%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team tropics

Transformations et Outils Informatiques
pour le Calcul Scientifique

Sophia Antipolis - Méditerranée

- THEME NUM -

qlctivity

http://www.inria.fr/recherche/equipes/listes/theme_NUM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/tropics.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

b=

i

Table of contents

TeamM ...
Overall Objectives i e
Scientific Foundations

3.1. Automatic Differentiation
3.2. Static Analyses and Transformation of programs
3.3. Automatic Differentiation and Computational Fluid Dynamics

Application Domains

4.1. Panorama

4.2. Multidisciplinary optimization

4.3. Inverse problems and Data Assimilation
4.4. Linearization

4.5. Mesh adaptation

SO tWare ...
New Results e

6.1. Automatic Differentiation and parallel codes
6.2. TAPENADE for C

6.3. Differentiation of large real applications

6.4. Second Derivatives

6.5. Optimal control

6.6. Management of uncertainties

6.7. Correction of approximation errors

6.8. Control of approximation errors

Dissemination

7.1. Links with Industry, Contracts
7.2. Conferences and workshops

Bibliography

[I SN)

O O 3 3

13
14
14
14
15
15

16
16

1. Team

Research Scientist
Laurent Hascoét [DR INRIA, HdR]
Valérie Pascual [CR INRIA |
Alain Dervieux [DR INRIA, HdR]

Faculty Member
Bruno Koobus [Université de Montpellier 2]

PhD Student
Anca Belme [(Since september ISt)]

Administrative Assistant
Christine Faber [TR INRIA]

2. Overall Objectives

2.1. Overall Objectives

The TROPICS team studies Automatic Differentiation (AD) of algorithms and programs. It is at the junction
of two research domains:

e AD theory: On the one hand, we study software engineering techniques, to analyze and transform
programs semi-automatically. Our application is Automatic Differentiation (AD). AD transforms a
program P that computes a function F', into a program P’ that computes some derivatives of F/,
analytically. We put a particular emphasis on the reverse mode of AD (sometimes called adjoint
mode), which yields gradients for optimization at a remarkably low cost. The reverse mode of AD
requires carefully crafted algorithms.

o AD application to Scientific Computing: On the other hand, we study the application of AD, and
particularly of the adjoint method, to e.g. Computational Fluid Dynamics. This involves adapting
of the strategies used in Scientific Computing, in order to take full advantage of AD. This work is
applied to several real-size applications.

The second aspect of our work is thus at the same time the motivation and the application domain of the
first aspect. Our objective is to automatically produce AD code that can compete with the hand-written
sensitivity and adjoint programs which exist in the industry. We implement our ideas and algorithms into
the tool TAPENADE, which is developed and maintained by the team, and which has become one of the most
popular AD tools. TAPENADE is available as a web service, and alternatively a version can be downloaded
from our web server. Practical details can be found in section 5.1.

Our research directions are :

e Modern numerical methods for finite elements or finite differences: multigrid methods, mesh
adaptation.

e Optimal shape design or optimal control in the context of fluid dynamics: This involves optimization
of nonsteady processes and computation of higher-order derivatives e.g. for robust optimization.

e Automatic Differentiation : differentiate particular algorithms in a specially adapted manner, com-
pute second-order derivatives, reduce runtime and memory consumption of the reverse mode, study
storage/recomputation strategies for very large codes.

e Common tools for program analysis and transformation: adequate internal representation, Call
Graphs, Flow Graphs, Data-Dependence Graphs.

2 Activity Report INRIA 2008

3. Scientific Foundations

3.1. Automatic Differentiation

Keywords: adjoint models, automatic differentiation, optimization, program transformation, scientific com-
puting, simulation.

Participants: Laurent Hascoét, Valérie Pascual.

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the Partial Derivative Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a
source computer program P that, given a vector argument X € IR™, computes some vector function
Y = F(X) € IR™. The AD tool generates a new source program that, given the argument X, computes
some derivatives of F'. In short, AD first assumes that P represents all its possible run-time sequences of in-
structions, and it will in fact differentiate these sequences. Therefore, the control of P is put aside temporarily,
and AD will simply reproduce this control into the differentiated program. In other words, P is differentiated
only piecewise. Experience shows that this is reasonable in most cases, and going further is still an open re-
search problem. Then, any sequence of instructions is identified with a composition of vector functions. Thus,
for a given control:

P is {Iy; 11y b,

1
F o= fyofyi0-oh, o

where each fy, is the elementary function implemented by instruction . Finally, AD simply applies the chain
rule to obtain derivatives of F'. Let us call X, the values of all variables after each instruction Iy, i.e. Xg = X
and Xy, = fr(Xx—_1). The chain rule gives the Jacobian F” of F'

FI(X) = fo(Xp1) - fp1(Xp—2) . -+ . fi(Xo) 2)

which can be mechanically translated back into a sequence of instructions I, and these sequences inserted
back into the control of P, yielding program P’. This can be generalized to higher level derivatives, Taylor
series, etc.

In practice, the above Jacobian F’(X) is often far too expensive to compute and store. Notice for instance that
equation (2) repeatedly multiplies matrices, whose size is of the order of m x n. Moreover, most problems
are solved using only some projections of F’(X). For example, one may need only sensitivities, which are
F'(X)X for a given direction X in the input space. Using equation (2), sensitivity is

FI(X).X = f)(Xp-1) -)1 (Xp—2) . -+ . f1(Xo) . X, 3)

Project-Team tropics 3

which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of the tangent mode of AD, which is the most straightforward, of course available in TAPENADE.

However in optimization, data assimilation [39], adjoint problems [34], or inverse problems, the appropriate
derivative is the gradient F'*(X).Y . Using equation (2), the gradient is

FM(X)Y = fi*(Xo). f55(X1). - Sy 1 (Xp—2). [(Xp-1).Y, 4)

which is most efficiently computed from right to left, because matrix x vector products are so much cheaper
than matrix x matrix products. This is the principle of the reverse mode of AD.

This turns out to make a very efficient program, at least theoretically [36]. The computation time required for
the gradient is only a small multiple of the run-time of P. It is independent from the number of parameters n.
In contrast, notice that computing the same gradient with the tangent mode would require running the tangent
differentiated program n times.

However, we observe that the X}, are required in the inverse of their computation order. If the original program
overwrites a part of X}, the differentiated program must restore Xj, before it is used by f;", | (Xx). This is the
main problem of the reverse mode. There are two strategies for addressing it:

e Recompute All (RA): the X}, is recomputed when needed, restarting P on input X until instruction
I.. The TAF [32] tool uses this strategy. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructions p.

e Store All (SA): the X, are restored from a stack when needed. This stack is filled during a
preliminary run of P, that additionally stores variables on the stack just before they are overwritten.
The ADIFOR [27] and TAPENADE tools use this strategy. Brute-force SA strategy has a linear
memory cost with respect to p.

Figure 1. The “Store-All” tactic

Both RA and SA strategies need a special storage/recomputation trade-off in order to be really profitable,
and this makes them become very similar. This trade-off is called checkpointing. Since TAPENADE uses the
SA strategy, let us describe checkpointing in this context. The plain SA strategy applied to instructions /; to
I, builds the differentiated program sketched on figure 1, where an initial “forward sweep” runs the original
program and stores intermediate values (black dots), and is followed by a “backward sweep” that computes
the derivatives in the reverse order, using the stored values when necessary (white dots). Checkpointing a
fragment C of the program is illustrated on figure 2. During the forward sweep, no value is stored while in C.
Later, when the backward sweep needs values from C, the fragment is run again, this time with storage. One
can see that the maximum storage space is grossly divided by 2. This also requires some extra memorization
(a “snapshot”), to restore the initial context of C. This snapshot is shown on figure 2 by slightly bigger black
and white dots.

Checkpoints can be nested. In that case, a clever choice of checkpoints can make both the memory size and
the extra recomputations grow only like the logarithm of the size of the program.

4 Activity Report INRIA 2008

N
#

time O mm—m— ————

Figure 2. Checkpointing C with the “Store-All” tactic

3.2. Static Analyses and Transformation of programs

Keywords: abstract interpretation, abstract syntax tree, compilation, control flow graph, data dependence
graph, data flow analysis, program transformation, static analysis.
Participants: Laurent Hascoét, Valérie Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run-time.

abstract interpretation Model that describes program static analyses as a special sort of execution,
in which all branches of control switches are taken simultaneously, and where computed values
are replaced by abstract values from a given semantic domain. Each particular analysis gives
birth to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analyses are static, therefore studying all possible run-
time behaviors and making conservative approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as a data
dependence graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analyses [25]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. In particular, it is desirable that the optimization and code generation phases be independent
from the particular input programming language. This can generally be achieved through separate front-ends,
that produce an internal language-independent representation of the program, generally an abstract syntax tree.
For example, compilers like gcc for C and g77 for FORTRAN77 have separate front-ends but share most of
their back-end.

Project-Team tropics 5

One can go further. As abstraction goes on, the internal representation becomes more language independent,
and semantic constructs such as declarations, assignments, calls, IO operations, can be unified. Analyses
can then concentrate on the semantics of a small set of constructs. We advocate an internal representation
composed of three levels.

e At the top level is the call graph, whose nodes are the procedures. There is an arrow from node A
to node B iff A possibly calls B. Recursion leads to cycles. The call graph captures the notions of
visibility scope between procedures, that come from modules or classes.

e At the middle level is the control flow graph. There is one flow graph per procedure, i.e. per node in
the call graph. The flow graph captures the control flow between atomic instructions. Flow control
instructions are represented uniformly inside the control flow graph.

e At the lowest level are abstract syntax trees for the individual atomic instructions. Certain semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each basic block is associated a symbol table that gives access to properties of variables, constants, function
names, type names, and so on. Symbol tables must be nested to implement lexical scoping.

Static program analyses can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [28], [37], [26]. But many analyses are
more complex, and are thus better defined on graphs than on trees. This is the case for data-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [29], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [30] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. The classical
solution is to choose a hierarchical model. In this model, information, or at least a computationally expensive
part of it, is synthesized. Specifically, it is computed bottom up, starting on the lowest (and smallest) levels
of the program representation and then recursively combined at the upper (and larger) levels. Consequently,
this synthesized information must be made independent of the context (i.e., the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top down and context dependent,
that propagates information from the “extremities” of the program (its beginning or end) to each particular
subroutine, basic block, or instruction.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of actual
run-time values. Most of them are undecidable; that is, there always exists a particular program for which the
result of the analysis is uncertain. This is a stronglimitation, however very theoretical. More concretely, there
are always cases where one cannot decide statically that, for example, two variables are equal. This is even
more frequent with two pointers or two array accesses. Therefore, in order to obtain safe results, conservative
over-approximations of the computed information are generated. For instance, such approximations are made
when analyzing the activity or the TBR (“To Be Restored”) status of some individual element of an array.
Static and dynamic array region analyses [43], [31] provide very good approximations. Otherwise, we make
a coarse approximation such as considering all array cells equivalent.

When studying program transformations, one often wants to move instructions around without changing the
results of the program. The fundamental tool for this is the data dependence graph. This graph defines an
order between run-time instructions such that if this order is preserved by instructions rescheduling, then the
output of the program is not altered. Data dependence graph is the basis for automatic parallelization. It is also
useful in AD. Data dependence analysis is the static data-flow analysis that builds the data dependence graph.

3.3. Automatic Differentiation and Computational Fluid Dynamics

Keywords: adjoint methods, adjoint state, computational fluid dynamics, gradient, linearization, optimization.

6 Activity Report INRIA 2008

Participants: Alain Dervieux, Laurent Hascoét, Bruno Koobus.

linearization The mathematical equations of Fluid Dynamics are Partial Derivative Equations, that
are discretized and then solved by a computer program. Linearization of these equations, or
alternatively linearization of the computer program, gives a modelization of the behavior of the
flow when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Computational Fluid Dynamics is now able to make reliable simulations of very complex systems. For example
it is now possible to simulate completely the 3D air flow around a plane that captures the physical phenomena
of shocks and turbulence. The next step in CFD appears to be optimization. Optimization is one degree higher
in complexity, because it repeatedly simulates, evaluates directions of optimization and applies optimization
steps, until an optimum is reached.

We restrict here to gradient descent methods. One risk is obviously to fall into local minima before reaching
the global minimum. We do not address this question, although we believe that more robust approaches, such
as evolutionary approaches, could benefit from a coupling with gradient descent approaches. Another well-
known risk is the presence of discontinuities in the optimized function. We investigate two kinds of methods
to cope with discontinuities: we can devise AD algorithms that detect the presence of discontinuities, and we
can design optimization algorithms that solve some of these discontinuities.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

e One can write an adjoint system, then discretize it and program it by hand. The adjoint system is a
new system, deduced from the original equations, and whose solution, the adjoint state, leads to the
gradient. A hand-written adjoint is very sound mathematically, because the process starts back from
the original equations. This process implies a new separate implementation phase to solve the adjoint
system. During this manual phase, mathematical knowledge of the problem can be translated into
many hand-coded refinements. But this may take an enormous engineering time. Except for special
strategies (see [34]), this approach does not produce an exact gradient of the discrete functional, and
this can be a problem if using optimization methods based on descent directions.

e A program that computes the gradient can be built by pure Automatic Differentiation in the reverse
mode (cf 3.1). It is in fact the adjoint of the discrete functional computed by the software, which
is piecewise differentiable. It produces exact derivatives almost everywhere. Theoretical results
[33] guarantee convergence of these derivatives when the functional converges. This strategy gives
reliable descent directions to the optimization kernel, although the descent step may be tiny, due to
discontinuities. Most importantly, AD adjoint is generated by a tool. This saves a lot of development
and debug time. But this systematic approach leads to massive use of storage, requiring code
transformation by hand to reduce memory usage. Mohammadi’s work [38] [41] illustrates the
advantages and drawbacks of this approach.

The drawback of AD is the amount of storage required. If the model is steady, can we use this important
property to reduce this amount of storage needed? Actually this is possible, as shown in [35], where
computation of the adjoint state uses the iterated states in the direct order. Alternatively, most researchers [38]
use only the fully converged state to compute the adjoint. This is usually implemented by a hand modification
of the code generated by AD. But this is delicate and error-prone. The TROPICS team investigate hybrid
methods that combine these two extreme approaches.

Project-Team tropics 7

4. Application Domains

4.1. Panorama

Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications:

e optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

e inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography)

e first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

e mesh adaptation and mesh optimization with gradients or adjoints,
e equation solving with the Newton method,

e sensitivity analysis, propagation of truncation errors.

We will detail some of them in the next sections. These applications require an AD tool that differentiates
programs written in classical imperative languages, FORTRAN77, FORTRAN9S5, C, or C++. We also consider
our AD tool TAPENADE as a platform to implement other program analyses and transformations. TAPENADE
does the tedious job of building the internal representation of the program, and then provides an API to build
new tools on top of this representation. One application of TAPENADE is therefore to build prototypes of new
program analyses.

4.2. Multidisciplinary optimization

A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems and Data Assimilation

Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [39] in weather forecasting or in oceanography.
The initial state of the simulation conditions the quality of the prediction. But this initial state is largely
unknown. Only some measures at arbitrary places and times are available. The initial state is found by solving
a least squares problem between the measures and a guessed initial state which itself must verify the equations
of meteorology. This rapidly boils down to solving an adjoint problem, which can be done though AD [42].
Figure 3 shows an example of a data assimilation exercise using the oceanography code OPA [40] and its AD
adjoint code produced by TAPENADE.

The special case of 4Dvar data assimilation is particularly interesting. The 4t gimension in “4D” is time,
because available measures are distributed over a given assimilation period. Therefore the least squares
mechanism must be applied to a simulation over time that follows the time evolution model. This process
gives a much better estimation of the initial state, because both position and time of measurements are taken
into account. On the other hand, the adjoint problem involved grows in complexity, because it must run
(backwards) over many time steps. This demanding application of AD justifies our efforts in reducing the
runtime and memory costs of AD adjoint codes.

8 Activity Report INRIA 2008

Optimal

SST (°C)

Figure 3. Twin experiment using the adjoint of OPA. We add random noise to a simulation of the ocean state
around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model

Project-Team tropics 9

4.4. Linearization

Simulating a complex system often requires solving a system of Partial Differential Equations. This is
sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameters. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called a reduced model.

4.5. Mesh adaptation

It has been noticed that some approximation errors can be expressed by an adjoint state. Mesh adaptation can
benefit from this. The classical optimization step can give an optimization direction not only for the control
parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal
is to obtain optimal control parameters up to a precision prescribed in advance.

5. Software

5.1. Tapenade

Participants: Laurent Hascoét [contact], Valérie Pascual.

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team. TAPENADE progressively
implements the results of our research about models and static analyses for AD. From this standpoint,
TAPENADE is a research tool. Our objective is also to promote the use of AD in the scientific computation
world, including the industry. Therefore the team constantly maintains TAPENADE to meet the demands of our
industrial users. TAPENADE can be simply used as a web server, available at the URL
http://tapenade.inria.fr:8080/tapenade/index.jsp

It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics/tapenade/README.html

A documentation is available on our web page

http://www-sop.inria.fr/tropics/

and as an INRIA technical report (RT-0300)

http://hal.inria.fr/inria-00069880

TAPENADE differentiates computer programs according to the model described in section 3.1. It supports three
modes of differentiation:

e the fangent mode that computes a directional derivative F”(X).X,

e the vector tangent mode that computes F”’ (X)X n for many directions X,, simultaneously, and can
therefore compute Jacobians, and

e the reverse mode that computes the gradient F'*(X).Y.

An obvious fourth mode could be the vector reverse mode, which is not yet implemented. Many other modes
exist in the other AD tools in the world, that compute for example higher degree derivatives or Taylor
expansions. For the time being, we restrict ourselves to first-order derivatives and we put our efforts on
the reverse mode. But as we said before, we also view TAPENADE as a platform to build new program
transformations, in particular new differentiations. Notice however that higher-order derivatives can be
obtained through repeated application of tangent and/or reverse AD, c¢f 6.4.

http://tapenade.inria.fr:8080/tapenade/index.jsp
ftp://ftp-sop.inria.fr/tropics/tapenade/README.html
http://www-sop.inria.fr/tropics/
http://hal.inria.fr/inria-00069880

10 Activity Report INRIA 2008

Like any program transformation tool, TAPENADE needs sophisticated static analyses in order to produce an
efficient output. Concerning AD, the following analyses are a must, and TAPENADE now performs them all:

e Pointer (or Alias) analysis: For any static program transformation, and in particular differentiation,
it is essential to have a precise knowledge of the possible destinations of each pointer at each
code line. Otherwise one must make conservative assumptions that will lead to less efficient code.
Our static pointer analysis finds precise information about pointer destinations, taking into account
memory allocation and deallocation operations.

e Activity: The end-user has the opportunity to specify which of the output variables must be
differentiated (called the dependent variables), and with respect to which of the input variables
(called the independent variables). Activity analysis propagates the dependent, backward through
the program, to detect all intermediate variables that possibly influence them. Conversely, activity
analysis also propagates the independent, forward through the program, to find all intermediate
variables that possibly depend on them. Only the intermediate variables that both depend on the
independent and influence the dependent are called active, and will receive an associated derivative
variable. Activity analysis makes the differentiated program smaller and faster.

e Adjoint Liveness and Read-Write: Programs produced by the reverse mode of AD show a very
particular structure, due to their mechanism to restore intermediate values of the original program
in the reverse order. This has deep consequences on the liveness and Read-Write status of variables,
that we can exploit to take away unnecessary instructions and memory usage from the reverse
differentiated program. This makes the adjoint program smaller and faster by factors that can go
up to 40%.

e TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate variables
just before they are overwritten. However this is often unnecessary, because derivatives of some
expressions (e.g. linear expressions) only use the derivatives of their arguments and not the original
arguments themselves. In other words, the local Jacobian matrix of an instruction may not need
all the intermediate variables needed by the original instruction. The To Be Restored (TBR) analysis
finds which intermediate variables need not be stored during the forward sweep, and therefore makes
the differentiated program smaller in memory.

Several other strategies are implemented in TAPENADE to improve the differentiated code. For example, a data-
dependence analysis allows TAPENADE to move instructions around safely, gathering instructions to reduce
cache misses. Also, long expressions are split in a specific way, to minimize duplicate sub-expressions in the
derivative expressions.

The input languages of TAPENADE are FORTRAN77, FORTRAN9S, and C. The extension for C has been
released in august 2008, and is still more experimental than for FORTRAN. Thanks to the language-independent
internal representation of programs, as shown on figure 5, this still makes a single and only tool, and every
further development benefits to differentiation of each input language.

There are in fact three user interfaces for TAPENADE. One is a simple command that can be called from a shell
or from a Makefile. The second is interactive and graphic, using JAVA SWING components and HTML pages.
This second interface allows one to use TAPENADE from WINDOWS as well as LINUX. The third user interface
is similar to the second, but runs as a web server.

The graphic input interface lets one specify interactively the routine to differentiate, its independent inputs and
dependent outputs. The graphic output interface, shown on figure 4, displays the differentiated programs, with
HTML links that implement source-code correspondence, as well as correspondence between error messages
and locations in the source.

TAPENADE is now available for LINUX, SUN, MAC-0S, and WINDOWS-XP platforms.

Figure 5 shows the architecture of TAPENADE. It is implemented mostly in JAVA, apart from the front-ends
which are separated and can be written in their own languages.

Project-Team tropics

11

& (Differentiation result-Mozilla

E1=1E]

% File Edit

Yiew Go Bookmarks Tools Window Help

< . A & : —— - o
| Back i FEd 0 |J¢ http/itapenade.inriafrB080fapenadesresult. himl 22 Search S m
% 4hHome | WkBookmarks ¢ Internet 4Lookup C4New&Cool

Retry with the same files | - Download differentiated file | =
Original call graph Differentiated call graph
® adj E ady dv
zub2 # maxx_dv
¥ aubl ¥ aubl dv =
F maxx ~| # zubZ dv =]
G -] ®(1) =y * u + t -]
ADJ(u, =z, t) MAXY DV(z, =d, t, td, =)
REAL t, u, = u=~0.0
REAL x (141, vy SUB1_DV{u, ud, Mx(i), =d(1
/?C/ £, ¥ nd=1,nbdirs
INTEGER 1, MAXXH tdind) = tdi{nd) + = * =dind,
EEAL
MAXEK t =t +x(l) # =z +3*vw
C
y 0.0
i=5 i =5
(1) =y *u+t SUB2_DV(u, ud, MAx(3), =xd(1
z = MMRXH(z, t] nd=1,nbdirs
u=0.0 td(nd) = tdind) + z * =d(nd,
SUBL (u, @x(i), z, V)
t =t 4+ x(l) # 2 + 3 % v || t =t 4+ x(1) # =z +3*u
v = 0.0 nd=1,nbdirs
i=8 zd{nd) = 0.0 -
SUB2 (u, M=(3), =z, v) - =
< | j <] | j

2 adi: undeclared external routine: maxx -]

3 add: Beturn tvpe of maxx get by implicit rule to INTEGEE

4 add: arqument tvpe mismatch in call of subkl, EEAL(D:E) expected, receiveg I

5 adj: argqument type mismatch in call of subZ, REAL{0:12) expected, receives |

& maxx: Tool: Flease provide a differentiated function for unit maxxz for argi_
< | j
i &b 2 E3l & | Document: Done (0.11 secs) =¢D-=|ﬁ°|

Figure 4. TAPENADE output interface, with source-code-error correspondence

12 Activity Report INRIA 2008

Differentiation Engine

()

I mper ative L anguage Analyzer

Fortran77 printer
Fortran9s printer |
C printer

Fortran95 par ser
C parser

Figure 5. Overall Architecture of TAPENADE

Notice the clear separation between the general-purpose program analyses, based on a general representation,
and the differentiation engine itself. Other tools can be built on top of the Imperative Language Analyzer
platform.

The end-user can specify properties of external or black-box routines. This is essential for real industrial
applications that use many libraries. The source of these libraries is often hidden. However AD needs some
information about these black-box routines in order to produce efficient code. TAPENADE lets the user specify
this information in a separate signature file. Specifically for the reverse mode of AD, TAPENADE lets the user
specify finely which procedure calls must be checkpointed or not, to improve the overal performances of the
differentiated program.

Several companies have purchased an industrial license for TAPENADE. At the same time, TAPENADE is used
by many academic institutions for education and research. Many users cannot be identified, because the log
files of our web and ftp servers give little information. However, we are aware of TAPENADE regular use by
researchers in Argonne National Lab. (Illinois, USA), the Federal Reserve, (Washington DC, USA), CSIRO
Hobart (Australia), Cranfield university (UK), Oxford university (UK), RWTH Aachen (Germany), Humboldt
university Berlin (Germany), German Aerospace Center (Germany), University of Bergen (Norway), ISMAR-
CNR Venezzia (Italy), INSA Toulouse (France), CMAP Ecole Polytechnique (France), ...

6. New Results

6.1. Automatic Differentiation and parallel codes

Keywords: MPI, data-flow analyses, reverse mode of AD, static analyses.

Participants: Laurent Hascoét, Jean Utke [Argonne National Lab. (Illinois, USA)], Uwe Naumann [RWTH
Aachen University (Germany)].

This common work started in Chicago in 2007. Our goal is to differentiate programs that contain MPI
communication calls, in reverse mode. Instead of the most commonly used approach that encapsulates the MPI
calls into black-box subroutines that will be differentiated by hand, we are looking for a native differentiation
of the MPI calls by the AD tool.

Project-Team tropics 13

One issue is to reduce the large variability of the available MPI calls and parameters to a smaller number
of elementary concepts. We then address the basic question of sends and recvs, that may be blocking or
nonblocking, individual or collective, and so on. Essentially the adjoint of a send is a recv, and vice-
versa, but the possibility of nonblocking isend’s and irecv’s introduces more complexity and requires a
new, nondecidable, static analysis to find correspondence between sends and recvs, as well as between each
nonblocking communication with its associated wait.

Another issue is to demonstrate properties of the reverse differentiation scheme for MPI communications, such
as: the adjoint of a program does not introduce new potential for deadlocks.

Finally, experimentation is being carried out on the adjoint of the MIT General Circulation Model as a large-
scale testbed. An article on this work has been submitted.

Also on the issue of better exploiting the parallel properties of a given code, we have terminated the
implementation inside TAPENADE of a reverse AD strategy specific for loops with data-independent iterations.
This strategy applies to parallel or vectorial loops, and can spare a large amount of trajectory storage in the
reverse mode of AD. It can be applied to nested loops and is triggered by a simple user-given directive on the
candidate loops.

6.2. TAPENADE for C

Keywords: Automatic Differentiation, C, Tapenade, data-flow analysis, pointer analysis, static analysis.

Participants: Laurent Hascoét, Valérie Pascual.

Apart from regularly adapting TAPENADE to Fortran90, The team has put considerable effort into Automatic
Differentiation of C with TAPENADE. This year we have released the first version of TAPENADE (version 3
alpha) that can handle equally Fortran and C.

One ingredient of this new version is a cleaner differentiation of declaration statements, that may include
initialization assignments. Also on many programs this allows TAPENADE to keep the comments and to put
the #include statements back into the differentiated code, thus producing a legible differentiated code.

Another ingredient is the pointer analysis. This analysis already existed but extension to C called for many
improvements, for instance in the case of pointers to pointers. The pointer analysis in TAPENADE is a global
static analysis of the “points-to” kind. Like all other data-flow analysis in TAPENADE, it is both context-
sensitive and flow-sensitive. See [21] for details.

Extension to C also required rethinking the reverse AD scheme in the light of the parameter-passing discipline.
Fortran uses pass-by-value-result, and sometimes pass-by-reference. We proved that the two disciplines can
be differentiated in the same manner. On the other hand, C uses pass-by-value. We showed that this needs in
general a different reverse differentiation strategy. We also identified special situations where the differentiated
code may be simpler. An article on this work has been submitted.

6.3. Differentiation of large real applications

Keywords: Automatic Differentiation, Parameter Estimation, Tapenade, Variational Data Assimilation.

Participants: Laurent Hascoét, Valérie Pascual, Thomas Migliore [Université de Nice], Didier Auroux [MIP
lab., Université Toulouse III], Jacques Blum [Université de Nice].

We study application of Automatic Differentiation to several very large scientific computation codes. Because
of the technical subtleties of AD, differentiation of large codes often requires close collaboration between the
end-users and TROPICS.

This year’s big code was the Traces/Alliance code used at ANDRA to simulate diffusion of radioelements in
the rock layers over geologic times. The goal is to use an AD-produced adjoint code to estimate the values of
diffusion and porosity coefficients for the different layers.

14 Activity Report INRIA 2008

This code was a challenge due to its intense use of Fortran90 modularity, its intense use of dynamic memory
allocation, and the large number of time steps. Finally, TAPENADE was able to produce an adjoint code, that
passed the validation tests successfully.

6.4. Second Derivatives

Keywords: Automatic Differentiation, Hessian, Tapenade, adjoint model, gradient, optimal control, optimum
design.

Participants: Massimiliano Martinelli [OPALE team], Alain Dervieux, Laurent Hascoét, Régis Duvigneau
[OPALE team].

Massimiliano Martinelli has been studying production of second derivative code through repeated application
of Automatic Differentiation. Three strategies can be applied to obtain (elements of) the Hessian matrix, named
Tangent-on-Tangent (ToT), Tangent-on-Reverse (ToR), and Reverse-on-Tangent (RoT).

We compared the costs of ToT and ToR in the classical context where the state equation is implicit. ToR wins
over ToT only when the number n of input parameters is large enough An earlier result [44] claims that
ToT preferable for any n. We showed in [19] that this earlier result comes from an oversimplification in the
evaluation of the cost of the algorithms. We propose an approximation for the threshold value of n. Moreover,
we analyzed and demonstrated the numerical equivalence and computational cost of the RoT with ToR.

The ToR approach raises technical questions related to the choice of TAPENADE to store intermediate values
on a dynamic stack. We have provided extensions to TAPENADE, to efficiently handle tangent differentiation
of the stack primitives present in the reverse differentiated codes.

6.5. Optimal control

Keywords: adjoint model, gradient, optimal control, optimum design.

Participants: Bruno Koobus [université de Montpellier 2], Alain Dervieux, Régis Duvigneau [OPALE
team], Laurent Hascoét, Massimiliano Martinelli [OPALE team], Frédéric Alauzet [GAMMA team, INRIA-
Rocquencourt], Francois Beux [Scuola Normale Superiore di Pisa, Italy].

In industry research groups, simulation is well mastered. The next frontier is optimization. This problem is
hard, because the typical number of optimization parameters is high, particularly in CFD optimal shape design.
In an industrial context, an accurate discretization of the shape of an aircraft takes hundreds of parameters,
hence hundreds of optimization parameters. In the discrete case, the number of parameters depends on the
discretization chosen, and is a priori large. A synthetic collection of papers addressing the many problematic
of shape design was edited by F. Beux and A. Dervieux and published this year, [23].

To master the enormous computing power required, we focus on the reverse mode 3.1 of AD. The reverse
mode, and the subsequent adjoint state, are in fact the most efficient way to get the gradients needed by
optimization when the number of parameters is large.

In the European project HISAC on supersonic aircrafts (6.8), several partners have used TAPENADE for
computing gradients. Concerning the CFD contribution of TROPICS, SMASH and GAMMA, we have
considered that the state equation cannot be accurately solved without a strong anisotropic mesh adaptation.
Therefore, we proposed a new algorithm for the simultaneous solution of shape optimisation and mesh
adaptation [15], [12].

In the European project NODESIM, we have examined the issue of Robust Optimisation, see section 6.6 on
managing uncertainties.

6.6. Management of uncertainties

Keywords: adjoint model, gradient, optimal control, optimum design, uncertainties.

Project-Team tropics 15

Participants: Alain Dervieux, Laurent Hascoét, Massimiliano Martinelli [OPALE team], Régis Duvigneau
[OPALE team].

Uncertainties are errors that the engineer cannot reduce by further efforts. One way to take them into account
in the process is to model their source by random variables and to apply Monte-Carlo methods to approximate
statistical properties of systems output. Since systems can be described by computer-intensive high-fidelity
Navier-Stokes models, this strategy can have an unacceptable computational cost. In the European project
NODESIM, reduced-order models are obtained by using the first and second derivatives of the high-fidelity
models. This is an important application of second-order derivation with TAPENADE, which has been made
available to the partners of the NODESIM-CFD project. Our team provided a demonstrative application [19]
See section 6.4 on second derivatives. An alternative way to address uncertainties consists in applying
Robust Optimisation strategies, that add to the cost functional some sensitivity terms, themselves obtained
by Automatic Differentiation [18], [20]

6.7. Correction of approximation errors

Keywords: adjoint model, mesh adaptation, optimization.

Participants: Anca Belme, Alain Dervieux, Massimiliano Martinelli [OPALE team)].

This new subject is addressed jointly by teams Opale and Tropics. It is bound to become an important applica-
tion of TAPENADE. We investigate the two types of correctors, by direct linearisation and Defect Correction,
or by the adjoint-based functional correction. The purpose is to apply these methods to large unsteady flow
simulations. These studies will contribute to the approximation error section of project NODESIM-CFD.

6.8. Control of approximation errors

Keywords: adjoint model, mesh adaptation, optimization.

Participants: Frederic Alauzet [GAMMA team, INRIA-Rocquencourt], Alain Dervieux, Bruno Koobus,
Adrien Loseille [GAMMA team, INRIA-Rocquencourt], Massimiliano Martinelli [OPALE team], Youssef
Mesri [SMASH team].

This is a joint research between INRIA teams GAMMA (Rocquencourt), TROPICS, and SMASH. Roughly
speaking, GAMMA brings mesh and approximation expertise, TROPICS contributes to adjoint methods, and
SMASH works on approximation and CFD applications.

The resolution of the optimum problem using the innovative approach of an AD-generated adjoint can be used
in a slightly different context than optimal shape design namely, mesh adaptation. This will be possible if
we can map the mesh adaptation problem into a differentiable optimal control problem. To this end, we have
introduced a new methodology that consists in stating the mesh adaptation problem in a purely functional
form: the mesh is reduced to a continuous property of the computational domain, the continuous metric, and
we minimize a continuous model of the error resulting from that metric. Then the problem of searching an
adapted mesh is transformed into the search of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a close formula and gives access
to a complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation. In the case of adaptation for Partial Differential Equations such as the Euler model, we need
an adjoint state that we obtain with TAPENADE. We end up with a minimisation problem for the metric which
in turn is solved analytically, see [15], [13], [11], [12]

Together with project-team GAMMA and SMASH, TROPICS contributes this research on mesh adaptation
methods in aeronautics to the HISAC IP European project.

16 Activity Report INRIA 2008

7. Dissemination

7.1. Links with Industry, Contracts

e TROPICS participates in the European IP project HISAC, driven by Dassault Aviation and in-
volving 31 partners. TAPENADE has been made available to partners. TROPICS, GAMMA, and
SMASH designed mesh adaptation methods for evaluating the sonic boom and a combined mesh-
adaptative/shape optimisation method for reducing the sonic boom.

e TROPICS participates in the project EVA-Flo: “Evaluation et Validation Automatique pour le calcul
FLOttant”, which is an ANR project accepted in 2007, and whose main contractor in ENS Lyon
(Nathalie Revol).

e TROPICS participates in the project LEFE, “Les Enveloppes Fluides et I’Environnement”, which is
a CNRS API project accepted in 2007. Our contribution is to provide the automatic production of
the adjoint of OPA [40] (ORCA-2 configuration), with the help of TAPENADE.

e TROPICS participates in the European STREP project NODESIM, aNon-Deterministic Simulation
for CFD-based design methodologiesa, driven by Numeca (Belgium). TROPICS and OPALE con-
tribute to application of AD to build reduced models using first and second derivatives. We design
robust optimization strategies, and correctors for approximation errors.

e the CARGILL company, former custommer of a licence for TAPENADE, have confirmed their interest
by renewing their licence for another 5 years.

e We are aware of TAPENADE regular use by researchers in Argonne National Lab. (Illinois, USA),
the Federal Reserve, (Washington DC, USA), CSIRO Hobart (Australia), Cranfield university
(UK), Oxford university (UK), RWTH Aachen (Germany), Humboldt university Berlin (Germany),
German Aerospace Center Oberpfaffenhofen (Germany), University of Bergen (Norway), ISMAR-
CNR Venezzia (Italy), INSA Toulouse (France), CMAP Ecole Polytechnique (France).

7.2. Conferences and workshops

e Alain Dervieux was on the PhD jury for Rémi Bourguet (Toulouse), Raphaél Kuate (Paris 6), and
Adrien Loseille (Paris 6).

e Members of Tropics presented their work at the Sophia-Antipolis meeting of the OMD (Optimisation
Multi-Disciplinaire) project (ANR/RNTL) in february.

e Massimiliano Martinelli attended the 10th AIAA Non-Deterministic Approaches Conference, in
Schaumburg (Illinois, USA), april 7-10.

e Massimiliano Martinelli and Alain Dervieux attended the NODESIM-CFD meeting in Farnborough
(UK), may 19-21.
e Alain Dervieux visited Stanford university (Prof. Farhat) in june. Collaboration continues on Fluid-

Structure interaction.

e Laurent Hascoét makes a presentation on TAPENADE and AD by program transformation at the
SIAM annual meeting in San Diego (California, USA) in july.

e Frederic Alauzet (Team GAMMA) summarizes the contribution of teams GAMMA, SMASH, and
TROPICS to the European Integrated project HISAC, during the ECCOMAS conference in Venezzia
(Italy), in July.

e Valérie Pascual, Massimiliano Martinelli, and Laurent Hascoé&t presented their work [21], [19] at the
5th International Conference on Automatic Differentiation in Bonn, Germany, August 11-15.

e Bruno Koobus defended his HDR in september at university of Montpellier.

Project-Team tropics 17

e Laurent Hascoét is on the organizing commitee of the European Workshops on Automatic Differen-

tiation. The 7t edition took place in Oxford (UK), november 24-25, with emphasis on applications
to Economics and Finance.

e Massimiliano Martinelli, Anca Belme, and Alain Dervieux attended the NODESIM-CFD meeting
in Barcelona (Spain) organised by CIMNE, and visited the Barcelona Supercomputing Center (Dr.
Mariano Vazquez), november 25-27.

e Laurent Hascoét made a presentation on the recend advances of AD for Data Assimilation at the
Colloque National sur I’ Assimilation de Données in Paris, december 1-2.

8. Bibliography
Major publications by the team in recent years

[1] F. COURTY, A. DERVIEUX. Multilevel functional Preconditioning for shape optimisation, in "International
Journal of CFD", vol. 20, n°® 7, 2006, p. 481-490.

[2] F. COURTY, A. DERVIEUX, B. KOOBUS, L. HASCOET. Reverse automatic differentiation for optimum design:
from adjoint state assembly to gradient computation, in "Optimization Methods and Software", vol. 18, n® 5,
2003, p. 615-627.

[3] B. DAUVERGNE, L. HASCOET. The Data-Flow Equations of Checkpointing in reverse Automatic Differentia-
tion, in "International Conference on Computational Science, ICCS 2006, Reading, UK", 2006.

[4] A. DERVIEUX, L. HASCOET, M. VAZQUEZ, B. KOOBUS. Optimization loops for shape and error control, in
"Recent Trends in Aerospace Design and Optimization", Tata-McGraw Hill, New Delhi, 2005, p. 363-373.

[5S] A. GRIEWANK. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM,
Frontiers in Applied Mathematics, 2000.

[6] L. HASCOET, M. ARAYA-POLO. The Adjoint Data-Flow Analyses: Formalization, Properties, and Applica-
tions, in "Automatic Differentiation: Applications, Theory, and Tools", H. M. BUCKER, G. CORLISS, P.
HOVLAND, U. NAUMANN, B. NORRIS (editors), Lecture Notes in Computational Science and Engineering,
Springer, 2005.

[7]1L. HASCOET, S. FIDANOVA, C. HELD. Adjoining Independent Computations, in "Automatic Differentiation of
Algorithms: From Simulation to Optimization, New York, NY", G. CORLISS, C. FAURE, A. GRIEWANK, L.
HASCOET, U. NAUMANN (editors), Computer and Information Science, chap. 35, Springer, 2001, p. 299-304.

[8] L. HASCOET, U. NAUMANN, V. PASCUAL. “To Be Recorded” Analysis in Reverse-Mode Automatic Differen-
tiation, in "Future Generation Computer Systems", vol. 21, n° 8, 2004.

[9] L. HASCOET, V. PASCUAL. TAPENADE 2.1 user’s guide, Technical report, n® 300, INRIA, 2004, http://hal.
inria.fr/inria-00069880.

[10] M. VAZQUEZ, A. DERVIEUX, B. KOOBUS. Multilevel optimization of a supersonic aircraft, in "Finite
Elements in Analysis and Design", vol. 40, 2004, p. 2101-2124.

http://hal.inria.fr/inria-00069880
http://hal.inria.fr/inria-00069880

18 Activity Report INRIA 2008

Year Publications

Doctoral Dissertations and Habilitation Theses

[11] A. LOSEILLE. Adaptation de maillages anisotropes 3D multi-echelles, These de 1’université, Université Pierre
et Marie Curie, 2008.

Articles in International Peer-Reviewed Journal

[12] F. ALAUZET, S. BOREL-SANDOU, L. DAUMAS, A. DERVIEUX, Q. DINH, S. KLEINFELD, A. LOSEILLE,
Y. MESRI, G. ROGE. Multi-model and multi-scale optimization strategies, in "European Journal for Compu-
tational Mechanics", vol. 17, n® 1-2, 2008.

[13] A. DERVIEUX, Y. MESRI, F. ALAUZET, A. LOSEILLE, L. HASCOET, B. KOOBUS. Continuous mesh
adaptation models for CFD, in "CFD Journal", vol. 16, n° 4, 2008, p- 346-355.

[14] L. HASCOET, J. UTKE, U. NAUMANN. Cheaper Adjoints by Reversing Address Computations, in "Scientific
Programming", vol. 16, n® 1, 2008, p- 81-92.

[15] L. HASCOET, M. VAZQUEZ, B. KOOBUS, A. DERVIEUX. A Framework for Adjoint-based Shape Design
and Error Control, in "CFD Journal", vol. 16, n® 4, 2008, p. 454-464.

[16] L. HASCOET, B. DAUVERGNE. Adjoints of large simulation codes through Automatic Differentiation, in
"REMN Revue Européenne de Mécanique Numérique / European Journal of Computational Mechanics", vol.
17, n® 63-86, 2008.

[17] C. LAUVERNET, F. BARET, L. HASCOET, S. BUIS, F.-X. LEDIMET. Multitemporal-patch ensemble inver-

sion of coupled surface-atmosphere radiative transfer models for land surface characterization, in "Remote
Sensing of Environment", vol. 112, n® 3, 2008, p. 851-861.

International Peer-Reviewed Conference/Proceedings

[18] M. MARTINELLI, R. DUVIGNEAU. Comparison of second-order derivatives and metamodel-based Monte-
Carlo approaches to estimate statistics for robust design of a transonic wing, in "AIAA 2008-2071, Proceed-
ings of the 10th AIAA Non-Deterministic Approaches Conference, Schaumburg (IL), USA", April 7-10 2008.

[19] M. MARTINELLI, L. HASCOET. Tangent-on-Tangent vs. Tangent-on-Reverse for second differentiation of
constrained functionals, in "Advances in Automatic Differentiation", Lecture Notes in Computational Science
and Engineering, vol. 64, Selected papers from AD2008 Bonn, August 2008, Springer, 2008.

[20] M. MARTINELLI, C. PRAVEEN, R. DUVIGNEAU. On the estimation of drag uncertainty, in "Proceedings of
the 43rd AAAF Congress on Applied Aerodynamics, Poitiers, France", March 10-12 2008.

[21] V. PASCUAL, L. HASCOET. TAPENADE for C, in "Advances in Automatic Differentiation", Lecture Notes in
Computational Science and Engineering, vol. 64, Selected papers from AD2008 Bonn, August 2008, Springer,
2008.

Scientific Books (or Scientific Book chapters)

Project-Team tropics 19

[22] L. HASCOET. Reversal Strategies for Adjoint Algorithms, in "From Semantics to Computer Science. Essays
in memory of Gilles Kahn", to appear, Cambridge University Press, 2009, p. 487-503.

Books or Proceedings Editing

[23] F. BEUX, A. DERVIEUX (editors). Shape Design in Aerodynamics, Parameterization and sensitivity, Revue
Européenne de Mécanique Numérique, vol. 17:1-2, Hermes, 2008.

Research Reports

[24] M. MARTINELLI, R. DUVIGNEAU. Uncertainty estimation using adjoint-based perturbative method and
metamodel-based Monte-Carlo approach. Application to 3D compressible flow: demonstrator validation and
first measurement of performances, Technical report, n° D4.2-02, NODESIM-CFD, December 2008.

References in notes
[25] A. AHO, R. SETHI, J. ULLMAN. Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.

[26] I. ATTALI, V. PASCUAL, C. ROUDET. A language and an integrated environment for program transforma-
tions, research report, n® 3313, INRIA, 1997, http://hal.inria.fr/inria-00073376.

[27] A. CARLE, M. FAGAN. ADIFOR 3.0 overview, Technical report, n°® CAAM-TR-00-02, Rice University, 2000.

[28] D. CLEMENT, J. DESPEYROUX, L. HASCOET, G. KAHN. Natural semantics on the computer, in "K.
Fuchi and M. Nivat, editors, Proceedings, France-Japan Al and CS Symposium, ICOT", Also, Information
Processing Society of Japan, Technical Memorandum PL-86-6. Also INRIA research report # 416, 1986, p.
49-89, http://hal.inria.fr/inria-00076140.

[29] J.-F. COLLARD. Reasoning about program transformations, Springer, 2002.
[30] P. COUSOT. Abstract Interpretation, in "ACM Computing Surveys", vol. 28, n® 1, 1996, p. 324-328.

[31] B. CREUSILLET, F. IRIGOIN. Interprocedural Array Region Analyses, in "International Journal of Parallel
Programming", vol. 24, n® 6, 1996, p- 513-546.

[32] R. GIERING. Tangent linear and Adjoint Model Compiler , Users manual 1.2, 1997, http://www.autodiff.com/
tamc.

[33] J. GILBERT. Automatic differentiation and iterative processes, in "Optimization Methods and Software", vol.
1, 1992, p. 13-21.

[34] M.-B. GILES. Adjoint methods for aeronautical design, in "Proceedings of the ECCOMAS CFD Conference",
2001.

[35] A. GRIEWANK, C. FAURE. Reduced Gradients and Hessians from Fixed Point Iteration for State Equations,
in "Numerical Algorithms", vol. 30(2), 2002, p. 113-139.

[36] A. GRIEWANK. Evaluating derivatives: principles and techniques of algorithmic differentiation, STAM,
Frontiers in Applied Mathematics, 2000.

http://hal.inria.fr/inria-00073376
http://hal.inria.fr/inria-00076140
http://www.autodiff.com/tamc
http://www.autodiff.com/tamc

20 Activity Report INRIA 2008

[37] L. HASCOET. Transformations automatiques de spécifications sémantiques: application: Un vérificateur de
types incremental, Ph. D. Thesis, Université de Nice Sophia-Antipolis, 1987.

[38] P. HOVLAND, B. MOHAMMADI, C. BISCHOF. Automatic Differentiation of Navier-Stokes computations,
Technical report, n® MCS-P687-0997, Argonne National Laboratory, 1997.

[39] F.-X. LEDIMET, O. TALAGRAND. Variational algorithms for analysis and assimilation of meteorological
observations: theoretical aspects, in "Tellus", vol. 38A, 1986, p. 97-110.

[40] G. MADEC, P. DELECLUSE, M. IMBARD, C. LEVY. OPAS8.1 ocean general circulation model reference
manual, Technical report, Pole de Modelisation, IPSL, 1998.

[41] B. MOHAMMADI. Practical application to fluid flows of automatic differentiation for design problems, in
"Von Karman Lecture Series", 1997.

[42] N. ROSTAING. Différentiation Automatique: application a un probléme d’optimisation en météorologie, Ph.
D. Thesis, université de Nice Sophia-Antipolis, 1993.

[43] R. RUGINA, M. RINARD. Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed Memory
Regions, in "Proceedings of the ACM SIGPLAN’00 Conference on Programming Language Design and
Implementation”, ACM, 2000.

[44] A. C. TAYLOR III, L. L. GREEN, P. A. NEWMAN, M. M. PUTKO. Some advanced concepts in discrete
aerodynamic sensitivity analysis, in "AIAA Journal", vol. 41, n°® 7, 2003, p. 1224-1229.

