
c t i v i t y

te p o r

2008

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VASY

Validation of Systems

Grenoble - Rhône-Alpes

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/vasy.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ra.fr.html




Table of contents

1. Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Introduction 1
2.2. Models and Verification Techniques 2
2.3. Languages and Compilation Techniques 3
2.4. Implementation and Experimentation 3

3. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
4. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1. The CADP Toolbox 4
4.2. The TRAIAN Compiler 6

5. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1. Models and Verification Techniques 6

5.1.1. The BCG Format and Libraries 6
5.1.2. The OPEN/CÆSAR Libraries 7
5.1.3. The CÆSAR_SOLVE Library 7
5.1.4. The BISIMULATOR Tool 8
5.1.5. The EVALUATOR 3.5 and 4.0 Tools 9
5.1.6. The XTL Tool 10
5.1.7. Compositional Verification Tools 10
5.1.8. Other Tool Developments 11

5.2. Languages and Compilation Techniques 13
5.2.1. Compilation of LOTOS 13
5.2.2. Compilation of LOTOS NT 13
5.2.3. Source-Level Translations between Concurrent Languages 14

5.3. Case Studies and Practical Applications 16
5.3.1. The FAME2 Architecture 16
5.3.2. The FAUST/MAGALI Architectures 17
5.3.3. The xSTream Architecture 18
5.3.4. The Blitter Display 19
5.3.5. The Airbus TFTP Protocol 20
5.3.6. Other Case Studies 20

6. Contracts and Grants with Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1. The EC-MOAN Project 21
6.2. The Multival Project 22
6.3. The OpenEmbedd Project 22
6.4. The Topcased Project 22

7. Other Grants and Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1. National Collaborations 23
7.2. International Collaborations 23
7.3. Visits and Invitations 24

8. Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1. Software Dissemination and Internet Visibility 24
8.2. Program Committees 24
8.3. Lectures and Invited Conferences 25
8.4. Teaching Activities 26
8.5. Miscellaneous Activities 27

9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27





VASY is an INRIA project-team gathering scientists from several European countries. VASY is based in
Grenoble with members also located at Université de Bourgogne, Polytechnic University of Bucharest
(Romania), and Saarland University (Germany). Since January 2007, the VASY scientists in Grenoble are
also members of the LIG joint research laboratory of Centre National de Recherche Scientifique, Grenoble
INP, and Université Joseph Fourier.

1. Team
Research Scientist

Hubert Garavel [ DR2 INRIA, Team Leader ]
Frédéric Lang [ CR1 INRIA ]
Radu Mateescu [ CR1 INRIA ]
Wendelin Serwe [ CR1 INRIA ]

External Collaborator
Holger Hermanns [ Saarland University ]
Etienne Lantreibecq [ STMICROELECTRONICS ]

Technical Staff
David Champelovier [ until February 18, 2008 ]
Xavier Clerc [ until November 11, 2008 ]
Yves Guerte
Rémi Hérilier
Romain Lacroix [ until December 31, 2008 ]
Jeanne Merle [ since September 1st, 2008 ]
Louis Paternault [ since October 1st, 2008 ]
Sylvain Robert [ until August 8, 2008 ]

PhD Student
Nicolas Coste [ STMICROELECTRONICS, CIFRE grant ]
Jan Stoecker [ CORDI grant ]
Damien Thivolle [ MESR grant ]
Meriem Zidouni [ BULL, CIFRE grant ]

Post-Doctoral Fellow
Claude Helmstetter [ since November 17, 2008 ]
Emilie Oudot [ until August 31, 2008 ]
Olivier Ponsini [ until September 30, 2008 ]
Anton Wijs

Administrative Assistant
Laetitia Gatier [ until June 14, 2008 ]
Helen Pouchot [ since June 16, 2008 ]

2. Overall Objectives

2.1. Introduction
Created on January 1st, 2000, the VASY project focuses on formal methods for the design of reliable systems.

We are interested in any system (hardware, software, telecommunication) that comprises asynchronous
concurrency, i.e., any system whose behavior can be modeled as a set of parallel processes governed by
interleaving semantics.

For the design of reliable systems, we advocate the use of formal description techniques together with software
tools for simulation, rapid prototyping, verification, and test generation.



2 Activity Report INRIA 2008

Among all existing verification approaches, we focus on enumerative verification (also known as explicit state
verification) techniques. Although less general than theorem proving, these techniques enable an automatic,
cost-efficient detection of design errors in complex systems.

Our research combines two main directions in formal methods, the model-based and the language-based
approaches:

• Models provide mathematical representations for parallel programs and related verification prob-
lems. Examples of models are automata, networks of communicating automata, Petri nets, binary
decision diagrams, boolean equation systems, etc. From a theoretical point of view, research on
models seeks for general results, independently of any particular description language.

• In practice, models are often too elementary to describe complex systems directly (this would be
tedious and error-prone). Higher level formalisms are needed for this task, as well as compilers that
translate high level descriptions into models suitable for verification algorithms.

To verify complex systems, we believe that model issues and language issues should be mastered equally.

2.2. Models and Verification Techniques
By verification, we mean comparison — at some abstraction level — of a complex system against a set of
properties characterizing the intended functioning of the system (for instance, deadlock freedom, mutual
exclusion, fairness, etc.).

Most of the verification algorithms we develop are based on the labeled transition systems (or, simply,
automata or graphs) model, which consists of a set of states, an initial state, and a transition relation between
states. This model is often generated automatically from high level descriptions of the system under study,
then compared against the system properties using various decision procedures. Depending on the formalism
used to express the properties, two approaches are possible:

• Behavioral properties express the intended functioning of the system in the form of automata (or
higher level descriptions, which are then translated into automata). In such a case, the natural
approach to verification is equivalence checking, which consists in comparing the system model
and its properties (both represented as automata) modulo some equivalence or preorder relation.
We develop equivalence checking tools that compare and minimize automata modulo various
equivalence and preorder relations; some of these tools also apply to stochastic and probabilistic
models (such as Markov chains).

• Logical properties express the intended functioning of the system in the form of temporal logic
formulas. In such a case, the natural approach to verification is model checking, which consists
in deciding whether the system model satisfies or not the logical properties. We develop model
checking tools for a powerful form of temporal logic, the modal µ-calculus, which we extend with
typed variables and expressions so as to express predicates over the data contained in the model.
This extension (the practical usefulness of which was highlighted in many examples) provides for
properties that could not be expressed in the standard µ-calculus (for instance, the fact that the value
of a given variable is always increasing along any execution path).

Although these techniques are efficient and automated, their main limitation is the state explosion problem,
which occurs when models are too large to fit in computer memory. We provide software technologies
(see § 4.1) for handling models in two complementary ways:

• Small models can be represented explicitly, by storing in memory all their states and transitions
(exhaustive verification);

• Larger models are represented implicitly, by exploring only the model states and transitions needed
for the verification (on the fly verification).



Project-Team VASY 3

2.3. Languages and Compilation Techniques
Our research focuses on high level languages with an executable and formal semantics. The former require-
ment stems from enumerative verification, which relies on the efficient execution of high level descriptions.
The latter requirement states that languages lacking a formal semantics are not suitable for safety critical sys-
tems (as language ambiguities usually lead to interpretation divergences between designers and implementors).
Moreover, enumerative techniques are not always sufficient to establish the correctness of an infinite system
(they only deal with finite abstractions); one might need theorem proving techniques, which only apply to
languages with a formal semantics.

We are working on several languages with the above properties:

• LOTOS is an international standard for protocol description (ISO/IEC standard 8807:1989), which
combines the concepts of process algebras (in particular CCS and CSP) and algebraic abstract
data types. Thus, LOTOS can describe both asynchronous concurrent processes and complex data
structures. We use LOTOS for various industrial case studies and we develop LOTOS compilers,
which are part of the CADP toolbox (see § 4.1).

• We contributed to the definition of E-LOTOS (Enhanced-LOTOS, ISO/IEC standard 15437:2001), a
deep revision of LOTOS, which tries to provide a greater expressiveness (for instance, by introducing
quantitative time to describe systems with real-time constraints) together with a better user friend-
liness. Our contributions to E-LOTOS are available on the WEB (see http://www.inrialpes.fr/vasy/
elotos).

• We are also working on an E-LOTOS variant, named LOTOS NT (LOTOS New Technology) [12],
[1], in which we can experiment new ideas more freely than in the constrained framework of
an international standard. Like E-LOTOS, LOTOS NT consists of three parts: a data part, which
allows the description of data types and functions, a process part, which extends the LOTOS process
algebra with new constructs such as exceptions and quantitative time, and modules, which provide
for structure and genericity. Both languages differ in that LOTOS NT combines imperative and
functional features, and is also simpler than E-LOTOS in some respects (static typing, operator
overloading, arrays), which should make it easier to implement. We are developing several tools for
LOTOS NT: a prototype compiler named TRAIAN (see § 4.2), a translator from (a subset of) LOTOS
NT to LOTOS (see § 5.2.2), and an intermediate semantic model named NTIF (New Technology
Intermediate Form) [6].

2.4. Implementation and Experimentation
As much as possible, we try to validate our results by developing tools that we apply to complex (often
industrial) case studies. Such a systematic confrontation to implementation and experimentation issues is
central to our research.

3. Application Domains

3.1. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are virtually
applicable to any system or protocol made of distributed agents communicating by asynchronous messages.
The list of recent case studies performed with the CADP toolbox (see in particular § 5.3) illustrates the diversity
of applications:

• Hardware architectures: asynchronous circuits, multiprocessor architectures, systems on chip, net-
works on chip, bus arbitration protocols, cache coherency protocols, hardware/software codesign;

http://www.inrialpes.fr/vasy/elotos
http://www.inrialpes.fr/vasy/elotos


4 Activity Report INRIA 2008

• Databases: transaction protocols, distributed knowledge bases, stock management;

• Consumer electronics: home networking, video on-demand;

• Security protocols: authentication, electronic transactions, cryptographic key distribution;

• Embedded systems: smart-card applications, air traffic control, avionic systems;

• Distributed systems: virtual shared memory, distributed file systems, election algorithms, dynamic
reconfiguration algorithms, fault tolerance algorithms;

• Telecommunications: high speed networks, network management, mobile telephony, feature interac-
tion detection;

• Human-machine interaction: graphical interfaces, biomedical data visualization;

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways.

4. Software

4.1. The CADP Toolbox
Participants: David Champelovier, Hubert Garavel [contact person], Rémi Hérilier, Frédéric Lang, Radu
Mateescu, Sylvain Robert, Wendelin Serwe, Damien Thivolle.

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known as
CÆSAR/ALDÉBARAN Development Package) [8], a toolbox for protocols and distributed systems engineering
(see http://www.inrialpes.fr/vasy/cadp). In this toolbox, we develop the following tools:

• CÆSAR.ADT [2] is a compiler that translates LOTOS abstract data types into C types and C functions.
The translation involves pattern-matching compiling techniques and automatic recognition of usual
types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CÆSAR [11] is a compiler that translates LOTOS processes into either C code (for rapid prototyping
and testing purposes) or finite graphs (for verification purpose). The translation is done using several
intermediate steps, among which the construction of a Petri net extended with typed variables, data
handling features, and atomic transitions.

• OPEN/CÆSAR [3] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CÆSAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CÆSAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR_GRAPH, which provides the programming interface for graph exploration,

– CAESAR_HASH, which contains several hash functions,

– CAESAR_SOLVE, which resolves boolean equation systems on the fly,

– CAESAR_STACK, which implements stacks for depth-first search exploration,

– CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

http://www.inrialpes.fr/vasy/cadp


Project-Team VASY 5

A number of tools have been developed within the OPEN/CÆSAR environment, among which:
– BISIMULATOR, which checks bisimulation equivalences and preorders,
– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic, or

stochastic systems,
– DISTRIBUTOR, which generates the graph of reachable states using several machines,
– EVALUATOR, which evaluates regular alternation-free µ-calculus formulas,
– EXECUTOR, which performs random execution,
– EXHIBITOR, which searches for execution sequences matching a given regular expression,
– GENERATOR, which constructs the graph of reachable states,
– PROJECTOR, which computes abstractions of communicating systems,
– REDUCTOR, which constructs and minimizes the graph of reachable states modulo various

equivalence relations,
– SIMULATOR, XSIMULATOR, and OCIS, which allow interactive simulation, and
– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using efficient
compression techniques) and a software environment for handling this format. BCG also plays a key
role in CADP as many tools rely on this format for their inputs/outputs. The BCG environment
consists of various libraries with their programming interfaces, and of several tools, such as:

– BCG_DRAW, which builds a two-dimensional view of a graph,
– BCG_EDIT, which allows to modify interactively the graph layout produced by

BCG_DRAW,
– BCG_GRAPH, which generates various forms of practically useful graphs,
– BCG_INFO, which displays various statistical information about a graph,
– BCG_IO, which performs conversions between BCG and many other graph formats,
– BCG_LABELS, which hides and/or renames (using regular expressions) the transition

labels of a graph,
– BCG_MERGE, which gathers graph fragments obtained from distributed graph construc-

tion,
– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can

also deal with probabilistic and stochastic systems),
– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-

time Markov chains,
– BCG_TRANSIENT, which performs transient numerical analysis of (extended) continuous-

time Markov chains, and
– XTL (eXecutable Temporal Language), which is a high level, functional language for

programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc. For instance, one can
define recursive functions on sets of states, which allow to specify in XTL evaluation and
diagnostic generation fixed point algorithms for usual temporal logics (such as HML [73],
CTL [63], ACTL [67], etc.).

• The connection between explicit models (such as BCG graphs) and implicit models (explored on the
fly) is ensured by OPEN/CÆSAR-compliant compilers, e.g.:

– CÆSAR.OPEN, for models expressed as LOTOS descriptions,
– BCG_OPEN, for models represented as BCG graphs,
– EXP.OPEN, for models expressed as communicating automata, and
– SEQ.OPEN, for models represented as sets of execution traces.



6 Activity Report INRIA 2008

The CADP toolbox also includes additional tools, such as ALDÉBARAN and TGV (Test Generation based
on Verification) developed by the VERIMAG laboratory (Grenoble) and the VERTECS project-team of INRIA
Rennes.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [5] scripting language. Both EUCALYPTUS and SVL provide users with an easy, uniform
access to the CADP tools by performing file format conversions automatically whenever needed and by
supplying appropriate command-line options as the tools are invoked.

4.2. The TRAIAN Compiler
Participants: David Champelovier, Hubert Garavel [contact person], Yves Guerte, Frédéric Lang.

We develop a compiler named TRAIAN for translating descriptions written in the LOTOS NT language (see
§ 2.3) into C programs, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN performs lexical analysis, syntactic analysis, abstract syntax tree construction,
static semantics analysis, and C code generation for LOTOS NT types and functions.

Although this version of TRAIAN is still incomplete (it does not handle LOTOS NT processes), it already
has useful applications in compiler construction [7]. The recent compilers developed by the VASY project-
team — namely AAL, CHP2LOTOS (see § 5.2.3), EVALUATOR 4.0 (see § 5.1.5), EXP.OPEN 2.0 (see § 5.1.7),
FSP2LOTOS (see § 5.2.3), LNT2LOTOS (see § 5.2.2), NTIF (see § 2.3), and SVL (see § 5.1.7) — all contain a
large amount of LOTOS NT code, which is then translated into C code by TRAIAN.

Our approach consists in using the SYNTAX tool (developed at INRIA Rocquencourt) for lexical and syntactic
analysis together with LOTOS NT for semantical aspects, in particular the definition, construction, and
traversals of abstract trees. Some involved parts of the compiler can also be written directly in C if necessary.
The combined use of SYNTAX, LOTOS NT, and TRAIAN proves to be satisfactory, as regards both the rapidity
of development and the quality of resulting compilers.

The TRAIAN compiler can be freely downloaded from the VASY WEB site (see http://www.inrialpes.fr/vasy/
traian).

5. New Results

5.1. Models and Verification Techniques
5.1.1. The BCG Format and Libraries

Participants: Hubert Garavel, Frédéric Lang, Louis Paternault.

BCG (Binary-Coded Graphs) is both a file format for the representation of explicit graphs and a collection of
libraries and programs dealing with this format.

In 2008, we continued porting the BCG libraries and programming interfaces to 64-bit architectures. We fixed
two bugs in the BCG_INFO tool. We also improved significantly the speed of the BCG iterators, which could
be inefficient for large BCG graphs containing many deadlock states. For instance, the execution time for
enumerating a graph of 12 million states having 23% deadlock states was reduced from 15 hours to 47 seconds.

We also undertook the development of a new version 2.0 of the BCG format. Indeed, the current version 1.0
of BCG is almost fifteen years old and major changes are needed to fully exploit the capabilities of modern
computers. Our work started by experimenting new compression schemes that could be used in BCG 2.0.

In order to assess the effectiveness of these compression schemes, we gathered a collection of 250 very large
BCG graphs representing the behaviour of real-life systems, which will eventually enrich the existing VLTS
(Very Large Transition Systems) benchmark suite1.

1http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

http://www.inrialpes.fr/vasy/traian
http://www.inrialpes.fr/vasy/traian
http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html


Project-Team VASY 7

5.1.2. The OPEN/CÆSAR Libraries
Participants: Hubert Garavel, Radu Mateescu, Wendelin Serwe, Anton Wijs.

OPEN/CÆSAR is an extensible, modular, language-independent software framework for exploring implicit
graphs. This key component of CADP is used to build simulation, execution, verification, and test generation
tools.

In 2008, we finished porting the OPEN/CÆSAR libraries and programming interfaces to 64-bit architectures.
We revised several hash functions of the CÆSAR_HASH library so as to enhance their speed, dispersion, and
portability. We improved in many respects the tables of the CÆSAR_TABLE library so that they can store
more elements (up to 234 on 64-bit machines) as well as larger elements; moreover, these tables now have a
smaller memory cost and faster access time (up to 2.33 times on certain benchmarks). We modified the sorting
algorithms for edge lists so that they yield the same results on architectures having different endianness or
using different C compilers.

We also studied state space caching techniques for model checking, which help fighting state explosion by
keeping, in a memory cache, only a fixed amount of visited states. When the cache is full and a newly
encountered state must be stored, some state present in the cache is removed and replaced with the new
one. We undertook the development of a generic caching machinery allowing to store arbitrary elements
into tree-based hierarchies of caches, each cache being equipped with a particular replacement strategy. We
used this caching machinery for breadth-first state space exploration in order to store a fixed amount of the
breadth-first levels (a technique we call sampling), which reduces memory consumption at the cost of a finite
amount of redundant work. Cycle detection is either ensured by constantly increasing the sampling period,
i.e., the number of breadth-first levels explored between two subsequent insertions of a level in the cache, or
by creating additional caches on the fly when needed.

We proposed several sampling strategies and studied their combinations with hierarchical caches, where each
cache may contain a number of levels and where data can be moved from one cache to another. We compared
the best strategies found with the plain breadth-first generation performed by the GENERATOR tool of CADP
on 35 graphs taken from the VLTS benchmark suite and on the graphs of 5 communication protocols available
as CADP demo examples. These experiments showed significant reductions of the number of states stored in
memory (by a factor ranging from 1.4 up to 36) and of the execution time (up to a factor 4).

Finally, we experimented the use of hierarchical caches also in conjunction with depth-first state space
exploration, showing reductions by 70% of the number of states stored in memory and a negligible increase
of the execution time compared with standard depth-first exploration. This work was accepted for publication
in an international conference [33].

5.1.3. The CÆSAR_SOLVE Library
Participants: Hubert Garavel, Yves Guerte, Rémi Hérilier, Radu Mateescu, Emilie Oudot, Sylvain Robert.

CÆSAR_SOLVE is a generic software library for solving boolean equation systems of alternation depth 1 (i.e.,
without mutual recursion between minimal and maximal fixed point equations) on the fly. This library is at
the core of several CADP verification tools, namely the equivalence checker BISIMULATOR (see § 5.1.4),
the model checkers EVALUATOR 3.5 and 4.0 (see § 5.1.5), and the minimization tool REDUCTOR. The
resolution method is based on boolean graphs, which provide an intuitive representation of dependencies
between boolean variables, and which are handled implicitly, in a way similar to the OPEN/CÆSAR interface
[3].

The CÆSAR_SOLVE library provides seven different resolution algorithms named A1 to A7. A1 and A2
are general algorithms based upon depth-first, respectively breadth-first, traversals of boolean graphs. A3
and A4, based upon memory-efficient depth-first traversals of boolean graphs, are optimized for the case
of acyclic, respectively disjunctive/conjunctive, boolean graphs. A5 is a general algorithm based upon a
depth-first traversal of boolean graphs; it generalizes Tarjan’s algorithm for computing strongly connected
components and is much faster than A1 and A2 when it is invoked many times on the same equation block.
A6 and A7, based upon memory-efficient breadth-first traversals of boolean graphs, are optimized for the case



8 Activity Report INRIA 2008

of disjunctive minimal fixed point (respectively, conjunctive maximal fixed point) equation blocks on which a
single resolution is requested. All these algorithms can generate diagnostics (examples and counterexamples)
explaining why a result is true or false.

In 2008, we enhanced the CÆSAR_SOLVE library (16, 500 lines of C code) by adding a new resolution
algorithm, named A8, based upon a depth-first search of the dependency graph between boolean variables.
This algorithm is different from the other depth-first search based resolution algorithms of CÆSAR_SOLVE
(A1, A3, A4, A5) in the sense that upon traversing a dependency between two boolean variables x and y, the
exploration of the remaining “neighbour” dependencies (i.e., transitions going out from x in the boolean graph)
is suspended until the information provided by the traversed dependency is fully exploited. If this information
allows to establish the truth value of x, then the remaining dependencies from x are discarded; otherwise,
the exploration of these dependencies is resumed when the value of x is again needed during resolution.
This suspend-resume depth-first search makes A8 more memory-efficient than the other depth-first search
based algorithms of CÆSAR_SOLVE when a single outgoing dependency is sufficient for determining the
truth value of boolean variables. In practice, algorithm A8 is particularly appropriate for solving the boolean
equation systems encoding the comparison between graphs that contain a high degree of nondeterminism and
are equivalent modulo the relation considered. This work led to a short paper [28] and an article [29] published
in international conferences.

In addition to correcting three bugs in CÆSAR_SOLVE, we ported this library, together with the prototype
parallel resolution algorithm proposed in [79], to 64-bit architectures. The C code of both CÆSAR_SOLVE
and the prototype parallel algorithm was modified to remove all warnings generated by recent compilers and
code checkers (namely, GCC, INTEL’s ICC, and SUN’s CC and LINT) running in 64-bit mode.

We also continued the testing and validation of CÆSAR_SOLVE by adding new examples of boolean equation
systems (either represented explicitly as compressed text files, or implicitly as random configuration files) to
our non-regression database, which contains now 19, 400 examples. The testing of CÆSAR_SOLVE is carried
out by shell scripts, which invoke the BES_SOLVE tool on each example of boolean equation system, check
the compatibility of the results across various machine architectures (32-bit and 64-bit) and various resolution
algorithms (from A0 to A8), and also compare the sequential resolution algorithms of CÆSAR_SOLVE with
the prototype parallel resolution algorithm.

5.1.4. The BISIMULATOR Tool
Participants: Hubert Garavel, Radu Mateescu, Emilie Oudot, Sylvain Robert.

BISIMULATOR is an equivalence checker that takes as input two graphs to be compared (one represented
implicitly using the OPEN/CÆSAR environment, the other represented explicitly as a BCG file) and determines
whether they are equivalent (modulo a given equivalence relation) or whether one of them is included in the
other (modulo a given preorder relation). BISIMULATOR works on the fly, meaning that only those parts of
the implicit graph pertinent to verification are explored. Due to the use of OPEN/CÆSAR, BISIMULATOR can
be applied directly to descriptions written in high level languages (for instance, LOTOS). This is a significant
improvement compared to older tools (such as ALDÉBARAN and FC2IMPLICIT) which only accepted lower
level models (networks of communicating automata).

BISIMULATOR works by reformulating the graph comparison problem in terms of a boolean equation
system, which is solved on the fly using the CÆSAR_SOLVE library (see § 5.1.3). A useful functionality of
BISIMULATOR is the generation of a “negative” diagnostic (i.e., a counterexample), which explains why two
graphs are not equivalent (or not included one in the other). The diagnostics generated by BISIMULATOR
are directed acyclic graphs and are usually much smaller than those generated by other tools (such as
ALDÉBARAN) that can only generate counterexamples restricted to sets of traces.

In 2008, we continued the development of BISIMULATOR (16, 300 lines of C code) by devising new
encodings of observational equivalence and branching equivalence in terms of boolean equation systems.
These encodings stem from the observation that, on graphs without τ -cycles, transitive reflexive closures over
τ -transitions can be computed by using maximal fixed point boolean equations (instead of minimal fixed point
ones as in the general case), which can be incorporated into the maximal fixed point equation block encoding



Project-Team VASY 9

the equivalence relation. The elimination of τ -cycles preserves both observational and branching equivalence
and can be performed on the fly by applying the τ -compression algorithms available in CADP [15].

We enhanced the BISIMULATOR tool with a prototype implementation of this new encoding of branching
equivalence, coupled with the new boolean resolution algorithm A8 (see § 5.1.3). The experiments we
conducted indicate that the new encoding brings significant performance improvements with respect to the
existing one: for example, when comparing the graph of Philips’ Bounded Retransmission Protocol (for 12
retransmissions and messages of length 20) against the graph of its service modulo branching equivalence,
the execution time dropped from 441 to 5 seconds and the memory consumption decreased from 174 to
31 Megabytes. This work led to a short paper [28] and an article [29] published in international conferences.
Additionally, we continued the systematic non-regression testing and semantical checking of BISIMULATOR.

5.1.5. The EVALUATOR 3.5 and 4.0 Tools
Participants: David Champelovier, Hubert Garavel, Radu Mateescu, Sylvain Robert, Damien Thivolle.

EVALUATOR is a model checker that evaluates a temporal logic property on a graph represented implicitly
using the OPEN/CÆSAR environment. Properties are described in regular alternation-free µ-calculus, a logic
built from boolean operators, possibility and necessity modalities containing regular expressions denoting
transition sequences, and fixed point operators without mutual recursion between least and greatest fixed
points. The input language of the tool also allows to define parameterized temporal operators and to group
them into separate libraries. EVALUATOR works on the fly, meaning that only those parts of the implicit
graph pertinent to verification are explored. The model checking problem is reformulated in terms of solving
a boolean equation system. A useful feature of EVALUATOR is the generation of diagnostics (examples and
counterexamples) explaining why a formula is true or false.

In 2008, we enhanced the modal equation systems serving as intermediate language for the EVALUATOR 3.5
tool with a special form of equation block specifying fairness properties. This new type of equation block
represents the infinite looping operator of PDL-∆ [98], which states the existence of an infinite transition
sequence made by concatenation of regular subsequences. This extension allows to translate temporal logics
involving fairness operators, such as the CTRL logic (see below) directly into the intermediate language of
EVALUATOR 3.5, which is closer to boolean equation systems and therefore provides a tighter connection
to the verification engine CÆSAR_SOLVE (see § 5.1.3). Additionally, we ported the EVALUATOR 3.5 tool to
64-bit architectures.

We also continued the development of the EVALUATOR 4.0 prototype tool (4, 800 lines of SYNTAX code,
37, 000 lines of LOTOS NT code, and 8, 000 lines of C code), which accepts as input specifications written in
MCL (Model Checking Language), an extension of the regular alternation-free µ-calculus of EVALUATOR 3.5
with data-handling and fairness operators. In addition to fixing several bugs and porting EVALUATOR 4.0 to 64-
bit architectures, we enhanced the translation of MCL formulas into parameterized modal equation systems in
order to reduce the size of equation blocks, which directly influences the verification time. This enhancement
increased the execution speed of EVALUATOR 4.0 by a factor of two with respect to EVALUATOR 3.5. We also
performed non-regression testing between the two versions of the tool: on 30, 630 verification runs involving
formulas of regular alternation-free µ-calculus, we observed that both versions yield the same verification
results and all diagnostics generated are included in the graphs under verification modulo the preorder of
strong bisimulation. A paper on EVALUATOR 4.0 was published in an international conference [32].

Also, in the framework of the EC-MOAN project (see § 6.1), we defined the syntax and semantics of CTRL
(Computation Tree Regular Logic), an extension of CTL [63] with regular expressions and fairness operators
facilitating the description of biologically-relevant properties. We also proposed a translation from CTRL to
HMLR (Hennessy-Milner Logic with Recursion) [82], which is accepted as input by EVALUATOR 3.5. This
translation was implemented by the tool CTRL2BLK, which was developed in collaboration with Estelle
Dumas, Hidde de Jong, Pedro Monteiro, and Michel Page (IBIS project-team) using the SYNTAX/TRAIAN
compiler construction technology advocated by VASY. Used in conjunction with EVALUATOR 3.5, the
CTRL2BLK translator provides an on the fly model checker for CTRL formulas on the state/transition graphs
generated by the GNA (Genetic Network Analyzer) tool developed by IBIS. CTRL and its model checker



10 Activity Report INRIA 2008

were employed for analyzing the dynamic behaviour of a genetic regulatory network controlling the carbon
starvation response of Escherichia Coli. This work led to a publication in an international conference [27].

5.1.6. The XTL Tool
Participants: Hubert Garavel, Radu Mateescu.

XTL (eXecutable Temporal Language, see § 4.1) is both a meta-language and tool allowing to specify temporal
logic properties involving data values and to verify them on graphs represented in the BCG format.

In 2008, in addition to fixing a bug and porting XTL to 64-bit architectures, we enhanced the language and the
tool as follows:

• We introduced a new clause “any T ”, which denotes a placeholder for a variable of type T in the
declarations of anonymous tuples occurring in the “let” expressions. This feature allows to simplify
XTL programs by avoiding spurious variable declarations.

• We implemented a new overloaded function “replace”, which takes two arguments having the
same predefined XTL type and returns the value of the second argument without evaluating the
first one. Used in conjunction with XTL iteration expressions, this function allows to specify
arbitrary assignments of accumulator variables during iterations. We updated accordingly the two
XTL libraries implementing an ACTL model checker [88].

• We added a new XTL expression “use” specifying that a set of variables previously defined in the
XTL program are used. We updated several XTL libraries and programs of the CADP demonstration
examples with the “use” expression wherever appropriate, which improved the quality of the C code
generated by XTL and also allowed to detect a few occurrences of variables defined but never used.

• At BULL’s request, we developed a new XTL library for computing the radius of a graph (i.e., the
maximal distance from the initial state to any other state of the graph) encoded in the BCG format.
This information is useful for limiting the depth of graph explorations performed by various tools of
CADP, such as EXHIBITOR or TERMINATOR.

5.1.7. Compositional Verification Tools
Participants: Rémi Hérilier, Frédéric Lang, Radu Mateescu.

The CADP toolbox contains various tools dedicated to compositional verification, among which EXP.OPEN 2.0,
PROJECTOR 3.0, and SVL play a central role. EXP.OPEN 2.0 explores on the fly the graph corresponding to a
network of communicating automata (represented as a set of BCG files). PROJECTOR 3.0 implements behavior
abstraction [71], [81] by taking into account interface constraints. SVL (Script Verification Language) is both
a high level language for expressing complex verification scenarios and a compiler dedicated to this language.

In 2008, we corrected a few minor bugs in these tools, we ported them to 64-bit architectures, and we enhanced
them along the following lines:

• At BULL’s request, we made two improvements in EXP.OPEN 2.0. First, the partial order reduction
preserving stochastic branching equivalence now includes the effect of the partial order reduction
preserving branching equivalence, which also preserves stochastic branching equivalence. Second,
we extended the input language of EXP.OPEN 2.0 so that a network of communicating automata
described in an EXP.OPEN file may now include other EXP.OPEN files recursively, thus allowing the
description of large networks of automata in separate files.

• We compared PROJECTOR 2.0 and PROJECTOR 3.0 on about 92, 000 automatic tests and found a few
tests in which PROJECTOR 3.0 ran slower (up to 6 times) than PROJECTOR 2.0. This performance
problem was due to collisions caused by a hash function, which we thus replaced. PROJECTOR 3.0
now runs always faster (3 times on average) than PROJECTOR 2.0 on all tests. More precisely, on
91, 840 tests generated randomly, PROJECTOR 3.0 runs 3.3 times faster and uses 1.5 times less
memory than PROJECTOR 2.0, whereas on 28 realistic examples, PROJECTOR 3.0 runs 4.3 times
faster and uses 3.2 times less memory than PROJECTOR 2.0.



Project-Team VASY 11

• We added to SVL a new operator “cut”, which eliminates from a graph all transitions whose
label matches a user-given regular expression. SVL implements the “cut” operator by calling the
EXP.OPEN 2.0 tool.

For the purpose of automated cross-testing among different architectures, we also brought changes to
EXP.OPEN 2.0, PROJECTOR 3.0, and SVL so that each of these tools produces exactly the same output on
all architectures supported by CADP.

We also designed a technique that consists in finding confluent transitions (not necessarily τ -transitions) in
the BCG graphs of a network of communicating automata to identify transitions that are τ -confluent in the
product graph. Following known results on τ -confluence, these transitions can be given priority in the product
graph, thus allowing to generate a smaller graph while preserving branching equivalence. We started a series
of experiments to study the potential benefits of this technique.

A paper on the automatic generation of refined interfaces for compositional verification was published in an
international conference [37].

5.1.8. Other Tool Developments
Participants: David Champelovier, Hubert Garavel, Yves Guerte, Rémi Hérilier, Romain Lacroix, Frédéric
Lang, Radu Mateescu, Jeanne Merle, Louis Paternault, Sylvain Robert, Wendelin Serwe, Damien Thivolle.

A key objective for the future of CADP is the ability to support recent computing platforms. This is a heavy
task because of the number of tools in CADP, their intrinsic complexity, and their reliance upon third-party
software. In 2008, we made significant steps in this direction:

• As regards 32-bit machines, we brought support for WINDOWS VISTA, MACOS 10.5, and the latest
LINUX distributions (DEBIAN, FEDORA CORE, RED HAT, and UBUNTU).

• As regards 64-bit machines, we completed porting CADP to SPARC V9 stations running SO-
LARIS 10, to INTEL IA64 machines running LINUX, and to INTEL EMT64/AMD64 machines run-
ning LINUX.

• We enhanced the C code generated by CADP tools so that it compiles without any warning message
using various compilers (namely GCC 3 and GCC 4, SUN’s CC, and INTEL’s ICC).

• We pursued our collaboration with Pierre Boullier, Philippe Deschamp, and Benoît Sagot (ALPAGE
project-team of INRIA Rocquencourt) to port the SYNTAX compiler generation software (more than
300, 000 lines of C code) to 12 different platforms (processor, operating system, and C compiler),
and especially to 64-bit architectures.

We introduced prototype declarations for all C functions of SYNTAX, which enabled stricter
type checking for function calls. We discovered 18 bugs, 15 of which have been repaired in
collaboration with the ALPAGE project-team. We checked (using debugging tools such as VALGRIND
and MALLOCSCRIBBLE) that the SYNTAX code is free from faulty memory accesses. We wrote an
installation guide for SYNTAX and migrated all CADP tools to the latest version of SYNTAX.

Because of the growing usage of CADP in industry and academy, we pursued our efforts to master the software
quality of CADP:

• We continued improving the source code of CADP tools, as well as the C code generated dynamically
by CADP tools, so as to suppress warning messages issued by recent C compilers and code-checkers
(such as LINT), even with the strictest code-checking options and on all supported computing
platforms. We also checked (using MALLOCSCRIBBLE) that this generated C code is free from
faulty memory accesses.

• We continued building a comprehensive validation framework, based on non-regression testing and
semantical checking for the CADP tools. This framework allows functional testing of individual tools
as well as integration testing for several CADP tools used altogether to perform complex verification
scenarios on various computing platforms and using various compilers.



12 Activity Report INRIA 2008

• We enriched this framework to obtain statistical information about computing resources (memory
and CPU time) consumed during testing, which provides valuable insights about performance
evolutions of the CADP tools.

• We continued gathering large collections of benchmarks (BCG graphs, boolean equation systems,
µ-calculus formulas, etc.) for testing the CADP tools extensively.

• For the development of CADP, we started experimenting the prototype PIPOL platform of INRIA,
which provides reservation, configuration, and deployment facilities for porting and testing applica-
tions across various hardware and software environments.

We also rewrote the CADP_MEMORY and PREDICTOR tools in order to obtain better estimations of memory
usage across 32-bit and 64-bit platforms.

We experimented the use of various ECLIPSE facilities to develop graphical editors for textual languages.
In particular, we developed two syntactic editors for the LUSTRE synchronous language and the µ-calculus
language used as input by EVALUATOR 3.5. These prototype editors provide desirable features, such as
coloring, error highlighting, undo/redo mechanisms, etc.

Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CÆSAR environments) to build their own research software. We can mention the following develop-
ments:

• the CTTOOL for the verification of JDC (Java Distributed Component) specifications [47], [60],
developed at the Universities of Valparaiso and Santiago (Chile) and at INRIA Sophia-Antipolis;

• the ADAPTOR tool [59] for model-based adaptation of behavioral mismatching components,
developed at the University of Málaga (Spain) and at Université d’Evry (France);

• a static analysis tool [49] developed at the University of Málaga (Spain);

• the COSTO tool [50] for analyzing KMELIA components and services, developed at Université de
Nantes (France);

• the MOTOR tool environment [54] underlying the MODEST language, developed at the University
of Saarbrücken (Germany);

• the ARCADE environment [56], [57] for analyzing input/output Interactive Markov Chains, devel-
oped at the University of Saarbrücken (Germany) and the University of Twente (The Netherlands);

• the CORAL tool [58] for analyzing availability of systems, developed at the University of Saar-
brücken (Germany) and the University of Twente (The Netherlands);

• tools for random exploration and testing [87], [68] developed at Université Paris Sud (France);

• tools for interoperability test case generation [69] developed at Université de Rennes (France);

• the TURTLE tool [70] for analyzing real-time specifications, developed at Université de Toulouse
(France);

• the C.OPEN tool for analyzing C code [105] developed at the University of Málaga (Spain);

• a framework for performance evaluation and functional verification in stochastic process algebras
[75] developed at the University of Tehran (Iran) and the University of Eindhoven (The Nether-
lands);

• an enhanced version of the ETI electronic tool integration platform [84] developed at the Universities
of Potsdam and Dortmund (Germany);

• the tools CHARMY and SYNTHESIS for analyzing software architectures [86], [89] developed at the
Universities of l’Aquila and Camerino (Italy) and at the IMT Lucca Institute for Advanced Studies
(Italy);

• the DCOMPOSITOR tool for generating service wrapper protocols [96] developed at the University
of Málaga (Spain);



Project-Team VASY 13

• tools for the automatic generation of interfaces for model checking [97] developed at the University
of Malta;

• the SYNTHESISRT tool for generating adaptors for real-time components [101], developed at the
University of l’Aquila (Italy) together with the POPART project-team of INRIA;

• an enhanced version of the CRESS tool [100] for developing composed grid services, developed at
the University of Stirling (United Kingdom);

• tools for analyzing WEB service descriptions [85], [103] developed at the University of Montreal
(Canada).

5.2. Languages and Compilation Techniques
5.2.1. Compilation of LOTOS

Participants: David Champelovier, Hubert Garavel, Wendelin Serwe.

The CADP toolbox contains several tools dedicated to the LOTOS language, namely the CÆSAR.ADT
compiler [2] for the data type part of LOTOS, the CÆSAR compiler [11] for the process part of LOTOS, and
the CÆSAR.INDENT pretty-printer.

In 2008, we migrated those compilers to the latest version of SYNTAX (see § 5.1.8). We also brought support
for long LOTOS or C identifiers, as well as for large LOTOS programs having more than 216 lines. We ported
to 64-bit platforms the C code generated by CÆSAR and CÆSAR.ADT, and we modified this code so as to
remove all warnings generated by recent compilers and code checkers (namely, GCC, INTEL’s ICC, and SUN’s
CC and LINT) running in 32-bit and 64-bit mode.

By applying intensive testing, we discovered and fixed several difficult semantic issues in CÆSAR’s optimiza-
tions that would, in some rare cases, generate incorrect or suboptimal code.

We implemented in CÆSAR.ADT a feature (already present in TRAIAN since 2003) that allows values of
dynamic data types (such as lists, trees, etc.) to be represented “canonically”, meaning that they are stored in
tables and, thus, represented only once in memory. A technical challenge was to make this feature optional,
in the sense that CÆSAR.ADT users can do this selectively, for a set of types of their choice, while other types
remain implemented as before.

5.2.2. Compilation of LOTOS NT
Participants: David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang, Wendelin
Serwe, Jan Stoecker.

As regards the LOTOS NT language — a variant of E-LOTOS elaborated by the VASY project-team — we
worked along three directions:

• We continued enhancing our TRAIAN compiler (see § 4.2), which generates C code from LOTOS
NT data type and function definitions. TRAIAN is distributed on the Internet (see § 8.1) and used
intensively within the VASY project-team as a development tool for compiler construction [7].

In 2008, we corrected five bugs and enhanced TRAIAN in several respects: we improved the
efficiency of the C code generated by TRAIAN when this code is compiled with optimizing GCC; we
modified the generated C code so as to remove all warnings emitted by SUN’s LINT code checker
and many warnings emitted by INTEL’s ICC compiler; we developed configuration files to support
the LOTOS NT language in the EMACS, XEMACS, and JEDIT editors; we enhanced the testing
environment for TRAIAN and enriched its non-regression testing database with new examples. A
new version 2.6 of TRAIAN was released on February 27, 2008.

• In the context of the MULTIVAL contract (see § 6.2), we continued improving the LNT2LOTOS tool
suite that translates (a large subset of) LOTOS NT into LOTOS, thus allowing the use of CADP to
verify LOTOS NT descriptions. This tool suite is being used by BULL to model and verify critical
parts of its FAME2 multiprocessor architecture (see § 5.3.1); it was also used to verify protocol
specifications provided by AIRBUS (see § 5.3.5).



14 Activity Report INRIA 2008

In 2008, the LNT2LOTOS tool suite was enhanced significantly. Eight successive versions were
released and the tool suite was ported to five 32-bit architectures and three 64-bit architectures.

As regards the data type part of LOTOS NT, we added support for character and string constants,
simplified the use of predefined operations in module declarations, and allowed end-users to specify
the names of the LOTOS and C types and functions to be generated by the LNT2LOTOS translator.

As regards the process part of LOTOS NT, we finalized the concrete syntax and static semantics of
processes, and specified an algorithm translating a set of LOTOS NT processes into a collection
of LOTOS types, functions, and processes. This algorithm was implemented almost entirely in
LNT2LOTOS and is currently under validation.

A new tool named LNT_CHECK was introduced to check the exhaustivity of “case” patterns
occuring both in functions and processes.

LNT2LOTOS is developed using the SYNTAX/TRAIAN technology. Currently, it represents 32, 500
lines of code (3, 900 lines of SYNTAX code, 26, 100 lines of LOTOS NT code, and 2, 500 lines of
C code). The LOTOS NT reference manual was updated and grew from 61 pages (at the end of 2007)
to 71 pages. Five demo examples illustrating the usage of the LNT2LOTOS tool suite, together with
a non-regression database containing 300 LOTOS NT programs, were developed.

• As regards the compilation of temporal extensions, we continued the definition of a new intermediate
form, named ATLANTIF, into which languages combining data, concurrency, and real-time (such
as E-LOTOS and LOTOS NT) could be translated efficiently. ATLANTIF is based upon the NTIF
model [6] for sequential processes with data, which we extended in several ways to support
concurrency and real-time.

In 2008, we defined the syntax and formal timed semantics of ATLANTIF, which are conservative
extensions of the syntax and formal semantics of NTIF, and we showed that the timed semantics
of ATLANTIF has the expected properties of time additivity (a sequence of delays is equivalent to a
delay of their sum), time determinism (a given delay leads to a unique state), and maximal progress
of urgent actions (no delay is allowed if an urgent action is possible).

We also implemented a translator tool that takes as input the description of a system in ATLANTIF
and generates either a network of timed automata (for verification using UPPAAL) or a time Petri net
(for verification using TINA). A paper on ATLANTIF was accepted for publication in an international
conference [38].

5.2.3. Source-Level Translations between Concurrent Languages
Participants: Xavier Clerc, Hubert Garavel, Claude Helmstetter, Rémi Hérilier, Frédéric Lang, Olivier
Ponsini, Wendelin Serwe, Damien Thivolle.

Although process algebras are, from a technical point of view, the best formalism to describe concurrent
systems, they are not used as widely as they could be [25]. Besides the steep learning curve of process algebras,
which is traditionally mentioned as the main reason for this situation, it seems also that the process algebra
community scattered its efforts by developing too many languages, similar in concept but incompatible in
practice. Even the advent of two international standards, such as LOTOS (in 1989) and E-LOTOS (in 2001),
did not remedy this fragmentation. To address this problem, we started investigating source-level translators
from various process algebras into LOTOS, so as to widen the applicability of the CADP tools.

In 2008, besides the LNT2LOTOS tool suite (see § 5.2.2), we worked on the following translators:

• In the framework of the OPENEMBEDD (see § 6.3) and TOPCASED (see § 6.4) projects, and in
cooperation with the LAAS-CNRS and IRIT laboratories, we continued the development of FIACRE
(Format Intermédiaire pour les Architectures de Composants Répartis Embarqués). Derived from
NTIF [6] and V-COTRE [53], FIACRE will be used as a pivot formalism between modeling languages
(such as AADL, UML, or SYSML) and verification tools (such as CADP and TINA). FIACRE may



Project-Team VASY 15

also serve as bridge between synchronous languages and asynchronous systems, as illustrated by the
translation from the SIGNAL synchronous language to FIACRE proposed in [90].

In 2008, we finalized the formal definition of the semantics of FIACRE 2.0 [40]. We continued
developing the FLAC (Fiacre to Lotos Adaptation Component) tool, which allows the translation
of the full FIACRE language (except priorities and time constraints) into LOTOS (4,700 lines of
Standard ML code). FLAC takes as input a FIACRE specification and produces a behaviourally
equivalent LOTOS specification, together with an auxiliary SVL script allowing to embed the original
identifiers of the FIACRE specification into the transition labels of the graph generated from the
LOTOS specification. We tested FLAC on 70 FIACRE examples and released it on the TOPCASED
forge2. Papers on FIACRE and FLAC were published in an international conference [22] and in an
ERCIM newsletter [46].

• We considered the process algebra FSP (Finite State Processes) defined in a popular textbook on
concurrency [83] and supported by the LTSA tool designed at Imperial College (London, United
Kingdom). For this language, we developed the FSP2LOTOS tool, which translates FSP into LOTOS,
EXP.OPEN, and SVL code [94].

In 2008, we continued the development of the FSP2LOTOS translator. Most notably, we extended
FSP2LOTOS to support a larger subset of FSP: on our non-regression database of 1, 040 examples,
the percentage of FSP programs accepted by the translator grew from 71% to 88%. We also divided
by two the average size of the LOTOS code generated by FSP2LOTOS and increased its readability.
We enhanced the LOTOS encoding of FSP numbers and labels, leading to more efficient translations.
Finally, numerous bugs were solved and a manual page was written for the translator.

• In the context of the INRIA/LETI collaboration (see § 7.1) and the MULTIVAL contract (see § 6.2),
we continued the study of the process algebra CHP (Communicating Hardware Processes) for which
the TIMA laboratory has developed a circuit synthesis tool named TAST [91] and which is used by
the LETI laboratory to describe the FAUST/MAGALI architecture (see § 5.3.2). Our prior work led
to the development of the CHP2LOTOS tool, which translates CHP into LOTOS, our goal being to
integrate formal verification tools into the design flow of complex asynchronous circuits.

In 2008, we devised proof arguments to establish the correctness of CHP2LOTOS. Our overview
paper on the CHP to LOTOS translation was accepted for publication in an international journal [20].

• In the context of the INRIA/LETI collaboration (see § 7.1) and the MULTIVAL contract (see § 6.2),
we investigated the verification of TLM (Transaction Level Model) models. Compared to traditional
RTL (Register Transfer Level) models, TLM allows faster simulation, simultaneous development of
software and hardware, and earlier hardware/software partitioning. Among all languages supporting
TLM, SYSTEMC [76] emerges as an industrial standard. SYSTEMC is a C++ library providing both a
high-level description language and a simulation kernel that involves a central (largely deterministic)
scheduler ordering the actions of the different processes.

Our prior work led to two approaches for translating the PV (Programmers View) level of SYS-
TEMC/TLM (i.e., TLM models without explicit timing information) into LOTOS:

– Our first approach follows the “official” simulation semantics of SYSTEMC, keeping the
scheduler as defined in [76].

– Our second approach proposes a fully asynchronous semantics for SYSTEMC/TLM, getting
rid of the central scheduler that is difficult to implement in parallel circuits and prevents
certain execution sequences from being analyzed during formal verification.

In 2008, we pursued our research on this topic. Both our approaches (i.e., with and without the
scheduler) were published in international conferences, namely [26] for the first approach and [36]
for the second approach. A comparison of both approaches on the parameterized benchmark with n
concurrent components given in [102] was done and reported in [26].

2http://gforge.enseeiht.fr/projects/fiacre-compil

http://gforge.enseeiht.fr/projects/fiacre-compil


16 Activity Report INRIA 2008

To improve the effectiveness of formal verification, we experimented various ways of coding
SYSTEMC/TLM transactions in LOTOS (inlined, instantiated, or synchronized by rendezvous). We
showed that inlining transactions in the initiator thread is, when possible, by far the most efficient
encoding as regards the size of the state space generated with CADP (up to 15 times less states than
using instantiated transactions).

In parallel, to ease the integration of SYSTEMC/TLM and LOTOS, we investigated how to reuse,
within a LOTOS specification, existing fragments of code written in SYSTEMC. In a first step, we
experimented this idea on the Blitter Display case-study provided to us by STMICROELECTRONICS
(see § 5.3.4). In a second step, we undertook the design of a library that allows, from a LOTOS
specification, to invoke SYSTEMC/TLM simulation steps.

5.3. Case Studies and Practical Applications
5.3.1. The FAME2 Architecture

Participants: Hubert Garavel, Holger Hermanns, Radu Mateescu, Meriem Zidouni.

In the context of the MULTIVAL (see § 6.2) contract, we studied together with BULL the MPI software layer
and MPI benchmark applications to be run on FAME2 (Flexible Architecture for Multiple Environments), a
CC-NUMA multiprocessor architecture developed at BULL for teraflop mainframes and petaflop computing.

In 2008, our activities focused on the following aspects:

• We pursued the study of the MPI benchmark called “ping-pong” protocol, our goal being to predict
the performance of this benchmark on FAME2 machines, in particular to estimate the latency of
send/receive operations on different topologies, different software implementations of the MPI
primitives, and different cache coherency protocols. The ping-pong benchmark consists of two
parallel processes, which send to each other a data packet k times. The benchmark was specified
using a combination of LOTOS code (to describe the behavior of processes) and C code (to describe
the data structures of memory and caches). Several configurations were considered, by specifying
two different implementations of the send/receive primitives (based on linked lists with locks and
on lock-free buffers, respectively) and two cache coherency protocols (in which a variable written
by a process becomes either owned by that process, or shared between that process and the previous
owner, respectively).

The performance analysis was carried out by extending the LOTOS specification with Markov
delays and applying the BCG_MIN, DETERMINATOR, and BCG_STEADY tools of CADP in order
to calculate the latency of the send/receive operations. The quality of the model was improved
by decomposing the read/write accesses in two request/response phases, which reflects the real
behaviour of the system accurately. Thus, the latencies predicted from the model were close (down to
6% of difference) to the experimental measures. The performance analysis also allowed to estimate
the number of cache misses corresponding to each instruction, which indicates that the second
send/receive protocol (based on lock-free buffers) and the first cache coherency protocol (in which a
variable written by a process becomes owned by that process) provide the best performance among
the configurations considered. An article describing this work was accepted for publication in an
international conference [23].

• We undertook the study of the “barrier” primitive of MPI, which allows several parallel processes to
synchronize (each process arriving at the barrier waits for all the others to arrive) before continuing
their execution. The latency of the barrier primitive corresponds to the (average) time taken by a
process to traverse the barrier, i.e., the time between the moment when it arrives and when it leaves
the barrier. We specified, using the LOTOS and C languages, five protocols implementing the barrier
primitive (centralized, combining, tournament, dissemination, and tree-based). These five protocols
differ by the shared data structures and the synchronizations used. In addition to the classical
read/write operations, all these protocols use a fetch-and-decrement operation, which consists of a
read and a write operation executed atomically. The combining protocol involves non-tail recursion,
which was eliminated by modeling an explicit stack.



Project-Team VASY 17

As regards functional verification, we identified five temporal properties characterizing the correct
behaviour of several parallel processes traversing a barrier cyclically: deadlock freeness, correct
access to private variables, absence of access to a null address in memory, mandatory traversal of the
current barrier by all processes, and forbidden leaving of a barrier by a process before all the others
arrived at the barrier. These properties were successfully verified on the five barrier protocols by
using the EVALUATOR model checker of CADP. The first three properties were expressed in regular
alternation-free µ-calculus and checked using EVALUATOR 3.5, whereas the last two properties,
which require to count the processes arriving at a barrier, were expressed in MCL and checked using
EVALUATOR 4.0.

As regards performance evaluation, we extended the LOTOS specifications of the centralized and
tree-based barrier protocols (involving cyclic parallel processes) with Markov delays. It turned out
that the Markovian model contained nondeterminism caused by simultaneous accesses of concurrent
processes to the same shared variable. This nondeterminism was eliminated by inserting very small
Markov delays before the conflicting accesses. In order to fight state explosion, we generated the
Markov chain semi-compositionally by using hand-crafted interfaces for the memory and cache
processes, and by minimizing the intermediate graphs progressively modulo stochastic branching
bisimulation using BCG_MIN, the whole process being automated using SVL scripts. This allowed
to generate the final Markov chain for the centralized barrier with 6 processes and the tree-based
barrier with 4 processes, and to compute the latencies of barrier traversals for these protocols using
BCG_STEADY.

5.3.2. The FAUST/MAGALI Architectures
Participants: Radu Mateescu, Wendelin Serwe.

In the context of the INRIA/LETI collaboration (see § 7.1) and the MULTIVAL contract (see § 6.2), we pursued
the study (started in 2005) of FAUST (Flexible Architecture of Unified System for Telecom), a platform based
on NOC (Network on Chip) for wireless telecom applications (4G, MIMO, etc.), developed by the CEA/LETI
laboratory [52]. Since 2007, we are focusing on the latest version, named MAGALI, of this architecture.

Together with LETI scientists (Francois Bertrand, Virang Shah, and Yvain Thonnart), we studied the commu-
nication interconnect, which routes packets (consisting of several 34-bit flits) between the 23 components of
the circuit. At the block level, this interconnect is described in the hardware process calculus CHP (Communi-
cating Hardware Processes) and implemented, at the RTL level, in asynchronous logic. The interconnect has
23 communication nodes, each of which consists of five input controllers and five output controllers. Each
input controller dispatches incoming flits to one out of four output controllers, and each output controller arbi-
trates between four input controllers. Using the CHP2LOTOS compiler [20] and compositional generation, it
was possible to produce the two graphs corresponding to the input controller (4.6 million states and 16 million
transitions) and the output controller (5.5 million states and 36 million transitions).

In 2008, we helped LETI scientists to write µ-calculus formulas expressing the correctness of the output
controller. By using the EVALUATOR 3.5 tool, it was possible to verify several properties, such as: routing of
flits on a virtual channel does not change before the last flit of a packet (i.e., all flits of the same packet are
routed similarly), an acknowledgment of routing is generated at the end of a packet, and routing a new packet
happens only after an arbitration decision has been taken.

To verify the input controller, LETI scientists decided not to use model checking (as done in 2006 [95]
for a prior version of the input controller), since the µ-calculus formulas would have been too complex (the
reason for the complexity increase is the higher storage capacity per channel in the latest version of the input
controller). Instead, they used equivalence checking and developed an abstract model of the input controller
(300 lines of LOTOS code, about 4.6 million states) that was proven, using the BISIMULATOR tool, to be
included (with respect to branching bisimulation) in the input controller, showing that the input controller
contains all expected behaviors.



18 Activity Report INRIA 2008

We also helped LETI scientists in their effort to build a co-simulation platform to compare the formal LOTOS
model of MAGALI and the implementation of MAGALI given as a VHDL netlist. Using the EXEC/CÆSAR
framework [14], it was possible to embed the LOTOS model into a SYSTEMC process that was executed
(using the MODELSIM tool of MENTOR GRAPHICS) in combination with the netlist. In this approach, the
LOTOS model randomly generates inputs that are sent as inputs to the netlist. For each output sent back by
the netlist, one checks whether a corresponding output also exists in the LOTOS model. As a first result, this
co-simulation platform revealed that the LOTOS model was generating spurious inputs that would never occur
actually. LETI scientists solved this issue by adding constraints in the LOTOS model to generate only valid
inputs (e.g., in a sequence of flits, an end-of-packet may only occur after a begin-of-packet).

5.3.3. The xSTream Architecture
Participants: Nicolas Coste, Hubert Garavel, Holger Hermanns, Etienne Lantreibecq, Wendelin Serwe.

In the context of the MULTIVAL contract (see § 6.2) together with STMICROELECTRONICS, we studied
XSTREAM, a multiprocessor dataflow architecture for high performance embedded multimedia streaming
applications. In this architecture, computation nodes (e.g., filters) communicate using XSTREAM queues
connected by a NOC (Network on Chip). An XSTREAM queue generalizes a bounded FIFO queue in two
ways: it provides additional primitives (such as peek to consult items in the middle of the queue, which is not
possible with the standard push/pop primitives of FIFO queues), and a backlog (extra memory) to allow the
increase of the queue size when the queue overflows.

During the last year, the XSTREAM queues have been studied extensively. In 2008, we focused on the NOC
itself and its interaction with XSTREAM queues.

The XSTREAM NOC is composed of routers connected by direct communication links. First experiments
showed that representing XSTREAM primitives in the routers by two events (request/response), as used for
modeling XSTREAM queues, would lead to state space explosion. Therefore, we decided to represent each
XSTREAM primitive by a single LOTOS event in a router. To reuse the LOTOS models already developed for
XSTREAM queues (in which each XSTREAM primitive is represented using two LOTOS events), we introduced
additional LOTOS processes, called network interfaces, that convert one representation into the other.

We developed two successive models of an XSTREAM router. The first model (150 lines of LOTOS code) uses
a single LOTOS process with eight parameters representing the status of each of the eight ports of the router.
State space generation for this model was slow due to the number of conditions evaluating to false when
computing the successor states. Therefore, we produced a second model (120 lines of LOTOS code), in which
each port is represented by a separate process, which reduced the generation time by a factor 50, still yielding
the same state space.

In a first step, we considered a NOC composed of four routers, where each router is directly connected to all
the other routers. For this model, we could generate the corresponding state space (about 5, 600 states and
20, 000 transitions) compositionally, the largest intermediate graph having one million states and 5 million
transitions. By using the BISIMULATOR tool, we could show that this model (i) is not branching bisimilar to,
but only contains (modulo the branching preorder) the parallel composition of two XSTREAM queues (after
abstracting away the network interfaces and the routers); (ii) is branching bisimilar to the composition of two
XSTREAM queues connected by two network interfaces (after abstracting away only the routers). By using the
EVALUATOR tool, we could verify temporal logic formulas expressing that the additional behavior is correct.

In a second step, we considered the more intricate case of a NOC composed of six routers, which are no longer
fully connected; this implies that a packet might traverse more than two routers, which in turn increases the
number of messages that might be received by a router. This resulted in an increase of the state space size
for each single router: a router in a NOC with four routers has less than 400 states and 140, 000 transitions,
whereas a router in a NOC with six routers has up to 6.7 million states and 49 million transitions, which was
too large for further composition with the other routers, network interfaces, and XSTREAM queues. Therefore,
we abstracted away the differences between all “disturbing” messages (i.e., messages that do not directly
concern the considered pair of XSTREAM queues), ignoring destination and routing information in all these
messages. This allowed to simplify the model of a router by removing those ports that are only used by the



Project-Team VASY 19

abstracted messages. The state space corresponding to this simplified model of a router was reduced down to
240 states and 1, 000 transitions. An additional benefit was that the same router could be used for all routers of
the NOC (due to an asymmetry in the architecture, in the first model all routers had different state spaces). By
using the BISIMULATOR tool, we found that the parallel composition of two XSTREAM queues connected by
network interfaces and a NOC with six abstract routers was branching bisimilar to the parallel composition of
two XSTREAM queues connected by two network interfaces. However, we could not establish an equivalence
relation between the two models of a router, as the simplified model of a router is no longer deterministic
(abstracting away the routing information from disturbing messages introduces nondeterminism, since some
disturbing messages can be dropped while others have to be forwarded to the next router). We therefore refined
the abstraction, distinguishing two kinds of disturbing packets, those to be dropped and those to be forwarded.
Comparing this refined model with the complete one, we still did not observe branching equivalence, but only
a mutual inclusion (i.e., two simulations, but not a bisimulation).

We also continued performance evaluation studies to predict latency and throughput of communication
between XSTREAM queues. For us, a key challenge is to combine probabilistic/stochastic information (e.g.,
the rates at which XSTREAM applications push and pop elements in and out of the queues) with precise
timing information (e.g., memory access time). After exploring different techniques and tools, we devised
an approach, called IPC (Interactive Probabilistic Chains), inspired by Interactive Markov Chains [74], but
using probabilities instead of stochastic distributions and a central clock governing all delays. We defined a
structured operational semantics for standard process algebra operators (sequential and parallel composition,
nondeterministic choice, etc.) applied to IPC and proved that probabilistic branching bisimulation is a
congruence for the parallel composition of IPC. Taking advantage of the open architecture of CADP, we
prototyped a tool chain (6, 400 lines of C code and 400 lines of PERL script), which we experimented on
several examples.

5.3.4. The Blitter Display
Participants: Hubert Garavel, Claude Helmstetter, Olivier Ponsini, Wendelin Serwe.

In the context of the MULTIVAL contract (see § 6.2), we started to study whether the CADP tools could
enrich with formal verification capabilities the current design flow of STMICROELECTRONICS, which is
based on SYSTEMC/TLM. To this aim, STMICROELECTRONICS provided us with the Blitter Display (BDISP
for short), a 2D-graphics co-processor implementing BLIT (Block Image Transfer) and numerous graphical
operators, e.g., rotations, alpha blending, or Blue Ray disc decoding. The BDISP is software-controlled
through instructions written in nodes of up to four application queues and two real-time composition queues.
It is described by more than 25, 000 lines of SYSTEMC/TLM code.

First, to palliate the absence of the STMICROELECTRONICS in-house development environment, we designed
a minimal testbench, and were able to recompile the BDISP and pass all of the required tests within our
own build environment. We then seeked to obtain a LOTOS model of the BDISP. This was not immediate,
because the SYSTEMC/TLM model of the BDISP is mostly sequential and data-intensive, and because it is not
primarily tailored to formal verification. For this reason, we focused on the queue management part, which is
responsible for triggering and ordering the execution of the queues according to their priorities. We isolated the
queue management part from the rest (graphical data treatment) and explicited the asynchronous concurrency
that actually exists in the transactions between the BDISP and its environment.

The translation from SYSTEMC/TLM to LOTOS was done manually, but according to systematic rules. The
SYSTEMC/TLM code modeling input/output communications and concurrency was translated to LOTOS, while
the rest of the code (i.e., plain C++ code) was kept unmodified and invoked from the LOTOS model. Concretely:

• We translated the communication and concurrency primitives from SYSTEMC/TLM into LOTOS
using our schedulerless translation rules (see § 5.2.3 and [36]). This produced 920 lines of LOTOS
code.

• We identified all variables composing the internal BDISP state and optimized their memory size on
the state vector (e.g., replacement of integer variables by bit-fields of minimal length).



20 Activity Report INRIA 2008

• We splitted the rest of the SYSTEMC code into functions testing the BDISP state and into functions
modifying the BDISP state (5, 550 lines of C++ code).

• We abstracted the queue modeling (e.g., compact representation of instruction nodes, memory
addresses abstracted to an enumerated type, etc.).

• We developed an interface between the LOTOS and C++ codes (2, 250 lines of C code).

This novel, hybrid approach reuses large parts of the original SYSTEMC/TLM model (so that the model under
verification remains close to the original one) and leads to good performance using the CADP tools. After
assembling all these code fragments together, we obtained an executable LOTOS/C++ model of the BDISP. We
used the OCIS tool of CADP to perform step-by-step simulation and the EVALUATOR tool to prove correctness
properties on several verification scenarios.

5.3.5. The Airbus TFTP Protocol
Participants: Xavier Clerc, Hubert Garavel, Damien Thivolle.

In the context of the TOPCASED project (see § 6.4), we started studying how CADP can be used to verify
protocols written in SAM, a graphical synchronous language developed by AIRBUS.

Our first step was to equip SAM with a formal semantics that did not exist so far. With the help of Patrick
Farail and Pierre Gaufillet (AIRBUS), we identified the SAM subset actually used at AIRBUS. We defined
three simplifications of SAM diagrams (elimination of multi-ports, subsystems, and macro-states) and wrote a
formal semantics document [43] for SAM, which was validated by AIRBUS and included in the SAM official
documentation repository.

We then considered a case-study provided to us by AIRBUS, namely a ground/plane communication protocol
based on TFTP (Trivial File Transfer Protocol), which operates above the standard UDP (User Datagram
Protocol) layer. This protocol was specified as a SAM automaton having 7 states and 39 transitions.

To verify this protocol using CADP, we proposed a translation from SAM into LOTOS NT data types and
functions. Basically, a SAM automaton is translated into a Mealy function that takes the current state and a list
of input values, and produces the next state and a list of output values. Following this approach, we obtained
a LOTOS NT version of the TFTP automaton.

Then, we modelled in LOTOS NT an entire system in which two synchronous TFTP automata execute
asynchronously and communicate with each other using UDP links. We thus obtained a typical example of a
GALS (Globally Asynchronous, Locally Synchronous) system. To express the unreliability of UDP, which may
lose, duplicate and/or reorder messages, we designed various LOTOS NT models of UDP based on bounded
FIFO queues and bag data structures. The LOTOS NT specification of the entire system was translated into
LOTOS using the LNT2LOTOS translator (see § 5.2.2); this allowed to detect and correct several mistakes in
the translator itself.

We then formulated 29 correctness properties in temporal logic and verified them on the generated LOTOS
model using the EVALUATOR 3.5 and 4.0 model checkers of CADP. This allowed us to find 19 errors; many
of these errors, even if not critical, were degrading the protocol performance (due to, e.g., useless packet
retransmissions).

To quantify the impact of these errors, we used the EXECUTOR tool of CADP to simulate the LOTOS model.
This allowed us to estimate, for each error, its individual impact on the performance.

Our results were presented at AIRBUS, and it was decided to intensify work in this direction, the goal being to
have those techniques used internally by the company.

5.3.6. Other Case Studies
Service-oriented architectures are complex applications in which several business processes interact through
WEB services. BPEL (Business Process Execution Language) [78] is a standardized language allowing
to describe the behaviour and interaction of concrete WEB services and of abstract business processes.
In collaboration with Sylvain Rampacek (Université de Bourgogne), we enhanced the WSMOD compiler



Project-Team VASY 21

from BPEL to discrete timed automata in order to generate graphs accepted as input by CADP. This new
feature allowed to verify temporal properties involving discrete time (e.g., counting of clock ticks, timeout
calculations, etc.) on BPEL specifications using the EVALUATOR 4.0 model checker. We experimented this
modeling and verification approach for analyzing the behaviour of a WEB service for GPS navigation. This
work led to a publication that won the best paper award in an international conference [31].

Semantic WEB applications have as underlying models directed graphs describing the resources involved and
their properties. When these graphs become very large, as it happens for facility management descriptions as
specified by the IFC (Industrial Foundation Classes) [77] standard, their analysis can be efficiently carried
out by using verification tools, such as CADP. In collaboration with Christophe Cruz, Christophe Nicolle,
and Sylvain Rampacek (Université de Bourgogne), we developed a tool named RDF.OPEN for translating
the RDF (Resource Description Framework) [80] semantic WEB language into the graph exploration API
defined by OPEN/CÆSAR. This allows, on the one hand, to analyze RDF descriptions using the on the fly
verification tools of CADP and, on the other hand, to convert RDF descriptions into BCG files, which can
be subsequently queried by using either the XTL language or the graph manipulation primitives available
in the BCG libraries. Additionally, a framework based on WEB services was developed for invoking the
EVALUATOR, BISIMULATOR, and REDUCTOR tools of CADP remotely for analyzing graphs produced from
RDF descriptions. These tools have been applied to a concrete case-study, namely to analyze large RDF graphs
generated from facility management IFC files describing professional buildings.

Other teams also used the CADP toolbox for various case studies. To cite only recent work not already
described in previous VASY activity reports, we can mention:

• the fault-based conformance testing of the SIP registrar [48];
• the analysis of Franklin’s algorithm for leader election in anonymous rings [51];
• the verification of asynchronous circuits [55];
• the analysis of first-class futures of distributed grid components [61];
• the verification of distributed shared memory systems [62];
• the verification and adaptation of WF/.NET components [64], [65];
• the design of a secure, verified, fair exchange DRM scheme [66];
• the verification of ERLANG telecommunication systems [72];
• the abstraction and analysis of clinical guidance trees [104];
• the specification and verification of middlewares [92];
• the performance analysis of stimulus rich reactive interfaces [99];
• the formal specification and verification of CORBA systems [93].

Finally, a book chapter [39] describing the application of CADP to the specification and verification of a
turntable system for drilling products was published.

6. Contracts and Grants with Industry
6.1. The EC-MOAN Project

Participants: Hubert Garavel, Radu Mateescu, Emilie Oudot, Anton Wijs.

VASY participates to the EC-MOAN (Scalable modeling and analysis techniques to study emergent cell
behavior: Understanding the E. coli stress response) project no. 043235, funded by the FP6 NEST-PATH-
COM European program. It gathers seven participants: INRIA Rhône-Alpes (VASY and IBIS project-teams),
Université Joseph Fourier (Grenoble), University of Twente, Free University of Amsterdam, University of
Edinburgh, CWI Amsterdam, and Masaryk University Brno. EC-MOAN aims at the development of new,
scalable methods for modeling and analyzing integrated genetic, metabolic, and signaling networks, and the
application of these methods for a better understanding of a bacterial model system.



22 Activity Report INRIA 2008

EC-MOAN started on February 1st, 2007 for three years. In 2008, our efforts focused on defining and
implementing the temporal logic CTRL [27], an extension of CTL [63] with regular expressions and fairness
operators able to specify biologically-relevant properties (multistability, oscillations, etc.) in a concise and
natural way [27]. We also contributed to the definition of temporal logic patterns, expressed in CTL and
modal µ-calculus, which encode typical properties of biological interest [35], [34], [21], [41], [44]. Finally,
we developed new algorithms that improve the performance of on the fly verification [28], [29], [42] and state
space generation [33], in order to analyze efficiently the graphs resulting from qualitative simulation of genetic
regulatory networks, such as those produced by the GNA (Genetic Network Analyzer) tool developed by the
IBIS project-team.

6.2. The Multival Project
Participants: David Champelovier, Nicolas Coste, Hubert Garavel, Yves Guerte, Rémi Hérilier, Holger
Hermanns, Romain Lacroix, Frédéric Lang, Etienne Lantreibecq, Radu Mateescu, Louis Paternault, Olivier
Ponsini, Wendelin Serwe, Meriem Zidouni.

MULTIVAL (Validation of Multiprocessor Multithreaded Architectures) is a project of MINALOGIC, the pôle
de compétitivité mondial dedicated to micro-nano technologies and embedded software for systems on chip
(EMSOC cluster of MINALOGIC). It is funded by the French government (Fonds Unique Interministériel)
and Conseil général de l’Isère. MULTIVAL addresses verification and performance evaluation issues for three
innovative asynchronous architectures developed by BULL, CEA/LETI, and STMICROELECTRONICS.

MULTIVAL started in December 2006 for three years. In 2008, we focused our activities on the enhancement
of CADP (see § 5.1 and § 5.2) and case studies in collaboration with our partners to verify and predict
the performance of the architectures FAME2 (see § 5.3.1), FAUST/MAGALI (see § 5.3.2), and XSTREAM
(see § 5.3.3).

6.3. The OpenEmbedd Project
Participants: Xavier Clerc, Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe, Jan Stoecker.

OPENEMBEDD is a French national project of ANR (Agence Nationale de la Recherche), initiated by RNTL
(Réseau National des Technologies Logicielles). The goal of OPENEMBEDD is to develop an open-source,
generic, standard software engineering platform for real-time embedded systems, such as those developed by
AIRBUS, CS, FRANCE TELECOM, and THALES. Within an ECLIPSE framework, this platform will combine
the principles of model-driven engineering with those of formal methods.

OPENEMBEDD started in May 2006 for three years. In 2008, we completed the definition of the FIACRE
asynchronous intermediate model for embedded systems [40] and developed an automated translator from
FIACRE to LOTOS (see § 5.2.3).

6.4. The Topcased Project
Participants: Hubert Garavel, Romain Lacroix, Frédéric Lang, Jeanne Merle, Sylvain Robert, Jan Stoecker,
Damien Thivolle.

TOPCASED (Toolkit in OPen-source for Critical Application and SystEms Development) is a project of AESE,
the French pôle de compétitivité mondial dedicated to aeronautics, space, and embedded systems. This
project gathers 23 partners, including companies developing safety-critical systems such as AIRBUS (leader),
ASTRIUM, ATOS ORIGIN, CS, SIEMENS VDO, and THALES AEROSPACE.

TOPCASED develops a modular, open-source, generic CASE (Computer-Aided Software Engineering) environ-
ment providing methods and tools for embedded system development, ranging from system and architecture
specifications to software and hardware implementation through equipment definition. VASY contributes to
the combination of model-driven engineering and formal methods for asynchronous systems.



Project-Team VASY 23

TOPCASED started in August 2006 for 40 months. In 2008, we worked along the following lines:

• We proposed a formal semantics for the SAM graphical language developed by AIRBUS and also
a translation from a subset of SAM to LOTOS NT, with the goal of verifying SAM specifications
automatically. We applied this translation to obtain a formal model (a combination of LOTOS NT
specifications and automata) of the TFTP protocol, which we subsequently analyzed using the CADP
tools (see § 5.3.5).

• In collaboration with colleagues from LAAS-CNRS and IRIT (Toulouse, France), we completed the
definition of FIACRE, an intermediate model for embedded systems with asynchrony and quantitative
time [40], [22]. We also completed the development (started in 2007) of an automated translator from
FIACRE to LOTOS [46] (see § 5.2.3).

• We participated in the TOPCASED Quality Group, which defines the quality policy for TOPCASED
(in particular, a set of mandatory requirements) and evaluates the TOPCASED development activities.

H. Garavel is the INRIA representative at the TOPCASED executive committee, for which he served as the
secretary during the elaboration phase of the TOPCASED proposal.

7. Other Grants and Activities

7.1. National Collaborations
From 2004 to 2008, the VASY project-team played an active role in the joint research center between INRIA
Rhône-Alpes and the LETI laboratory of CEA-Grenoble. In collaboration with LETI scientists (Edith Beigné,
François Bertrand, Fabien Clermidy, Virang Shah, Yvain Thonnart, and Pascal Vivet), VASY developed
software tools for the design of asynchronous circuits and architectures such as GALS (Globally Asynchronous
Locally Synchronous), NOCs (Networks on Chip), and SOCs (Systems on Chip). In 2008, this collaboration
was pursued as part of the MULTIVAL project (see § 6.2).

Additionally, we collaborated in 2008 with several INRIA project-teams:

• ATLAS (Nantes): collaboration in the framework of the OPENEMBEDD national action (Jean Bézivin
and Frédéric Jouault);

• ALPAGE (Rocquencourt): enhancements to the SYNTAX V6 compiler generation software (Pierre
Boullier, Philippe Deschamp, and Benoît Sagot);

• ESPRESSO (Rennes): collaboration in the framework of the TOPCASED and OPENEMBEDD national
actions (Jean-Pierre Talpin and Julio Peralta);

• IBIS (Rhône-Alpes): applications of model checking to biological systems (Estelle Dumas, Hidde
de Jong, Pedro Monteiro, and Michel Page).

Beyond INRIA, we had sustained scientific relations with the following teams:

• LAAS-CNRS laboratory (Toulouse): collaboration in the framework of the OPENEMBEDD and
TOPCASED projects (Bernard Berthomieu and François Vernadat);

• LE2I laboratory (Dijon): applications of model checking to WEB services and business processes
(Sylvain Rampacek). From December 2006 to September 2008, R. Mateescu, E. Oudot, A. Wijs,
and M. Zidouni were hosted by Université de Bourgogne.

7.2. International Collaborations
The VASY project-team is member of the FMICS (Formal Methods for Industrial Critical Systems) working
group of ERCIM (see http://www.inrialpes.fr/vasy/fmics). From July 1999 to July 2001, H. Garavel chaired
this working group. Since July 2002, he is member of the FMICS Board, in charge of dissemination actions.

http://www.inrialpes.fr/vasy/fmics


24 Activity Report INRIA 2008

H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired by Luca Aceto.

In addition to our partners in aforementioned contractual collaborations, we had scientific relations in 2008
with several international universities and research centers, including:

• Imperial College (Jeff Kramer and Jeff Magee),
• LIAMA, China (Claude Helmstetter and Vania Joloboff),
• Polytechnic University of Bucharest (Valentin Cristea),
• Saarland University (Pepijn Crouzen, Holger Hermanns, Sven Johr, and Reza Pulungan),
• University of Málaga (Gwen Salaün),
• University of Malta (Gordon Pace and Sandro Spina), and
• University of Twente (Jaco van de Pol).

7.3. Visits and Invitations
In 2008, we had the following scientific exchanges:

• Pascal Poizat (Université d’Evry, France) visited us on April 14–18, 2008.
• The annual VASY seminar was held in Monthieux on June 10–13, 2008. In addition to the VASY

project team, Valentin Cristea (Polytechnic University of Bucharest) and Sylvain Rampacek (Uni-
versité de Bourgogne) attended this seminar.

8. Dissemination
8.1. Software Dissemination and Internet Visibility

The VASY project-team distributes two main software tools: the CADP toolbox (see § 4.1) and the TRAIAN
compiler (see § 4.2). In 2008, the main facts are the following:

• We prepared and distributed 14 successive beta-versions (from 2007-c to 2007-p “Zurich”) of CADP.
• The number of license contracts signed for CADP increased from 394 to 411.
• We were requested to grant CADP licenses for 587 different computers in the world.
• The distribution of the TRAIAN compiler continued and a new version 2.6 of Traian (see § 4.2) was

released on February 27, 2008.
• The TRAIAN compiler was downloaded by 44 different sites.

The VASY WEB site (see http://www.inrialpes.fr/vasy) was regularly updated with scientific contents, an-
nouncements, publications, etc.

In September 2007, we opened the “CADP Forum” (see http://www.inrialpes.fr/vasy/cadp/forum.html) for
discussions regarding the CADP toolbox. By the end of December 2008, this forum had 88 registered users
and 408 messages exchanged.

8.2. Program Committees
In 2008, the members of VASY took on the following responsibilities:

• F. Lang was a program committee member of NEPTUNE’2008 (Nice Environment with a Process
and Tools Using Norms and Examples), ENST Paris, France, April 8-9, 2008.

• R. Mateescu was a program committee member of PDMC’2008 (7th International Workshop on
Parallel and Distributed Methods in verifiCation), Budapest, Hungary, March 29, 2008.

• R. Mateescu was a program committee member of FMICS’2008 (13th International Workshop on
Formal Methods for Industrial Critical Systems), l’Aquila, Italy, September 15-16, 2008.

• F. Lang was a program committee member of ECSA’2008 (2nd European Conference on Software
Architecture), Paphos, Cyprus, September 29-October 1st, 2008.

• R. Mateescu was a program committee member of ICSEA’2008 (3rd International Conference on
Software Engineering Advances), Sliema, Malta, October 26–31, 2008.

http://www.inrialpes.fr/vasy
http://www.inrialpes.fr/vasy/cadp/forum.html


Project-Team VASY 25

8.3. Lectures and Invited Conferences
In 2008, we gave talks in several international conferences and workshops (see bibliography below). Addi-
tionally:

• E. Oudot participated to the 3rd semestrial EC-MOAN meeting held at Masaryk University Brno
(Czech Republic) on January 14–15, 2008. She gave a talk entitled “Local Resolution of Boolean
Equation Systems and its Applications to the Analysis of State Spaces” on January 14, 2008.

• R. Mateescu gave a talk entitled “Génération distribuée d’espaces d’états de grande taille avec
CADP” at the RGE seminar of the GDR ASR group of CNRS held in Belfort (France) on February 7,
2008.

• H. Garavel gave a lecture entitled “Le model checking à l’INRIA” at the meeting preceding the
signature of the CEA–INRIA collaboration agreement in Grenoble (France) on March 21, 2008.

• X. Clerc and F. Lang participated to the 4th semestrial OPENEMBEDD meeting held at INRIA Sophia-
Antipolis on March 26–27, 2008. X. Clerc gave a talk entitled “Vérification d’un programme FIACRE
avec CADP”.

• VASY organized the 5th quarterly MULTIVAL meeting, held at INRIA Rhône-Alpes (France) on
April 3, 2008. N. Coste gave a talk entitled “Quantitative Evaluation in Embedded System Design:
Validation of Multiprocessor Multithreaded Architectures”. H. Garavel gave a talk entitled “Avance-
ment des tâches MULTIVAL SP2 de juin 2007 à mars 2008”. E. Lantreibecq gave a talk entitled
“Modeling a Queue with NOC Interconnect”. O. Ponsini gave a talk entitled “A Schedulerless Se-
mantics of TLM via Translation into LOTOS”.

• M. Zidouni participated to the MODEL35 Symposium on Perspectives in Modeling and Performance
Analysis of Computer Systems and Networks held at INRIA Paris-Rocquencourt (France) on April
2–3, 2008. She gave a talk entitled “Performance Evaluation of MPI Benchmarks on CC-DSM
Multiprocessor Architectures” on April 3, 2008.

• F. Lang participated to the NEPTUNE conference held at ENST Paris on April 8-9, 2008.

• H. Garavel participated to the IPA (Institute for Programming research and Algorithmics) Spring
Days on Integrating Formal Methods held at Rhenen (The Netherlands) on May 7–9, 2008. He gave
an invited talk entitled “Integrating Formal Methods within a Process Calculi Framework” on May
8, 2008.

• O. Ponsini and D. Thivolle presented the CADP toolbox during the poster and demonstration sessions
of the 15th International Symposium on Formal Methods FM’08 (Turku, Finland) on May 28, 2008.

• F. Lang participated to the workshop in honor of Pierre Lescanne’s 60th birthday held at INRIA
Nancy on May 29, 2008.

• M. Zidouni participated to AEP9 (9ème Atelier en Evaluation de Performances) held in Aussois
(France) on June 1–4, 2008. She gave a talk entitled “Evaluation des performances de benchmarks
MPI sur des architectures multiprocesseur de type CC-DSM” on June 3, 2008.

• R. Mateescu participated to the RGE seminar of the GDR ASR group of CNRS held in Dijon (France)
on June 5, 2008.

• O. Ponsini presented the poster of R. Mateescu and E. Oudot entitled “Efficient On-the-Fly Equiv-
alence Checking using Boolean Equation Systems” during the poster session of the 6th ACM-IEEE
International Conference on Formal Methods and Models for Codesign MEMOCODE’2008 (Ana-
heim, USA) on June 5, 2008.

• R. Mateescu and A. Wijs participated to the 4th semestrial EC-MOAN meeting held at the University
of Twente (Enschede, The Netherlands) on June 17–18, 2008. R. Mateescu gave two talks entitled
“Computation Tree Regular Logic for Genetic Regulatory Networks” and “Improved On-the-Fly
Equivalence Checking using Boolean Equation Systems” on June 18, 2008. A. Wijs gave a talk
entitled “Hierarchical Adaptive State Space Caching” on June 18, 2008.



26 Activity Report INRIA 2008

• N. Coste, X. Clerc, H. Garavel, H. Hermanns, Y. Guerte, R. Hérilier, R. Lacroix, E. Lantreibecq,
R. Mateescu, O. Ponsini, W. Serwe, and M. Zidouni participated to the 6th quarterly MULTIVAL
meeting held at CEA/LETI (Grenoble, France) on June 20, 2008. N. Coste gave a talk entitled
“Preuve de congruence pour la bisimulation de branchement probabiliste”. H. Garavel gave a talk
entitled “Avancement de CADP 64 bits”. R. Lacroix gave a talk entitled “Porting SYNTAX to 64-
bit Computers”. E. Lantreibecq gave a talk entitled “Modélisation d’un NOC à six noeuds”. R.
Mateescu gave a talk entitled “A Model Checking Language for Concurrent Value-Passing Systems”.
O. Ponsini gave a talk entitled “An Introduction to the Blitter Case-Study”. M. Zidouni gave a talk
entitled “Evaluation des performances MPI : cas du benchmark Barrier”.

• H. Garavel, O. Ponsini, and W. Serwe participated to a technical meeting held at STMICROELEC-
TRONICS (Grenoble, France) to present the results of the “Blitter” case study (see § 5.3.4) on
September 15, 2008. O. Ponsini gave a talk entitled “Un modèle LOTOS du Blitter”.

• R. Mateescu participated to the MPI (Max Planck Institute) Summer School on Verification Technol-
ogy, Systems and Applications held at Saarbrücken (Germany) on September 15–19, 2008. He gave
an invited lecture entitled “Model Checking of Action-Based Concurrent Systems” on September
15–16, 2008.

• X. Clerc, N. Coste, H. Garavel, H. Hermanns, E. Lantreibecq, W. Serwe, and M. Zidouni partici-
pated to the 7th quarterly MULTIVAL meeting held at STMICROELECTRONICS (Paris, France) on
September 26, 2008. N. Coste gave a talk entitled “Flot d’évaluation de performance de XSTREAM”.
X. Clerc gave a talk entitled “LNT2LOTOS: Language and Translation into LOTOS”. H. Garavel gave
a talk entitled “Avancement du portage de CADP sur les architectures 64 bits”. H. Hermanns gave
a talk entitled “Probabilistic Counterexample-Guided Abstraction Refinement”. E. Lantreibecq gave
a talk entitled “Modélisation d’un NOC à six noeuds”. M. Zidouni gave a talk entitled “Evaluation
des performances MPI : cas du benchmark Barrier”.

• D. Thivolle gave a talk entitled “Validation and Simulation of TOPCASED SAM Specifications using
CADP” at AIRBUS (Blagnac, France) on October 3, 2008.

• H. Garavel, F. Lang, and J. Stoecker participated to the 5th semestrial OPENEMBEDD meeting held
at INRIA Rocquencourt on November 13–14, 2008. H. Garavel gave a talk entitled “Validation
and Performance Evaluation of SILDEX/SAM Specifications using CADP”. J. Stoecker gave a talk
entitled “Parallel Processes with Real-Time and Data: the ATLANTIF Intermediate Format”.

• F. Lang gave an invited talk entitled “Recent Developments and Improvements of the CADP Toolbox”
at the SAFA workshop (Workshop of the Sophia-Antipolis Formal Analysis Group) held at INRIA
Sophia-Antipolis on December 3, 2008.

• H. Garavel gave a lecture entitled “Quelques réflexions sur la validation de systèmes embarqués”
before the MINALOGIC/EMSOC prospective committee (Grenoble, France) on December 16, 2008.

• N. Coste, H. Garavel, Y. Guerte, C. Helmstetter, R. Hérilier, E. Lantreibecq, R. Mateescu, L.
Paternault, W. Serwe and M. Zidouni participated to the 8th quarterly MULTIVAL meeting held
at STMICROELECTRONICS (Grenoble, France) on December 18, 2008. N. Coste gave a talk entitled
“Avancement du flot d’évaluation de performance”. H. Garavel gave a talk entitled “Avancement du
portage des outils CADP sur les architectures 64 bits”. M. Zidouni gave a talk entitled “Modélisation
et évaluation de performance des barrières MPI”.

8.4. Teaching Activities
The VASY project-team is a host team for the computer science master entitled “Mathématiques, Informatique,
spécialité : Systèmes et Logiciels”, common to Grenoble INP and Université Joseph Fourier.



Project-Team VASY 27

In 2008:

• H. Garavel, F. Lang, and W. Serwe gave, jointly with Pascal Raymond (CNRS, Verimag), a course
on “Méthodes formelles de développement” to the computer science engineering students of CNAM
(Conservatoire National des Arts et Métiers) Grenoble (21 hours).

• F. Lang and W. Serwe gave the course on “Temps réel” to the 3rd year students of ENSIMAG (18
hours).

• R. Mateescu, together with Sylvain Rampacek, Arnaud da Costa, and Nader Embarek (Université
de Bourgogne) gave the course on “Méthodes formelles” to the 5th year students of ESIREM (86
hours).

• F. Lang was a reviewer for Edoardo Bonta’s PhD thesis entitled “Automatic Code Generation: from
Process Algebraic Architectural Descriptions to Multithreaded Java Programs”, defended at the
University of Bologna (Italy), March 2008.

• H. Garavel was a jury member of Hans Svensson’s PhD thesis entitled “Verification of Distributed
Erlang Programs using Testing, Model Checking and Theorem Proving”, defended at Chalmers
University of Technology (Gothenburg, Sweden) on April 21, 2008.

• F. Lang was a jury member of Bilal Kanso’s MSc thesis entitled “Utilisation de graphes d’attaques
pour tester la sécurité de systèmes répartis”, defended at Université Joseph Fourier (Grenoble) on
June 23, 2008.

• F. Lang was a jury member of Antonio Cansado’s PhD thesis entitled “Formal Specification and
Verification of Distributed Component Systems”, defended at Université de Nice on December 4,
2008.

• R. Mateescu was a suppliant member of the “commission de spécialistes” at Université de Bourgogne
(section 27).

8.5. Miscellaneous Activities
Within the MINALOGIC pôle de compétitivité mondial, H. Garavel is a member of the operational committee
of the EMSOC cluster (Embedded System on Chip).

H. Garavel is a member of the scientific council of the GIS (Groupement d’Intérêt Scientifique) consortium
3SGS on supervision, safety, and security of large systems.

F. Lang participates to the “commission du développement technologique” in charge of selecting projects of
INRIA Grenoble Rhône-Alpes.

O. Ponsini was the VASY representative within the working group for creating the WEB server of the LIG
laboratory.

9. Bibliography
Major publications by the team in recent years

[1] H. GARAVEL. Défense et illustration des algèbres de processus, in "Actes de l’Ecole d’été Temps Réel
ETR 2003 (Toulouse, France)", Z. MAMMERI (editor), Institut de Recherche en Informatique de Toulouse,
September 2003.

[2] H. GARAVEL. Compilation of LOTOS Abstract Data Types, in "Proceedings of the 2nd International Conference
on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada)", S. T. VUONG (editor), North-
Holland, December 1989, p. 147–162.



28 Activity Report INRIA 2008

[3] H. GARAVEL. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and Testing, in
"Proceedings of the First International Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’98 (Lisbon, Portugal), Berlin", B. STEFFEN (editor), Lecture Notes in Computer Science,
Full version available as Inria Research Report RR-3352, vol. 1384, Springer Verlag, March 1998, p. 68–84,
http://hal.inria.fr/inria-00073337.

[4] H. GARAVEL, H. HERMANNS. On Combining Functional Verification and Performance Evaluation using
CADP, in "Proceedings of the 11th International Symposium of Formal Methods Europe FME’2002 (Copen-
hagen, Denmark)", L.-H. ERIKSSON, P. A. LINDSAY (editors), Lecture Notes in Computer Science, Full
version available as Inria Research Report 4492, vol. 2391, Springer Verlag, July 2002, p. 410–429, http://hal.
inria.fr/inria-00072096.

[5] H. GARAVEL, F. LANG. SVL: a Scripting Language for Compositional Verification, in "Proceedings of the
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems
FORTE’2001 (Cheju Island, Korea)", M. KIM, B. CHIN, S. KANG, D. LEE (editors), Full version available
as Inria Research Report RR-4223, Kluwer Academic Publishers, IFIP, August 2001, p. 377–392, http://hal.
inria.fr/inria-00072396.

[6] H. GARAVEL, F. LANG. NTIF: A General Symbolic Model for Communicating Sequential Processes with Data,
in "Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2002 (Houston, Texas, USA)", D. PELED, M. VARDI (editors), Lecture Notes
in Computer Science, Full version available as Inria Research Report RR-4666, vol. 2529, Springer Verlag,
November 2002, p. 276–291, http://hal.inria.fr/inria-00071919.

[7] H. GARAVEL, F. LANG, R. MATEESCU. Compiler Construction using LOTOS NT, in "Proceedings of the 11th
International Conference on Compiler Construction CC 2002 (Grenoble, France)", N. HORSPOOL (editor),
Lecture Notes in Computer Science, vol. 2304, Springer Verlag, April 2002, p. 9–13.

[8] H. GARAVEL, F. LANG, R. MATEESCU, W. SERWE. CADP 2006: A Toolbox for the Construction and Analysis
of Distributed Processes, in "Proceedings of the 19th International Conference on Computer Aided Verification
CAV’2007 (Berlin, Germany)", W. DAMM, H. HERMANNS (editors), Lecture Notes in Computer Science, vol.
4590, Springer Verlag, July 2007, p. 158–163, http://hal.inria.fr/inria-00189021.

[9] H. GARAVEL, R. MATEESCU, I. SMARANDACHE. Parallel State Space Construction for Model-Checking, in
"Proceedings of the 8th International SPIN Workshop on Model Checking of Software SPIN’2001 (Toronto,
Canada), Berlin", M. B. DWYER (editor), Lecture Notes in Computer Science, Full version available as
Inria Research Report RR-4341, vol. 2057, Springer Verlag, May 2001, p. 217–234, http://hal.inria.fr/inria-
00072247.

[10] H. GARAVEL, W. SERWE. State Space Reduction for Process Algebra Specifications, in "Theoretical
Computer Science", vol. 351, no 2, February 2006, p. 131–145.

[11] H. GARAVEL, J. SIFAKIS. Compilation and Verification of LOTOS Specifications, in "Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada)", L.
LOGRIPPO, R. L. PROBERT, H. URAL (editors), North-Holland, IFIP, June 1990, p. 379–394.

[12] H. GARAVEL, M. SIGHIREANU. Towards a Second Generation of Formal Description Techniques – Rationale
for the Design of E-LOTOS, in "Proceedings of the 3rd International Workshop on Formal Methods for

http://hal.inria.fr/inria-00073337
http://hal.inria.fr/inria-00072096
http://hal.inria.fr/inria-00072096
http://hal.inria.fr/inria-00072396
http://hal.inria.fr/inria-00072396
http://hal.inria.fr/inria-00071919
http://hal.inria.fr/inria-00189021
http://hal.inria.fr/inria-00072247
http://hal.inria.fr/inria-00072247


Project-Team VASY 29

Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), Amsterdam", J.-F. GROOTE, B.
LUTTIK, J. VAN WAMEL (editors), Invited talk, CWI, May 1998, p. 187–230.

[13] H. GARAVEL, M. SIGHIREANU. A Graphical Parallel Composition Operator for Process Algebras, in "Pro-
ceedings of the Joint International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Beijing,
China)", J. WU, Q. GAO, S. T. CHANSON (editors), Kluwer Academic Publishers, IFIP, October 1999, p.
185–202.

[14] H. GARAVEL, C. VIHO, M. ZENDRI. System Design of a CC-NUMA Multiprocessor Architecture using
Formal Specification, Model-Checking, Co-Simulation, and Test Generation, in "Springer International Journal
on Software Tools for Technology Transfer (STTT)", Full version available as Inria Research Report RR-4041,
vol. 3, no 3, July 2001, p. 314–331, http://hal.inria.fr/inria-00072597.

[15] R. MATEESCU. On-the-fly State Space Reductions for Weak Equivalences, in "Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Systems FMICS’05 (Lisbon, Portugal)",
T. MARGARIA, M. MASSINK (editors), ACM Computer Society Press, ERCIM, September 2005, p. 80–89.

[16] R. MATEESCU. CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free Boolean
Equation Systems, in "Springer International Journal on Software Tools for Technology Transfer (STTT)",
Full version available as Inria Research Report RR-5948, July 2006, vol. 8, no 1, February 2006, p. 37–56,
http://hal.inria.fr/inria-00084628.

[17] R. MATEESCU, M. SIGHIREANU. Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-
Calculus, in "Science of Computer Programming", vol. 46, no 3, March 2003, p. 255–281.

[18] G. SALAÜN, W. SERWE. Translating Hardware Process Algebras into Standard Process Algebras —
Illustration with CHP and LOTOS, in "Proceedings of the 5th International Conference on Integrated Formal
Methods IFM’2005 (Eindhoven, The Netherlands)", J. VAN DE POL, J. ROMIJN, G. SMITH (editors), Lecture
Notes in Computer Science, Full version available as Inria Research Report RR-5666, vol. 3771, Springer
Verlag, November 2005, p. 287–306.

Year Publications
Articles in International Peer-Reviewed Journal

[19] W. FOKKINK, J. PANG, A. WIJS. Is Timed Branching Bisimilarity a Congruence Indeed?, in "Fundamenta
Informaticae", vol. 87, no 3–4, 2008, p. 287–311.

[20] H. GARAVEL, G. SALAÜN, W. SERWE. On the semantics of communicating hardware processes and their
translation into LOTOS for the verification of asynchronous circuits with CADP, in "Science of Computer
Programming", to appear, 2009.

[21] P. T. MONTEIRO, D. ROPERS, R. MATEESCU, A. T. FREITAS, H. DE JONG. Temporal Logic Patterns for
Querying Dynamic Models of Cellular Interaction Networks, in "Bioinformatics", vol. 24, no 16, 2008, p.
i227–i233, http://hal.inria.fr/inria-00357805.

International Peer-Reviewed Conference/Proceedings

http://hal.inria.fr/inria-00072597
http://hal.inria.fr/inria-00084628
http://hal.inria.fr/inria-00357805


30 Activity Report INRIA 2008

[22] B. BERTHOMIEU, J.-P. BODEVEIX, P. FARAIL, M. FILALI, H. GARAVEL, P. GAUFILLET, F. LANG, F.
VERNADAT. FIACRE: an Intermediate Language for Model Verification in the TOPCASED Environment, in
"Proceedings of the 4th European Congress on Embedded Real-Time Software ERTS’08 (Toulouse, France)",
J.-C. LAPRIE (editor), SIA (the French Society of Automobile Engineers), AAAF (the French Society of
Aeronautic and Aerospace), and SEE (the French Society for Electricity, Electronics, and Information &
Communication Technologies), January 2008, http://hal.inria.fr/inria-00262442.

[23] G. CHEHAIBAR, M. ZIDOUNI, R. MATEESCU. Modeling Multiprocessor Cache Protocol Impact on MPI
Performance, in "Proceedings of the 2009 IEEE International Workshop on Quantitative Evaluation of Large-
Scale Systems and Technologies QuEST’09 (Bradford, UK)", to appear, IEEE Computer Society, May 2009.

[24] N. COSTE, H. GARAVEL, H. HERMANNS, R. HERSEMEULE, Y. THONNART, M. ZIDOUNI. Quantitative
Evaluation in Embedded System Design: Validation of Multiprocessor Multithreaded Architectures, in "Special
Session at Design, Automation & Test in Europe DATE’08 (Munich, Germany)", March 2008, http://hal.inria.
fr/inria-00199914.

[25] H. GARAVEL. Reflections on the Future of Concurrency Theory in General and Process Calculi in Particular,
in "Proceedings of the LIX Colloquium on Emerging Trends in Concurrency Theory (Ecole Polytechnique
de Paris, France), November 13-15, 2006", C. PALAMIDESSI, F. D. VALENCIA (editors), Electronic Notes in
Theoretical Computer Science, Also available as INRIA Research Report RR-6368, vol. 209, Elsevier Science
Publishers, April 2008, p. 149–164, http://hal.inria.fr/inria-00191141.

[26] C. HELMSTETTER, O. PONSINI. A Comparison of Two SystemC/TLM Semantics for Formal Verification, in
"Proceedings of the 6th ACM-IEEE International Conference on Formal Methods and Models for Codesign
MEMOCODE’2008 (Anaheim, CA, USA)", IEEE Computer Society Press, June 2008, p. 59–68, http://hal.
inria.fr/inria-00275456.

[27] R. MATEESCU, P. T. MONTEIRO, E. DUMAS, H. DE JONG. Computation Tree Regular Logic for Genetic
Regulatory Networks, in "Proceedings of the 6th International Symposium on Automated Technology for
Verification and Analysis ATVA’08 (Seoul, South Korea)", S. D. CHA, J.-Y. CHOI, M. KIM, I. LEE, M.
VISWANATHAN (editors), Lecture Notes in Computer Science, Full version available as INRIA Research
Report RR-6521, vol. 5311, Springer Verlag, October 2008, p. 48–63, http://hal.inria.fr/inria-00277995.

[28] R. MATEESCU, E. OUDOT. Bisimulator 2.0: An On-the-Fly Equivalence Checker based on Boolean Equation
Systems, in "Proceedings of the 6th ACM-IEEE International Conference on Formal Methods and Models for
Codesign MEMOCODE’2008 (Anaheim, CA, USA)", IEEE Computer Society Press, June 2008, p. 73–74,
http://hal.inria.fr/inria-00357770.

[29] R. MATEESCU, E. OUDOT. Improved On-the-Fly Equivalence Checking using Boolean Equation Systems,
in "Proceedings of the 15th International SPIN Workshop on Model Checking of Software SPIN’2008 (Los
Angeles, USA)", K. HAVELUND, R. MAJUMDAR, J. PALBERG (editors), Lecture Notes in Computer Science,
Full version available as INRIA Research Report RR-6777, no 5156, Springer Verlag, August 2008, p.
196–213, http://hal.inria.fr/inria-00347627/fr/.

[30] R. MATEESCU, P. POIZAT, G. SALAÜN. Adaptation of Service Protocols using Process Algebra and On-the-
Fly Reduction Techniques, in "Proceedings of the 6th International Conference on Service Oriented Computing
ICSOC’08 (Sydney, Australia)", A. BOUGUETTAYA, I. KRUEGER, T. MARGARIA (editors), Lecture Notes in
Computer Science, vol. 5364, Springer Verlag, December 2008, p. 84–99, http://hal.inria.fr/inria-00341598/fr/.

http://hal.inria.fr/inria-00262442
http://hal.inria.fr/inria-00199914
http://hal.inria.fr/inria-00199914
http://hal.inria.fr/inria-00191141
http://hal.inria.fr/inria-00275456
http://hal.inria.fr/inria-00275456
http://hal.inria.fr/inria-00277995
http://hal.inria.fr/inria-00357770
http://hal.inria.fr/inria-00347627/fr/
http://hal.inria.fr/inria-00341598/fr/


Project-Team VASY 31

[31] R. MATEESCU, S. RAMPACEK. Formal Modeling and Discrete-Time Analysis of BPEL Web Services, in
"Proceedings of the 4th International Workshop on Enterprise and Organizational Modeling and Simulation
EOMAS’08 (Montpellier, France)", J. BARJIS, M. M. NARASIPURAM, P. RITTGEN (editors), Lecture Notes
in Business Information Processing, vol. 10, Springer Verlag, June 2008, p. 179–193, http://hal.inria.fr/inria-
00319100.

[32] R. MATEESCU, D. THIVOLLE. A Model Checking Language for Concurrent Value-Passing Systems, in "Pro-
ceedings of the 15th International Symposium on Formal Methods FM’08 (Turku, Finland)", J. CUELLAR, T.
MAIBAUM, K. SERE (editors), Lecture Notes in Computer Science, no 5014, Springer Verlag, May 2008, p.
148–164, http://hal.inria.fr/inria-00315312/fr/.

[33] R. MATEESCU, A. WIJS. Hierarchical Adaptive State Space Caching based on Level Sampling, in "Pro-
ceedings of the 15th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’09 (York, UK)", S. KOWALEWSKI, A. PHILIPPOU (editors), Lecture Notes in Computer
Science, to appear, Springer Verlag, March 2009.

[34] P. T. MONTEIRO, D. ROPERS, R. MATEESCU, A. T. FREITAS, H. DE JONG. Temporal Logic Patterns for
Querying Dynamic Models of Cellular Interaction Networks, in "Proceedings of the 7th European Conference
on Computational Biology ECCB’08 (Cagliari, Sardinia-Italy)", A. TRAMONTANO (editor), Full version
available as INRIA Research Report RR-6470, September 2008, http://hal.inria.fr/inria-00260980.

[35] P. T. MONTEIRO, D. ROPERS, R. MATEESCU, A. T. FREITAS, H. DE JONG. Temporal Logic Patterns
for Querying Qualitative Models of Genetic Interaction Networks, in "Proceedings of the 18th European
Conference on Artificial Intelligence ECAI’08 (Patras, Greece)", M. GHALLAB (editor), IOS Press, July 2008,
p. 229–233, http://hal.inria.fr/inria-00357802.

[36] O. PONSINI, W. SERWE. A Schedulerless Semantics of TLM Models Written in SystemC via Translation into
LOTOS, in "Proceedings of the 15th International Symposium on Formal Methods FM’08 (Turku, Finland)", J.
CUELLAR, T. MAIBAUM, K. SERE (editors), Lecture Notes in Computer Science, no 5014, Springer Verlag,
May 2008, p. 278–293, http://hal.inria.fr/inria-00259944.

[37] S. SPINA, G. PACE, F. LANG. Automatic Interface Generation for Compositional Verification, in "Proceedings
of the 5th Computer Science Annual Workshop CSAW’2007 (Msida, Malta)", C. BORG, S. SPINA, J. ABELA
(editors), University of Malta, January 2008, p. 234–247, http://hal.inria.fr/inria-00357623.

[38] J. STOECKER, F. LANG, H. GARAVEL. Parallel Processes with Real-Time and Data: The ATLANTIF
Intermediate Format, in "Proceedings of the 7th International Conference on Integrated Formal Methods
IFM’09 (Düsseldorf, Germany)", M. LEUSCHEL, H. WEHRHEIM (editors), Lecture Notes in Computer
Science, to appear, Springer Verlag, February 2009.

Scientific Books (or Scientific Book chapters)

[39] R. MATEESCU. Specification and Analysis of Asynchronous Systems using CADP, in "Modeling and Verifica-
tion of Real-Time Systems — Formalisms and Software Tools", S. MERZ, N. NAVET (editors), chap. 5, ISTE
publishing / John Wiley, 2008, p. 141–170, http://hal.inria.fr/inria-00264235.

Research Reports

[40] B. BERTHOMIEU, J.-P. BODEVEIX, M. FILALI, H. GARAVEL, F. LANG, F. PERES, R. SAAD, J.
STOECKER, F. VERNADAT. The Syntax and Semantics of Fiacre – version 2.0, Project deliverable F3.2.2

http://hal.inria.fr/inria-00319100
http://hal.inria.fr/inria-00319100
http://hal.inria.fr/inria-00315312/fr/
http://hal.inria.fr/inria-00260980
http://hal.inria.fr/inria-00357802
http://hal.inria.fr/inria-00259944
http://hal.inria.fr/inria-00357623
http://hal.inria.fr/inria-00264235


32 Activity Report INRIA 2008

(updated), AESE (pôle de compétitivité mondial Midi-Pyrénées & Aquitaine: Aéronautique, Espace et Sys-
tèmes Embarqués) project Topcased, April 2008.

[41] L. BRIM, H. DE JONG, R. MATEESCU. Definition and Temporal Logic Translation of Query Templates,
Project deliverable D.3.1, FP6-NEST-STREP 043235 project EC-MOAN, March 2008.

[42] R. MATEESCU, H. DE JONG, L. BRIM, J. VAN DE POL. Model Checking Algorithms for the Properties
Encoding the Templates, Project deliverable D.3.2, FP6-NEST-STREP 043235 project EC-MOAN, August
2008.

[43] D. THIVOLLE, H. GARAVEL, X. CLERC. Présentation du langage SAM d’Airbus, Technical report, IN-
RIA/VASY, 16 pages, 2008, https://gforge.enseeiht.fr/docman/view.php/33/2745/SAM.pdf.

[44] H. DE JONG, R. MATEESCU, H. WESTERHOFF, J. GEISELMANN, I. GORYANIN. Properties of E. Coli
Carbon and Nitrogen Metabolism, Project deliverable D.4.1, FP6-NEST-STREP 043235 project EC-MOAN,
August 2008.

Scientific Popularization

[45] H. DE JONG, D. ROPERS, R. MATEESCU, J. GEISELMANN. Bioinformatique : de la cellule à la puce, La
Recherche no. 419, May 2008.

Other Publications

[46] B. BERTHOMIEU, H. GARAVEL, F. LANG, F. VERNADAT. Verifying Dynamic Properties of Industrial
Critical Systems Using TOPCASED/FIACRE, ERCIM News vol. 75, p. 32–33, October 2008.

References in notes

[47] S. AHUMADA, L. APVRILLE, T. BARROS, A. CANSADO, E. MADELAINE, E. SALAGEANU. Specifying
Fractal and GCM Components with UML, in "Proceedings of the XXVI International Conference of the
Chilean Computer Science Society SCCC’2007 (Iquique, Chile)", H. ASTUDILLO, E. TANTER (editors),
IEEE Computer Society Press, November 2007, p. 53–62.

[48] B. K. AICHERNIG, M. WEIGLHOFER, F. WOTAWA. Improving Fault-based Conformance Testing, in
"Proceedings of the 4th International Workshop on Model-Based Testing MBT’2008 (Budapest, Hungary)", B.
FINKBEINER, Y. GUREVICH, A. K. PETRENKO (editors), Electronic Notes in Theoretical Computer Science,
vol. 220, Elsevier, March 2008, p. 63–77.

[49] M. ALPUENTE, MARCO A. FELIÚ, C. JOUBERT, A. VILLANUEVA. Using Datalog and Boolean Equation
Systems for Program Analysis, in "Proceedings of the 13th International Workshop on Formal Methods for
Industrial Critical Systems FMICS’2008 (L’Aquila, Italy)", D. COFER, A. FANTECHI (editors), Lecture Notes
in Computer Science, Springer Verlag, September 2008.

[50] P. ANDRÉ, G. ARDOUREL, C. ATTIOGBÉ. Composing Components with Shared Services in the Kmelia
Model, in "Proceedings of the 7th International Symposium on Software Composition SC’2008 (Budapest,
Hungary)", C. PAUTASSO, E. TANTER (editors), Lecture Notes in Computer Science, vol. 4954, Springer
Verlag, March 2008, p. 125–140.

https://gforge.enseeiht.fr/docman/view.php/33/2745/SAM.pdf


Project-Team VASY 33

[51] R. BAKHSHI, W. FOKKINK, J. PANG, J. VAN DE POL. Leader Election in Anonymous Rings: Franklin Goes
Probabilistic, in "Proceedings of the 5th IFIP International Conference on Theoretical Computer Science
TCS’2008 (Milano, Italy)", G. AUSIELLO, J. KARHUMÄKI, G. MAURI, C.-H. L. ONG (editors), IFIP, vol.
273, Springer Verlag, September 2008, p. 57–72.

[52] E. BEIGNÉ, F. CLERMIDY, P. VIVET, A. CLOUARD, M. RENAUDIN. An Asynchronous NoC Architecture
Providing Low Latency Service and its Multi-Level Design Framework, in "Proceedings of the 11th IEEE
International Symposium on Asynchronous Circuits and Systems ASYNC’05 (New York, USA)", IEEE
Computer Society Press, March 2005, p. 54–63.

[53] B. BERTHOMIEU, P. RIBET, F. VERNADAT, J. BERNARTT, J.-M. FARINES, J.-P. BODEVEIX, M. FILALI,
G. PADIOU, P. MICHEL, P. FARAIL, P. GAUFILLET, P. DISSAUX, J.-L. LAMBERT. Towards the verification
of real-time systems in avionics: the COTRE approach, in "Proceedings of the 8th International Workshop on
Formal Methods for Industrial Critical Systems FMICS’2003 (Trondheim, Norway)", T. ARTS, W. FOKKINK
(editors), Electronic Notes on Theoretical Computer Science, vol. 80, Elsevier, June 2003, p. 201–216.

[54] H. BOHNENKAMP, H. HERMANNS, J.-P. KATOEN. Motor: The Modest Tool Environment, in "Proceedings
of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’2007 (Braga, Portugal)", O. GRUMBERG, M. HUTH (editors), Lecture Notes in Computer Science,
vol. 4424, Springer Verlag, March 2007, p. 500–504.

[55] M. BOUBEKEUR, P. P. SCHELLEKENS. Automatic Optimization Techniques for Formal Verification of
Asynchronous Circuits, in "Proceedings of the 14th IEEE International Conference on Electronics, Circuits
and Systems ICECS’2007 (Marrakech, Morocco)", D. BOUAMI, E. M. ABOULHAMID, M. ELEULDJ, M.
ZWOLINSKI (editors), IEEE Computer Society Press, December 2007, p. 283–286.

[56] H. BOUDALI, P. CROUZEN, B. R. HAVERKORT, M. KUNTZ, M. STOELINGA. Arcade – A Formal, Ex-
tensible, Model-Based Dependability Evaluation Framework, in "Proceedings of the 13th IEEE International
Conference on Engineering of Complex Computer Systems ICECCS’2008 (Belfast, Northern Ireland)", K.
BREITMAN, J. WOODCOCK, R. STERRITT, M. HINCHEY (editors), IEEE Computer Society Press, March
2008, p. 243–248.

[57] H. BOUDALI, P. CROUZEN, B. R. HAVERKORT, M. KUNTZ, M. STOELINGA. Rich Interfaces for Depend-
ability: Compositional Methods for Dynamic Fault Trees and Arcade models, in "Proceedings of the 2nd
International Workshop on Foundations of Interface Technologies FIT’2008 (Budapest, Hungary)", K. G.
LARSEN, A. WASOWSKI, U. NYMAN (editors), April 2008.

[58] H. BOUDALI, P. CROUZEN, M. STOELINGA. CORAL – A Tool for Compositional Reliability and Availability
Analysis, in "Proceedings of the ARTIST workshop: Tool Platforms for Embedded Systems Modeling,
Analysis and Validation. Satellite event of the 19th International Conference on Computer Aided Verification
CAV’2007 (Berlin, Germany)", July 2008.

[59] C. CANAL, P. POIZAT, G. SALAÜN. Model-Based Adaptation of Behavioral Mismatching Components, in
"IEEE Transactions on Software Engineering", vol. 34, no 4, August 2008, p. 546–563.

[60] A. CANSADO, D. CAROMEL, L. HENRIO, E. MADELAINE, M. RIVERA, E. SALAGEANU. A Specification
Language for Distributed Components Implemented in GCM/ProActive, in "The Common Component Model-
ing Example: Comparing Software Component Models CoCoME’2007 (Dagstuhl, Germany)", A. RAUSCH,



34 Activity Report INRIA 2008

R. REUSSNER, R. MIRANDOLA, F. PLASIL (editors), Lecture Notes in Computer Science, vol. 5153, Springer
Verlag, August 2008, p. 418–448.

[61] A. CANSADO, L. HENRIO, E. MADELAINE. Transparent First-Class Futures and Distributed Components,
in "Proceedings of the 5th International Workshop on Formal Aspects of Component Software FACS’2008
(Málaga, Spain)", C. CANAL, C. PASAREANU (editors), Electronic Notes in Theoretical Computer Science,
Elsevier, September 2008.

[62] V. CHENNAREDDY, J. K. DEKA. Formally Verifying the Distributed Shared Memory Weak Consistency
Models, in "Proceedings of the 14th International Conference on Advanced Computing and Communications
ADCOM’2006 (Mangalore, India)", G. S. KUMAR, K. C. SEKARAN, K. R. VENUGOPAL, L. M. PATNAIK,
K. S. TRIVEDI (editors), IEEE Computer Society Press, December 2006, p. 455–460.

[63] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA. Automatic Verification of Finite-State Concurrent Systems
using Temporal Logic Specifications, in "ACM Transactions on Programming Languages and Systems", vol.
8, no 2, April 1986, p. 244–263.

[64] J. CUBO, G. SALAÜN, C. CANAL, E. PIMENTEL, P. POIZAT. Relating Model-Based Adaptation and Imple-
mentation Platforms: A Case Study with WF/.NET 3.0, in "Proceedings of the 12th International Workshop
on Component-Oriented Programming WCOP’2007 (Berlin, Germany)", R. REUSSNER, C. SZYPERSKI, W.
WECK (editors), July 2007, p. 9–13.

[65] J. CUBO, G. SALAÜN, C. CANAL, E. PIMENTEL, P. POIZAT. A Model-Based Approach to the Verification
and Adaptation of WF/.NET Components, in "Proceedings of the 4th International Workshop on Formal
Aspects of Component Software FACS’2007 (Sophia-Antipolis)", M. LUMPE, E. MADELAINE (editors),
Electronic Notes in Theoretical Computer Science, vol. 215, Elsevier, June 2008, p. 39–55.

[66] M. T. DASHTI, S. K. NAIR, H. JONKER. Nuovo DRM Paradiso: Designing a Secure, Verified, Fair Exchange
DRM Scheme, in "Fundamenta Informaticae", vol. 89, no 4, 2008, p. 393–417.

[67] R. DE NICOLA, F. W. VAANDRAGER. Action versus State Based Logics for Transition Systems, Lecture Notes
in Computer Science, vol. 469, Springer Verlag, 1990, p. 407–419.

[68] A. DENISE, M.-C. GAUDEL, S.-D. GOURAUD, R. LASSAIGNE, J. OUDINET, S. PEYRONNET. Coverage-
Biased Random Exploration of Large Models and Application to Testing, Rapport de Recherche, no 1494,
CNRS-Université Paris Sud / LRI, June 2008.

[69] A. DESMOULIN, C. VIHO. Automatic Interoperability Test Case Generation based on Formal Definitions,
in "12th International Workshop on Formal Methods for Industrial Critical Systems FMICS’2007 (Berlin,
Germany)", S. LEUE, P. MERINO (editors), Lecture Notes in Computer Science, vol. 4916, Springer Verlag,
July 2007, p. 234–250.

[70] B. FONTAN, S. MOTA, P. DE SAQUI-SANNES, T. VILLEMUR. Temporal Verification in Secure Group Com-
munication System Design, in "Proceedings of the International Conference on Emerging Security Infor-
mation, Systems and Technologies SECURWARE’2007 (Valencia, Spain)", J. MULHOLLAND, O. NIETO-
TALADRIZ (editors), IEEE Computer Society Press, October 2007, p. 175–180.

[71] S. GRAF, B. STEFFEN, G. LÜTTGEN. Compositional Minimization of Finite State Systems using Interface
Specifications, in "Formal Aspects of Computation", vol. 8, no 5, September 1996, p. 607–616.



Project-Team VASY 35

[72] Q. GUO, J. DERRICK, C. HOCH. Verifying Erlang Telecommunication Systems with the Process Alge-
bra µCRL, in "Proceedings of the 28th IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems FORTE’2008 (Tokyo, Japan)", K. SUZUKI, T. HIGASHINO, K. YA-
SUMOTO, K. EL-FAKIH (editors), Lecture Notes in Computer Science, vol. 5048, Springer Verlag, June 2008,
p. 201–217.

[73] M. HENNESSY, R. MILNER. Algebraic Laws for Nondeterminism and Concurrency, in "Journal of the ACM",
vol. 32, 1985, p. 137–161.

[74] H. HERMANNS. Interactive Markov Chains and the Quest for Quantified Quality, LNCS, vol. 2428, Springer
Verlag, 2002.

[75] H. HOJJAT, M. MOUSAVI, M. SIRJANI. A Framework for Performance Evaluation and Functional Verifi-
cation in Stochastic Process Algebras, in "Proceedings of the 23rd Annual ACM Symposium on Applied
Computing SAC’08 (Fortaleza, Ceará, Brazil)", R. L. WAINWRIGHT, H. HADDAD (editors), ACM Computer
Society Press, March 2008, p. 339–346.

[76] IEEE. IEEE Standard SystemC Language Reference Manual, IEEE Standard, no 1666-2005, Institution of
Electrical and Electronic Engineers, December 2005.

[77] ISO/PAS. Industry Foundation Classes (IFC2x) Platform Specification, International Standard, no

16739:2005, International Organization for Standardization — Automation Systems and Integration, 2005.

[78] D. JORDAN, J. EVDEMON. Web Services Business Process Execution Language Version 2.0, OASIS Standard,
OASIS, Billerica, Massachussets, April 2007.

[79] C. JOUBERT, R. MATEESCU. Distributed On-the-Fly Model Checking and Test Case Generation, in "Proceed-
ings of the 13th International SPIN Workshop on Model Checking of Software SPIN’2006 (Vienna, Austria)",
A. VALMARI (editor), Lecture Notes in Computer Science, vol. 3925, Springer Verlag, March–April 2006, p.
126–145.

[80] G. KLYNE, J. J. CARROLL. Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C
Recommendation, W3C, February 2004.

[81] J.-P. KRIMM, L. MOUNIER. Compositional State Space Generation from LOTOS Programs, in "Proceedings
of TACAS’97 Tools and Algorithms for the Construction and Analysis of Systems (University of Twente,
Enschede, The Netherlands), Berlin", E. BRINKSMA (editor), Lecture Notes in Computer Science, Extended
version with proofs available as Research Report VERIMAG RR97-01, vol. 1217, Springer Verlag, April
1997.

[82] K. G. LARSEN. Proof Systems for Hennessy-Milner Logic with Recursion, in "Proceedings of the 13th
Colloquium on Trees in Algebra and Programming CAAP’88 (Nancy, France), Berlin", M. DAUCHET, M.
NIVAT (editors), Lecture Notes in Computer Science, vol. 299, Springer Verlag, March 1988, p. 215–230.

[83] J. MAGEE, J. KRAMER. Concurrency: State Models and Java Programs, 2006, Wiley, April 2006.

[84] T. MARGARIA, B. STEFFEN. LTL Guided Planning: Revisiting Automatic Tool Composition in ETI, in
"Proceedings of the 31st IEEE/NASA Software Engineering Workshop SEW’2007 (Columbia, USA)", IEEE
Computer Society Press, March 2007, p. 214–226.



36 Activity Report INRIA 2008

[85] H. MILI, G. TREMBLAY, A. OBAID, R. B. TAMROUT, E. CAILLOT. Adding Semantics to Web Service
Descriptions, Rapport Technique, Université du Québec à Montréal / LATECE, February 2005.

[86] H. MUCCINI. Using Model Differencing for Architecture-Level Regression Testing, in "Proceedings of the
33rd EUROMICRO Conference on Software Engineering and Advanced Applications SEAA’2007 (Lübeck,
Germany)", August 2007, p. 59–66.

[87] J. OUDINET. Uniform Random Walks in Very Large Models, in "Proceedings of the 2nd International Workshop
on Random Testing RT’2007 (Atlanta, Georgia, USA)", M.-C. GAUDEL, J. MAYER, R. MERKEL (editors),
ACM Computer Society Press, November 2007, p. 26–29.

[88] C. PECHEUR. Advanced Modelling and Verification Techniques Applied to a Cluster File System, Research
Report, no RR-3416, INRIA, Grenoble, May 1998, http://hal.inria.fr/inria-00073273.

[89] P. PELLICCIONE, M. TIVOLI, A. BUCCHIARONE, A. POLINI. An Architectural Approach to the Correct and
Automatic Assembly of Evolving Component-Based Systems, in "Journal of Systems and Software", vol. 81,
no 12, December 2008, p. 2237–2251.

[90] J. C. PERALTA. From Signal Kernel to Fiacre, Technical report, INRIA/ESPRESSO, 15 pages, 2008.

[91] M. RENAUDIN. TAST Compiler and TAST-CHP Language – Version 0.6, TIMA Laboratory, CIS Group, 2005.

[92] N. S. ROSA, P. R. F. CUNHA. A Formal Framework for Middleware Behavioural Specification, in "ACM
SIGSOFT Software Engineering Notes", vol. 32, no 2, 2007, p. 1–7.

[93] N. S. ROSA. Behavioral Specification of Middleware Systems, in "Process Algebra for Parallel and Distributed
Processing", M. ALEXANDER, W. GARDNER (editors), chap. 6, Chapman and Hall, 2008, p. 161–198.

[94] G. SALAÜN, J. KRAMER, F. LANG, J. MAGEE. Translating FSP into LOTOS and Networks of Automata, in
"Proceedings of the 6th International Conference on Integrated Formal Methods IFM’2007 (Oxford, United
Kingdom)", J. DAVIES, W. SCHULTE, J. S. DONG (editors), Lecture Notes in Computer Science, vol. 4591,
Springer Verlag, July 2007, p. 558–578.

[95] G. SALAÜN, W. SERWE, Y. THONNART, P. VIVET. Formal Verification of CHP Specifications with CADP
— Illustration on an Asynchronous Network-on-Chip, in "Proceedings of the 13th IEEE International Sym-
posium on Asynchronous Circuits and Systems ASYNC 2007 (Berkeley, California, USA)", P. BEEREL, M.
RONCKEN, M. GREENSTREET, M. SINGH (editors), IEEE Computer Society Press, March 2007, p. 73–82.

[96] G. SALAÜN. Generation of Service Wrapper Protocols from Choreography Specifications, in "Proceedings
of the 6th IEEE International Conference on Software Engineering and Formal Methods SEFM’2008 (Cape
Town, South Africa)", A. CERONE, S. GRUNER (editors), IEEE Computer Society Press, November 2008, p.
313–322.

[97] S. SPINA, G. PACE. Automatic Interface Generation for Enumerative Model Checking, in "Proceedings
of the 4th Computer Science Annual Workshop CSAW’2006 (Msida, Malta)", J. ABELA, A. DALLI, K.
GUILLAUMIER (editors), University of Malta, December 2006, p. 116–122.

http://hal.inria.fr/inria-00073273


Project-Team VASY 37

[98] R. STREETT. Propositional Dynamic Logic of Looping and Converse, in "Information and Control", no 54,
1982, p. 121–141.

[99] L. SU, H. BOWMAN, P. BARNARD. Performance of Reactive Interfaces in Stimulus Rich Environments,
Applying Formal Methods and Cognitive Frameworks, in "Proceedings of the 2nd International Workshop on
Formal Methods for Interactive Systems FMIS’2007 (Lancaster, UK)", A. CERONE, P. CURZON (editors),
Electronic Notes in Theoretical Computer Science, vol. 208, Elsevier, April 2008, p. 95–111.

[100] K. L. L. TAN, K. J. TURNER. Automated Analysis and Implementation of Composed Grid Services, in
"Proceedings of the 3rd South-East European Workshop on Formal Methods (Thessaloniki, Greece)", D.
DRANIDIS, I. SAKELLARIOU (editors), November 2007, p. 51–64.

[101] M. TIVOLI, P. FRADET, A. GIRAULT, G. GÖSSLER. Adaptor Synthesis for Real-Time Components, in
"Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’2007 (Braga, Portugal)", O. GRUMBERG, M. HUTH (editors), Lecture Notes in Computer
Science, vol. 4424, Springer Verlag, April 2007, p. 185–200.

[102] C. TRAULSEN, J. CORNET, M. MOY, F. MARANINCHI. A SystemC/TLM semantics in Promela and its
possible applications, in "14th International SPIN Workshop on Model Checking Software", Lecture Notes in
Computer Science, vol. 4595, Springer Verlag, July 2007, p. 204–222.

[103] G. TREMBLAY, J. CHAE. Toward Specifying Contracts and Protocols for Web Services, in "Proceedings of
the 1st Montréal Conference on e-Technologies MCeTech’2005 (Montréal, Canada)", R. DSSOULI, H. MILI
(editors), IEEE Computer Society Press, January 2005, p. 73–85.

[104] K. J. TURNER. Abstraction and Analysis of Clinical Guidance Trees, in "Journal of Biomedical Informatics",
2008.

[105] M. DEL MAR GALLARDO, P. MERINO, D. SANÁN. Extending CADP for Analyzing C Code, in "Proceedings
of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise
Information Systems MSVVEIS’2007 (Funchal, Madeira, Portugal)", J. C. AUGUSTO, J. BARJIS, U. ULTES-
NITSCHE (editors), INSTICC Press, June 2007, p. 104–113.


