keywords: Maxwell equations, discontinuous Galerkin, finite volume, leap-frog scheme, tetrahedral mesh,
time domain, triangular mesh, unstructured mesh.

Participants: Hassan Fahs, Loula Fezoui, Stéphane Lanteri.

The DGTD-Pp method previsouly developed in the team for the numerical solution of the time domain
Maxwell equations on unstructured simplicial meshes [5] has been extended to arbitrary high order in space
and time. The resulting method relies on the following ingredients: a central numerical flux function for the
approximation of the integral term at an interface between two neighboring elements, a high order nodal (La-
grange type) polynomial interpolation method for the approximation of the electromagnetic field components
within a simplex element and a high order leap-frog scheme for time integration. The improvement of the
accuracy properties of the DGTD-Pp method thanks to the use of high order leap-frog scheme is illustrated on
Fig. 1 in the context of the numerical solution of the 2D Maxwell equations, and by considering the problem
of the propagation of an eigenmode in a unitary square cavity with perfectly conducting walls. The figures
show the observed numerical h-convergence of the DGTD-Pp methods based on the second order (left) and
fourth order (right) leap-frog scheme and confirm the theoretical a priori estimates [9].

6.1.2. Arbitrary high order DGTD method on non-conforming simplicial meshes
Keywords: Maxwell equations, discontinuous Galerkin, finite volume, leap-frog scheme, locally refined mesh,
non-conforming mesh, tetrahedral mesh, time domain, triangular mesh, unstructured mesh.

Participants: Hassan Fahs, Loula Fezoui, Stéphane Lanteri, Francesca Rapetti.

Two important features of discontinuous Galerkin methods are their flexibility with regards to the local
approximation of the field quantities and their natural ability to deal with non-conforming meshes. The non-
conformity can result from a local refinement of the mesh (h-adaptivity), or of the approximation order (p-
adaptivity) or of both of them (hp-adaptivity). In the context of the PhD thesis of Hassan Fahs [9], we have
studied non-dissipative discontinuous Galerkin methods for solving the 2D time domain Maxwell equations
on non-conforming, locally refined, triangular meshes. Similarly to the method described in [5], the DGTD
method considered in this study is based on two basic ingredients: a centered approximation for the calculation
of numerical fluxes at inter-element boundaries and an explicit leap-frog time integration scheme [17]. In this
context, a hp-like DGTD method which allows for both a local non-conforming refinement of the mesh and a
locally defined approximation order has been designed, anlayzed and evaluated in the context of the numerical
solution of the 2D time domain Maxwell equations on triangular meshes [16]. The use of a locally refined
triangular mesh is illustrated on Fig. 2 for the simulation of the propagation of an eigenmode in a wedge-
shaped cavity with perfectly conducting walls, using the DGTD-P1 method.
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Figure 1. Square-shaped PEC resonator: h-convergence of the DGTD-Pp methods based on the second order (left)
and fourth order (right) leap-frog schemes.

6.1.3. High order polynomial interpolation in DGTD methods
Keywords: Maxwell equations, discontinuous Galerkin, hierachical basis, modale basis, nodal basis, poly-
nomial interpolation, time domain.

Participants: Loula Fezoui, Antoine Jarrier, Joseph Charles, Stéphane Lanteri.

In the high order DGTD-Pp methods developed by the team so far, the local approximation of the electromag-
netic field relies on a nodal (Lagrange type) polynomial interpolation method however it is clear that other
polynomial interpolation methods could be adopted as well. The choice of a set ot basis functions should
ideally take into account several criteria among which, the modal or nodal nature of the functions, the orthog-
onality of the functions, the hierachical structure of the functions, the conditioning of the elemental matrices
to be inverted (e.g the mass matrix in explicit DGTD methods) and the programming simplicity. We have
started this year a study aiming at the choice of an appropriate polynomial interpolation method in view of the
development of a p-adaptive DGTD-Pp method on simplicial meshes. As a preliminary step, several candidate
polynomial interpolation methods are numerically assessed in details in the context of the solution of the 1D
and 2D Maxwell equations.

6.1.4. Hybrid FVDT/DGTD method on multi-element meshes
Keywords: Maxwell equations, discontinuous Galerkin, finite volume, hybrid trangular/quadrangular mesh,
quadrangular mesh, time domain, triangular mesh.

Participants: Clément Durochat, Stéphane Lanteri.

For some propagation problems, the use of a single geometrical element type (a simplex in the DGTD methods
developed by the team so far) in the discretization process may not be optimal. Instead, one would ideally
allow the combined use of different types of element e.g. quandrangles and triangles in the 2D case, or
hexahedra and tetrahedra in the 3D case. We have initiated this year a study in this direction by considering the
coupling of a non-dissipative FVTD method designed on quadrangular meshes with the non-dissipative high
order DGTD method on triangular meshes introduced in [5]. In this preliminary study, the underlying hybrid
quadrangular/triangular mesh has been assumed to be a conforming mesh i.e hanging nodes are not allowed
and we focussed on the stability analysis of the resulting hybrid FVDT/DGTD method on multi-element
meshes, while accuracy and efficiency issues will be considered in a sequel study.
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Figure 2. Wedge-shaped PEC resonator: conforming and non-conforming triangular meshes (top) and contour
lines of Ez at different times.
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6.1.5. Hybrid explicit/implicit DGTD method
Keywords: Maxwell equations, discontinuous Galerkin, finite volume, hybrid explicit-implicit time integra-
tion, implicit time integration, locally refined mesh, tetrahedral mesh, time domain, triangular mesh, unstruc-
tured mesh.

Participants: Adrien Catella, Victorita Dolean, Stéphane Lanteri.

Existing numerical methods for the solution of the time domain Maxwell equations often rely on explicit time
integration schemes and are therefore constrained by a stability condition that can be very restrictive on highly
refined meshes. An implicit time integration scheme is a natural way to obtain a time domain method which is
unconditionally stable. In the context of the PhD thesis of Adrien Catella [8], we have studied the applicability
of implicit time integration schemes in conjunction with discontinuous Galerkin methods for the solution of
the 2D time domain Maxwell equations [10]. The starting-point of this study is the explicit, non-dissipative,
DGTD-Pp method introduced in [5] and we have proposed to use of Crank-Nicholson scheme in place of
the explicit leap-frog scheme adopted in this method. As a result, we obtain an unconditionally stable, non-
dissipative, implicit DGTD-Pp method, but at the expense of the inversion of a global linear system at each
time step, thus obliterating one of the attractive features of discontinuous Galerkin formulations. A more viable
approach for 3D simulations consists in applying an implicit time integration scheme locally i.e in the refined
regions of the mesh, while preserving an explicit time scheme in the complementary part, resulting in an
hybrid explicit-implicit (or locally implicit) time integration strategy. We have studied such a hybrid explicit-
implicit DGTD method for solving the time domain Maxwell equations on unstructured simplicial meshes.
The hybrid explicit-implicit DGTD method considered in this study was initially introduced by Piperno in [37].
However, to our knowledge, this hybrid explicit-implicit DGTD method had not been investigated numerically.
An illustration of the application of the resulting hybrid explicit-implicit DGTD-P1 method is shown on Fig. 3
below. The underlying tetrahedral mesh consists of 360,495 vertices and 2,024,924 elements. When 6381
elements are treated implicitly (i.e ≈ 0.2% of the tetrahedra of the mesh), the simulation time is reduced
from ≈ 25 h to ≈ 4 h. This hybrid explicit-implicit DGTD-Pp opens the route for large-scale time domain
electromagnetic wave simulations using highly refined meshes. Our short-term objectives in this direction will
be, to study the stability and convergence of the method, to adapt the method to distributed memory parallel
computing platforms. Beside, we also plan to investigate the extension of the proposed hybrid explici-implicit
strategy to higher order time schemes.

6.1.6. High order DGTD Particle-in-Cell method on simplicial meshes
Keywords: Maxwell equations, Particle-in-Cell, discontinuous Galerkin, tetrahedral mesh, time domain.

Participants: Loula Fezoui, Christian Konrad, Siham Layouni, Stéphane Lanteri.

In the context of the ANR HOUPIC project (starting date: january 2007 - duration: 3 years), we are
considering the development of a parallel DGTD/PIC solver for the solution of the system of Vlasov-Maxwell
equations. This work entails several aspects ranging from numerical analysis questions (charge conservation
property, methods of assignment of current and charge densities to physical space) to algorithimc concerns
(parallel particle localization algorithm in a tetrahedral mesh, parallelization and load balancing strategies).
In particular, we have studied the applicability of Space filling Curves (SFCs) as a basis for designing a fast
and scalable strategy for solving the two-constraint partitioning problem raised by the parallelization of a
tetrahedral mesh coupled DG/PIC solver. A new SFC based method which is well adapted to multi-constraint
partitioning problems has been proposed [23]. This method has been compared to graph based partitioning
methods from the widely used MeTiS tool. Experimental results show that the proposed SFC based method is
at least 100 times faster than MeTiS to the disadvantage of edge-cuts that are between 2 to 4 times worse than
those achieved by the MeTiS methods.

6.1.7. Numerical modeling of human tissues exposure to electromagnetic fields
Keywords: Maxwell equations, Visible Human, discontinuous Galerkin, tetrahedral mesh, time domain.
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Figure 3. Scattering of a plane wave by a Falcon jet geometry: contour lines of Ez and |E| on the aircraft surface

Participants: Stéphane Lanteri, Laurent Rineau [Geometry Factory, Sophia Antipolis], Mariette Yvinec
[GEOMETRICA project-team], Joe Wiart [France Télécom R&D, Issy-les-Moulineaux].

The Visible Human project [29] aimed at the construction of complete, anatomically detailed, three-
dimensional representations of male and female human bodies. Among other achievements, high resolution
images of representative male and female cadavers have been completed. These image data sets are used for
various research purposes among which numerical dosimetry studies of human tissues exposure to electromag-
netic fields. As a matter of fact, the Visible Human model is now used by several groups worldwide involved
in such studies and, in almost all the cases, the FDTD method is directly applied to the voxel grid defining the
images. In this study, we have constructed realistic geometrical models of the Visible Human, based on tetra-
hedral meshes, using the tetrahedral mesh generator co-developed by the GEOMETRICA project-team and the
Geometry Factory company. Then, the high order DGTD methods developed in the team are used to simulate
the propagation of an electromagnetic wave in homogeneous and heterogeneous tissue models. The objective
is to obtain highly accurate distributions of the SAR (Specific Absorption Rate) which is a basic quantity of
interest in microwave numerical dosimetry studies, and to assess whether localized effects (so called hot spots)
appear that are not correctly modeled by the FDTD method due to the use of cartesian meshes. In particular,
the staircasing which is typical of cartesian meshes does not allow for a correct representation of tissue (i.e
media) interfaces. Thus, one of the challenges of the present study is to construct geometrical models which
include an accurate discretization of tissue interfaces (at least for a few tissues of the body such as the skin,
the fat, the skull and the muscle) through the use of appropriate geometrical modeling tools. A preliminary
result is shown on Fig. 4 for the propagation of a plane wave (F=2.14 GHz) in a homogeneous model of the
visible human using the DGTD-P2 method. The underlying tetraedral mesh consists of 899,872 vertices and
5,335,521 elements. The total number of unknowns of this problem is 320,131,260 (there are 60 degrees of
freedom per element for the P2 interpolation method). Worthwhile to note, this large scale simulation has
been conducted on 512 cores of the Bull supercomputer operated by the CCRT (Centre de Calcul Recherche
et Technologie) with a simulation time of 1 h 45 mn.

6.1.8. DG methods for the frequency domain Maxwell equations
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Figure 4. Propagation of a plane wave in a homogeneous model of a human body.



16 Activity Report INRIA 2008

Keywords: Maxwell equations, centered schemes, discontinuous Galerkin, finite volume, frequency domain,
simplicial mesh, time harmonic, unstructured mesh, upwind schemes.

Participants: Victorita Dolean, Mohamed El Bouajaji, Stéphane Lanteri, Ronan Perrussel [Ampère Labora-
tory, Ecole Centrale de Lyon].

A large number of electromagnetic wave propagation problems can be modeled by assuming a time harmonic
behavior and thus considering the numerical solution of the time harmonic (or frequency domain) Maxwell
equations. In this study, we investigate the applicability of discontinuous Galerkin methods on simplicial
meshes for the calculation of time harmonic electromagnetic wave propagation in heterogeneous media.
Although there are clear advantages of using DG methods based on a centered scheme for the evaluation
of surface integrals when solving time domain problems [5], such a choice is questionable in the context of
time harmonic problems. Penalized DG formulations or DG formulations based on an upwind numerical flux
have been shown to yield optimally convergent high order DG methods [34]. Moreover, such formulations
are necessary to prevent the apparition of spurious modes when solving the Maxwell eigenvalue problem
[42]. We have developed this year a arbitrary high order discontinuous Galerkin frequency domain DGFD-Pp

method on triangular meshes, relying on either a centered or an upwind flux, for solving the 2D time harmonic
Maxwell equations. Moreover, as a first step towards the development of a p-adaptive DGFD-Pp method, the
approximation order is allowed to be defined at the element level based on a local geometrical criterion.

6.2. Seismic wave propagation
6.2.1. Arbitrary high order DGTD method on simplicial meshes

Keywords: P-SV wave propagation, discontinuous Galerkin, finite volume, leap-frog scheme, tetrahedral
mesh, triangular mesh, unstructured mesh, velocity-stress equations.

Participants: Sarah Delcourte, Nathalie Glinsky-Olivier, Loula Fezoui, Serge Moto Pong [University of
Yaoundé 1, Cameroon].

We continue developing high order non-dissipative discontinuous Galerkin methods on simplicial meshes
(triangles in the 2D case and tetrahedra in the 3D case) for the numerical solution of the first order hyperbolic
linear system of elastodynamic equations. These methods share some ingredients of the DGTD-Pp methods
developed by the team for the time domain Maxwell equations among which, the use of nodal polynomial
(Lagrange type) basis functions, a second order leap-frog time integration scheme and a centered scheme for
the evaluation of the numerical flux at the interface between neighboring elements. The resulting DGTD-
Pp methods have been validated and evaluated in detail in the context of propagation problems in both
homogeneous and heterogeneous media including problems for which analytical solutions can be computed.
Particular attention was given to the study of the mathematical properties of these schemes such as stability,
convergence and dispersion.

In the 2D case, the source modeling has been studied via the Garvin test case i.e the propagation of an explosive
source in a half-space with a free surface. A class of high order leap-frog schemes has also been studied. These
schemes improve the accuracy of the highest orders spatial schemes (fpr p ≥ 3) while being efficient since they
allow the use of larger time steps as compared to the DGTD-Pp method based on the second order leap-frog
scheme.

In the 3Dcase, in the framework of the ANR QSHA project, canonical problems are studied such as semi-
spherical or ellipsoidal canyon/basin in order to compare results of several numerical methods. More realistic
test cases are examined via our participation to the Euroseistest Numerical Benchmark initiative. The objective
of this benchmark, organized in the framework of the Cashima project (CEA Cadarache, the LGIT in Grenoble
and Aristotle University of Thessaloniki), is to perform simulations of real events on the Volvi area (a well
documented region near Thessaloniki) including complex characteristics of the medium.
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6.3. Domain decomposition methods
6.3.1. Optimized Schwarz algorithms for the time harmonic Maxwell equations discretized by

DG methods
Keywords: Maxwell equations, Schwarz algorithm, discontinuous Galerkin, domain decomposition, natural
interface conditions, optimized interface conditions, time harmonic.

Participants: Victorita Dolean, Mohamed El Bouajaji, Martin Gander [Mathematics Section, University of
Geneva], Stéphane Lanteri, Ronan Perrussel [Ampère Laboratory, Ecole Centrale de Lyon].

The linear systems resulting from the discretization of the 3D time harmonic Maxwell equations using
discontinuous Galerkin methods on simplicial meshes are characterized by large sparse, complex coefficients
and irregularly structured matrices. Classical preconditioned iterative methods (such as the GMRES Krylov
method preconditioned by an incomplete LU factorization) generally behave poorly on these linear systems.
A standard alternative solution strategy calls for sparse direct solvers. However, this approach is not feasible
for reasonably large systems due to the memory requirements of direct solvers. On the other hand, parallel
computing is recognized as a mandatory path for the design of algorithms capable of solving problems of
realistic importance. Several parallel sparse direct solvers have been developed in the recent years such as
MUMPS [31]. Even if these solvers efficiently exploit distributed memory parallel computing platforms and
allow to treat very large problems, there is still room for improvements of the situation. Iterative methods can
be used to overcome this memory problem. The main difficulty encountered by these methods is their lack of
robustness and, generally, the unpredictability and unconsistency of their performance when they are used over
a wide range of different problems. Because an iterative solver will usually require fewer iterations and less
time if more fill-in is allowed in the preconditioner, some approaches combine the direct solvers techniques
with other iterative preconditioning techniques in order to build robust preconditioners. For example, a popular
approach in the domain decomposition framework is to use a direct solver inside each subdomain and to use
an iterative solver on the interfaces between subdomains.

Even if they have been introduced for the first time two centuries ago, over the last two decades, classical
Schwarz methods have regained a lot of popularity with the developpement of parallel computers. First
developped for the elliptic problems, they have been recently extended to systems of hyperbolic partial
differential equations, and it was observed that the classical Schwarz method can be convergent even without
overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to
elliptic problems, for which overlap is essential for convergence. Over the last decade, optimized versions
of Schwarz methods have been developed for elliptic partial differential equations. These methods use more
effective transmission conditions between subdomains, and are also convergent without overlap for elliptic
problems. The extension of such methods to systems of equations and more precisely to Maxwell’s system
(time harmonic and time discretized equations) has been done recently in [19]- [32].

These new transmission conditions were originally proposed for three different reasons: first, to obtain
Schwarz algorithms that are convergent without overlap; secondly, to obtain a convergent Schwarz method
for the Helmholtz equation, where the classical Schwarz algorithm is not convergent, even with overlap; and
third, to accelerate the convergence of classical Schwarz algorithms. Several studies towards the development
of optimized Schwarz methods for the time harmonic Maxwell equations have been conducted this last decade,
most often in combination with conforming edge element approximations. Optimized Schwarz algorithms can
involve transmission conditions that are based on high order derivatives of the interface variables. However,
the efectiveness of the new optimized interface conditions has been proved so far only for simple geometries
and applications.

In order to extend them to more realistic applications and geometries, and high order approximation methods,
our first strategy for the design of parallel solvers in conjunction with discontinuous Galerkin methods on
simplicial meshes relies on a Schwarz algorithm where a classical condition is imposed at the interfaces
between neighboring subdomains which corresponds to a Dirichlet condition for characteristic variables
associated to incoming waves. From the discretization point of view, this interface condition gives rise to
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a boundary integral term which is treated using a flux splitting scheme similar to the one applied at absorbing
boundaries. The Schwarz algorithm can be used as a global solver or it can be reformulated as a Richardson
iterative method acting on an interface system. In the latter case, the resolution of the interface system can be
performed in a more efficient way using a Krylov method. This approach has been implemented in the context
of low order discontinuous Galerkin methods (finite volume method and discontinuous Galerkin method based
on linear interpolation) [4]. Preliminary investigations of optimized Schwarz algorithms combined to high
order discontinuous Galerkin time harmonic methods on triangular meshes for the discretization of the 2D
Maxwell equations are reported in [15].

7. Contracts and Grants with Industry
7.1. High order DGTD-PIC solver for the Vlasov/Maxwell equations

Participants: Adrien Catella, Joseph Charles, Loula Fezoui, Stéphane Lanteri, Muriel Sesques [CEA/CESTA,
Bordeaux].

The subject of this research grant with CEA/CESTA in Bordeaux is the development of a coupled
Vlasov/Maxwell solver combining the high order DGTD-Pp method on tetrahedral meshes developed in the
team [5] and a Particle-In-Cell method. The resulting DGTD-PIC solver will be used for electrical vulnerabil-
ity studies of the experimental chamber of the Laser Mégajoule system. The PhD thesis of Adrien Catella is
fully funded by this grant.

7.2. DGTD methods on non-conforming simplicial meshes
Participants: Hassan Fahs, Stéphane Lanteri, Joe Wiart [France Télécom R&D, Issy-les-Moulineaux].

A collaboration with the IOP team of France Télécom R&D (center of Issy-les-Moulineaux) was initiated
in 2003 in the framework of the HeadExp Concerted Research Action. This collaboration currently goes on
in the context of a research grant which aims at the development of high order DGTD-Pp methods on non-
conforming simplicial meshes for the numerical modeling of the interaction of electromagnetic waves with
biological tissues. The PhD thesis of Hassan Fahs is partially funded by this grant.

8. Other Grants and Activities
8.1. Quantitative Seismic Hazard Assessment (QSHA)

Keywords: discontinuous Galerkin, finite volume, seismic hazard, seismic wave propagation.
Participants: Nathalie Glinsky-Olivier, Serge Piperno [Cermics, ENPC], Jean Virieux [Joseph Fourier Uni-
versity and LGIT laboratory].

This project if funded by the ANR in the framework of the program Catastrophes Telluriques et Tsunami, at
the end of 2005. The participants are: CNRS/Géosciences Azur, BRGM (Bureau de Recherches Géologiques
et Minières, Service Aménagement et Risques Naturels, Orléans), CNRS/LGIT (Laboratoire de Géophysique
Interne et Technophysique, Observatoire de Grenoble), CEA/DAM (Bruyères le Chatel), LCPC, INRIA Sophia
Antipolis (NACHOS team), ENPC (Cermics), CEREGE (Centre europeen de Recherche et d’Enseignement
des Géosciences de l’Environnement, Aix en Provence), IRSN (Institut de Radioprotection et de Surete
Nucléaire), CETE Méditerranée (Nice), LAM (Laboratoire de Mécanique, Université de Marne la Vallée),
LMS (Laboratoire de Mécanique des Solides, Ecole Polytechnique). The activities planned in the QSHA
project aim at (1) obtaining a more accurate description of crustal structures for extracting rheological
parameters for wave propagation simulations, (2) improving the identification of earthquake sources and the
quantification of their possible size, (3) improving the numerical simulation techniques for the modeling of
waves emitted by earthquakes, (4) improving empirical and semi-empirical techniques based on observed
data and, (5) deriving a quantitative estimation of ground motion. From the numerical modeling viewpoint,
essentially all of the existing families of methods (boundary element method, finite difference method, finite
volume method, spectral element method and discrete element method) are extended for the purpose of the
QSHA objectives.
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8.2. Distributed objects and components for high performance scientific
computing (DiscoGrid)
Keywords: Grid computing, component models, distributed objects, hierarchical mesh partitioning, high
performance computing, message passing programming, unstructured mesh solvers.

Participants: Antoine Bouquet, Matthieu Cargnelli [EADS Innovation Works, Toulouse], Françoise Baude
[OASIS project-team, INRIA Sophia Antipolis], Denis Caromel [OASIS project-team, INRIA Sophia An-
tipolis], Vincent Cave [OASIS project-team, INRIA Sophia Antipolis], Serge Chaumette [LABRi, Bordeaux],
Thierry Gautier [ID-IMAG, MOAIS team, Grenoble], Hervé Guillard [SMASH project-team, INRIA Sophia
Antipolis], Stéphane Lanteri, Raul Lopez [PARIS project-team, IRISA Rennes], Alexandre Moyer [SMASH
project-team, INRIA Sophia Antipolis], Christian Perez [PARIS project-team, IRISA Rennes], Frédéric Wag-
ner [ID-IMAG, MOAIS team, Grenoble].

The project-team is coordinating the DiscoGrid (Distributed objects and components for high performance
scientific computing on the Grid’5000 test-bed) project which is funded by ANR in the framework of Calcul
Intensif et Grilles de Calcul program (this project has started in January 2006 for a duration of 3,5 years).
The DiscoGrid project aims at studying and promoting a new paradigm for programming non-embarrassingly
parallel scientific computing applications on a distributed, heterogeneous, computing platform. The target
applications require the numerical resolution of systems of partial differential equations (PDEs) modeling
electromagnetic wave propagation and fluid flow problems. More importantly, the underlying numerical
methods share the use of unstructured meshes and are based on well known finite element and finite volume
formulations.

8.3. High order finite element particle-in-cell solvers on unstructured grids
(HOUPIC)
Keywords: Maxwell equations, Particle-In-Cell, discontinuous Galerkin, high performance computing, time
domain.

Participants: Loula Fezoui, Christian Konrad, Stéphane Lanteri, Muriel Sesques [CEA/CESTA, Bordeaux],
Eric Sonnendrücker [IRMA, Strasbourg].

The project-team is a partner of the HOUPIC project which is funded by ANR in the framework of Calcul
Intensif et Simulations program (this project has started in January 2007 for a duration of 3 years). This
project is coordinated by Eric Sonnendrücker for the IRMA (Institut de Recherche Mathématique Avancée)
Laboratory in Strasbourg, and the other partners are the LSIIT (Laboratoire des Sciences de l’Image, de
l’Informatique et de la Télédétection) in Strasbourg, the CEA/CESTA in Bordeaux, the PSI (Paul Scherrer
Institut) in Villigen (Switzerland) and the IAG (Institut für Aerodynamik und Gasdynamik) in Stuttgart
(Germany). The main objective of this project is to develop and compare Finite Element Time Domain (FETD)
solvers based on high order Hcurl conforming elements and high order Discontinuous Galerkin (DG) finite
elements and investigate their coupling to a PIC method.

8.4. Ultra-wideband microwave imaging and inversion (MAXWELL)
Keywords: Maxwell equations, discontinuous Galerkin, frequency domain, high performance computing.

Participants: Victorita Dolean, Mohamed El Bouajaji, Stéphane Lanteri, Christian Pichot [LEAT].
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The project-team is a partner of the MAXWELL project (Novel, ultra-wideband, bistatic, multipolarization,
wide offset, microwave data acquisition, microwave imaging, and inversion for permittivity) which is funded
by ANR under the non-thematic program (this project has started in January 2008 for a duration of 4 years).
This project is coordinated by Christian Pichot from the LEAT (Laboratoire d’Electronique Antennes et
Télécommunications) in Sophia Antipolis and the other partners are the Géosciences Azur Laboratory in
Sophia Antipolis and the MIGP (Laboratoire de Modélisation et Imagerie en Géosciences de Pau) Laboratory.
This project aims at the development of a complete microwave imaging system, with a frequency bandwidth
of 1.87 GHz, ranging from 130 MHz to 2 GHz, using unstructured mesh solvers of the time harmonic Maxwell
equations which drive a generalized least-squares inversion engine, whose output is a subsurface map of the
relative permittivity. Subsidiary goals of the project are: (a) the construction and calibration of two ultra-
wideband antennas, (b) the construction of two types of carriages for performing data acquisition, (c) the
acquisition of dense microwave data with very wide offset for the entire bandwidth from 130 MHz to 2
GHz and for 2 orthogonal co-polarizations and one cross-polarization, (d) the reprocessing of data, including
gain and kinematic inversion using conventional seismic processing formulations and (e) the development of
discontinuous Galerkin solvers on simplicial meshes for the numerical solution of the time harmonic Maxwell
equations and their integration into an inversion system.

9. Dissemination

9.1. Teaching
"Éléments finis", Victorita Dolean, Master de Mathématiques, première année, Université de Nice/Sophia
Antipolis (48h).

"Analyse numérique", Victorita Dolean, Master de Mathématiques, première année, Université de Nice/Sophia
Antipolis (36h).

"Méthodes numériques", Victorita Dolean, Master de Mathématiques, seconde année, Université de
Nice/Sophia Antipolis (30h).

"Analyse numérique", Victorita Dolean, première année ingénieur, EPU de Nice/Sophia Antipolis (78h).

"Méthodes numériques pour les EDP", Victorita Dolean, seconde année ingénieur, filière Mathématiques
Appliquées et Modélisation, EPU de Nice/Sophia Antipolis (39h).

"Calcul Numérique Parallèle", Stéphane Lanteri, Mastère de Mécanique Numérique, Ecole Nationale
Supérieure des Mines de Paris (9h).

9.2. Ongoing PhD theses
Mondher Benjemaa, "Etude et simulation numérique de la rupture dynamique des séismes par des méthodes
d’éléments finis discontinus", Nice-Sophia Antipolis University.

Antoine Bouquet, "Caractérisation de structures rayonnantes par une méthode Galerkin discontinue associée
à une technique de domaines fictifs", Nice-Sophia Antipolis University.

Adrien Catella, "Méthode de type Galerkin discontinu d’ordre élevé en maillages tétraédriques non-structurés
pour la résolution numérique des équations de Maxwell en domaine temporel", Nice-Sophia Antipolis
University.

Hassan Fahs, "Méthodes de type Galerkin discontinu en maillages non-conformes pour la résolution
numérique des équations de Maxwell en domaine temporel", Nice-Sophia Antipolis University.
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9.3. International collaborations
Since January 2008, the NACHOS project-team is a partner of the PhyLeaS [28] INRIA associate team
(Design and high performance implementation of parallel hybrid sparse linear solvers) which is coordinated
by Jean Roman (ScAlApplix project-team, INRIA Bordeaux â Sud-Ouest Research Center) and associates
the following partners: Yousef Saad (Department of Computer Science and Engineering, University of
Minnesota, USA), Matthias Bollhoefer (Institute of Computational Mathematics Department of Mathematics
and Computer Science, TU Brunswick, Germany), Luc Giraud (Parallel Algorithms and Optimization Group,
LIMA-IRIT UMR CNRS 5505, ENSEEIHT, Toulouse). The research activities undertaken in the framework
of the PhyLeaS associate team aim at the design and efficient implementation of parallel hybrid linear
system solvers which combine the robustness of direct methods with the implementation flexibility of iterative
schemes. These approaches are candidate to get scalable solvers on massively parallel computers.

The team is collaborating with Martin Gander (Mathematics Section of the University of Geneva) on the
design of optimized Schwarz type domain decomposition algorithms for the time domain and time harmonic
Maxwell equations. Martin Gander spent two weeks in the team this year.
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