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2. Overall Objectives

2.1. Introduction
Keywords: aeronautics, change detection, civil engineering, diagnostics, monitoring, on-line identification
and detection algorithms, optimal sensors placement, sensors fusion, statistical hypotheses testing, subspace-
based algorithms, system identification, vibration-based structural analysis and damage detection and local-
ization.

2.1.1. Context.
Structural Health Monitoring (SHM) is the whole process of the design, development and implementation
of techniques for the detection, localization and estimation of damages, for monitoring the integrity of
structures and machines within the aerospace, civil and mechanical engineering infrastructures [39], [56]. In
addition to these key driving application areas, SHM is now spreading over most transportation infrastructures
and vehicles, within the naval, railway and automobile domains. Examples of structures or machines to be
monitored include aircrafts, space crafts, buildings, bridges, dams, ships, offshore platforms, on-shore and
off-shore wind farms (wind energy systems), turbo-alternators and other heavy machineries, ....

The emergence of stronger safety and environmental norms, the need for early decision mechanisms, together
with the widespread diffusion of sensors of all kinds, result in a thorough renewal of sensor information
processing problems. This calls for new research investigations within the sensor data (signal and image)
information processing community. In particular, efficient and robust methods for structural analysis, non
destructive evaluation, integrity monitoring, damage diagnosis and localization, are necessary for fatigue
and aging prevention, and for condition-based maintenance. Moreover, multidisciplinary research, mixing
information science, engineering science and scientific computing, is mandatory. However, most of the SHM
research investigations are conducted within mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.
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2.1.2. Objectives.
In this context, and based on our background and results on model-based statistical identification, change
detection and vibration monitoring, our objectives are :

• Importing knowledge from engineering communities within our model-based information process-
ing methods;

• Mixing statistical inference tools (identification, detection, rejection) with simplified models of
aerodynamic effects, thermo-dynamical or other environmental effects;

• Involving nonlinearities in the models, algorithms and proofs of performances;

• Exporting our data processing algorithms within the SHM community, based on specific training
actions, on a dedicated free Scilab toolbox, and an industrial software.

2.1.3. Industrial and academic relations.

• Industrial projects: with SNECMA (F.) and SVIBS (DK).

• Multi–partners projects at European level: on exploitation of flight test data under natural excitation
conditions (FliTE2 - Eurêka), on structural assessment, monitoring and control (SAMCO Associa-
tion), on industrial risk reduction (IRIS CP-IP).

• Academic research: national project on monitoring civil engineering structures (CONSTRUCTIF
- ACI S&I), European network on system identification (FP5 TMR), FWO research network on
identification and control.

2.2. Highlights of the year
1. Research : Thanks to a collaboration with the Acoustics & Vibration Research Group of Vrije

Universiteit Brussel (VUB), we have been developing output-only frequency methods for damage
detection (see module 6.2).

2. Research : Thanks to a collaboration with AGH, we have been developing robust flutter detection
methods applicable to realistic case studies for flutter monitoring of aircraft (see module 6.3).

3. Research : L. Mevel has passed his HDR on October 22, 2008.

4. Transfer : The Scilab toolbox COSMAD has been transferred to SNECMA. Strong evaluation of
this toolbox for in-house usage by SNECMA has been performed.

3. Scientific Foundations

3.1. Introduction
In this section, the main features for the key monitoring issues, namely identification, detection, and diagnos-
tics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if
not generic. Handling high order linear dynamical systems, in connection with finite elements models, which
call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of
model-based sensor information data processing as exercised in SISTHEM, is the combined use of black-box
or semi-physical models together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based
SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be
considered, the issue of model order selection is really a challenge. Traditional advanced techniques from
statistics such as the various forms of Akaïke criteria (AIC, BIC, MDL, ...) do not work at all. This gives rise
to new research activities specific to handling high order models.
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Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable
assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual
operating conditions, namely without any artificial excitation or other external action. Such a normal behavior
is summarized in a reference parameter vector θ0, for example a collection of modes and mode-shapes.

3.2. Identification
Keywords: adaptive estimation, estimating function, recursive estimation.

See module 6.1.

The behavior of the monitored continuous system is assumed to be described by a parametric model
{Pθ , θ ∈ Θ}, where the distribution of the observations (Z0, ..., ZN ) is characterized by the parameter
vector θ ∈ Θ. An estimating function, for example of the form :

KN (θ) = 1/N

N∑
k=0

K(θ, Zk)

is such that Eθ[KN (θ)] = 0 for all θ ∈ Θ. In many situations, K is the gradient of a function to be minimized :
squared prediction error, log-likelihood (up to a sign), .... For performing model identification on the basis of
observations (Z0, ..., ZN ), an estimate of the unknown parameter is then [44] :

θ̂N = arg {θ ∈ Θ : KN (θ) = 0}

Assuming that θ∗ is the true parameter value, and that Eθ∗ [KN (θ)] = 0 if and only if θ = θ∗ with θ∗ fixed
(identifiability condition), then θ̂N converges towards θ∗. Thanks to the central limit theorem, the vector
KN (θ∗) is asymptotically Gaussian with zero mean, with covariance matrix Σ which can be either computed
or estimated. If, additionally, the matrix JN = −Eθ∗ [K′

N (θ∗)] is invertible, then using a Taylor expansion and
the constraint KN (θ̂N ) = 0, the asymptotic normality of the estimate is obtained :

√
N (θ̂N − θ∗) ≈ J−1

N

√
N KN (θ∗)

In many applications, such an approach must be improved in the following directions :

• Recursive estimation: the ability to compute θ̂N+1 simply from θ̂N ;

• Adaptive estimation: the ability to track the true parameter θ∗ when it is time-varying.

3.3. Detection
Keywords: local approach, residual evaluation, residual generation.

See module 6.3.

Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which
we have extended and adapted [5], [4], [2]. It is worth noticing that these investigations of ours have been
initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite
to many monitoring approaches, our method does not require repeated identification for each newly collected
data sample.
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For achieving the early detection of small deviations with respect to the normal behavior, our approach
generates, on the basis of the reference parameter vector θ0 and a new data record, indicators which
automatically perform :

• The early detection of a slight mismatch between the model and the data;

• A preliminary diagnostics and localization of the deviation(s);

• The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the
estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some
applications, such as flutter monitoring, as explained in module 4.4.

As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under
normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to
small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our
approach is to :

• Design the residual basically as a parameter estimating function,

• Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptot-
ically Gaussian and reflects the presence of a deviation in the parameter vector through a change in
its own mean vector, which switches from zero in the reference situation to a non-zero value.

This is actually a strong result, which transforms any detection problem concerning a parameterized stochastic
process into the problem of monitoring the mean of a Gaussian vector.

The behavior of the monitored system is again assumed to be described by a parametric model {Pθ , θ ∈ Θ},
and the safe behavior of the process is assumed to correspond to the parameter value θ0. This parameter often
results from a preliminary identification based on reference data, as in module 3.2.

Given a new N -size sample of sensors data, the following question is addressed : Does the new sample still
correspond to the nominal model Pθ0 ? One manner to address this generally difficult question is the following.
The asymptotic local approach consists in deciding between the nominal hypothesis and a close alternative
hypothesis, namely :

(Safe) H0 : θ = θ0 and (Damaged) H1 : θ = θ0 + η/
√

N (1)

where η is an unknown but fixed change vector. A residual is generated under the form :

ζN = 1/
√

N

N∑
k=0

K(θ0, Zk) =
√

N KN (θ0) . (2)

If the matrix JN = −Eθ0 [K
′
N (θ0)] converges towards a limit J, then the central limit theorem shows [37]

that the residual is asymptotically Gaussian :

ζN
N →∞

→


N(0,Σ) under Pθ0 ,

N(J η, Σ) under Pθ0+η/
√

N ,

(3)

where the asymptotic covariance matrix Σ can be estimated, and manifests the deviation in the parameter
vector by a change in its own mean value. Then, deciding between η = 0 and η 6= 0 amounts to compute the
following χ2-test, provided that J is full rank and Σ is invertible :



Project-Team sisthem 5

χ2 = ζ
T

F−1 ζ ≷ λ . (4)

where

ζ
∆= JT Σ−1 ζN and F ∆= JT Σ−1 J (5)

With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly
different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual
and the sensitivity and covariance matrices J and Σ can be evaluated (or estimated) for the nominal model.
In particular, it is not necessary to re-identify the model, and the sensitivity and covariance matrices can be
pre-computed off-line.

3.4. Diagnostics
Keywords: diagnostics, isolation.

See modules 6.4 and 6.3.

A further monitoring step, often called fault isolation, consists in determining which (subsets of) components
of the parameter vector θ have been affected by the change. Solutions for that are now described. How this
relates to diagnostics is addressed afterwards.

3.4.1. Isolation.
The question: which (subsets of) components of θ have changed ?, can be addressed using either nuisance
parameters elimination methods or a multiple hypotheses testing approach [35]. Here we only sketch two
intuitively simple statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.

The fault vector η is partitioned into an informative part and a nuisance part, and the sensitivity matrix
J, the Fisher information matrix F = JT Σ−1 J and the normalized residual ζ = JT Σ−1 ζN are partitioned
accordingly

η =

(
ηa

ηb

)
, J =

(
Ja Jb

)
, F =

(
Faa Fab

Fba Fbb

)
, ζ =

(
ζa

ζb

)
.

A rather intuitive statistical solution to the isolation problem, which can be called sensitivity approach, consists
in projecting the deviations in η onto the subspace generated by the components ηa to be isolated, and deciding
between ηa = ηb = 0 and ηa 6= 0, ηb = 0. This results in the following test statistics :

ta = ζ
T

a F−1
aa ζa , (6)

where ζa is the partial residual (score). If ta ≥ tb, the component responsible for the fault is considered to be
a rather than b.

Another statistical solution to the problem of isolating ηa consists in viewing parameter ηb as a nuisance,
and using an existing method for inferring part of the parameters while ignoring and being robust to the
complementary part. This method is called min-max approach. It consists in replacing the nuisance parameter
component ηb by its least favorable value, for deciding between ηa = 0 and ηa 6= 0, with ηb unknown. This
results in the following test statistics :
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t∗a = ζ
∗ T

a F∗−1
a ζ

∗
a , (7)

where ζ
∗
a

∆= ζa − Fab F−1
bb ζb is the effective residual (score) resulting from the regression of the

informative partial score ζa over the nuisance partial score ζb, and where the Schur complement
F∗

a = Faa − Fab F−1
bb Fba is the associated Fisher information matrix. If t∗a ≥ t∗b , the component re-

sponsible for the fault is considered to be a rather than b.

The properties and relationships of these two types of tests are investigated in [30].

3.4.2. Diagnostics.
In most SHM applications, a complex physical system, characterized by a generally non identifiable parameter
vector Φ has to be monitored using a simple (black-box) model characterized by an identifiable parameter
vector θ. A typical example is the vibration monitoring problem in module 4.2, for which complex finite
elements models are often available but not identifiable, whereas the small number of existing sensors calls
for identifying only simplified input-output (black-box) representations. In such a situation, two different
diagnosis problems may arise, namely diagnosis in terms of the black-box parameter θ and diagnosis in terms
of the parameter vector Φ of the underlying physical model.

The isolation methods sketched above are possible solutions to the former. Our approach to the latter diagnosis
problem is basically a detection approach again, and not a (generally ill-posed) inverse problem estimation
approach [3]. The basic idea is to note that the physical sensitivity matrix writes J JΦθ, where JΦθ is the
Jacobian matrix at Φ0 of the application Φ 7→ θ(Φ), and to use the sensitivity test (6) for the components of
the parameter vector Φ. Typically this results in the following type of directional test :

χ2
Φ = ζT Σ−1 J JΦθ (JT

Φθ JT Σ−1 J JΦθ)
−1

JT
Φθ JT Σ−1 ζ ≷ λ . (8)

It should be clear that the selection of a particular parameterization Φ for the physical model may have a non
negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices
JΦθ.

As a summary, the machinery in modules 3.2, 3.3 and 3.4 provides us with a generic framework for designing
monitoring algorithms for continuous structures, machines and processes. This approach assumes that a model
of the monitored system is available. This is a reasonable assumption within the field of applications described
in module 4.2, since most mechanical processes rely on physical principles which write in terms of equations,
providing us with models. These important modeling and parameterization issues are among the questions we
intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently
the choice of the parameter estimating function.

3.5. Subspace-based identification and detection
Keywords: Hankel matrix factorization, covariance-driven subspace-based algorithms.

See module 6.3.

For reasons closely related to the vibrations monitoring applications described in module 4.2, we have been
investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure
(λ, φλ) of the state transition matrix F of a linear dynamical state-space system :{

Xk+1 = F Xk + Vk+1

Yk = H Xk

, (9)
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namely the (λ, ϕλ) defined by :

det (F − λ I) = 0, (F − λ I) φλ = 0, ϕλ
∆= H φλ (10)

The (canonical) parameter vector in that case is :

θ
∆=

(
Λ

vecΦ

)
(11)

where Λ is the vector whose elements are the eigenvalues λ, Φ is the matrix whose columns are the ϕλ’s, and
vec is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification algorithms based on either time
domain measurements or output covariance matrices, in which different subspaces of Gaussian random vectors
play a key role [55]. A contribution of ours, minor but extremely fruitful, has been to write the output-only
covariance-driven subspace identification method under a form that involves a parameter estimating function,
from which we define a residual adapted to vibration monitoring [1]. This is explained next.

3.5.1. Covariance-driven subspace identification.

Let Ri
∆= E

(
Yk Y T

k−i

)
and:

Hp+1,q
∆=



R0 R1

... Rq−1

R1 R2

... Rq

...
...

...
...

Rp Rp+1

... Rp+q−1


∆= Hank (Ri) (12)

be the output covariance and Hankel matrices, respectively; and: G
∆= E

(
XkY T

k

)
. Direct computations of

the Ri’s from the equations (9) lead to the well known key factorizations :

Ri = HF iG

Hp+1,q = Op+1(H,F ) Cq(F,G)
(13)

where:

Op+1(H,F ) ∆=


H

HF

...
HF p

 and Cq(F,G) ∆=(G FG · · · F q−1G) (14)

are the observability and controllability matrices, respectively. The observation matrix H is then found in the
first block-row of the observability matrix O. The state-transition matrix F is obtained from the shift invariance
property of O. The eigenstructure (λ, φλ) then results from (10).

Since the actual model order is generally not known, this procedure is run with increasing model orders.
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3.5.2. Model parameter characterization.
Choosing the eigenvectors of matrix F as a basis for the state space of model (9) yields the following
representation of the observability matrix:

Op+1(θ) =


Φ
Φ∆
...
Φ∆p

 (15)

where ∆ ∆= diag(Λ), and Λ and Φ are as in (11). Whether a nominal parameter θ0 fits a given output covariance
sequence (Rj)j is characterized by [1]:

Op+1(θ0) and Hp+1,q have the same left kernel space. (16)

This property can be checked as follows. From the nominal θ0, compute Op+1(θ0) using (15), and perform
e.g. a singular value decomposition (SVD) of Op+1(θ0) for extracting a matrix U such that:

UT U = Is and UT Op+1(θ0) = 0 (17)

Matrix U is not unique (two such matrices relate through a post-multiplication with an orthonormal matrix),
but can be regarded as a function of θ0. Then the characterization writes:

U(θ0)
T

Hp+1,q = 0 (18)

3.5.3. Residual associated with subspace identification.
Assume now that a reference θ0 and a new sample Y1, · · · , YN are available. For checking whether the data
agree with θ0, the idea is to compute the empirical Hankel matrix Ĥp+1,q:

Ĥp+1,q
∆= Hank

(
R̂i

)
, R̂i

∆= 1/(N − i)
N∑

k=i+1

Yk Y T
k−i (19)

and to define the residual vector:

ζN (θ0)
∆=
√

N vec
(
U(θ0)

T
Ĥp+1,q

)
(20)

Let θ be the actual parameter value for the system which generated the new data sample, and Eθ be the
expectation when the actual system parameter is θ. From (18), we know that ζN (θ0) has zero mean when no
change occurs in θ, and nonzero mean if a change occurs. Thus ζN (θ0) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and
localization [3], and for flutter monitoring [8].
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3.5.4. Other uses of the key factorizations.
Factorization (3.5.1) is the key for a characterization of the canonical parameter vector θ in (11), and for
deriving the residual. Factorization (13) is also the key for :

• Proving consistency and robustness results [6];

• Designing an extension of covariance-driven subspace identification algorithm adapted to the pres-
ence and fusion of non-simultaneously recorded multiple sensors setups [7];

• Proving the consistency and robustness of this extension [9];

• Designing various forms of input-output covariance-driven subspace identification algorithms
adapted to the presence of both known inputs and unknown excitations [10].

4. Application Domains

4.1. Introduction
In this section, the problems we are faced with vibration-based monitoring and within our two major
application domains are briefly described.

4.2. Vibrations-based monitoring
Keywords: mechanical structure, modal analysis, subspace–based method, vibrations.

See modules 3.5.

Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic
of growing interest, due to the aging of many engineering constructions and machines and to increased safety
norms. Many current approaches still rely on visual inspections or local non destructive evaluations performed
manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field
techniques, .... These experimental approaches assume an a priori knowledge and the accessibility of a
neighborhood of the damage location. Automatic global vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations [39]. However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes or
earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences, ...) is the following.
These systems are subject to both fast and unmeasured variations in their environment and small slow
variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or
accelerometers) do not separate the effects of the external forces from the effect of the structure. The external
forces vary more rapidly than the structure itself (fortunately !), damages or fatigues on the structure are of
interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation
of recorded spectra can hardly work in such a case : the changes of interest (1% in eigenfrequencies) are
visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a
model that will help in discriminating between the two mixed causes of the changes that are contained in the
measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test beds
or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring
algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of
the considered structure or machine, without artificial excitation, speeding down or stopping.
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Health monitoring techniques based on processing vibration measurements basically handle two types of
characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode-shapes); see [51] and references therein. A
central question for monitoring is to compute changes in those characteristics and to assess their significance.
For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are
significant, to handle correlations among individual changes. A related issue is how to compare the changes
in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from
an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies
bear useful information for damage detection, information on changes in (the curvature of) mode-shapes
is mandatory for performing damage localization. Then, similar issues arise for the computation and the
significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-
shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered
as open questions [51], [39].

Controlling the computational complexity of the processing of the collected data is another standard monitor-
ing requirement, which includes a limited use of an analytical model of the structure. Moreover, the reduction
from the analytical model to the experimental model (truncated modal space) is known to play a key role in
the success of model-based damage detection and localization.

The approach which we have been developing, based on the foundations in modules 3.2–3.5, aims at
addressing all the issues and overcoming the limitations above.

4.3. Civil engineering
See modules 3.5, 6.1, 6.2, 6.4, and 7.4.

Civil engineering is a currently renewing scientific research area, which can no longer be restricted to the single
mechanical domain, with numerical codes as its central focus. Recent and significant advances in physics and
physical chemistry have improved the understanding of the detailed mechanisms of the constitution and the
behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-Lafarge). Moreover,
because of major economical and societal issues, such as durability and safety of infrastructures, buildings and
networks, civil engineering is evolving towards a multi-disciplinary field, involving in particular information
sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic,
including in connected areas such as automatic control, for mastering either the aging of the bridges, as in
America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural
heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a
tendency of long term design without fatigue oriented inspections, as opposite to less severe design with
planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is
somewhat different, in that the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular
the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different kinds
of (non measured) excitation sources and the environmental effects [52]. Typically the traffic on and under
the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured dynamics.
Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an extent which
is significant w.r.t. the deviations to be monitored. This is addressed in module 6.4.

4.4. Aeronautics
See modules 3.5, 6.1, 6.2, 6.3, 7.1 and 7.3.
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The aging of aerospace structures is a major current concern of civilian and military aircraft operators. Another
key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet. A SHM
system is viewed as a component of a global integrated vehicle health management (IVHM) system. An
overview of the users needs can be found in [36].

Improved safety and performance and reduced aircraft development and operating costs are other major
concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations
(flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests
and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and
the presence of unmeasured natural excitation inputs (turbulence). A better exploitation of flight test data can
be achieved by using output-only system identification methods, which exploits data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs [10].

A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range. A critical
instability phenomenon, known under the name of “aero-elastic flutter, involves the unfavorable interaction
of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that often results
in structural failure” [45]. For preventing from this phenomenon, the airplane is submitted to a flight flutter
testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting the speed at
which flutter can occur is usually addressed with the aid of identification methods achieving modal analysis
from the in-flight data recorded during these tests. The rationale is that the damping coefficient reflects the rate
of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant measure of stability.
Therefore, while frequencies and mode-shapes are usually the most important parameters in structural analysis,
the most critical ones in flutter analysis are the damping factors, for some critical modes. The mode-shapes
are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to data-based methods, processing
different types of data. A combined data-based and model-based method has been introduced recently under
the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer
functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust
flutter margin using the µ-method for analyzing the worst case effects of model uncertainty. In recent
comparative evaluations using simulated and real data [38], [46], several data-based methods are shown to
fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out
not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving the on-line in-flight exploitation of flight test data are expected to allow a more direct
exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one
important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of
monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and
moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely
on detection algorithms able to decide whether some damping factor decreases below some critical value or
not. The rationale is that detection algorithms usually have a much shorter response time than identification
algorithms. This is addressed in module 6.3 .

5. Software
5.1. COSMAD: Modal analysis and health monitoring Scilab toolbox

Keywords: Scilab, damage detection, damage localization, identification, input-output identification, modal
diagnosis, optimal sensor positioning, output-only identification, sensor fusion, subspace-based identification,
vibration monitoring.
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Participants: Laurent Mevel [corresponding person], Neil Babou, Maurice Goursat.

With the help of Yann Veillard, Auguste Sam and Simon Berger, former engineers, Laurent Mevel and Maurice
Goursat have developed a Scilab toolbox devoted to modal analysis and vibration monitoring of structures or
machines subjected to known or ambient (unknown) excitation [49], [48].

This software (COSMAD 3.64) has been registered at the APP under the number

IDDN.FR.001.210011.002.S.A.2003.000.20700

and can be down-loaded from http://www.irisa.fr/sisthem/cosmad/. A list of test-cases (simulators, laboratory
test-beds, real structures) for which COSMAD has been used is available from http://www.irisa.fr/sisthem/
sisthem-testcases.pdf.

COSMAD performs the following tasks :

• Output-only (O/O) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is to identify the eigenstructure (eigenvalues and observed components of the associated
eigenvectors) of the state transition matrix of a linear dynamical system, using only the observation
of some measured outputs summarized into a sequence of covariance matrices corresponding to
successive time shifts. An overview of this method can be found in [32], and details in [41], [54],
[53] and [23].

• Input-output (I/O) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is again to identify the eigenstructure, but now using the observation of some measured
inputs and outputs summarized into a sequence of cross-covariance matrices. This method is
described in [10].

• Automatic subspace-based modal analysis, a pre-tuned version of the O/O and I/O identification
methods above. This is described in [49].

• Automated on-line identification package, see modules 3.2, 3.5 and 6.1. The main question is to
react to non stationarities and fluctuations in the evolution of the modes, especially the damping.
The developed package allows the extraction of such modes using a graphical interface allowing us
to follow the evolution of all frequencies and damping over time and to analyze their stabilization
diagram (from which they were extracted). Automated modal extraction is performed based on the
automated analysis and classification of the stabilization diagram. For this method, see [33] and
[50], [42].

• Automatic recursive subspace-based modal analysis, a sample point-wise version of the O/O and
I/O identification algorithms above. For this method, see [40].

• Subspace-based identification through moving sensors data fusion, see modules 3.2 and 3.5. The
problem is to identify the eigenstructure based on a joint processing of signals recorded at different
time periods, under different excitations, and with different sensors pools. The key principles are
described in [7] and a consistency result can be found in [9].

• Damage detection, working batch-wise, see modules 3.3, 3.5, and 4.2.

Based on vibrations measurements processing, the problem is to perform early detection of small
deviations of the structure w.r.t. a reference behavior considered as normal. Such an early detection
of small deviations is mandatory for fatigue prevention. The algorithm confronts a new data record,
summarized by covariance matrices, to a reference modal signature. The method is described in [1],
[3].

• Damage monitoring, a sample point-wise version of the damage detection algorithm above. This is
described in [47].

• On-line flutter onset detection, see modules 3.3, 3.5, 4.2 and 6.3. This algorithm detects that one
damping coefficient crosses a critical value from above. For this method see [8] [33]. An extension
to detect if some subset of the whole modal parameter vector varies with respect to a threshold value,
applies directly to monitoring the evolution of a set of frequencies or a set of damping coefficients
with respect to their reference values [34], [43].

http://www.irisa.fr/sisthem/cosmad/
http://www.irisa.fr/sisthem/sisthem-testcases.pdf
http://www.irisa.fr/sisthem/sisthem-testcases.pdf
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• Modal diagnosis, working batch-wise, see modules 3.4, 3.5, and 4.2. This algorithm finds the modes
the most affected by the detected deviation. For this method, see [3].

• Damage localization, see modules 3.4, 3.5 and 4.2.

The problem is to find the part of the structure, and the associated structural parameters (e.g. masses,
stiffness coefficients) that have been affected by the damage. We state and solve this problem as a
detection problem, and not an (ill-posed) inverse estimation problem. This is explained in [3].

• Optimal sensor positioning for monitoring. At the design stage of the monitoring system, a criterion
is computed, which quantifies the relevance of a given sensor number and positioning for the purpose
of structural health monitoring. For this criterion, see the articles [31], [29].

The modules have been tested by different partners, especially the French industrial partners, EADS, Dassault
and Sopemea, within the FliTE2 project (see module 7.1), by partners from the past CONSTRUCTIF project

[53] and [23], and within the framework of bilateral contracts with SNECMA and SVIBS (see modules 7.3
and 7.4).

This Scilab toolbox continues to play the role of a programming and development environment for all our
newly designed algorithms. Moreover, offering a maintained Scilab platform turns out to be a crucial factor
in convincing industrial partners to undergo joint investigations with us or to involve us within partnerships in
FP7 integrated projects proposals, see module 8.1.

As from December 2007, Neil Babou, associate engineer, works on finalizing the next major version of
COSMAD. This version is based on the work of Simon Berger during FliTE2 as described in module 7.1.
Major code rewriting has been done to use the object oriented framework. Identification techniques used
during FliTE2 have also been implemented. Neil Babou will finalize the toolbox and adapt the graphical
interface code in Java to follow the migration of Scilab to this language. Plan to provide a specific version for
use within SNECMA is currently under way.

6. New Results

6.1. Eigenstructure identification - Improving subspace identification : slight
modifications of the algorithm
Keywords: modal analysis, output-only identification, subspace–based method.

Participants: Maurice Goursat, Laurent Mevel.

See modules 3.2, 3.5, 4.2, 7.1, 7.3 and 7.4.

There are numerous ways to implement the covariance subspace identification method. The variants relate
to the choice of parameters, which have to be tuned by the user. Such tuning is only reliably done by the
mechanical engineer, when the parameter has a physical meaning. From the data to the results there are 4
main steps in the covariance subspace identification method. In this paper [21], we are concerned with the
computation of the decomposition of the Hankel matrix and the mean square estimation of the transition
matrix. We compare different cases for the algorithms related to these steps: how to choose the parameters
and what are the corresponding perturbations on the results for the different basic numerical algorithms. The
conclusion is that with some modifications we can easily obtain more precise and reliable results. The idea
is also to minimize the number of parameters to be tuned by the user. With a matrix normalization and a
truncation in the order used for the approximation we get an implementation being a very efficient and stable
identification procedure. All these algorithms are theoretically equivalent, but in practice some give much
better results. These new schemes have been validated on different concrete cases (civil structure, aircraft,
space launcher). Improvements in damping stability is the main output of this work. Implementation of this
work in COSMAD and for transfer to SNECMA and SVIBS (see modules 7.3 and 7.4) will occur in 2009.
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6.2. Change/damage detection and isolation in the frequency domain
Keywords: change detection, frequency domain methods, transmissibility.

Participants: Michèle Basseville, Gilles Canales, Laurent Mevel.

See modules 3.3, 3.4, 6.3 and 6.4.

The first year of the PhD thesis of G. Canales has been focused on understanding and developing some
detection tests in the frequency domain. Indeed, advances in engineering have led to the increase in monitoring
capacities (number of sensors). This calls for developing new and more efficient approaches to the monitoring
problem. One such approach was to try to work out a frequency domain damage detection test.

A new residual based on the polyreference Least Square Complex Frequency domain (LSCF) identification
method has been proposed and described in the 2007 report. It has been presented at [16].

In the second year of Gilles Canales thesis, different frequency domain damage detection residuals have been
derived for the transmissibility frequency domain method. It will be presented at [17] and has been submitted
to SYSID 09.

Consistency and asymptotical normality of that residual have been proved. We monitor some small changes in
the transmissibility equation, where the transmissibility is the ratio between output and input in the frequency
domain. Assuming a single force is applied to the system, this leads to an output only frequency domain
method, a relaxing hypothesis with respect to last year [16].

Other frequency domain methods under investigation include OMAX, Maximum likelihood and frequency
domain decomposition methods. Residuals for such techniques are currently investigated.

6.3. Flutter monitoring and onset detection
Keywords: CUSUM test, aeronautical structure, flutter, modal analysis, subspace-based residual.

Participants: Michèle Basseville, Fethi Bouziani, Laurent Mevel, Rafik Zouari.

See modules 3.3, 3.5, 4.4 and 7.1.

Stating the flutter monitoring problem (see modules 4.4 and 7.1) as a statistical hypotheses testing problem,
in [8] and [33] we have advocated for an on–line test built on a sample-wise temporal data-driven computation
for the subspace–based residual (20), a non-local approximation for that residual, and the cumulative sum
(CUSUM) test [4]. None of these approaches uses any model of the underlying physical phenomenon.

6.3.1. Model based online CUSUM tests.
The second and third years of Rafik Zouari PhD thesis were focused on developing and enhancing the
features of the CUSUM test for different usage conditions. Two versions of the test have been considered.
The online computation of the Jacobian and covariance matrices removes the previous requirement of having
data corresponding to the reference state. This is a progress for the design of flutter test because this reference
data should have been as close as possible to the flutter [8], [33], which is unrealistic. This progress allows
many variants of the CUSUM approach, all based on the computation of a parameterized kernel.

Now the reference is only defined by the kernel matrix S. This matrix can be derived and computed from the
SVD of a parametric observability matrix Op, built using some value of the parameter assumed to be close to
flutter.

The previous remark implies that if any predictive model is available for the prediction of flutter speed, such a
model can be used to give an estimate of the parameter close to flutter.

Frequency-domain identification-based prediction has been investigated, thanks to a collaboration with the
Acoustics & Vibration Research Group of Vrije Universiteit Brussel (VUB). Results have been presented in
[27] and [18].
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In these papers, this flutter monitoring approach is adjusted to get rid of conservative decisions through using
a parametric residual built from a modal signature (modes and mode-shapes) predicted near the critical zone.
Indeed, the modal signature is estimated using a flutter prediction algorithm based on fitting a quasi-steady
aeroelastic model. The fitting procedure uses modal estimation at current and past flight speeds without a-
priori knowledge of model parameters. The predicted signature is updated at each selected flight speed and
the detection test takes account of prediction and monitors the flutter onset until the next flight speed. This
approach is illustrated with flutter simulator data in the acceleration phase.

6.3.2. Adaptive online CUSUM tests.
A new empirical approach to kernel computation has been evaluated and presented at the IFAC World
Congress [25]. It compares a recursive Hankel matrix computed online for each time instant t, with a recursive
computation of its kernel. The kernel is representative of the modal state at some previous instant. If some
brutal change arises, a discrepancy appears between the Hankel matrix and its kernel because of the delay
between both computations. The test is not performing flutter detection but monitors the brutal variations
of the monitored parameter, which will be the flutter phenomena if we assume that flutter corresponds to a
brusque variation in the dynamics of the parameter. An application to a large scale simulated aircraft has been
performed during the Flite2 project and presented at EWSHM in Poland. This was done in collaboration with
AGH [26]. It involves mixing wavelet filtering and the above CUSUM test. Wavelet filtering allows reducing
model order of the monitored system, which help reducing false alarms.

6.3.3. Subspace based damping monitoring
Tracking the evolutions of modal parameters is not an easy task. In fact, even for stationary systems,
identification is a complex task, notwithstanding the computation of confidence intervals. For non stationary
systems, such as an aircraft in operation, reaction time and system variability render most identification
methods difficult to implement. The CUSUM technique is reused to handle monitoring of slight in-operation
modal variations over time. Application to simulation data shows the relevance of the new approach to
track damping coefficients of critical modes. The methods involves the computation of a parametrized
reference kernel for the CUSUM test, tuned with some signature representative of some predifined threshold
corresponding to a confidence interval for the monitored damping. Minmax rejection allows the rejection of the
effect of the frequency evaluation due to the mismatch between the modal model defined by the parameterized
kernel and the current model associated with the data, resulting from the interaction with the aeroelasticity
model. This method of tracking modal parameter variations by a change detection technique defined by some
predifined adaptive threshold has been validated on both academic examples and some realistic simulation of
an aircraft under acceleration phase provided by Dassault Aviation.

6.3.4. Robust flutter margins for flutter detection.
Fethi Bouziani, CNRS postdoc has been focusing on developing new algorithms for flutter detection. A new
residual for flutter detection has been proposed, based on the Cayley Hamilton equation for the mechanical
linear system. This residual has been implemented into the CUSUM algorithm and has been proved to
be robust and non sensitive to modeshape changes. This feature leads to a better suited algorithm for the
monitoring of frequencies and dampings.

6.4. Handling the temperature effect
Keywords: civil engineering structures, modal analysis, temperature effect.

Participants: Michèle Basseville, Laurent Mevel, Maurice Goursat, Michael Döhler.

See modules 3.4, 3.5 and 4.3.

The PhD thesis of Houssein Nasser completed in 2006 has addressed the problem of rejecting the temperature
effect when performing damage detection tests on civil structures. Because of the temperature effects, the test
may not react to some damages, and conversely may be too sensitive to some ambient temperature changes.
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Some approach is based on the collection of varying reference temperature datasets, and on a reference kernel
averaging all the temperature scenarios [13]. This is the topic of the following case studies.

6.4.1. Temperature rejection : case study on a bridge
After the work on a beam under temperature and damages changes in SISTHEM and LCPC [23], this year,
the actual robustness to temperature changes of the proposed methods has been further investigated within
LCPC by Dominique Siegert under the supervision of SISTHEM [24]. The extreme reaction of the test to
summer/winter and its robustness to small temperature changes have been shown. This work presents the
processing methods and the analysis results of ambient vibration data recorded during a six-month period
on a highway bridge, the Roberval bridge in France. Data analysis was focused on the variations of the
modal parameter related to the accuracy of the estimates and to the temperature effects. The first flexural and
torsional modes were estimated with their variance from short acceleration time series records using stochastic
covariance driven subspace identification techniques. The frequency variation estimates were compared to the
variations induced by structural modifications simulated with a finite element model for assessing the detection
threshold level. Subsequently the temperature induced variations in the measured frequencies were analysed.
The effectiveness of the temperature robust version of Houssein Nasser Phd thesis was investigated with the
available data records. Results of the damage detection test show the response to the temperature effects.
Significant increases in the variance of the parameter estimates were also detected by the test. Confidence
intervals based on analytical derivation of the subspace equation were compared with the evolution of the
damage detection test with success, in collaboration with Katholieke Universiteit Leuven.

6.4.2. Temperature rejection : case study on some masonry structures
Identification and damage detection under temperature changes have been performed on the Mogadouro clock
tower and the San Jeronimo monastery church, two important historical monuments in Portugal [22], as
described in the 2007 report.

A new PhD student, Michael Döhler, has started from November 1st, 2008, willing to expand on the results
obtained in the thesis of Houssein Nasser.

7. Contracts and Grants with Industry

7.1. Eurêka project FliTE2
Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Rafik Zouari.

See modules 4.2, 4.4, 5.1, 6.1 and 6.3.

Contract INRIA — September 2005/November 2008.

We have been strongly contributing to the establishment, within the Eurêka framework, of a follow-up of the
major cooperation FliTE for which a success story is available at
http://www.eureka.be/inaction/viewSuccessStory.do?docid=2684250.

The Eurêka project no 3341 FliTE2 (ÇFlight Test Easy ExtensionÈ) is devoted to improving the exploitation
of flight test data, under natural excitation conditions (e.g. turbulence), enabling more direct exploration of
the flight domain, with improved confidence and at reduced cost. It is coordinated by the industrial test
laboratory Sopemea. As in FliTE the partners are Dassault–Aviation and EADS (AeroMatra Airbus) (France),
LMS and KU Leuven (Belgium), Cracow University and the company PZL–Mielic (Poland), and INRIA. The
partnership is extended to ONERA/CERT, to Lambert Aircraft Engineering, an SME building light aircrafts,
and to the Dynamics and Aero-elasticity Group of Manchester University. Albert Benveniste helps Sopemea
in the scientific coordination of the project.

http://www.eureka.be/inaction/viewSuccessStory.do?docid=2684250


Project-Team sisthem 17

In FliTE, the basis for novel techniques for in-flight test data structural analysis was developed, involving both
controlled and uncontrolled (natural) excitations. The main objective of FliTE2 is the effective transfer of the
results, algorithms, tools, and techniques of FliTE to aircraft manufacturers (Airbus, Dassault-Aviation) and
vendors and service providers (LMS-International, SOPEMEA) members of the project. Domains covered by
FliTE2 include:

• On-line and during flight processing of flight test data. This is part of flight tests and has two
objectives:

– flutter monitoring, that is, monitoring the risk that the aircraft enters into aeroelastic
instability, possibly resulting in a loss of the aircraft; needed reaction time for flutter
monitoring in about 1-10 seconds, depending on aircraft;

– getting modal analysis of the aircraft in flight conditions; this analysis is then used to
update the Finite Element model of the aircraft, and finalize fine tuning of various flight
control algorithms.

• Ground Vibration Tests (GVT) and Environmental Tests. These are tests performed on ground, by
properly shaking the structure. GVT is a major step in aircraft qualification, goal was to improve
the quality and reduce the cost (use cheaper excitation techniques and faster modes of testing).
Environmental tests are just qualification tests for structures subject to vibrations. Currently, the
corresponding data are not exploited (since excitation forces are not measured in those tests). The
goal is to exploit these data to perform modal analysis.

The project is structured into Working Groups, one for each major industrial user. This has facilitated the
preparation of transfer, by properly adjusting to the specific requirements The WGs are driven by ONERA
(with Airbus), Dassault-Aviation, SOPEMEA and LMS on ground vibration tests, and PZL and AGH on
environmental tests.

In addition, an extra WG, driven by Laurent Mevel (INRIA) and Jonathan Cooper (Manchester University), is
devoted to research on aero-elastic flutter monitoring and prediction. Each of the academic partners is involved
in several WGs.

Common algorithmic platforms have been developed and then customized for the different industrial users.
The project also involves advanced research, in both real-time modal analysis (with a deadline of 1 sec)
and flutter monitoring, leading to drastically new methods and algorithms. The project has created a unique
tight network of academic and industrial partners over the years, which constitutes a significant competitive
advantage in the considered sector. Of course, finalizing transfer until the flight test facilities of aircraft
manufacturers will still require work beyond the end of Flite2. But FliTE2 has undoubtely been a big step
forward in this area.

In the third year of Rafik Zouari thesis, strong collaboration with AGH about using wavelet filtering and the
CUSUM techniques for handling large scale aircraft models from ONERA has occured. As well, Rafik Zouari
developed some subspace damping monitoring algorithm for modal tracking and has applied this algorithm to
some simulated aircraft from Dassault Aviation.

7.2. FP7-NMP CP-IP 213968-2 IRIS
Participants: Michèle Basseville, Laurent Mevel, Xuan Binh Lam.

See modules 4.2, 5.1.

Contract INRIA

SISTHEM is involved in the core consortium of FP7-NMP Large Scale Integrated Project IRIS (Integrated
European Industrial Risk Reduction System), which helds its kick off meeting in October 2008. This project
has been elaborated within the framework of the SAMCO association (see module 8.1). SISTHEM is involved
in the online monitoring sub-project.
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A new PhD student, Xuan Binh Lam, has started from November 1st, 2008, willing to work on safety related
work for risk control and assesment, especially for monitoring of transient events.

7.3. SNECMA
Participants: Maurice Goursat, Laurent Mevel.

See modules 4.2, 4.4, 5.1, and 6.1.

In 2007, SISTHEM has investigated for SNECMA an identification case study on some undisclosed en-
gine structure. Successfull results yield to the delivery of the COSMAD toolbox for internal evaluation at
SNECMA. The end goal is the use of COSMAD in the industrial process of SNECMA. Internal evaluation of
COSMAD has been performed inhouse by SNECMA in 2008. A contract is to be signed and some software
package will be developed to suit SNECMA needs in 2009.

7.4. SVIBS
Participants: Maurice Goursat, Laurent Mevel.

See modules 4.2, 4.3, 5.1, 6.1, 6.2 and 6.4.

Annual agreement INRIA-SVIBS+ contract 2381.

SVIBS (Structural Vibration Solutions A/S) is a company located in Aalborg, Denmark, having strong
connections with the Department of Civil Engineering of University of British Columbia, CA (Prof. Carlos
Ventura).

SVIBS and SISTHEM are investigating how to link the modal analysis software ARTeMIS of SVIBS and
COSMAD. Through an annual agreement, SISTHEM gets a license of ARTeMIS in exchange to offer support
for integrating our damage detection software into SVIBS software and offerings. A contract has been signed,
where SISTHEM provides algorithms and expertise for integration within a damage detection structural health
monitoring system and SVIBS does the implementation. This technology transfer has been funded by the
ministry of transportation of British Columbia, Canada. The work is supervised by UBC, CA. The end product
will be a web based structural health monitoring system for in operation bridges.

8. Other Grants and Activities

8.1. SAMCO association
Participant: Michèle Basseville.

See modules 4.2, 4.3 and 5.1.

The FP5 Growth thematic network SAMCO has been active from October 2001 until March 2006 within
the framework of the Growth program. It has become a focal point of reference in the field of assessment,
monitoring and control of civil and industrial structures, in particular the transportation infrastructure (bridges,
etc.). The European Association for SAMCO was founded on April 2006. We are involved especially in the
thematic group «Monitoring and Assessment». This turns out to be a useful complement to the diffusion of
our knowledge and expertise in vibration monitoring.

Within this framework, we have offered Scilab as an open platform for the integration of the modules for
algorithms and methods covering the objectives of automatic modal analysis, automatic modal and statistical
damage detection methods. We have also offered the COSMAD toolbox, see module 5.1.

We are involved in the IRIS project proposal, elaborated in this framework, see module 7.2.

8.2. FWO Research Network ICCoS
Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.
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We participate to the Scientific Research Network «Identification and Control of Complex Systems» (ICCoS)
launched by the Research Foundation of Flanders (FWO). This network is dedicated to national and interna-
tional cooperation at postdoctoral level for the development of identification and control design methodologies.

8.3. Partnership with KU Leuven
Participants: Maurice Goursat, Laurent Mevel.

Agreement INRIA-KU.Leuven

SISTHEM and Katholieke Universiteit Leuven (Guido de Roeck, Civil Engineering Department) are collabo-
rating on the topic of confidence intervals for subspace-based estimates [24].

8.4. International collaborations
Participants: Michèle Basseville, Gilles Canales, Maurice Goursat, Laurent Mevel, Rafik Zouari.

This year, SISTHEM has been collaborating with the following universities and institutes :

• The University of British Columbia (CA), Civil Engineering Department,

• Vrije Universiteit Brussel (B), Acoustics & Vibration Research Group, see module 9.3, [27], [18],

• Minho University (PT), Civil Engineering Department [22],

• Katholieke Universiteit Leuven (B), Civil Engineering Department [22],

• LCPC, Metrology and Instrumentation Division [23],

• AGH [26].

9. Dissemination

9.1. Scientific animation
M. Basseville is member of the IFAC technical committees 1.1 «Modeling, Identification and Signal Process-
ing» and 1.4 «Stochastic Systems», within the coordinating committee 1 «Systems and Signals», and of the
technical committee 6.4 «Fault Detection, Supervision and Safety of Technical Processes», within the coordi-
nating committee 6 «Industrial Applications». She is associate editor for the IFAC journal «Automatica» and
member of the editorial board of the IET journal «Control Theory and Applications».

She is member of the Scientific Councils of the research consortium (GIS) Surveillance, Sûreté et Sécurité des
Grands Systèmes (3SGS) and of the research cluster Informatique, Signal, Logiciel Embarqué (ISLE) of the
Rhône-Alpes Region.

M. Basseville has been member of the evaluation committee of the 2008 Complex Systems and Mathematical
Modeling program (ANR SYSCOMM) launched by the National Agency for Research. She has evaluated a
project submitted within the framework of the Stochastic Analysis, Applied Probability, and Statistics program
of the US Army Research Office, and a project submitted within the framework of the Incentive Research
Grants program of the City University of New York (CUNY).

A. Benveniste is associated editor at large (AEAL) for the journal IEEE Transactions on Automatic Control.
He is member of the Strategic Advisory Council of the Institute for Systems Research, Univ. of Maryland,
College Park, USA.
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9.2. Conference and workshop committees, invited conferences
9.2.1. Committees.

M. Basseville is General Chair of the 15th IFAC Symposium on System Identification (SYSID), to be held
in Saint-Malo, France, in July 2009. She is member of the Scientific Program Committee and of the Local
Organisation Committee of the 2nd International Workshop in Sequential Methodologies (IWSM) to be held
in Troyes, France, in June 2009. She is member of the Program Committee of the 9th International Science
and Technology Conference Diagnostics of Processes and Systems (DPS) to be held in Gdansk, Poland, in
September 2009. She has been associate editor within the IEEE Control Systems Society Conference Editorial
Board, where she has been in charge of the evaluation of papers submitted to ACC’08.

L. Mevel is member of the IOMAC (International Operational Modal Analysis Conference) Scientific Com-
mittee, to be held in Italy, in May 2009.

9.2.2. Invited publications.
The team has been involved in:

• The Encyclopedia of SHM. An article entitled « Model-based statistical signal processing for change
and damage detection», outlining the key concepts of the statistical model-based change detection
methodology and its usefulness for addressing fault and damage detection problems, has been invited
and appears this winter [28];

• A special session on Flight Flutter Testing and Analysis at the International Conference on Noise
and Vibration Engineering in Leuven, BE, in September 2008 [27], [18].

9.3. Visits and invitations
David C. Zimmerman, professor at University of Houston, has visited us for one week during Fall. With
Laurent Mevel, he investigated the problem of linking finite element and statistical methods. The objective is
to use statistical methods as cost functions for recalage methods in finite element computation.

Palle Andersen, Managing Director of Structural Vibration Solutions A/S (SVIBS), Aalborg, Denmark,
has visited L. Mevel during one week in August 2008. SVIBS is promoting ARTeMIS, a commercial
modal identification software, and is interested in our know-how on damage detection and localization.
Implementation of our damage detection based algorithms inside the SVIBS development framework has
been investigated, for integration within ARTeMIS outside of COSMAD - see modules 5.1, 6.1, 6.2 and 7.4.

Habib Jreige, promotion manager of the Scilab Consortium, visited us to discuss the futur of COSMAD with
regard to Scilab. Talks were centered around the possible inclusion of COSMAD as a specific supported
toolbox for Scilab.
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