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Willow is a common project with l’Ecole Normale Supérieure de Paris. The team has been created on January
the 1st, 2007 and became an INRIA project on June the 27th, 2007.
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Hui Kong

Visiting Scientist
Alexei Efros [ Assistant Professor in the Robotics Institute and Computer Science Department of the Carnegie
Mellon University ]

Administrative Assistant
Nathalie Abiola

2. Overall Objectives

2.1. Overall Objectives
Object recognition —or, in a broader sense, scene understanding— is the ultimate scientific challenge of
computer vision: After 40 years of research, robustly identifying the familiar objects (chair, person, pet), scene
categories (beach, forest, office), and activity patterns (conversation, dance, picnic) depicted in family pictures,
news segments, or feature films is still far beyond the capabilities of today’s vision systems. On the other hand,
truly successful object recognition and scene understanding technology will have a broad impact in application
domains as varied as defense, entertainment, health care, human-computer interaction, image retrieval and data
mining, industrial and personal robotics, manufacturing, scientific image analysis, surveillance and security,
and transportation.
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Despite the limitations of today’s scene understanding technology, tremendous progress has been accom-
plished in the past ten years, due in part to the formulation of object recognition as a statistical pattern match-
ing problem. The emphasis is in general on the features defining the patterns and on the algorithms used to
learn and recognize them, rather than on the representation of object, scene, and activity categories, or the in-
tegrated interpretation of the various scene elements. WILLOW complements this approach with an ambitious
research program explicitly addressing the representational issues involved in object recognition and, more
generally, scene understanding.

Concretely, our objective is to develop geometric, physical, and statistical models for all components of the
image interpretation process, including illumination, materials, objects, scenes, and human activities. These
models will be used to tackle fundamental scientific challenges such as three-dimensional (3D) object and
scene modeling, analysis, and retrieval; human activity capture and classification; and category-level object
and scene recognition. They will also support applications with high scientific, societal, and/or economic
impact in domains such as quantitative image analysis in science and humanities; film post-production and
special effects; and video annotation, interpretation, and retrieval. Machine learning is a key part of our effort,
with a balance of practical work in support of computer vision application, methodological research aimed at
developing effective algorithms and architectures, and foundational work in learning theory.

WILLOW was created in 2007: It was recognized as an INRIA team in January 2007, and as an official project-
team in June 2007. WILLOW is a joint research team between INRIA Paris Rocquencourt, Ecole Normale
Supérieure (ENS) and Centre National de la Recherche Scientifique (CNRS). This year we have hired two
new researchers: Josef Sivic (“chargé de recherche”, INRIA) has joined WILLOW in March 2008 and Sylvain
Arlot (“chargé de recherche”, CNRS) has joined WILLOW in September 2008. In addition, we have hired
two post-docs: Jan van Gemert (DGA) and Hui Kong (DGA), and five new PhD students: Olivier Duchenne
(ENS), Loic Fevrier (ENS), Rodolphe Jenatton (INRIA), Marc Sturzel (EADS) and Oliver Whyte (INRIA).
Three students of Jean Ponce at UIUC have graduated: Y. Furukawa (2008, now a post-doc a the University
of Washington), A. Kushal (2008, now with Two Sigma Investments), K. McHenry (2008, just graduated).
Alexei Efros (Professor, Carnegie Mellon University, USA) visited WILLOW together with two students for
5 months in Spring 2008.

3. Scientific Foundations
3.1. 3D object and scene modeling, analysis, and retrieval

This part of our research focuses on geometric models of specific 3D objects at the local (differential) and
global levels, physical and statistical models of materials and illumination patterns, and modeling and retrieval
of objects and scenes in large image collections. Our past work in these areas includes research aimed at
recognizing rigid 3D objects in cluttered photographs taken from arbitrary viewpoints (Rothganger et al.,
2006), segmenting video sequences into parts corresponding to rigid scene components before recognizing
these in new video clips (Rothganger et al., 2007), and retrieval of particular objects and buildings from
images and videos (Sivic and Zisserman, 2003) and (Philbin et al., 2007). Our current research focuses on
acquisition of detailed object models from multiple images and video streams, theoretical analysis of camera
models, and object/scene retrieval.

3.1.1. High-fidelity image-based object and scene modeling.
We have recently developed several algorithms for multi-view stereopsis (Furukawa and Ponce, 2007)
that have proven remarkably effective at recovering intricate details and thin features of compact objects
and capturing the overall structure of large-scale, cluttered scenes. Some of the corresponding software
(PMVS,http://www-cvr.ai.uiuc.edu/~yfurukaw/research/pmvs/index.html) is available for free for academics,
and licensing negotiations with several companies are under way. We have also recently developed a new
calibration algorithm that uses rough multi-view reconstructions to obtain extremely accurate intrinsic and
extrinsic camera parameters. Finally, our research has also focused on theoretical analysis of camera models
using the formalism and terminology of classical projective geometry.

http://www-cvr.ai.uiuc.edu/~yfurukaw/research/pmvs/index.html
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3.1.2. Video-based modeling of deformable surfaces.
As discussed in Section 6.2, we have also generalized our work on multi-view stereopsis to the dynamic
analysis of video streams that depict objects with deformable surfaces, for example walking persons, human
faces, and folding cloth. These approaches exploit the spatio-temporal consistency of image sequences and
locally rigid but globally nonrigid models of surface motion to accurately capture the deforming shape of the
observed surfaces.

3.1.3. Retrieval and modeling of objects and scenes in large image collections
We have recently developed large-scale object retrieval algorithms, which employ soft-assignment of local
image descriptors to multiple quantized codewords, thus mitigating some of the quantization effects observed
in previous methods and improving on their retrieval performance. We have also introduced a Geometric
Latent Dirichlet Allocation (gLDA) model for unsupervised modeling of unordered image collections and
investigated scene category recognition techniques for navigating and exploring large collections of still
images.

3.2. Category-level object and scene recognition
The objective in this core part of our research is to learn and recognize quickly and accurately thousands of
visual categories, including materials, objects, scenes, and broad classes of temporal events, such as patterns of
human activities in picnics, conversations, etc. The current paradigm in the vision community is to model/learn
one object category (read 2D aspect) at a time. If we are to achieve our goal, we have to break away from this
paradigm, and develop models that account for the tremendous variability in object and scene appearance due
to texture, material, viewpoint, and illumination changes within each object category, as well as the complex
and evolving relationships between scene elements during the course of normal human activities.

3.2.1. Learning image and object models.
We have continued our research on learning sparse image representations (e.g. Mairal et al., 2007) by
generalizing the previously developed model to discriminative image understanding tasks such as texture
segmentation, category-level edge selection and image classification. We have also investigated optimization
methods for learning the sparse image representations.

Another significant strand of our research has focused on the extremely challenging task of category-level
object/scene matching and alignment. We have developed methods based on (i) graph matching and (ii)
discrete optimization of displacement fields. The former method is able to match complex silhouettes of
different instances of the same object category, whereas the latter approach can robustly align complicated
scenes with large spatial distortions.

Finally, we have developed a new model of object categories that explicitly captures image variations due to
shape and viewpoint changes within a category, and demonstrated its ability to detect objects such as cars in
images despite such changes.

3.3. Human activity capture and classification
From a scientific point of view, visual action understanding is a computer vision problem that has received little
attention so far outside of extremely specific contexts such as surveillance or sports. Current approaches to the
visual interpretation of human activities are designed for a limited range of operating conditions, such as static
cameras, fixed scenes, or restricted actions. The objective of this part of our project is to attack the much more
challenging problem of understanding actions and interactions in unconstrained video depicting everyday
human activities such as in sitcoms, feature films, or news segments. The recent emergence of automated
annotation tools for this type of video data (Everingham, Sivic, Zisserman, 2006; Laptev and Pérez, 2006)
means that massive amounts of labelled data for training and recognizing action models will at long last be
available.
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3.3.1. Naming and recognition of characters in TV video
We have recently extended our previous work on automatic naming of characters in videos (Everingham,
Sivic, Zisserman, 2006), which considered only frontal faces, by introducing detection, tracking and recog-
nition of characters in profile views, thereby significantly increasing the proportion of video labelled. We
have also demonstrated improved recognition performance by learning character-specific classifiers able to
automatically learn features discriminating between the different characters present in the video.

3.4. Machine learning
3.4.1. Machine learning for computer vision.

A large portion of research in computer vision involves increasingly more refined machine learning techniques.
Significant success has been obtained by the direct use of off-the-shelf techniques, such as kernel methods
(support vector machines for example) and probabilistic graphical models. However, in order to achieve the
level of performance that we aim for, a more careful integration of machine learning and computer vision
algorithmic and theoretical frameworks is needed. A major part of our machine learning effort is dedicated
to this integration, through: (a) applying the transductive learning framework to exploit the simultaneous
availability of training and test data in semi-interactive segmentation and image retrieval tasks, (b) using
specific kernel designs for images, allowing the natural topological and geometrical structure of images to
be taken into account, thus allowing a considerable reduction in the number of labelled examples (Harchaoui
and Bach, 2007), and (c) developing efficient approximate inference algorithms for graphical models with
geometric constraints, allowing a more faithful probabilistic model for scene analysis.

3.4.2. Effective learning algorithms and architectures.
Probabilistic graphical models provide a very flexible and powerful framework for capturing statistical
dependencies in complex, multivariate data. The main current methodological bottleneck in their application
is the computational complexity of the inference. We are currently investigating the links between the various
state-of-the-art techniques for approximate inferences (variational methods, simulation methods and graph
cuts). Another key part of our algorithmic research is dedicated to semi-supervised and active learning: in
many domains, such as vision or bioinformatics, large databases are available but only with a few labelled
examples. In this setting, semi-supervised learning aims at using the unlabelled examples in order to improve
the prediction performance, while active learning aims at optimizing the selection of examples to label in order
to maximize the final predictive performance. Although many algorithms have been proposed, few of them
have theoretical and practical guarantees regarding their predictive performances, and our research effort will
be dedicated to the design of robust and efficient algorithms for active and semi-supervised learning, following
our earlier work (Bach, 2006). Finally, the computational complexity of very simple computer vision tasks (e.g.
object matching) is such that it is often impossible to use these tasks to extract knowledge from large image
database or video sequences. We intend to address the problem of efficient use of data and computational
resources. In particular, we will develop our research on the exploration-exploitation dilemma (see Audibert,
Munos and Szepesvari, 2007) and focus on hierarchical structures.

3.4.3. Learning theory.
We aim at providing a better understanding of the fundamental ideas underlying efficient learning algorithms.
To understand well popular methods is often a key step in order to refine and generalize these methods,
and also to design new learning algorithms. Apart from the computational complexity mentioned before, the
common features encountered when using learning techniques in computer vision are (i) high dimensionality
and (ii) complexity of the modelization. To avoid the curse of dimensionality, we intend to search for
sparse representations of the prediction function. Sparsity inducing norms are raising increased interest in
the statistics and learning theory communities; regularizing learning problems using such norms leads to both
sparse predictors and good generalization performances. Recent research has thoroughly looked at the behavior
of regularization by the 1-norm (sum of absolute values), and there is currently a strong effort in extending
those results to other more complex settings (e.g., Bach, 2007). To get round the modelization problem, a
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standard way is to consider embedded models of increasing complexity. We intend to develop adaptive learning
procedures predicting as well as the best model in the nested family.

4. Application Domains

4.1. Introduction
We believe that foundational modeling work should be grounded in applications. This includes (but is not
restricted to) the following high-impact domains.

4.2. Quantitative image analysis in science and humanities
We plan to apply our 3D object and scene modeling and analysis technology to image-based modeling
of human skeletons and artifacts in anthropology, and large-scale site indexing, modeling, and retrieval in
archaeology and cultural heritage preservation. Most existing work in this domain concentrates on image-
based rendering—that is, the synthesis of good-looking pictures of artifacts and digs. We plan to focus instead
on quantitative applications. A first effort in this area has been a collaboration with the Getty Conservation
Institute in Los Angeles, aimed at the quantitative analysis of environmental effects on the hieroglyphic
stairway at the Copan Maya site in Honduras. We are now pursuing a larger-scale project involving the
archaeology laboratory at ENS and focusing on image-based artifact modeling and decorative pattern retrieval
in Pompeii. This new effort is part of the MSR-INRIA project mentioned earlier and that will be discussed
further later in this report.

4.3. Film Post-Production and Special Effects
We will apply our 3D object and scene modeling and analysis technology, as well as our human activity
capture and classification work to problems such as digital prop and actor capture and tracking, inpainting,
and illumination and shadowing. A particularly challenging problem with tremendous applications in film
post-production is image-based facial motion capture. This task is made difficult by the (relative) lack of
texture and the subtle motions of human faces. We are pursuing these and other applications to post-production
and special effects through existing collaborations with Industrial Light and Magic (ILM), the special effects
company behind Star Wars and dozens of other Hollywood films.

4.4. Video Annotation, Interpretation, and Retrieval
Both specific and category-level object and scene recognition can be used to annotate, augment, index,
and retrieve video segments in the audiovisual domain. The Video Google system developed by Sivic and
Zisserman (2005) for retrieving shots containing specific objects is an early success in that area. A sample
application, suggested by discussions with Institut National de l’Audiovisuel (INA) staff, is to match set
photographs with actual shots in film and video archives, despite the fact that detailed timetables and/or
annotations are typically not available for either medium. Automatically annotating the shots is of course
also relevant for archives that may record hundreds of thousands of hours of video. Some of these applications
will be pursued in our MSR-INRIA project, in which INA is one of our partners.

5. Software

5.1. PMVS
Our multi-view stereopsis PMVS software (http://www-cvr.ai.uiuc.edu/~yfurukaw/research/pmvs/index.html)
developed in collaboration with Y. Furukawa at the University of Illinois at Urbana-Champaign (Furukawa and
Ponce, 2007) is publicly available for academics, and licensing negociations with several companies are under
way.

http://www-cvr.ai.uiuc.edu/~yfurukaw/research/pmvs/index.html
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5.2. Structure-from-motion and auto-calibration software
This software was developed by an MVA intern, J. Courchay to complement PMVS and allow the acquisition
of accurate object models without the use of cumbersome calibration charts. As this software matures, we
intend to make it available to the computer vision community at large.

5.3. Accurate calibration software
Bundled with the two software packages aboves, this programe, developed once again in collaboration with
Y. Furukawa at UIUC, forms a complete package for high-accuracy camera calibration and object and scene
modeling. Again, we plan to eventually make this software freely available to academics.

5.4. Visual erosion assessment software
This software was developed by another MVA intern, Mariano Tepper. It is aimed at the quantitative analysis
of environmental effects on the hieroglyphic stairway at the Copan Maya site in Honduras.

5.5. Resampling Penalization for histogram selection in regression software
Resampling Penalization is a family of model selection procedure by penalization that can use any exchange-
able weighted bootstrap resampling scheme to compute a penalty. It is properly defined in the general frame-
work and extensively studied for histogram selection in regression in [43]. This software is a Matlab package
allowing to perform Resampling Penalization for several examples of weights in the histogram selection case.
The Resampling Penalization package is provided free for non-commercial use under the terms of the GNU
General Public License. It is publicly available at the url http://www.di.ens.fr/~arlot/code/RP.htm.

6. New Results

6.1. High-fidelity image- and video-based modeling
6.1.1. What is a camera? (J.Ponce)

We address in [35] the problem of characterizing a general class of cameras under reasonable, “linear”
assumptions (Figure 1). Concretely, we use the formalism and terminology of classical projective geometry to
model cameras by two-parameter linear families of straight lines—that is reguli (rank-3 families) and linear
congruences (rank-4 families). This model captures both the general linear cameras of Yu and McMillan
and the linear oblique cameras of Pajdla. From a geometric perspective, it affords a simple classification
of all possible camera configurations. From an analytical viewpoint, it also provides a simple and unified
methodology for deriving general formulas for projection and inverse projection, triangulation, and binocular
and trinocular geometry.

6.1.2. Accurate camera calibration from multi-view stereo and bundle adjustment (J. Ponce,
joint work with Y. Furukawa, UIUC).
The advent of high-resolution digital cameras and sophisticated multi-view stereo algorithms such as those
discussed above offers the promises of unprecedented geometric fidelity in image-based modeling tasks, but it
also puts unprecedented demands on camera calibration to fulfill these promises. We have proposes in [23] a
novel approach to camera calibration where top-down information from rough camera parameter estimates and
the output of our PMVS multi-view-stereo system on scaled-down input images are used to effectively guide
the search for additional image correspondences and significantly improve camera calibration parameters using
the bundle adjustment algorithm of Lourakis and Argyros. The proposed method has been tested on several
real datasets—including objects without salient features for which image correspondences cannot be found
in a purely bottom-up fashion, and image-based modeling tasks—including the construction of visual hulls
where thin structures are lost without our calibration procedure.

http://www.di.ens.fr/~arlot/code/RP.htm
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Figure 1. A pinhole camera (left) can be thought of as a device that associates with any point x the ray ξ that joins
it to its image and passes through the pinhole c. This ray is picked from the bundle of lines passing through c. More

generally, a (non-central) camera (right) can be modeled as a device that picks a line from a linear “bag of
lines”—that is, a regulus of a linear congruence.

6.2. Video-based modeling of deformable surfaces
6.2.1. Dense 3D motion capture for human faces (J. Ponce, joint work with Y. Furukawa

(Univeristy of Washington)
We propose in [25] a novel approach to motion capture from multiple, synchronized video streams, specifically
aimed at recording dense and accurate models of the structure and motion of highly deformable surfaces such
as skin, that stretches, shrinks, and shears in the of midst of normal facial expressions. Solving this problem
is a key step toward effective performance capture for the entertainment industry, but progress so far has been
hampered by the lack of appropriate local motion and smoothness models. The main technical contribution
of this paper is a novel approach to regularization adapted to nonrigid tangential deformations. Concretely,
we first estimate undergoing nonrigid tangential surface deformation at each vertex of a surface mesh, then
aggregate the estimated deformation parameters over the surface for robustness. The estimated deformation
parameters are then used in regularizing the (tangential) motion information. To demonstrate the power of
the proposed approach, we have integrated it into the state-of-the-art approach to markerless motion capture
developed by Furukawa and Ponce [24], and compared the performances of the original and new algorithms
on three extremely challenging face datasets that include highly nonrigid skin deformations, wrinkles, and
quickly changing expressions. We have also tested the proposed approach on a dataset featuring fast-moving
cloth without stretch, shrink or shear, but very complicated and evolving fold structures, and demonstrate the
robustness of our new regularization scheme.

6.3. Retrieval and modeling of objects and scenes in large image collections
6.3.1. Improving Particular Object Retrieval in Large Scale Image Databases (J. Sivic and A.

Zisserman, joint work with J. Philbin (Oxford), O. Chum (CTU Prague), M. Isard
(Microsoft))
The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by
text retrieval. A key component of these approaches is that local regions of images are characterized using
high-dimensional descriptors which are then mapped to visual words selected from a discrete vocabulary. This
work [33] explores techniques to map each visual region to a weighted set of words, allowing the inclusion of
features which were lost in the quantization stage of previous systems. The set of visual words is obtained
by selecting words based on proximity in descriptor space. We describe how this representation may be
incorporated into a standard tf-idf architecture, and how spatial verification is modified in the case of this
soft-assignment. We evaluate our method on the standard Oxford Buildings dataset, and introduce a new
dataset for evaluation. Our results exceed the current state of the art retrieval performance on these datasets,
particularly on queries with poor initial recall where techniques like query expansion suffer. Overall we show
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Figure 2. Facial motion capture [25], featuring shaded renderings of reconstructions obtained from two different
frames, the corresponding dense motion fields, and one texture-mapped rendering (the actress’s face was covered

with make-up to provide additional texture). See http://www.cs.washington.edu/homes/furukawa/gallery/ for
videos. Data courtesy of Image Movers Digital.

that soft-assignment is always beneficial for retrieval with large vocabularies, at a cost of increased storage
requirements for the index.

6.3.2. Geometric LDA: A Generative Model for Particular Object Discovery (J. Sivic and A.
Zisserman, joint work with J. Philbin (Oxford))
Automatically organizing collections of images presents serious challenges to the current state-of-the art
methods in image data mining. Often, what is required is that images taken in the same place, of the same
thing, or of the same person be conceptually grouped together.

To achieve this, we introduce the Geometric Latent Dirichlet Allocation (gLDA) model [34] for unsupervised
particular object discovery in unordered image collections. This explicitly represents documents as mixtures
of particular objects or facades, and builds rich latent topic models which incorporate the identity and locations
of visual words specific to the topic in a geometrically consistent way. Applying standard inference techniques
to this model enables images likely to contain the same object to be probabilistically grouped and ranked.

We demonstrate the model on a publicly available dataset of Oxford images, and show examples of spatially
consistent groupings.

6.3.3. Creating and Exploring a Large Photorealistic Virtual Space (J. Sivic, joint work with B.
Kaneva (MIT), A. Torralba (MIT), S. Avidan (Adobe Research), W.T. Freeman (MIT))
We present a system [38] for exploring large collections of photos in a virtual 3D space. Our system does not
assume the photographs are of a single real 3D location, nor that they were taken at the same time. Instead, we
organize the photos in themes, such as city streets or skylines, and let users navigate within each theme using
intuitive 3D controls that include move left/right, zoom and rotate. Themes allow us to maintain a coherent
semantic meaning of the tour, while visual similarity allows us to create a “being there” impression, as if the
images were of a particular location. We present results on a collection of several million images downloaded
from Flickr and broken into themes that consist of a few hundred thousand images each. A byproduct of our
system is the ability to construct extremely long panoramas, as well as image taxi, a program that generates a
virtual tour between a user supplied start and finish images. The system, and its underlying technology can be
used in a variety of applications such as games, movies and online virtual 3D spaces like Second Life.

6.4. Learning image and object models

http://www.cs.washington.edu/homes/furukawa/gallery/
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6.4.1. Discriminative Sparse Image Models for Class-Specific Edge Detection and Image
Interpretation (J. Mairal, F. Bach, M. Hebert and J. Ponce, in collaboration with M.
Leordeanu and M. Hebert, Carnegie Mellon University)
Sparse signal models learned from data are widely used in audio, image, and video restoration. We recently
generalized them to discriminative image understanding tasks such as texture segmentation and feature
selection [29]. This work extends this line of research by proposing a multiscale method to minimize least-
squares reconstruction errors and discriminative cost functions under `0 or `1 regularization constraints. It
is applied to edge detection, category-based edge selection and image classification tasks. Experiments on
the Berkeley edge detection benchmark and the PASCAL VOC’05 and VOC’07 datasets demonstrate the
computational efficiency of our algorithm and its ability to learn local image descriptions that effectively
support demanding computer vision tasks (see figure 3).

6.4.2. Supervised Dictionary Learning (J. Mairal, F. Bach, J. Ponce, A. Zisserman, in
collaboration with G. Sapiro, University of Minnesota)
It is now well established that sparse signal models are well suited to restoration tasks and can effectively
be learned from audio, image, and video data. Recent research has been aimed at learning discriminative
sparse models instead of purely reconstructive ones. Our work proposes a new step in that direction, with
a novel sparse representation for signals belonging to different classes in terms of a shared dictionary and
multiple discriminative class models. The linear variant of the proposed model admits a simple probabilistic
interpretation, while its most general variant admits an interpretation in terms of kernels. An optimization
framework for learning all the components of the proposed model is presented, along with experimental results
on standard handwritten digit and texture classification tasks. This work extends our previous approach [29],
using the coefficients of the sparse decompositions as learned features [30].

6.4.3. A path following algorithm for the graph matching problem (F. Bach, in collaboration
with M. Zaslavskiy and J.-P. Vert, Ecole des Mines de Paris)
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The
convex-concave programming formulation is obtained by rewriting the weighted graph matching problem
as a least-square problem on the set of permutation matrices and relaxing it to two different optimization
problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic
matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the
search for its global minimum is also a hard combinatorial problem. We therefore construct an approximation
of the concave problem solution by following a solution path of a convex-concave problem obtained by linear
interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows
to easily integrate the information on graph label similarities into the optimization problem, and therefore to
perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph
matching methods on four datasets: simulated graphs, QAPLib, retina vessel images and handwritten chinese
characters. In all cases, the results are competitive with the state-of-the-art [15].

6.4.4. A Tensor-Based framework for High-Order Graph Matching (O. Duchenne, F. Bach, J.
Ponce, in collaboration with I. Kweon, KAIST university, South Corea)
We address the problem of establishing correspondences between two sets of visual features using higher-order
constraints instead of the unary or pairwise ones used in classical methods. Concretely, the corresponding
hypergraph matching problem is formulated as the maximization of a multilinear objective function over all
permutations of the features. This function is defined by a tensor representing the affinity between feature
tuples. It is maximized using a generalization of spectral techniques where a relaxed problem is first solved by
a multi-dimensional power method, and the solution is then projected onto the closest assignment matrix [22].
In Figure 5, examples of matching two different objects from the same class of object.
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Figure 3. Top left: Two discriminative dictionaries, one for edges, one for background. Top right: An edge map
computed by our algorithm. Bottom: Examples of class-specific edge detection for three classes, bike, bottle and

people.
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Figure 4. Left: Dictionary learned using the generative approach. Right: Dictionary learned using the
discriminative approach

Figure 5. Matching silhouettes from the Caltech-256 database.
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6.4.5. SIFT Flow: Dense Correspondence across Different Scenes (J. Sivic, joint work with C.
Liu (MIT), J. Yuen (MIT), A. Torralba (MIT), and W.T. Freeman (MIT))
While image registration has been studied in different areas of computer vision, aligning images depicting
different scenes remains a challenging problem, closer to recognition than to image matching. Analogous
to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow [28], a
method to align an image to its neighbors in a large image collection consisting of a variety of scenes. For a
query image, histogram intersection on a bag-of-visual-words representation is used to find the set of nearest
neighbors in the database. The SIFT flow algorithm then consists of matching densely sampled SIFT features
between the two images, while preserving spatial discontinuities. The use of SIFT features allows robust
matching across different scene/object appearances and the discontinuity-preserving spatial model allows
matching of objects located at different parts of the scene. Experiments show that the proposed approach
is able to robustly align complicated scenes with large spatial distortions. We collect a large database of videos
and apply the SIFT flow algorithm to two applications: (i) motion field prediction from a single static image
and (ii) motion synthesis via transfer of moving objects. Figure 6 shows examples of synthesized motions for
three different scenes.

( a ) ( b ) ( c )

( 1 )
( 2 )
( 3 )

Figure 6. Category-level scene alignment applied to motion synthesis via object transfer. Query still image (a), the top video match of a

scene containing moving objects (b), and representative frames from the synthesized sequence (c) obtained by transferring moving objects by

computing dense correspondence from the video to the still query image.

6.4.6. A discriminative part model for object detection (J. Ponce, joint work with A. Kushal
(UIUC) and C. Schmid (LEAR))
We have proposed in [45] a novel discriminative probabilistic framework for visual object category recognition
where object classes are represented by assemblies of discriminative part models (or DPMs) obeying loose
local geometric constraints. The parts are detected as parallelogram-shaped image regions and their appearance
is modeled using a combination of a dense spatial pyramid histogram of gradient and edge intensities and a
sparse spatial pyramid histogram of visual words. The parts are linked to enforce both geometric and co-
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occurrence constraints in a probabilistic graphical model. Geometric consistency is enforced locally among
nearby object parts, which provides both an effective method for pruning mis-detections, and robustness to
viewpoint changes and within-class shape variations. The appearance and geometric parameters are learned
simultaneously and efficiently in a single convex optimization process. Our implementation yields state-of-
the-art results on the PASCAL VOC Challenge 2007 car, cow and motorbike datasets (Figure 7).

Figure 7. Object detection results on PASCAL VOC’07 cars, cows and motorbikes. The blue bounding boxes correspond to correct detections.

The red boxes correspond to misdetections—some of these correspond to unlabeled objects (or those labeled as difficult) in the test set.

6.4.7. Unsupervised Discovery of Visual Object Class Hierarchies (J. Sivic, B. Russell and A.
Zisserman, joint work with A. Efros (CMU) and W.T. Freeman (MIT))
Objects in the world can be arranged into a hierarchy based on their semantic meaning (e.g. organism -
animal - feline - cat). What about defining a hierarchy based on the visual appearance of objects? This
work [39] investigates ways to automatically discover a hierarchical structure for the visual world from a
collection of unlabeled images. Previous approaches for unsupervised object and scene discovery focused on
partitioning the visual data into a set of non-overlapping classes of equal granularity. In this work, we propose
to group visual objects using a multi-layer hierarchy tree that is based on common visual elements. This is
achieved by adapting to the visual domain the generative Hierarchical Latent Dirichlet Allocation (hLDA)
model previously used for unsupervised discovery of topic hierarchies in text. Images are modeled using
quantized local image regions as analogues to words in text. Employing the multiple segmentation framework
of Russell et al., CVPR’06, we show that meaningful object hierarchies, together with object segmentations,
can be automatically learned from unlabeled and unsegmented image collections without supervision. We
demonstrate improved object classification and localization performance using hLDA over the previous non-
hierarchical method on the MSRC dataset of Winn et al., ICCV’05.

6.5. Human activity capture and classification
6.5.1. Learning person specific classifiers from video (J. Sivic and A. Zisserman, joint work

with M. Everingham (University of Leeds, UK))
We investigate the problem of automatically labelling appearances of characters in TV or movie material with
their names, using only weak supervision in the form of automatically-aligned subtitle and script text. Previous
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work by Everingham et al., BMVC 2006 demonstrated promising results on the task, but the coverage of the
method (proportion of video labelled) and generalization was limited by a restriction to frontal faces and
nearest neighbour classification.

We build in [37] on that method, extending the coverage greatly by the detection and recognition of characters
in profile views. In addition, we make the following contributions: (i) seamless tracking and integration of
profile and frontal detections, and (ii) a character specific multiple kernel classifier which is able to learn the
features best able to discriminate between the characters.

We report results on two episodes of the TV series “Buffy the Vampire Slayer”, demonstrating significantly
increased coverage and performance, with respect to previous methods on this material. Examples of correctly
detected and named characters are shown in figure 8.

Figure 8. Examples of correct detection and naming of characters in non-frontal views from an episode of the TV series “Buffy the Vampire

Slayer”.

6.6. Machine learning for computer vision
6.6.1. Robust image matching and recognition using context-dependent kernels (J.-Y.

Audibert, joint work with R. Keriven, J. Rabarisoa and H. Sahbi)
The success of kernel methods including support vector machines (SVMs) strongly depends on the design of
appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension
to unordered, variable-length data became more than necessary for real pattern recognition problems such as
object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel
referred to as “context- dependent”, which allows to take into account geometric constraints when matching
images (Figure 9). Objects, seen as constellations of local features (interest points, regions, etc.), are matched
by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching,
(2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We show that the
minimizer of this energy is a “context-dependent” Mercer kernel. Experiments conducted on object recognition
show that when plugging our kernel in SVMs, we clearly outperform SVMs with “context-free” kernels [36].

6.6.2. Transductive segmentation (O. Duchenne, J.-Y. Audibert and J. Ponce, joint work with
R. Keriven and F. Ségonne)
In [21], we extend and publish the work done last year on this topic. We consider a multi-zone segmentation
of a single image when user-supplied seeds are provided in each region. We view this task as a statistical
transductive inference, in which some pixels are already associated with given zones and the remaining ones
need to be classified. Our method relies on the Laplacian graph regularizer, a powerful manifold-learning
tool that is based on the estimation of variants of the Laplace-Beltrami operator and that is tightly related to
diffusion processes. Our segmentation is modeled as the task of finding matting coefficients for unclassified
pixels given known matting coefficients of seed pixels. The resulting segmentation procedure is simple, fast,
and accurate (Figure 10). Comparison with other methods on natural images databases are given.
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Figure 9. First and third columns: examples of matching results when using a naive matching strategy without
geometry (two on leaf shape and one on a real-life image). Second and fourth columns: corresponding results with

our “context-dependent” kernel.

Figure 10. Results for our transductive segmentation method.
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6.6.3. Semantic Lattices for Multiple Annotation of Images (J.-Y. Audibert, joint work with S.
Herbin and A.-M. Tousch)
In [40], we address the problem of describing precisely an object present in an image. The starting point is a
semantic lattice defining all possible coherent object descriptions through inheritance and exclusion relations.
This domain knowledge is used in a learning process which outputs a set of coherent explanations of the image
valued by their confidence level. Our first contribution is to design this method for multiple complexity level
image description. Our secondary focus is to develop rigorous evaluation standards for this computer vision
task which, to our knowledge, has not been addressed in the literature despite its possible use in symbolic
annotation of multimedia database. A critical evaluation of our approach under the proposed standards is
presented on a new appropriate car database that we have collected.

6.7. Effective learning algorithms and architectures
6.7.1. Scaling up machine learning algorithms by adaptive sampling (J.-Y. Audibert, joint work

with V. Mnih and C. Szepesvári)
Sampling is a popular way of scaling up machine learning algorithms to large datasets and streaming data. The
question often is how many samples are needed. Adaptive stopping algorithms monitor the performance in an
online fashion and they can stop early, saving valuable resources. We consider problems where probabilistic
guarantees are desired and demonstrate how recently-introduced empirical Bernstein bounds can be used to
design stopping rules that are efficient. We provide upper bounds on the sample complexity of the new rules,
as well as empirical results on model selection and boosting in the filtering setting [32].

6.7.2. Exploration-exploitation trade-off using variance estimates in multi-armed bandits (J.-Y.
Audibert, joint work with R. Munos and C. Szepesvári)
Algorithms based on upper confidence bounds for balancing exploration and exploitation are gaining popu-
larity since they are easy to implement, efficient and effective. In [5], we extend the work done last year on
this topic. We consider a variant of the basic algorithm for the stochastic, multi-armed bandit problem that
takes into account the empirical variance of the different arms. In earlier experimental works, such algorithms
were found to outperform the competing algorithms. We provide the first analysis of the expected regret for
such algorithms. As expected, our results show that the algorithm that uses the variance estimates has a major
advantage over its alternatives that do not use such estimates provided that the variances of the payoffs of the
suboptimal arms are low. We also prove that the regret concentrates only at a polynomial rate. This holds for
all the upper confidence bound based algorithms and for all bandit problems except those special ones where
with probability one the payoff obtained by pulling the optimal arm is larger than the expected payoff for the
second best arm. Hence, although upper confidence bound bandit algorithms achieve logarithmic expected
regret rates, they might not be suitable for a risk-averse decision maker. We illustrate some of the results by
computer simulations.

6.7.3. Algorithms for Infinitely Many-Armed Bandits (J.-Y. Audibert, joint work with R. Munos
and Y. Wang)
Multi-armed bandit problems describe typical situations where learning and optimization should be balanced
in order to achieve good cumulative performances. Usual multi-armed bandit problems consider a finite
number of possible actions (or arms) from which the learner may choose at each iteration. The number of
arms is typically much smaller than the number of experiments allowed, so exploration of all possible options
is usually performed and combined with exploitation of the apparently best ones. In [41], we investigate the
case when the number of arms is infinite (or larger than the available number of experiments), which makes
the exploration of all the arms an impossible task to achieve: if no additional assumption is made, it may be
arbitrarily hard to find a near-optimal arm. We make a stochastic assumption on the mean-reward of a new
selected arm which characterizes its probability of being a near-optimal arm. Our assumption is weaker than
in previous works. We describe algorithms based on upper-confidence-bounds applied to a restricted set of
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randomly selected arms and provide upper-bounds on the resulting expected regret. We also derive a lower-
bound which matches (up to a logarithmic factor) the upper-bound in some cases.

6.8. Learning theory
6.8.1. Confidence regions and multiple testing by resampling (S. Arlot, joint work with G.

Blanchard and É. Roquain)
Generalized bootstrapped confidence regions have been obtained in [2] for the mean of a random vector whose
coordinates have an unknown dependence structure, with a non-asymptotic control of the confidence level. The
random vector is supposed to be either Gaussian or to have a symmetric bounded distribution. We consider
two approaches, the first one based on a concentration principle and the second one on a direct boostrapped
quantile.

These results are applied in the one-sided and two-sided multiple testing problem [3], in which we derive
several resampling-based step-down procedures providing a non-asymptotic FWER control. According to a
simulation study, these procedures can outperform Bonferroni’s or Holm’s procedures as soon as the observed
vector has sufficiently correlated coordinates.

6.8.2. Model selection by resampling (S. Arlot)
The classical V -fold cross-validation being biased, a penalization approach is proposed as an alternative,
called V -fold penalization [42]. It can be used in a very general framework, and needs the same computation
time as V -fold cross-validation. In the case example of regression on histograms, the V -fold penalties lead
to a non-asymptotic oracle inequality, with constant almost one. This results holds with mild assumptions on
the noise-level, showing that V -fold penalties are adaptive to heteroscedastic noises. Moreover, a simulation
study shows that overpenalization may improve the quality of a model selection procedure, when the sample
size is small, as compared to the noise level. The V -fold penalties allowing to choose separately V and the
overpenalization factor, they are more flexible than V -fold cross-validation, and outperform it.

V -fold penalties have been generalized to a wide class of resampling penalties [43]. In the histogram regression
case, a non-asymptotic oracle inequality and adaptation to the smoothness of the regression function and the
heteroscedastic noise are proven. A simulation study in regression shows that resampling penalties outperform
classical procedures such as Mallows’ Cp and V -fold cross-validation.

6.8.3. Margin adaptive model selection in statistical learning (S. Arlot, joint work with P. L.
Bartlett)
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov.
We tackle in [44] the problem of adaptivity to this condition in the context of model selection, in a general
learning framework. Actually, we consider a weaker version of this condition that allows us to take into account
that learning within a small model can be much easier than in a large one. Requiring this “strong margin
adaptivity” makes the model selection problem more challenging. We first prove, in a very general framework,
that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the
models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our
second main result is that strong margin adaptivity is not always possible when the models are not nested: for
every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate
strong margin adaptivity.

6.8.4. Fast learning rates in statistical inference through aggregation (J.-Y. Audibert)
In [4], we develop minimax optimal risk bounds for the general learning task consisting in predicting as well
as the best function in a reference set G up to the smallest possible additive term, called the convergence
rate. When the reference set is finite and when n denotes the size of the training data, we provide minimax

convergence rates of the form C
(

log |G|
n

)v

with tight evaluation of the positive constant C and with exact
0 < v ≤ 1, the latter value depending on the convexity of the loss function and on the level of noise in the
output distribution.
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The risk upper bounds are based on a sequential randomized algorithm, which at each step concentrates on
functions having both low risk and low variance with respect to the previous step prediction function. Our
analysis puts forward the links between the probabilistic and worst-case viewpoints, and allows to obtain risk
bounds unachievable with the standard statistical learning approach. One of the key idea of this work is to
use probabilistic inequalities with respect to appropriate (Gibbs) distributions on the prediction function space
instead of using them with respect to the distribution generating the data.

The risk lower bounds are based on refinements of the Assouad lemma taking particularly into account the
properties of the loss function. Our key example to illustrate the upper and lower bounds is to consider the
Lq-regression setting for which an exhaustive analysis of the convergence rates is given while q ranges in
[1;+∞[.

6.8.5. Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning (F. Bach)
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite
dimensional feature spaces with a computational cost that only depends on the number of observations. This
is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. We explore
penalizing by sparsity-inducing norms such as the l1-norm or the block l1-norm. We assume that the kernel
decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph;
we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning
framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non
linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository
show that efficiently exploring the large feature space through sparsity-inducing norms leads to state-of-the-art
predictive performance [19].

6.8.6. Kernel dimension reduction in regression (F. Bach, in collaboration with K. Fukumizu,
Institute of Statistical Mathematics, Tokyo, and M. I. Jordan, U.C. Berkeley)
We design a new methodology for sufficient dimension reduction (SDR). Our methodology derives directly
from the formulation of SDR in terms of the conditional independence of the covariate X from the response
Y , given the projection of X on the central subspace. We show that this conditional independence assertion
can be characterized in terms of conditional covariance operators on reproducing kernel Hilbert spaces and
we show how this characterization leads to an M-estimator for the central subspace. The resulting estimator is
shown to be consistent under weak conditions; in particular, we do not have to impose linearity or ellipticity
conditions of the kinds that are generally invoked for SDR methods. We also present empirical results showing
that the new methodology is competitive in practice [9].

6.8.7. Model consistent Lasso estimation through the bootstrap (F. Bach)
We consider the least-square linear regression problem with regularization by the L1-norm, a problem usually
referred to as the Lasso. We perform a detailed asymptotic analysis of model consistency of the Lasso. For
various decays of the regularization parameter, we compute asymptotic equivalents of the probability of
correct model selection (i.e., variable selection). For a specific rate decay, we show that the Lasso selects
all the variables that should enter the model with probability tending to one exponentially fast, while it selects
all other variables with strictly positive probability. We show that this property implies that if we run the
Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso
bootstrap estimates leads to consistent model selection. This novel variable selection algorithm, referred to as
the Bolasso, is compared favorably to other linear regression methods on synthetic data and datasets from the
UCI machine learning repository [18].

6.8.8. Kernel change-point analysis (F. Bach, in collaboration with Z. Harchaoui and Eric
Moulines, Telecom Paris)
We introduce a kernel-based method for change-point analysis within a sequence of temporal observations.
Change-point analysis of an (unlabelled) sample of observations consists in, first, testing whether a change
in the distribution occurs within the sample, and second, if a change occurs, estimating the change-point
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instant after which the distribution of the observations switches from one distribution to another different
distribution. We propose a test statistics based upon the maximum kernel Fisher discriminant ratio as a measure
of homogeneity between segments. We derive its limiting distribution under the null hypothesis (no change
occurs), and establish the consistency under the alternative hypothesis (a change occurs). This allows to build a
statistical hypothesis testing procedure for testing the presence of change-point, with a prescribed false-alarm
probability and detection probability tending to one in the large-sample setting. If a change actually occurs, the
test statistics also yields an estimator of the change-point location. Promising experimental results in temporal
segmentation of mental tasks from BCI data and pop song indexation are obtained [26].

6.8.9. SimpleMKL: efficient algorithms for multiple kernel learning (F. Bach, in collaboration
with A. Rakotomamonjy and S. Canu, INSA Rouen, and Y. Grandvalet, UTC
Compiègne)
Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor
in supervised learning settings. For the support vector machine, an efficient and general multiple kernel
learning algorithm, based on semi-infinite linear programming, has been recently proposed. This approach
has opened new perspectives since it makes MKL tractable for large-scale problems, by iteratively using
existing support vector machine code. However, it turns out that this iterative algorithm needs numerous
iterations for converging towards a reasonable solution. We address the MKL problem through a weighted
2-norm regularization formulation with an additional constraint on the weights that encourages sparse
kernel combinations. Apart from learning the combination, we solve a standard SVM optimization problem,
where the kernel is defined as a linear combination of multiple kernels. We propose an algorithm, named
SimpleMKL, for solving this MKL problem and provide a new insight on MKL algorithms based on mixed-
norm regularization by showing that the two approaches are equivalent. We show how SimpleMKL can be
applied beyond binary classification, for problems like regression, clustering (one-class classification) or
multiclass classification. Experimental results show that the proposed algorithm converges rapidly and that its
efficiency compares favorably to other MKL algorithms. Finally, we illustrate the usefulness of MKL for some
regressors based on wavelet kernels and on some model selection problems related to multiclass classification
problems [13].

6.8.10. A New Approach to Collaborative Filtering: Operator Estimation with Spectral
Regularization (F. Bach, in collaboration with J. Abernethy, U.C. Berkeley, T. Evgeniou,
INSEAD, and J.-P. Vert, Ecole des Mines de Paris)
We introduce a general approach for collaborative filtering (CF) using spectral regularization to learn linear
operators from ÒusersÓ to the ÒobjectsÓ they rate. Recent low-rank type matrix completion approaches to
CF are shown to be special cases. However, unlike existing regularization based CF methods, our approach
can be used to also incorporate information such as attributes of the users or the objects—a limitation of
existing regularization based CF methods. We then provide novel representer theorems that we use to develop
new estimation methods. We provide learning algorithms based on low-rank decompositions, and test them
on a standard CF dataset. The experiments indicate the advantages of generalizing the existing regularization
based CF methods to incorporate related information about users and objects. Finally, we show that certain
multi-task learning methods can be also seen as special cases of our proposed approach [1].

6.8.11. Clustered Multi-Task Learning (F. Bach, in collaboration with L. Jacob and J.-P. Vert,
Ecole des Mines de Paris)
In multi-task learning several related tasks are considered simultaneously, with the hope that by an appropriate
sharing of information across tasks, each task may benefit from the others. In the context of learning linear
functions for supervised classification or regression, this can be achieved by including a priori information
about the weight vectors associated with the tasks, and how they are expected to be related to each other. In this
work, we assume that tasks are clustered into groups, which are unknown beforehand, and that tasks within
a group have similar weight vectors. We design a new spectral norm that encodes this a priori assumption,
without the prior knowledge of the partition of tasks into groups, resulting in a new convex optimization
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formulation for multi-task learning. We show in simulations on synthetic examples and on the IEDB MHC-I
binding dataset, that our approach outperforms well-known convex methods for multi-task learning, as well as
related non convex methods dedicated to the same problem [27].

6.8.12. Sparse probabilistic projections (F. Bach, in collaboration with C. Archambeau,
University College London)
We consider a generative model for performing sparse probabilistic projections, which includes sparse
principal component analysis and sparse canonical correlation analysis as special cases. Sparsity is enforced by
means of automatic relevance determination or by imposing appropriate prior distributions, such as generalised
hyperbolic distributions. We derive a variational Expectation-Maximisation algorithm for the estimation of the
hyperparameters and show that our novel probabilistic approach compares favourably to existing techniques.
The proposed method is applied in the context of cryptoanalysis as a preprocessing tool for the construction
of template attacks [17].

7. Contracts and Grants with Industry

7.1. Introduction
Since the members of WILLOW belong to different institutions, some of our grants are managed by INRIA,
while other are managed by ENS or ENPC. We indicate below the managing institution for each grant.

7.2. DGA/Bertin/EADS/SAGEM: 2ACI (ENS)
Participants: Jean Ponce, Jan van Gemert.

This project is concerned with target detection in low-resolution infra-red images. WILLOW is part of
three consortiums involving different industrials (namely, Bertin, EADS, and Sagem) and academic partners
(including INRIA). The effort in WILLOW is concerned with the detection of 3D targets and the estimation
of their pose. Total WILLOW budget: 110 KEuros.

7.3. DGA/E-vitech: ITISECURE (ENS)
Participants: Jean-Yves Audibert, Jean Ponce, Hui Kong.

This contract belongs to our automatic scene understanding research program. It aims at designing unexpected
object detection algorithms in the framework of a vehicle moving several times on the same route. The core
problems involved by this task are image matching handling high variations in the video capturing conditions
and scene understanding (objects identification, position and movement). Several parts of computer vision and
machine learning are thus involved: optical flow estimation, image processing, feature extraction and matching
in low-dimensional images, hypothesis testing, statistical learning, etc. J.-Y. Audibert is its coordinator. Total
WILLOW funding: 60 KEuros.

7.4. EADS (ENS)
Participants: Jean Ponce, Josef Sivic, Andrew Zisserman.

A. Zisserman’s participation in WILLOW has been partially funded by EADS. This has resulted in initial
collaboration efforts via discussions and tutorial presentations by A. Zisserman, J. Ponce and J. Sivic at EADS.
The tutorial was delivered at EADS Suresnes lab in November and December 2008 and covered efficient visual
search of image and videos. In addition, Marc Sturzel (EADS) has started a PhD at ENS with Jean Ponce.

7.5. MSR-INRIA joint lab: Image and video mining for science and
humanities (INRIA)
Participants: Jean Ponce, Francis Bach, Andrew Zisserman.
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This new collaborative project, already mentioned several times in this report, brings together the WILLOW,
LEAR, and VISTA project-teams with MSR researchers in Cambridge and elsewhere. The concept builds on
several ideas articulated in the “2020 Science” report, including the importance of data mining and machine
learning in computational science. Rather than focusing only on natural sciences, however, we propose here to
expand the breadth of e-science to include humanities and social sciences. The project we propose will focus
on fundamental computer science research in computer vision and machine learning, and its application to
archaeology, cultural heritage preservation, environmental science, and sociology, and it will be validated by
collaborations with researchers and practitioners in these fields. Total budget: 628 KEuros.

8. Other Grants and Activities

8.1. Agence Nationale de la Recherche: HFIMBR (INRIA)
Participants: Jean Ponce, Josef Sivic, Oliwer Whyte, Andrew Zisserman.

This is a collaborative effort with A. Bartoli (LASMEA Clermont-Ferrand) and N. Holszuch (ARTIS project-
team, INRIA Rhône-Alpes).

There is an increasing need for three-dimensional (3D) “content” in entertainment, engineering, and scientific
applications. We predict that, for most of these, today’s specialized 3D sensors will eventually be replaced
by ordinary, consumer-grade digital cameras equipped with advanced image-based modeling and analysis
software. We propose core computer vision and computer graphics research that will enable the development of
this software and its application to real-world problems. Concretely, we will focus on high-fidelity image-based
modeling and 3D shape and appearance matching, and we will demonstrate applications of the technology
developed in this project to film post production and special effects, and cultural heritage conservation, both
pursued via collaborations with external partners. Total funding for WILLOW: 110 KEuros.

8.2. Agence Nationale de la Recherche: MGA (INRIA/ENPC)
Participants: Jean-Yves Audibert, Francis Bach, Olivier Duchenne, Julien Mairal, Jean Ponce, Andrew
Zisserman.

Probabilistic graphical models, also known as Bayesian Networks, provide a very flexible and powerful
framework for capturing statistical dependencies in complex, multivariate data. They enable the building of
large global probabilistic models for complex phenomena out of smaller and more tractable local models. The
objectives of this project are to advance the methodological state of the art of probabilistic modeling research,
while applying the newly developed techniques to computer vision, text processing and bio-informatics. F.
Bach is the coordinator of this ANR “projet blanc” in machine learning, that focuses on graphical models
and their applications. The total funding is 200 KEuros, with 100KEuros for Willow including (50KEuros for
INRIA and 50KEuros for ENPC).

8.3. Agence Nationale de la Recherche: Triangles (ENS)
Participant: Jean Ponce.

This is a collaborative effort with O. Devillers (INRIA project-team GEOMETRICA), Raphaelle Chaine
(University of Lyon), and J. Ponce and E. Colin de Verdière (ENS).

This project is dedicated to the design of computational geometry methods for constructing triangulation in
non-Euclidean spaces. Total funding for WILLOW: 5000 Euros.

8.4. France-UC Berkeley fund (Ecole des Mines de Paris)
Participant: Francis Bach.
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This ia a travel Grant from the French Berkeley fund (http://ies.berkeley.edu/fbf/), joint with Jean-Philippe
Vert (Ecole des Mines de Paris) and Michael Jordan (UC Berkeley). Total funding: 10,000 Euros.

8.5. European Research Council (ERC) Senior Researcher grant
Participant: Andrew Zisserman.

Andrew Zisserman was awarded the European Research Council (ERC) Senior Researcher grant.

9. Dissemination

9.1. Leadership within the scientific community
• Conference and workshop organization:

– General chair, European Conference on Computer Vision, Marseille, 2008 (J. Ponce).

– Program chair, European Conference on Computer Vision, Marseille, 2008 (A. Zisserman).
Organized paper submission, reviewing, Area Chair meeting in June and Conference
Programme (http://eccv2008.inrialpes.fr/).

– Organizer, joint Willow-Oxford workshop, April 2008 (A. Zisserman).

– Co-organizer, Pascal VOC 2008 Workshop at the European Conference on Computer Vi-
sion, Marseille, 2008, http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/ (A. Zis-
serman).

• Editorial boards:

– Journal of Machine Learning Research, Action Editor (F. Bach).

– International Journal of Computer Vision (J. Ponce, A. Zisserman).

– Foundations and Trends in Computer Graphics and Vision (J. Ponce).

• Area chairs:

– Neural Information and Processing Systems (NIPS) Conference, 2008 (J.-Y. Audibert and
F. Bach)

– International Conference on Computer Vision, 2009 (J. Ponce)

• Program committees:

– Conference on Learning Theory (COLT), 2008 (J.-Y. Audibert)

– Conférence francophone sur l’apprentissage automatique (CAP), 2008 (J.-Y. Audibert)

– IEEE Conference on Computer Vision and Pattern Recognition, 2007 (J. Ponce).

– European Conference on Computer Vision, 2008 (J. Sivic).

– British Machine Vision Conference, 2008 (J. Sivic).

– Reviewer for Neural Information and Processing Systems (NIPS) Conference, 2008 (J.
Sivic).

– IEEE Conference on Computer Vision and Pattern Recognition, 2009 (J. Sivic).

• Prizes:

– The paper Geometric LDA: A Generative Model for Particular Object Discovery by J.
Philbin, J. Sivic and A. Zisserman was awarded the best poster prize at the British Machine
Vision Conference (BMVC), 2008

• Other:

http://ies.berkeley.edu/fbf/
http://eccv2008.inrialpes.fr/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
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– J.-Y. Audibert is a member of the PASCAL2 European Network of Excellence (http://
www.pascal-network.org).

– F. Bach is a member of the PASCAL2 European Network of Excellence (http://www.
pascal-network.org).

– F. Bach coordinates the ParisTech reading group in machine learning (http://www.di.ens.
fr/~fbach/paristech/).

– J. Ponce is responsible for teaching and the entrance exam in the department of computer
science of Ecole normale supérieure.

– J. Ponce is a member of the scientific advisory board for the Institut de l’Ecole normale
supérieure.

– J. Ponce organizes the ENS computer vision seminar (see http://www.di.ens.fr/~ponce/
seminaires.html.

– J. Ponce served on the 2007 admission committee for research directors at INRIA.

– J. Ponce and A. Zisserman, in collaboration with Y. Furukawa (UIUC) are starting an effort
aimed at reconstructing vases from the Beazley Collection (http://www.beazley.ox.ac.uk/
Pottery/Ashmolean/Script/default.htm.

– A. Zisserman is a member of the PASCAL2 European Network of Excellence and
co-organizes the Pascal VOC challenge (http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2008/).

9.2. Teaching
• J.-Y. Audibert, “Machine Learning and applications”, Ecole Nationale des Ponts et Chaussées, 2nd

year, 21h.

• J.-Y. Audibert, “Machine Learning”, Masters (M2) “Mathématiques, Vision et Apprentissage”
(MVA), Ecole Normale Supérieure de Cachan, 20h.

• F. Bach, “Probabilistic graphical models”, MVA, Ecole Normale Supérieure de Cachan, 20h.

• Sparse methods for Machine learning, International Machine Learning Summer School, Ile de Re
(F. Bach)

• J. Ponce, “Introduction to scientific computing”, Ecole normale supérieure, M1, 36h.

• J. Ponce, “Geometry and computer vision”, Ecole normale supérieure and MVA, Ecole normale
supérieure de Cachan, 36h.

• J. Ponce and J. Sivic (together with C. Schmid (INRIA Grenoble)), “Object recognition and computer
vision”, Ecole normale supérieure, and MVA, Ecole normale supérieure de Cachan, 36h.

• A. Zisserman, Third year lecture course on "Estimation and Inference", Oxford.

• A. Zisserman, Third year labs on "Information Engineering", Oxford.

• A. Zisserman, Fourth year lecture course on "Optimization", Oxford.

9.3. Invited presentations
• S. Arlot, V -fold penalization: an alternative to V -fold cross-validation, Cherry Bud Workshop, Keio

University, Yokohama, Japan, March 2008.

• S. Arlot, V -fold penalization: an alternative to V -fold cross-validation, Second Canada-France
Congress, UQAM, Montreal, Canada, June 2008.

• S. Arlot, V -fold cross-validation improved: V -fold penalization, Journées Statistiques du Sud, INSA
Toulouse, June 2008.

http://www.pascal-network.org
http://www.pascal-network.org
http://www.pascal-network.org
http://www.pascal-network.org
http://www.di.ens.fr/~fbach/paristech/
http://www.di.ens.fr/~fbach/paristech/
http://www.di.ens.fr/~ponce/seminaires.html
http://www.di.ens.fr/~ponce/seminaires.html
http://www.beazley.ox.ac.uk/Pottery/Ashmolean/Script/default.htm
http://www.beazley.ox.ac.uk/Pottery/Ashmolean/Script/default.htm
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
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• J.-Y. Audibert, Transductive Learning and Computer Vision, NIPS Workshop, New challenges in
theoretical machine learning: learning with data-dependent concept spaces, Whistler, Canada, Dec.
2008

• J.-Y. Audibert, Aggregation to compete with the best prediction function in a fixed set, Swiss
Probability Seminar, Bern, Switzerland, Nov. 2008

• J.-Y. Audibert, Aggregation to compete with the best prediction function in a fixed set, INRIA Sequel
seminar, Lille, Nov. 2008

• J.-Y. Audibert and F. Bach, Supervised Machine Learning, Tutorial, ECCV, Marseille, Oct. 2008

• J.-Y. Audibert, Graph Laplacian for transductive learning: application to image segmentation and
interactive image search, Rencontre “Modélisation Statistique des Images”, Luminy, May 2008

• J. Ponce, Ecole Polytechnique, Paris.

• J. Ponce, Microsoft Tech Days, Paris.

• J. Ponce, Télécom Paris.

• J. Ponce, European Workshop on Computational Geometry, Nancy.

• J. Ponce, International Workshop on Computer Vision, Venice.

• J. Ponce, University of Illinois at Urbana-Champaign.

• J. Ponce, University of California at Los Angeles.

• J. Ponce, University of Southern California.

• J. Ponce, International Workshop on Shape Perception in Human and Computer Vision, ECCV’08.

• J. Sivic, Harvard University, Cambridge, USA

• J. Sivic, Massachusetts Institute of Technology, Cambridge, USA

• J. Sivic, University of Washington, Seattle, USA

• J. Sivic, Microsoft Research, Redmond, USA

• J. Sivic, University of California, Berkeley, USA

• J. Sivic, École nationale supérieure des telecommunications, Paris, France

• J. Sivic, Scene Understanding Symposium, Massachusetts Institute of Technology, Cambridge, USA

• J. Sivic, Pattern Recognition and Computer Vision Colloquium, Czech Technical University in
Prague

• J. Sivic, Joint Willow-Oxford workshop, University of Oxford, UK

• A. Zisserman, Key-note speaker at EU Network of Excellence (NOE) MUSCLE conference,
February 2008, Cannes. http://www.muscle-noe.org/content/view/164/39/

• A. Zisserman, Invited talk at International Workshop on Computer Vision, Venice, May, 2008

• A. Zisserman, Speaker at the International Computer Vision Summer School 2008 (ICVSS 2008)
http://svg.dmi.unict.it/icvss2008/
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