
c t i v i t y

te p o r

2009

Theme : Programs, Verification and Proofs

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Abstraction

Abstract Interpretation

Paris - Rocquencourt

http://www.inria.fr
http://www.inria.fr/recherche/equipes/abstraction.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Overall Objectives 1
2.2. Highlights of the Year 2

3. Scientific Foundations .2
3.1. Abstract Interpretation Theory 2
3.2. Formal Verification by Abstract Interpretation 2
3.3. Advanced Introductions to Abstract Interpretation 3

4. Application Domains .3
4.1. Certification of Safety Critical Software 3
4.2. Security Protocols 4
4.3. Abstraction of Biological Cell Signaling Networks 4

5. Software . 5
5.1. The Astrée Static Analyzer 5
5.2. The Apron Numerical Abstract Domain Library 5
5.3. Translation Validation 6
5.4. ProVerif 6
5.5. CryptoVerif 7

6. New Results . 8
6.1. Space Software Validation using Abstract Interpretation 8
6.2. Why does Astrée scale up? 8
6.3. Design of the Apron Library 8
6.4. Hierarchy of Semantics by Abstract Interpretation and Formal Proofs 9
6.5. Semantics Design by Abstract Interpretation 9

6.5.1. Bi-inductive Definitions and Bifinitary Semantics of the Eager Lambda-Calculus 9
6.5.2. Abstract Semantics of Resolution-Based Logic Languages 9

6.6. Verification of Security Protocols in the Formal Model 10
6.6.1. Book Chapter on Using Horn Clauses for the Verification of Security Protocols 10
6.6.2. Extensions of ProVerif 10

6.7. Verification of Security Protocols in the Computational Model 11
6.7.1. Computationally Sound Mechanized Proofs for Basic and Public-Key Kerberos 11
6.7.2. Automatic Translation from CryptoVerif Specifications to Implementations 11
6.7.3. Extensions of CryptoVerif 11

6.8. Verification of Security Protocols: Formal Model and Computational Model 11
6.9. Analysis of Biological Pathways 12

6.9.1. Automatic Reduction of Differential Semantics 12
6.9.2. Automatic Reduction of Stochastic Semantics 12
6.9.3. Rule Refinements 12
6.9.4. Investigation of a Biological Repair Scheme 13
6.9.5. Meta-Language 13

6.10. Shape analysis of a realistic memory model 13
6.11. Checkmate: a Generic Static Analyzer of Java Multithreaded Programs 13
6.12. Static Analysis via Abstract Interpretation of Multithreaded Programs 14
6.13. SubPolyhedra: A (more) scalable approach to infer linear inequalities 14
6.14. Refining Abstract Interpretation-based Static Analyses with Hints 14
6.15. Approximated Inference of Linear Invariants 15
6.16. An Abstract Domain to Infer Interval Linear Relationships 15

7. Contracts and Grants with Industry . 15
7.1. ES_PASS Contract 15

2 Activity Report INRIA 2009

7.2. SSVAI Contract 15
7.3. Asbaprod Contract 16
7.4. Contract with CELAR 16
7.5. Survol project 16
7.6. Ascert project 16
7.7. Sardanes project 17
7.8. Astrée exploitation license agreement 17

8. Other Grants and Activities . 17
8.1. Controvert ANR 17
8.2. FormaCrypt ARA 17
8.3. Thésée ANR 17
8.4. AbstractCell ANR 18

9. Dissemination . 18
9.1. Interaction with the Scientific Community 18

9.1.1. Academy Members, Professional Societies 18
9.1.2. Collective Responsibilities 18
9.1.3. Editorial Boards and Program Committees 18
9.1.4. PhD and Habilitation Juries 19

9.2. Teaching 19
9.2.1. Supervision of PhDs and Internships 19
9.2.2. Graduate Courses 20
9.2.3. Undergraduate Courses 20

9.3. PhD theses 20
9.4. Participation in Conferences and Seminars 20

9.4.1. Participation in Conferences 20
9.4.2. Invitations and Participation in Seminars 21

9.5. Short-Term Visitors 22
10. Bibliography .22

1. Team
Research Scientist

Bruno Blanchet [CR, CNRS, HdR]
Radhia Cousot [DR, CNRS, HdR]
Jérôme Feret [CR, INRIA Paris–Rocquencourt]
Antoine Miné [CR, CNRS]
Xavier Rival [CR, INRIA Paris–Rocquencourt]

Faculty Member
Patrick Cousot [Team leader, Professor/Professeur, ENS, HdR]
Laurent Mauborgne [Assistant Professor/Maître de conférences, ENS, HdR]

Technical Staff
Élodie-Jane Sims [Research engineer, ENS, — Sep. 2009, INRIA, Oct. 2009 —]

PhD Student
David Cadé [Sep. 2009 —]
Liqian Chen [Mar. 2009 —]
Pietro Ferrara [— Mar. 2009]
Vincent Laviron [Sep. 2009 —]
Jérémy Leconte [Sep. 2009 —]
Matteo Zanioli [Sep. 2009 —]

Post-Doctoral Fellow
Julien Bertrane
Axel Simon
Colas Le Guernic [Nov. 2009 —]

Visiting Scientist
Miriam Paiola [Università di Padova, Sep. 2009 — Apr. 2010]
Ben Smyth [University of Birmingham, Sep. 2009 — Feb. 2010]

Administrative Assistant
Joëlle Isnard [Administrative Head DI, ENS]
Elisabeth Baque [INRIA, — Aug. 2009]
Emmanuelle Grousset [INRIA, Aug. 2009 — Nov. 2009]
Nathalie Abiola [INRIA, Nov. 2009 —]

2. Overall Objectives

2.1. Overall Objectives
Software has known a spectacular development this last decade both in its scope of applicability and its size.
Nevertheless, software design and development methods remain mostly manual, hence error-prone. It follows
that complex software-based systems are unsafe and insecure, which is not acceptable in safety-critical or
mission-critical applications. Intellectual and computer-based tools must therefore be developed to cope with
the safety and security problems.

The notions of abstraction and approximation, as formalized by the abstract interpretation theory, are
fundamental to design, model, develop, analyze, and verify highly complex systems, from computer-based
to biological ones. They also underlie the design of safety and security verification tools.

2 Activity Report INRIA 2009

2.2. Highlights of the Year
In February 2009, the industrialization of the ASTRÉE analyzer started with the signature of a license
agreement with AbsInt Angewandte Informatik GmbH. ASTRÉE should be commercially available from
AbsInt in the near future.

In 2009, the Space Software Validation using Abstract Interpretation ESA-ITI project with ESA, CEA, and
Astrium Space Transportation concluded that the new generation of static analyzers, including ASTRÉE, can
be used to improve the safety of embedded critical space software (in the past, industrial codes analyzed by
ASTRÉE originated mainly from the avionic industry).

3. Scientific Foundations

3.1. Abstract Interpretation Theory
The abstract interpretation theory [6], [77], [81] is the main scientific foundation of the work of the ABSTRAC-
TION project-team. Its main current application is on the safety and security of complex hardware and software
computer systems.

Abstract interpretation is a theory of sound approximation of mathematical structures, in particular those
involved in the behavior of computer systems. It allows the systematic derivation of sound methods and
algorithms for approximating undecidable or highly complex problems in various areas of computer science
(semantics, verification and proof, model-checking, static analysis, program transformation and optimization,
typing, software steganography, etc...).

3.2. Formal Verification by Abstract Interpretation
The formal verification of a program (and more generally a computer system) consists in proving that its
semantics (describing “what the program executions actually do”) satisfies its specification (describing “what
the program executions are supposed to do”).

Abstract interpretation formalizes the idea that this formal proof can be done at some level of abstraction
where irrelevant details about the semantics and the specification are ignored. This amounts to proving that an
abstract semantics satisfies an abstract specification. An example of abstract semantics is Hoare logic while
examples of abstract specifications are invariance, partial, or total correctness. These examples abstract away
from concrete properties such as execution times.

Abstractions should preferably be sound (no conclusion derived from the abstract semantics is wrong with
respect to the program concrete semantics and specification). Otherwise stated, a proof that the abstract
semantics satisfies the abstract specification should imply that the concrete semantics also satisfies the concrete
specification. Hoare logic is a sound verification method, debugging is not (since some executions are left out),
bounded model checking is not either (since parts of some executions are left out). Unsound abstractions lead
to false negatives (the program may be claimed to be correct/non erroneous with respect to the specification
whereas it is in fact incorrect). Abstract interpretation can be used to design sound semantics and formal
verification methods (thus eliminating all false negatives).

Abstractions should also preferably be complete (no aspect of the semantics relevant to the specification
is left out). So if the concrete semantics satisfies the concrete specification this should be provable in the
abstract. However program proofs (for non-trivial program properties such as safety, liveness, or security) are
undecidable. Nevertheless, we can design tools that address undecidable problems by allowing the tool not to
terminate, to be driven by human intervention, to be unsound (e.g. debugging tools omit possible executions),
or to be incomplete (e.g. static analysis tools may produce false alarms). Incomplete abstractions lead to false
positives or false alarms (the specification is claimed to be potentially violated by some program executions
while it is not). Semantics and formal verification methods designed by abstract interpretation may be complete
(e.g. [80], [12], [15]) or incomplete (e.g. [2]).

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

Project-TeamAbstraction 3

Sound, automatic, terminating and precise tools are difficult to design. Complete automatic tools to solve non-
trivial verification problems cannot exist, by undecidability. However static analysis tools producing very few
or no false alarms have been designed and used in industrial contexts for specific families of properties and
programs [82]. In all cases, abstract interpretation provides a systematic construction method based on the
effective approximation of the concrete semantics, which can be (partly) automated and/or formally verified.

Abstract interpretation aims at:

• providing a basic coherent and conceptual theory for understanding in a unified framework the
thousands of ideas, concepts, reasonings, methods, and tools on formal program analysis and
verification [6], [81];

• guiding the correct formal design of abstract semantics [12], [15] and automatic tools for program
analysis (computing an abstract semantics) and program verification (proving that an abstract
semantics satisfies an abstract specification) [78].

Abstract interpretation theory studies semantics (formal models of computer systems), abstractions, their
soundness, and completeness.

In practice, abstract interpretation is used to design analysis, compilation, optimization, and verification tools
which must automatically and statically determine properties about the runtime behavior of programs. For
example the ASTRÉE static analyzer (Section 5.1), which was developed by the team over the last decade,
aims at proving the absence of runtime errors in programs written in the C programming language. It is used
in the aerospace industry to verify very large, synchronous, time-triggered, real-time, safety-critical, embedded
software.

3.3. Advanced Introductions to Abstract Interpretation
The informal presentation “Abstract Interpretation in a Nutshell” aims at providing a short intuitive introduc-
tion to the theory. A more comprehensive introduction to abstract interpretation is available online1. The paper
entitled “Basic concepts of abstract interpretation” [79] and an elementary “course on abstract interpretation”2

can also be found on the web.

4. Application Domains
4.1. Certification of Safety Critical Software

Safety critical software may incur great damage in case of failure, such as human casualties or huge financial
losses. These include many kinds of embedded software, such as fly-by-wire programs in aircrafts and other
avionic applications, control systems for nuclear power plants, or navigation systems of satellite launchers.
For instance, the failure of the first launch of Ariane 5 (flight Ariane 501) was due to overflows in arithmetic
computations. This failure caused the loss of several satellites, worth up to $ 500 millions.

This development of safe and secure critical software requires formal methods so as to ensure that they do
not go wrong, and will behave as specified. In particular, testing or bug finding methods do not provide any
guarantee that no failure will occur, even of a given type such as runtime errors; therefore, their scope is
limited for certification purposes. For instance, testing can usually not be performed for all possible inputs due
to feasibility and cost reasons, so that it does not prove anything about a large number of possible executions.

By contrast, program analysis methods such as abstract-interpretation-based static analysis are not subject to
unsoundness, since they can formally prove the absence of bugs. Yet, these techniques are generally incomplete
since the absence of runtime errors is undecidable. Therefore, in practice, they are prone to false alarms (i.e.,
they may fail to prove the absence of runtime errors for a program which is safe). The objective of certification
is to ultimately eliminate all false alarms.

1http://www.di.ens.fr/~cousot/AI/
2http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://www.di.ens.fr/~cousot/AI/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

4 Activity Report INRIA 2009

It should be noted that, due to the size of the critical codes (typically from 100 to 1000 kLOCs), only scalable
methods can succeed (in particular, software model checking techniques are subject to state explosion issues).
As a consequence, this domain requires efficient static analyses, where costly abstractions should be used only
parsimoniously.

Furthermore, many families of critical software have similar features, such as the reliance on floating-point
intensive computations for the implementation of control laws, including linear and non-linear control with
feedback, interpolations, and other DSP algorithms. Since we stated that a proof of absence of runtime errors
is required, very precise analyses are required, which should be able to yield no false alarm on wide families
of critical applications. To achieve that goal, significant advantages can be found in the design of domain
specific analyzers, such as ASTRÉE [76], [83], which has been initially designed specifically for synchronous
embedded software.

Last, some specific critical software qualification procedures may require additional properties being proved.
As an example, the DO-178 regulations (which apply to avionics software) require a tight, documented, and
certified relation to be established between each development stage. In particular, compilation of high level
programs into executable binaries should also be certified correct.

The ABSTRACTION project-team has been working on both proof of absence of runtime errors and certified
compilation over the decade, using abstract interpretation techniques. Successful results have been achieved
on industrial applications using the ASTRÉE analyzer. Following this success, ASTRÉE has been licensed to
AbsInt Angewandte Informatik GmbH to be industrialized, and the ABSTRACTION project-team has strong
plans to continue research on this topic.

4.2. Security Protocols
Security protocols use cryptography in order to guarantee the security of exchanges over an insecure network,
such as the Internet. The design of security protocols is notoriously error-prone: errors have been found in
many published protocols. Security errors can have serious consequences, such as loss of money in the case of
electronic commerce. Moreover, security errors cannot be detected by testing, because they appear only in the
presence of a malicious adversary. Security protocols are therefore an important area for formal verification.

The work of the ABSTRACTION project-team on security protocols has led to the development of two suc-
cessful automatic protocol verifiers, PROVERIF in the formal model and CRYPTOVERIF in the computational
model, and we plan to pursue research on this topic, in particular with extensions to CRYPTOVERIF.

4.3. Abstraction of Biological Cell Signaling Networks
Protein-protein interactions consist in complexations and post translational modifications such as phospho-
rilation. These interactions enable biological organisms to receive, propagate, and integrate signals that are
expressed as proteins concentrations in order to make decisions (on the choice between cell division and cell
death for instance). Models of such interaction networks suffer from a combinatorial blow up in the number
of species (number of non-isomorphic ways in which some proteins can be connected to each others). This
large number of species makes the design and the analysis of these models a highly difficult task. Moreover
the properties of interest are usually quantitative observations on stochastic or differential trajectories, which
are difficult to compute or abstract.

Contextual graph-rewriting systems allow a concise description of these networks, which leads to a scalable
method for modeling them. Then abstract interpretation allows the abstraction of these systems properties. First
qualitative abstractions (such as over approximation of complexes that can be built) provide both debugging
information in the design phases (of models) and static information that are are necessary in order to make
other computations (such as stochastic simulations) scale up. Then qualitative invariants also drive efficient
quantitative abstractions (such as the reduction of ordinary differential semantics).

The work of the ABSTRACTION project-team on biological cell signaling networks ranges from qualitative
abstraction to quantitative abstraction.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

Project-TeamAbstraction 5

5. Software
5.1. The Astrée Static Analyzer

Participants: Patrick Cousot [project leader, correspondent], Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, Xavier Rival.

The ASTRÉE static analyzer [76], [83] www.astree.ens.fr aims at proving the absence of runtime errors in
programs written in the C programming language.

ASTRÉE analyzes structured C programs, with complex memory usages, but without dynamic memory
allocation and recursion. This encompasses many embedded programs as found in earth transportation, nuclear
energy, medical instrumentation and aerospace applications, in particular synchronous control/command. The
whole analysis process is entirely automatic.

ASTRÉE discovers all runtime errors including:

• undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or
out of bounds array indexing);

• any violation of the implementation-specific behavior as defined in the relevant Application Binary
Interface (such as the size of integers and arithmetic overflows);

• any potentially harmful or incorrect use of C violating optional user-defined programming guidelines
(such as no modular arithmetic for integers, even though this might be the hardware choice);

• user-defined assertions.

The analyzer performs an abstract interpretation of the programs being analyzed, using a parametric domain
(ASTRÉE is able to choose the right instantiation of the domain for wide families of software). This analysis
produces abstract invariants, which over-approximate the reachable states of the program, so that it is possible
to derive an over-approximation of the dangerous states (defined as states where any runtime error mentioned
above may occur) that the program may reach, and produces alarms for each such possible runtime error. Thus
the analysis is sound (it correctly discovers all runtime errors), yet incomplete, that is it may report false alarms
(i.e., alarms that correspond to no real program execution). However, the design of the analyzer ensures a high
level of precision on domain-specific families of software, which means that the analyzer produces few or no
false alarms on such programs.

In order to achieve this high level of precision, ASTRÉE uses a large number of expressive abstract domains,
which allow expressing and inferring complex properties about the programs being analyzed, such as
numerical properties (digital filters, floating-point computations), boolean control properties, and properties
based on the history of program executions.

ASTRÉE has achieved the following two unprecedented results:

• A340–300. In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any
RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 MB of memory (and 50mn
on a 64-bit AMD Athlon 64 using 580 MB of memory).

• A380. From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes then in
development and test for the A380 series. The operational application by Airbus France at the end
of 2004 was just in time before the A380 maiden flight on Wednesday, 27 April, 2005.

These research and development successes have led to consider the inclusion of ASTRÉE in the production
of the critical software for the A350. ASTRÉE is currently industrialized by AbsInt Angewandte Informatik
GmbH and should be commercially available in December 2009.

5.2. The Apron Numerical Abstract Domain Library
Participants: Antoine Miné [correspondent], Bertrand Jeannet [team PopArt, INRIA-RA].

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/
http://www.absint.com/
http://www.absint.com/astree/

6 Activity Report INRIA 2009

The APRON library is dedicated to the static analysis of the numerical variables of a program by abstract
interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under a common API for
analysis implementers, encourage the research in numerical abstract domains by providing a platform for
integration and comparison of domains, and provide a teaching and demonstration tool to disseminate
knowledge on abstract interpretation.

The APRON library is not tied to a particular numerical abstraction but instead provides several domains
with various precision versus cost trade-offs (including intervals, octagons, linear equalities and polyhedra).
A specific C API was designed for domain developers to minimize the effort when incorporating a new
abstract domain: only few domain-specific functions need to be implemented while the library provides
various generic services and fallback methods (such as scalar and interval operations for most numerical
data-types, parametric reduced products, and generic transfer functions for non-linear assignments). For the
analysis designer, the APRON library exposes a higher-level API with C, C++, and OCaml bindings. This API
is domain-neutral and supports a rich set of semantic operations, including parallel assignments (useful to
analyze automata), substitutions (useful for backward analysis), non-linear numerical expressions, and IEEE
floating-point arithmetic.

The APRON library is freely available on the web at http://apron.cri.ensmp.fr/library under the LGPL license.
Packages exist for the Debian and Fedora Linux distributions. In order to help disseminate the knowledge
on abstract interpretation, a simple inter-procedural static analyzer for a toy language is included. An on-line
version is deployed at http://pop-art.inrialpes.fr/interproc/interprocweb.cgi.

The APRON library is developed since 2006 and currently consists of 86 000 lines of C, C++, and OCaml.
This year has seen the release of version 0.9.10, which mainly includes bugfixes and minor improvements in
the API and build system. We also published a tool paper [25] describing the library and its design philosophy.

Current external library users include the Proval/Démon team (LRI Orsay, France), the Analysis of Computer
Systems Group (New-York University, USA), the Sierum software analysis platform (Kansas State University,
USA), NEC Labs (Princeton, USA), EADS CCR (Paris, France), IRIT (Toulouse, France), ONERA (Toulouse,
France), CEA LIST (Saclay, France), VERIMAG (Grenoble, France), ENSMP CRI (Fontainebleau, France),
the IBM T.J. Watson Research Center (USA), the University of Edinburgh (UK).

5.3. Translation Validation
Participant: Xavier Rival [correspondent].

The main goal of this software project is to make it possible to certify automatically the compilation of large
safety critical software, by proving that the compiled code is correct with respect to the source code: When the
proof succeeds, this guarantees that no compiler bug did cause incorrect code be generated. Furthermore, this
approach should allow to meet some domain specific software qualification criteria (such as those in DO-178
regulations for avionics software), since it allows proving that successive development levels are correct with
respect to each other i.e., that they implement the same specification. Last, this technique also justifies the use
of source level static analyses, even when an assembly level certification would be required, since it establishes
separately that the source and the compiled code are equivalent.

The compilation certification process is performed automatically, thanks to a prover designed specifically. The
automatic proof is done at a level of abstraction which has been defined so that the result of the proof of
equivalence is strong enough for the goals mentioned above and so that the proof obligations can be solved by
efficient algorithms.

The current software features both a C to Power-PC compilation certifier and an interface for an alternate
source language frontend, which can be provided by an end-user.

5.4. ProVerif
Participants: Bruno Blanchet [correspondent], Xavier Allamigeon [April–July 2004], Ben Smyth [Sept.
2009–Feb. 2010].

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://apron.cri.ensmp.fr/library/

Project-TeamAbstraction 7

PROVERIF (www.proverif.ens.fr) is an automatic security protocol verifier, in the formal model (so called
Dolev–Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

• It can handle many different cryptographic primitives, including shared- and public-key cryptogra-
phy (encryption and signatures), hash functions, and Diffie–Hellman key agreements, specified both
as rewrite rules or as equations.

• It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded
message space. This result has been obtained thanks to some well-chosen approximations. This
means the verifier can give false attacks, but if it claims that the protocol satisfies some property,
then the property is actually satisfied. PROVERIF also provides attack reconstruction: when it cannot
prove a property, it tries to reconstruct an attack, that is, an execution trace of the protocol that
falsifies the desired property.

The PROVERIF verifier can prove the following properties:

• secrecy (the adversary cannot obtain the secret);

• authentication and more generally correspondence properties, of the form “if an event has been
executed, then other events have been executed as well”;

• strong secrecy (the adversary does not see the difference when the value of the secret changes);

• equivalences between processes that differ only by terms;

PROVERIF has been used by researchers for studying various kinds of protocols, including electronic voting
protocols, certified email protocols, and zero-knowledge protocols. It has been used as a back-end for the tool
TULAFALE implemented at Microsoft Research Cambridge, which verifies web services protocols. It has also
been used as a back-end for verifying implementations of protocols in F# (a dialect of ML included in .NET),
by Microsoft Research Cambridge and the joint INRIA-Microsoft research center.

PROVERIF is freely available on the web, at www.proverif.ens.fr, under the GPL license.

5.5. CryptoVerif
Participant: Bruno Blanchet [correspondent].

CRYPTOVERIF (www.cryptoverif.ens.fr) is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CRYPTOVERIF can prove:

• secrecy [73];

• correspondences [72], which include in particular authentication.

CRYPTOVERIF provides a generic mechanism for specifying the security assumptions on cryptographic
primitives, which can handle in particular symmetric encryption, message authentication codes, public-key
encryption, signatures, hash functions.

The generated proofs are proofs by sequences of games, as used by cryptographers. These proofs are valid
for a number of sessions polynomial in the security parameter, in the presence of an active adversary.
CRYPTOVERIF can also evaluate the probability of success of an attack against the protocol as a function
of the probability of breaking each cryptographic primitive and of the number of sessions (exact security).

CRYPTOVERIF is still at a rather early stage of development, but it has already been used for a study of
Kerberos in the computational model. It is also used as a back-end for verifying implementations of protocols
in F# at Microsoft Research Cambridge and at the joint INRIA-Microsoft research center.

CRYPTOVERIF is freely available on the web, at www.cryptoverif.ens.fr, under the CeCILL license.

http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/

8 Activity Report INRIA 2009

6. New Results

6.1. Space Software Validation using Abstract Interpretation
Participants: Olivier Bouissou [CEA LIST], Éric Conquet [ESA - ESTEC], Patrick Cousot, Radhia Cousot,
Jérôme Feret, Khalil Ghorbal [CEA LIST], Éric Goubault [CEA LIST], David Lesens [Astrium ST], Laurent
Mauborgne, Antoine Miné, Sylvie Putot [CEA LIST], Xavier Rival, Michel Turin [GTI6].

In [20], we report the results of the ESA funded project (see 7.2) on the use of abstract interpretation to
validate critical real-time embedded space software. Abstract interpretation is industrially used since several
years, especially for the validation of the Ariane 5 launcher. However, the limitations of the tools used so far
prevented a wider deployment. Astrium Space Transportation, CEA, and ENS have analyzed the performances
of two recent tools on a case study extracted from the safety software of the ATV:

• ASTRÉE, developed by ENS and CNRS, to check for run-time errors,

• FLUCTUAT, developed by CEA, to analyze the accuracy of numerical computations.

The conclusion of the study is that the performance of this new generation of tools has dramatically increased
(no false alarms and fine analysis of numerical precision).

Thanks to a case study representative of the software developed at Astrium ST, the results of this study will
be applicable to any type of embedded critical real-time space software (launchers, satellites, spacecrafts,
and space probes) developed in C. They will improve the quality of software (fewer residual bugs) and will
at the same time dramatically decrease the costs of robustness testing. The study has also hinted towards
some directions of improvement for the tools. As a conclusion, the Technology Readiness Level (TRL) for
ASTRÉE and FLUCTUAT on space software is evaluated between 4 (component and/or breadboard validation
in laboratory environment) and 5 (component and/or breadboard validation in relevant environment).

6.2. Why does Astrée scale up?
Participants: Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival.

ASTRÉE was the first static analyzer able to prove automatically the total absence of runtime errors of
actual industrial programs of hundreds of thousand lines. What makes ASTRÉE such an innovative tool is
its scalability, while retaining the required precision, when it is used to analyze a specific class of programs:
that of reactive control-command software.

In [14], we discuss the important choice of algorithms and data-structures we made to achieve this goal.
However, what really made this task possible was the ability to also take semantic decisions, without
compromising soundness, thanks to the abstract interpretation framework. We discuss the way the precision of
the semantics was tuned in ASTRÉE in order to scale up, the differences with some more academic approaches
and some of the dead-ends we explored. In particular, we show a development process which was not specific
to the particular usage ASTRÉE was built for, hoping that it might prove helpful in building other scalable
static analyzers.

6.3. Design of the Apron Library
Participants: Bertrand Jeannet [INRIA Rhône-Alpes], Antoine Miné.

http://www.astree.ens.fr/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/index.html
http://www.astree.ens.fr/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/index.html
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

Project-TeamAbstraction 9

In [25], we describe APRON, a freely available library dedicated to the static analysis of the numerical variables
of programs by abstract interpretation (5.2). Its goal is to provide analysis implementers with reference
implementations of classic domains, encourage the research in new numerical abstract domains, and provide a
teaching and demonstration tool to disseminate knowledge on abstract interpretation. The tool paper describes
the different components of APRON and, more importantly, its unique design philosophy. The core idea is
that the API corresponds to a concrete semantics that domains are free to approximate in any sound way,
thus enabling efficient abstract algorithms and incremental development with a precise control over trade-offs
between semantic precision, algorithmic cost, and human cost of domain development. This is in contrast
to other libraries that hardcode an abstract semantics into their API, which then becomes tied to particular
abstraction choices. Our concrete semantics is rich, allowing to express in particular non-linear and floating-
point computations, but we provide default abstractions for these complex cases. Indeed, APRON aims at
conciliating two kinds of users with conflicting requirements: analysis designers wishing for a rich, high-
level, and domain-independent API, and domain designers, wishing to implement a minimal set of low-level
entry-points.

6.4. Hierarchy of Semantics by Abstract Interpretation and Formal Proofs
Participant: Jeremy Leconte.

Using the Coq proof assistant, we define a maximal trace semantics describing terminating and diverging
computations of a simple functional language. This trace semantics is abstracted into a relational semantics
which is in turn abstracted into a reduction semantics. The soundness of each abstraction is proved along with
the equivalence between small steps and big steps of computation. An originality of the semantics is that it
defines finite behaviors inductively and infinite behaviors coinductively while it avoids the duplication of rules
common to the two behaviors. In consequence the semantics definition is simplified as well as some proofs
that uses the definition.

This work is summarized in [61].

6.5. Semantics Design by Abstract Interpretation
The semantics of a programming language defines the semantics of its programs. The semantics of a program
formally defines all its possible executions in all possible execution environments. The theory of abstract
interpretation can be used to formally design an abstract semantics from a more concrete one (or inversely)
which yields different styles of semantics such as operational, relational, denotational, axiomatic semantics,
etc. Each such semantics describes program executions at different levels of abstraction. The latest results are
related abstract semantics of the lambda-calculus [12] and of resolution-based programming languages [15].

6.5.1. Bi-inductive Definitions and Bifinitary Semantics of the Eager Lambda-Calculus
Keywords: bi-inductive definition, big-step semantics, divergence, inductive definition, natural semantics,
operational semantics, relational semantics, small-step semantics, structural semantics.

Participants: Patrick Cousot, Radhia Cousot.

We have introduced an order-theoretic generalization of set-theoretic inductive definitions. This generalization
covers inductive, co-inductive, and bi-inductive definitions, including non-monotonic ones, and is preserved by
abstraction. This allows the structural operational semantics to describe simultaneously the finite/terminating
and infinite/diverging behaviors of programs. This is illustrated on the structural bifinitary semantics of the
call-by-value λ-calculus at various levels of abstraction including small/big-step trace/relational/operational
semantics [12].

6.5.2. Abstract Semantics of Resolution-Based Logic Languages
Keywords: Herbrand semantics, abstract semantics, bottom-up semantics, logic programming, parsing, s-
semantics, top-down semantics.

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/

10 Activity Report INRIA 2009

Participants: Patrick Cousot, Radhia Cousot, Roberto Giacobazzi [Universita’ degli Studi di Verona].

The abstract interpretation point of view on context-free grammars [80] has been extended to resolution-
based logic programs and proof systems in [15]. Starting from a transition-based small-step operational
semantics of PROLOG-like programs (akin to the Warren Machine), we consider maximal infinite derivations
for the transition system from most general goals. This semantics is abstracted by instantiation to terms and
furthermore to ground terms, following the so called c and s-semantics approach. Orthogonally, these sets
of derivations can be abstracted to SLD-trees, call patterns and models, as well as interpreters providing
effective implementations (such as PROLOG or lazy PROLOG). These semantics can be presented in bottom-
up fixpoint form. This abstract interpretation-based construction leads to classical bottom-up semantics (such
as the s-semantics of computed answers of Giorgio Levi, the c-semantics of correct answers of Keith Clark,
and the minimal-model semantics of logical consequences of Maarten van Emden and Robert Kowalski). The
approach is general and can be applied to infinite and top-down semantics.

6.6. Verification of Security Protocols in the Formal Model
The formal model of protocols, or Dolev–Yao model is an abstract model in which messages are represented
by terms. Our protocol verifier PROVERIF relies on this model. This year, we have written a book chapter on
the resolution algorithm at the heart of PROVERIF and have implemented several extensions of PROVERIF.

6.6.1. Book Chapter on Using Horn Clauses for the Verification of Security Protocols
Keywords: Horn clauses, automatic verification, resolution, security protocols.

Participant: Bruno Blanchet.

We have written a book chapter [32] that introduces the theory behind the protocol verifier PROVERIF. It
explains the abstract representation of protocols by Horn clauses used by PROVERIF. It also presents and
proves correct the resolution algorithm that is used to determine whether a fact is derivable from these clauses.
From this information, security properties of the protocol can be inferred; we focus on secrecy in this chapter,
but this method can also prove other security properties, including authentication and process equivalences.

6.6.2. Extensions of ProVerif
Keywords: attack reconstruction, automatic verification, documentation, interface, security protocols.

Participants: Bruno Blanchet, Ben Smyth.

In the frame of a contract with CELAR (see Section 7.4), we have implemented several extensions of
PROVERIF.

We have implemented the reconstruction of attacks against injective correspondences. Injective correspon-
dences are properties of the form: for each execution of a certain event e1, there is a distinct execution of
another event e2. PROVERIF could already reconstruct attacks in which e1 is executed without e2 being ex-
ecuted (which also contradict a non-injective correspondence); we have extended it to reconstruct attacks in
which e1 is executed twice and e2 is executed only once.

We have also improved the interface of PROVERIF. We have implemented a new front-end with types,
parametric processes, function macros, and specific constructions for representing tables of keys. The goal
of this new front-end is to make it easier for users to model protocols, and to detect some bugs in protocol
specifications (in particular thanks to typing). This input language is also closer to the one of CRYPTOVERIF,
so that many examples of protocols can be given to both tools with no or little modification.

Finally, we are currently writing a more detailed documentation of PROVERIF, including a tutorial with
examples of protocols, to facilitate its access to users who are not experts in the pi-calculus or formal methods.

http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.proverif.ens.fr/

Project-TeamAbstraction 11

6.7. Verification of Security Protocols in the Computational Model
The computational model of protocols considers messages as bitstrings, which is more realistic than the formal
model, but also makes the proofs more difficult. Our verifier CRYPTOVERIF is sound in this model. This year,
we have continued our case study of Kerberos, have built a compiler from CRYPTOVERIF specifications to
implementations of protocols, and have implemented extensions of CRYPTOVERIF.

6.7.1. Computationally Sound Mechanized Proofs for Basic and Public-Key Kerberos
Keywords: Kerberos, automatic verification, computational model, key usability, security protocols.

Participants: Bruno Blanchet, Aaron Jaggard [Rutgers University], Jesse Rao, Andre Scedrov [University of
Pennsylvania], Joe-Kai Tsay [Ruhr-University Bochum].

We have extended our computationally sound analysis of Kerberos 5 with CRYPTOVERIF [74]. In particular,
we have extended our definition of key usability from IND-CCA2 key usability to INT-CTXT (ciphertext
integrity) key usability, and we have proved that the session keys of Kerberos satisfy this new definition. This
work was presented in [28].

6.7.2. Automatic Translation from CryptoVerif Specifications to Implementations
Keywords: automatic verification, compilation, computational model, implementations, security protocols.

Participant: David Cadé.

We have implemented a compiler [44][29] that takes a CryptoVerif specification and generates an implementa-
tion of the protocol in OCaml. The goal of this work is to obtain implementations of security protocols proved
secure in the computational model.

In future works, we will prove that our compiler is correct, that is, the semantics of the generated code
corresponds to the semantics of the specification. Therefore, if CryptoVerif can prove a property on the
protocol, then the implementation will also satisfy this property.

6.7.3. Extensions of CryptoVerif
Keywords: automatic verification, computational model, security protocols.

Participant: Bruno Blanchet.

We have extended CRYPTOVERIF in order to handle the computational Diffie–Hellman assumption, which
allows us to prove a signed Diffie–Hellman protocol in the random oracle model, for instance. We allow
manually guided elimination of collisions between random numbers; this extension is particularly helpful for
passwords: passwords have a non-negligible probability of being guessed, so the automatic elimination of
collisions for passwords often leads to unacceptably large probabilities of attacks. We also allow the manual
insertion of events, whose probability of execution is later bounded by CRYPTOVERIF. Thanks to these
extensions, we plan to prove the AuthA password-based key exchange protocol (a variant of EKE, Encrypted
Key Exchange).

6.8. Verification of Security Protocols: Formal Model and Computational
Model
Participants: Martín Abadi [Microsoft Research, Silicon Valley and University of California, Santa Cruz],
Bruno Blanchet, Hubert Comon-Lundh [INRIA, ENS Cachan, and RCIS, AIST].

In [19], we discuss progress in the verification of security protocols. Focusing on a small, classic example, the
Wide-Mouth Frog protocol, we stress the use of program-like representations of protocols, and their automatic
analysis in symbolic and computational models. Specifically, we compare two analyses of this protocol. The
first one relies on PROVERIF for verifying the protocol in the symbolic model and uses a recent computational
soundness theorem in order to infer security in the computational model. The second one uses CRYPTOVERIF
to obtain a direct proof in the computational model.

http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.cryptoverif.ens.fr/
http://www.proverif.ens.fr/
http://www.cryptoverif.ens.fr/

12 Activity Report INRIA 2009

6.9. Analysis of Biological Pathways
We have introduced a framework to design and analyze biological networks. We focus on protein-protein
interaction networks described as graph rewriting systems. Such networks can be used to model some signaling
pathways that control the cell cycle. The task is made difficult due to the combinatorial blow up in the number
of reachable species (i.e., non-isomorphic connected components of proteins).

6.9.1. Automatic Reduction of Differential Semantics
Keywords: biology, differential semantics, protein-protein interaction networks, verification.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana [Harvard Medical
School], Russel Harmer [Paris VII], Jean Krivine [Paris VII].

We have developed an abstract interpretation-based framework that enables the computation of scalable differ-
ential semantics for protein-protein interaction networks. This framework uses indistinguishably techniques in
order to detect and prove that some potential correlations between the states of some distinct parts in protein
species have no impact on the dynamic of the networks. These information drive the computation of an ab-
stract differential system over a set of self-consistent abstract observables. Results are sound since trajectories
in the abstract system are projections of the trajectories in the concrete system. This framework gives new
insights in order to describe evolution between systems: indeed several networks can be compared according
to the relative amount of control between protein-protein interactions.

This framework has been published in [17] and presented in [51], [50], and [53].

6.9.2. Automatic Reduction of Stochastic Semantics
Keywords: biology, protein-protein interaction networks, stochastic semantics, verification.

Participants: Jérôme Feret, Heinz Koeppl [École Polytechnique Fédérale de Lausanne], Tatjana Petrov [École
Polytechnique Fédérale de Lausanne].

We have proposed an abstract interpretation-based framework for reducing the state-space of stochastic
semantics for protein-protein interaction networks. Our approach consists in quotienting the state-space of
networks. Yet interestingly, we do not apply the widely-used strong lumpability criterion which imposes that
two equivalent states behave similarly with respect to the quotient, but a weak version of it. More precisely,
our framework detects and proves some invariants about the dynamics of the system: indeed the quotient of the
state-space is such that the probability of being in a given state knowing that this state is in a given equivalence
class, is an invariant of the semantics.

Then we have introduced an individual-based stochastic semantics (where each agent is identified by a unique
identifier) for the programs of a rule-based language and we use our abstraction framework to derive a sound
population-based semantics and a sound fragments-based semantics, which give the distribution of the traces
respectively for the number of instances of molecular species and for the number of instances of partially
defined molecular species. These partially defined species are chosen automatically thanks to a dependency
analysis which is also described in the paper.

Interestingly, we have showed that the criteria that we were using in [17] in order to abstract the differential
semantics were not sound regarding to the stochastic semantics. Indeed, we had to strengthen these criteria in
order to respect the stochastic semantics. As a consequence the reduction factor is far less impressive in the
case of the stochastic semantics. This reflects the fact that the stochastic semantics is a much more expressive
and interesting object than the differential semantics and also that it is much more difficult to abstract.

This work has been presented in [55] and [56].

6.9.3. Rule Refinements
Keywords: biology, concurrency, protein-protein interaction networks, refinements.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Russel Harmer [Paris VII], Jean
Krivine [Harvard Medical School], Elaine Murphy [University of Edinburgh].

Project-TeamAbstraction 13

We have proposed a formal framework to refine rule-based protein-protein interaction networks while pre-
serving their stochastic and their differential semantics. Refinements is a key process in rule-based modeling.
Refining an interaction allows tuning the kinetics of an interaction according to some constraints in the context
of the interacting proteins.

In [84], we had proposed a framework to make homogeneous refinements. In such a homogeneous refinement,
the accuracy of the refinement is the same for each protein of a given type. In [34], we have extended this
framework in order to make heterogeneous refinements, where each agent in a given pattern can be refined
independently.

6.9.4. Investigation of a Biological Repair Scheme
Keywords: biology, protein-protein interaction networks, refinements.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana.

In [23], we investigated an interaction pattern for the allocation of a scarce biological resource where and
when it is needed. It is entirely based on a mass action stochastic dynamics. Domain-domain binding plays a
crucial role in the design of the pattern which we therefore present using a rule-based approach where binding
is an explicit primitive. We also use a series of refinements, starting from a very simple interaction set, which
we feel gives an interesting and intuitive rationale for the working of the final repair scheme.

6.9.5. Meta-Language
Keywords: biology, concurrency, protein-protein interaction networks, refinements.

Participants: Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana [Harvard Medical
School], Russel Harmer [Paris VII], Jean Krivine [Harvard Medical School].

Rule-based modeling has already proved to be successful for taming the combinatorial complexity, typical
of cellular signaling networks, caused by the combination of physical protein-protein interactions and mod-
ifications that generate astronomical numbers of distinct molecular species. However, traditional rule-based
approaches, based on an unstructured space of agents and rules, remain susceptible to other combinatorial
explosions caused by mutated and/or splice variant agents, that share most but not all of their rules with their
wild-type counterparts; and by drugs, which must be clearly distinguished from physiological ligands.

In [16], we define a syntactic extension of Kappa, an established rule-based modeling platform, that enables
the expression of a structured space of agents and rules that allows us to express mutated agents, splice
variants, families of related proteins and ligand/drug interventions uniformly. This also enables a mode of
model construction where, starting from the current consensus model, we attempt to reproduce in numero the
mutational—and more generally the ligand/drug perturbational—analyses that were used in the process of
inferring those pathways in the first place.

6.10. Shape analysis of a realistic memory model
Participant: Vincent Laviron.

In [60], we have refined the shape analyzer Xisa so as to use a new memory model featuring pointer arithmetic
and union types.

6.11. Checkmate: a Generic Static Analyzer of Java Multithreaded Programs
Participant: Pietro Ferrara.

14 Activity Report INRIA 2009

In [24], we present Checkmate, a generic static analyzer of Java multithreaded programs based on the abstract
interpretation theory. It supports all the most relevant features of Java multithreading, as dynamic unbounded
thread creation, runtime creation of monitors, and dynamic allocation of shared memory. We implement a
wide set of properties, from the ones interesting also for sequential programs, e.g. division by zero, to the ones
typical of multithtreaded programs, e.g. data races. We analyze several external case studies and benchmarks
with Checkmate, and we study the experimental results both in term of precision and efficiency. It turns out that
the analysis is particularly accurate and we are in position to analyze programs composed by some thousands
of statements and a potentially infinite number of threads. As far as we know, Checkmate is the first generic
static analyzer of Java multithreaded programs.

6.12. Static Analysis via Abstract Interpretation of Multithreaded Programs
Participant: Pietro Ferrara.

Pietro Ferrara has written his PhD on static analysis of multithreaded programs via abstract interpretation. In
this PhD, the design of a generic analyzer for multithreaded programs is presented. First of all, the happens-
before memory model (as an over-approximation of the Java memory model) in fixpoint form is defined
and we abstract it with a computable semantics. It is shown how to design a computable abstract semantics,
and the correctness of the resulting analysis is proved in a formal way. Then we define and abstract a new
property focused on the non-deterministic behaviors due to multithreading, e.g. the arbitrary interleaving
during the execution of different threads. Different levels of determinism are defined, relating this property to
the presence of data races. This theoretical framework is applied to Java. In particular, a concrete semantics of
bytecode language is defined following its specification. Then it is abstracted in order to track the information
required by the analysis of multithreaded programs. The core is an alias analysis that approximates references
in order to identify threads, to check the accesses to the shared memory, and to detect when two threads
own a common monitor thereby inferring which parts of the code cannot be executed in parallel. The generic
analyzer described above has been fully implemented, leading to Checkmate, the first generic analyzer of
Java multithreaded programs. Some experimental results are reported and deeply studied. An additional
contribution is about the extension of an existing industrial generic analyzer, Clousot, to the checking of
buffer overrun. It turns out that this analysis is scalable and precise. In summary, we present an application of
an existing, industrial, and generic static analyzer to a property of practical interest, showing the strength of
this approach in order to develop useful tools for developers.

Pietro Ferrara’s report [11] summarizes his work in this topic. He defended his PhD on May 22, 2009.

6.13. SubPolyhedra: A (more) scalable approach to infer linear inequalities
Participants: Vincent Laviron, Francesco Logozzo [Microsoft Research, Redmond].

In [27], we introduce Subpolyhedra (SubPoly) a new numerical abstract domain to infer and propagate linear
inequalities. SubPoly is as expressive as Polyhedra, but it drops some of the deductive power to achieve
scalability. SubPoly is based on the insight that the reduced product of linear equalities and intervals produces
powerful yet scalable analyses.

Precision can be recovered using hints. Hints can be automatically generated or provided by the user in the
form of annotations.

We implemented SubPoly on the top of Clousot, a generic abstract interpreter for .Net. Clousot with SubPoly
analyzes very large and complex code bases in few minutes. SubPoly can effciently capture linear inequalities
among hundreds of variables, a result well-beyond state-of-the-art implementations of Polyhedra.

6.14. Refining Abstract Interpretation-based Static Analyses with Hints
Participants: Vincent Laviron, Francesco Logozzo [Microsoft Research, Redmond].

The existing approaches for refining static analyses focus on the refinement either of the elements of abstract
domains or of the transfer functions.

Project-TeamAbstraction 15

In [26], we focus our attention on the loss of precision induced by abstract domain operations. We introduce a
new technique, hints, which allows to systematically refine the operations defined over elements of an abstract
domain. We formally define hints in the abstract interpretation theory, we prove their soundness, and we
characterize two families of hints: syntactic and semantic.

6.15. Approximated Inference of Linear Invariants
Participant: Axel Simon.

The Two-Variable-Per-Inequality abstract domain can be used to infer linear invariants of the form
axi + bxj ≤ c where a, b, c ∈ N and xi, xj are two (program) variables. The domain is more efficient than
the classic polyhedra domain and more expressive than the Octagon domain. A journal version [18] of the
previous conference paper [85] has been accepted pending minor revisions.

6.16. An Abstract Domain to Infer Interval Linear Relationships
Participants: Liqian Chen, Antoine Miné, Ji Wang [National Laboratory for Parallel and Distributed Process-
ing, Changsha, P. R. China], Patrick Cousot.

In previous work [75], we proposed a sound floating-point version of the polyhedron abstract domain.
Soundness was achieved despite rounding errors by leveraging previous works on rigorous linear programming
and designing a version of Fourier–Motzkin elimination using interval arithmetics internally.

In [21], we propose an alternate construction where intervals appear explicitly in the abstract representation.
Hence, the domain, so called interval polyhedra, can represent conjunctions of constraints of the form
Σk[ak; bk]xk ≤ c. Thus, we avoid the loss of precision that occurred in our previous work when converting
the interval constraints that appeared naturally into scalar ones at the end of each operation. An added
benefit is that this domain is strictly more expressive than regular polyhedra, as it can express some non-
convex and even unconnected sets. The operations are based on interval linear programming and an interval
variant of Fourier–Motzkin elimination, and can be implemented soundly using only floating-point arithmetics,
thus ensuring a good time and memory complexity (in particular, we are free of the issue of coefficient
explosion occurring in classic implementations that employ arbitrary precision exact rationals). Our prototype
implementation shows encouraging preliminary implementation results. In particular, it can prove some
disjunctive and non-linear properties out of the scope of the classic polyhedra domain.

7. Contracts and Grants with Industry
7.1. ES_PASS Contract

ES_PASS (Embedded Software Product-based ASSurance) is an ITEA European project grouping technology
and tool providers as well as industrial end-users in the field of embedded software for automotive, avionic,
railway and space transportation (AbsInt Angewandte Informatik GmbH, Airbus France, CEA/LIST, CS
Systèmes d’Information, DaimlerChrysler AG, EADS Astrium SAS, EADS Innovation Works, École Normale
Supérieure (ENS), Esterel technologies, FéRIA (IRIT & ONERA), Fraunhofer FIRST, Institut für Bahntechnik
(IFB), Saarland University, Siemens VDO, Technical University Munich, Technical University of Madrid,
Thales Avionics, Thales Transport). The objective of the participation of the ABSTRACTION project-team to
ES_PASS is to confront the ASTRÉE analyzer to a wide range of industrial applications in order to evaluate
its practical applicability and prepare its industrialization. Patrick Cousot is the principal investigator for this
action.

7.2. SSVAI Contract
SSVAI (Space Software Validation using Abstract Interpretation) is an ESA-ITI project (European Space
Agency’s Innovative Triangle Initiative) with Astrium Space Transportation, the CEA, the ENS, and the École
polytechnique. The activity of the ABSTRACTION project-team in this project is mainly to apply the ASTRÉE
static analyzer to the MSU (Monitoring Software Unit) code of the ATV (Automated Transfer Vehicle) for the
ISS (International Space Station).

http://www.astree.ens.fr/
http://www.astree.ens.fr/

16 Activity Report INRIA 2009

Upon completion of the project, we successfully analyzed several versions of a Scade model of the MSU
controller compiled into C (including versions generated by different Scade compilers, and using different
generation options). The study demonstrated the ability of ASTRÉE to handle Scade-generated code. It showed
that, although the library of abstract domains built in ASTRÉE from our experience on avionics software is
sufficient in some cases, achieving zero false alarms would require the development of new abstract domains
adapted to the aspects of control theory specific to space control. However, it also showed that this could be
mitigated by introducing a few numerical limiters at strategic locations in the code. Patrick Cousot and Radhia
Cousot are the principal investigators for this action.

7.3. Asbaprod Contract
ASBAPROD (ASsurance BAsée PRODduit) is an industrial project on static program analysis by abstract
interpretation with Airbus France which objective is determined annually.

The main work in 2009 consisted in:

• designing a generic frontend for our translation validator (see 5.3); this way, end-users can implement
new frontends and use them together with the translation validator in order to certify the compilation
of safety critical software written in arbitrary languages (the prover and abstraction phases are
common to the generic interface and the C version of the translation validator);

• providing a manual for the translation validator (see 5.3);

• designing a backward analyzer so as to help alarms diagnostic; in the case the forward analysis
raises an alarm, the backward analysis computes automatically a refined set of invariants, which
characterize better the set of program executions that may cause an error at the alarm point; in some
cases it is even possible to prove that set empty (i.e., that the alarm was in fact a false alarm);

• enriching the ASTRÉE Analyzer (see 5.1), so that all floating-points errors due to uninitialized floats
can be detected, especially those that are due to NaN or infinities coming from unitialized or volatile
(sensors) values.

Patrick Cousot is the principal investigator for this action.

7.4. Contract with CELAR
In the frame of a contract with CELAR (Centre d’Électronique de l’Armement), we implement extensions of
PROVERIF in order to make it easier to use: extensions to attack reconstruction, improvements to the user
interface and to the documentation. Bruno Blanchet is the principal investigator for this action.

7.5. Survol project
SURVOL is an FNRAE (Fondation de Recherche pour l’Aéronautique et l’Espace) project (2008–2011) with
the University Paul Sabatier Toulouse III and the ENS. The objective is to study automatic verification
techniques for embedded robust and stable control software in aerospace still functioning in degraded mode
and based on non-smooth optimization and linear matrix inequality (LMI) programming. Patrick Cousot and
Radhia Cousot are the principal investigators for this action.

7.6. Ascert project
ASCERT is an FNRAE (Fondation de Recherche pour l’Aéronautique et l’Espace) project (2009–2012)
between the INRIA-Bretagne Atlantique, the INRIA Rhône-Alpes, the INRIA Paris-Rocquencourt, and the
ENS. The goal of this project is to study the use of theorem provers so as to formally certify static analyses.
Several approaches are considered: the certification of the static analyzer (once and for all) versus the
independent certification of each analyzer run. The project will focus on the certification of some parts of the
APRON library and the ASTRÉE analyzer by means of the COQ theorem prover. Patrick Cousot and Radhia
Cousot are the principal investigators for this action.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.proverif.ens.fr/
http://www.math.univ-toulouse.fr/~noll/frae.html
http://www.fnrae.org/
http://ascert.gforge.inria.fr/index.html
http://www.fnrae.org/
http://apron.cri.ensmp.fr/library/
http://www.astree.ens.fr/

Project-TeamAbstraction 17

7.7. Sardanes project
SARDANES is an FNRAE (Fondation de Recherche pour l’Aéronautique et l’Espace) project (2009–2012)
between the University of Perpignan and the ENS. SCADE is widely used to write critical embedded software,
as a specification and verification language. The semantics of SCADE uses real arithmetics whereas it is
compiled into a language that uses floating-point arithmetics. The goal of the SARDANES project is to use
expression transformation so as to ensure that the numerical properties of the programs is preserved during the
compilation. Patrick Cousot and Radhia Cousot are the principal investigators for this action.

7.8. Astrée exploitation license agreement
In February 2009 was signed an exploitation license agreement between CNRS, École Normale Supérieure,
and AbsInt Angewandte Informatik GmbH for the industrialization of the ASTRÉE analyzer. ASTRÉE should
be commercially available from AbsInt in December 2009. Patrick Cousot is the scientific contact.

8. Other Grants and Activities

8.1. Controvert ANR
The CONTROVERT project (2005–2008) brings together control-theory researchers of ONERA/DCSD and the
Université Paul Sabatier of Toulouse and computer scientists from the ABSTRACTION project-team. A first
objective is to bridge the gap between control-theory-based methods for analyzing properties of models of
systems and their controllers (e.g. robustness) by continuous Lagrangian overapproximation of the system
trajectories and abstract-interpretation-based methods for analyzing control/command programs (e.g. safety
properties) in open loop. A second objective is to use the results of the control-command theoretic analysis
of the closed loop to support the program analysis in the context of the controlled system. Patrick Cousot and
Radhia Cousot are the principal investigators for this action.

8.2. FormaCrypt ARA
The ABSTRACTION project-team coordinates the FORMACRYPT project, on “formal proofs and probabilistic
semantics in cryptography” (project web site: http://www.di.ens.fr/~blanchet/formacrypt/index.html). This
project is financed by the Agence Nationale pour la Recherche, in the frame of the Action de Recherche Amont
Sécurité, Systèmes embarqués et Intelligence Ambiante (ARA SSIA). This project of a duration of 3 years and
half (January 2006–July 2009) brings together researchers from the INRIA project-teams ABSTRACTION and
CASCADE (LIENS, Laboratoire d’Informatique de l’École Normale Supérieure), SECSI (LSV, Laboratoire
Spécification et Vérification, ENS Cachan), and CASSIS (LORIA, Laboratoire Lorrain de Recherche en
Informatique et ses Applications), as well as Martín Abadi as scientific advisor. The goal of this project is to
bridge the gap between the formal and computational models of security protocols, so as to obtain automatic
proofs of protocols valid in the computational model. This project has led to 39 publications in international
conferences, workshops, and journals, to the implementation of two tools, CRYPTOVERIF and an extension of
AVISPA, and strongly contributed to the organization of a series of international workshops (the workshops on
Formal and Computational Cryptography, FCC). Bruno Blanchet is the principal investigator for this action.

8.3. Thésée ANR
The objective of the THÉSÉE project (2006–2009) is to develop static analysis techniques for proving the
absence of runtime errors in asynchronous (real-time) programs. The project is in cooperation with EDF and
Airbus France. The main problem is to scale up traditional sequential static analysis methods so as to cope
with the combinatorial explosion resulting form the interleaving of communications and interactions through
shared variables in a parallel execution of the asynchronous processes. Patrick Cousot and Radhia Cousot are
the principal investigators for this action.

http://perso.univ-perp.fr/mmartel/sardanes.html
http://www.fnrae.org/
http://perso.univ-perp.fr/mmartel/sardanes.html
http://www.absint.com/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/astree/
http://www.absint.com/
http://www.di.ens.fr/~blanchet/formacrypt/
http://www.di.ens.fr/~blanchet/formacrypt/index.html
http://www.cryptoverif.ens.fr/

18 Activity Report INRIA 2009

8.4. AbstractCell ANR
The project ABSTRACTCELL (2009–2013) is sponsored by the ANR-Chair of Excellence program 2009. The
overall goal of this project is to investigate formal foundations and computational aspects of both the stochastic
and differential approximate semantics for rule-based models. We want to relate these semantics formally,
then we want to design sound approximations for each of these semantics (by abstract interpretation) and
investigate scalable algorithms to compute the properties of both the stochastic and the differential semantics.
Jérôme Feret is the principal investigator for this project.

9. Dissemination

9.1. Interaction with the Scientific Community
9.1.1. Academy Members, Professional Societies

Patrick Cousot is a member of the Academia Europaea.

Patrick Cousot is member of the IFIP working group WG 2.3 on programming methodology.

Patrick Cousot is a member of the Board of Trustees and of the Scientific Advisory Board of the IMDEA-
Software (Instituto madrileño de estudios avanzados—Research Institute in Software Development Technol-
ogy), Madrid, Spain and of the Asian Association for Foundations of Software (AAFS),

9.1.2. Collective Responsibilities
Patrick Cousot is director of studies in computer science at ENS and member of the commission de spécialistes
(hiring committee) of ENS.

Radhia Cousot was head of the Abstract Interpretation group at École Polytechnique under a convention
between the CNRS, the École Normale Supérieure and the École Polytechnique until April 1st, 2009.

Laurent Mauborgne is assistant director of studies in computer science at ENS and member of the commission
de spécialistes (hiring committee) of ENS and VERIMAG laboratory in Grenoble.

Patrick Cousot, Laurent Mauborgne, Xavier Rival, Élodie-Jane Sims, and Antoine Miné are members of the
lab council of the Laboratoire d’Informatique de l’École Normale Supérieure.

9.1.3. Editorial Boards and Program Committees
Bruno Blanchet is associate editor of the International Journal of Applied Cryptography (IJACT).

Bruno Blanchet was member of the program committee of the IEEE Computer Security Foundations Sympo-
sium (CSF 2009), the Workshop on Formal and Computational Cryptography (FCC 2009), the 13th Annual
Asian Computing Science Conference (ASIAN 2009), and the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2010).

Patrick Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal (HOSC,
Springer) and of the Journal of Computing Science and Engineering (JCSE, Kiise).

Patrick Cousot is member of the steering committees of the Static Analysis Symposium (SAS) and the
Verification, Model-Checking and Abstract Interpretation (VMCAI) international conference.

Patrick Cousot was member of the program committees of the 10th International Conference on Verification,
Model-Checking and Abstract Interpretation (VMCAI’09), the 12th International Conference on Hybrid
Systems: Computation and Control (HSCC’09), the Structural Operational Semantics (SOS’09) conference,
the 14th International Workshop on Formal Methods for Industrial Critical Systems (FMICS’09), the 7th IEEE
International Conference on Software Engineering and Formal Methods (SEFM’09), the 11th International
Conference on Verification, Model Checking and Abstract Interpretation (VMCAI 2010), and the 19th
European Symposium on Programming (ESOP’10).

http://www.di.ens.fr/~feret/abstractcell/
http://www.acadeuro.org/
http://www.imdea.org/
http://www.imdea.org/Institutos/Software/tabid/125/Default.aspx
http://aafs.score.cs.tsukuba.ac.jp/
http://www.brics.dk/~hosc/
http://jcse.kiise.org/

Project-TeamAbstraction 19

Radhia Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal (HOSC,
Springer).

Radhia Cousot was member of the program committees of the 16th International Static Analysis Symposium
(SAS’09), the International Workshop on Abstractions for Petri Nets and Other Models of Concurrency
(APNOC’09), the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM’09).
She is on the program committees of the International Workshop on Abstractions for Petri Nets and Other
Models of Concurrency (APNOC’10), the ACM SIGPLAN 2010 Conference on Programming Language
Design and Implementation (PLDI’10), the 38th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL’11), and the 20th European Symposium on Programming (ESOP’11). Radhia
Cousot is co-PC-chair of the 17th International Static Analysis Symposium (SAS’10) and co-general chair of
the 2nd International Workshop on Numerical and Symbolic Abstract Domains (NSAD’10), the 1st Workshop
on Static Analysis and Systems Biology SASB’10, and the workshop on Tools for Automatic Program
AnalysiS (TAPAS’10).

Jérôme Feret was member of the program committee of the Fifth International Workshop on Developments in
Computational Models (DCM 2009) and is co-PC-chair of the 1st Workshop on Static Analysis and Systems
Biology (SASB’10).

Laurent Mauborgne is a member of the program committee of the 17th International Static Analysis Sympo-
sium (SAS’10).

Antoine Miné is co-PC-chair of the Second International Workshop on Numerical and Symbolic Abstract
Domains (NSAD’10).

Xavier Rival was member of the program committee of the eleventh Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2010), the COCV 2009 Workshop (Compiler Optimization
meets Compiler Verification), and co-PC chair of the workshop on Tools for Automatic Program AnalysiS
(TAPAS’10).

9.1.4. PhD and Habilitation Juries
Bruno Blanchet was reviewer of the PhD thesis of Antoine Mercier (ENS Cachan, December 2009).

Patrick Cousot was in the jury of the PhD thesis of Colas Le Guernic (University of Grenoble, 28 October
2009) and Jean-Baptiste Tristan (University of Paris 7, 6 November 2009).

Radhia Cousot was superviser of the PhD thesis of Pietro Ferrara defended at École polytechnique on 22 May
2009. She was in the jury of the PhD thesis of Anna Zaks (New York University, 29 April 2009).

Jérôme Feret was in the jury of the PhD thesis of Sylvain Pradalier (École Polytechnique and Università di
Bologna, September 2009).

9.2. Teaching
9.2.1. Supervision of PhDs and Internships

Patrick Cousot and Antoine Miné supervised the research apprenticeship of Liqian Chen.

Radhia Cousot supervised the PhD thesis of Pietro Ferrara.

Bruno Blanchet supervised the M2 internship [44] of David Cadé (March–July 2009) and is supervising his
PhD thesis (September 2009–). Bruno Blanchet is supervising the M2 internship of Miriam Paiola (Università
di Padova, September 2009–April 2010) and a research internship of Ben Smyth (PhD student, University of
Birmingham, September 2009–February 2010).

Patrick Cousot and Antoine Miné supervised the research apprenticeship of Éric Frichot (first year ENSIMAG
student, July 2009).

Patrick Cousot supervised the internship of Jérémy Leconte [61] (MPRI M2, 4 September 2009).

Xavier Rival supervised the M2 internship of Vincent Laviron [60] (March–August 2009).

http://www.brics.dk/~hosc/

20 Activity Report INRIA 2009

9.2.2. Graduate Courses
Bruno Blanchet taught 6 hours in the M2 course on Formal methods for concurrency, of Paolo Baldan and
Silvia Crafa, Università di Padova, March 2009 [38].

Patrick Cousot and Radhia Cousot were responsible of the M2 course “Abstract interpretation: application
to verification and static analysis” at the MPRI (Master Parisien de Recherche en Informatique) [37]. Julien
Bertrane, Patrick Cousot, Jérôme Feret, and Antoine Miné participated in the course [37].

Jérôme Feret taught 19 hours in course on “Domain Specific Abstract Interpretation” at the ROPAS (Research
on Program Analysis System) group graduate students at Seoul National University [52].

Pietro Ferrara taught 8 hours in the M2 course on Program Analysis and Verification, of Agostino Cortesi,
Università di Venezia, March 2009 [57].

9.2.3. Undergraduate Courses
Julien Bertrane gave practical classes of “Programming Languages and Compilation” [36] at the École
Normale Supérieure.

Patrick Cousot gave the M1 course “Foundations of abstract interpretation: application to semantics” [49] at
the École Normale Supérieure. He gave introductory course to Abstract Interpretation in the Program and
Model Analysis (Graduiertenkolleg Programm- Und Modell-Analyse) course common to the Technische Uni-
versität München and the Ludwig-Maximilians-Universität München, Munich, Germany [46]; the Summer
School on Theory and Practice of Language Implementation University of Oregon, Eugene, Oregon, USA,
[45]; the Summer School Marktoberdorf 2009 on Logics and Languages for Reliability and Security, Markto-
berdorf, Germany [48]; and the Software verification course, ETH Zürich, Switzerland [47].

Laurent Mauborgne taught algorithmics courses for second year students (L3-M1 level) at École polytech-
nique, in cooperation with Jean-Marc Staeyert. He also gave a Static analysis [64] course for third year students
at École polytechnique (35 hours).

Xavier Rival gave training sessions on “Algorithmics and programming in Java” and on “Principles of
Programming Languages” at the École Polytechnique and a lecture on abstract interpretation and static
analysis at the École des Mines de Paris.

9.3. PhD theses
Pietro Ferrara defended his PhD on May 22, 2009 on static analysis via abstract interpretation of multithreaded
programs [11].

9.4. Participation in Conferences and Seminars
9.4.1. Participation in Conferences

VMCAI: International Conference on Verification, Model Checking and Abstract Interpretation (Savan-
nah, GA, USA, 18-20 January 2009).
Patrick Cousot, Radhia Cousot and Vincent Laviron attended the conference. Patrick Cousot gave
an invited talk (in last minute replacement of Alan Emerson) [22] and chaired a session. Vincent
Laviron presented [27].

PEPM: ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (Savannah, GA,
USA, 19–20 January 2009).
Radhia Cousot attended the conference.

Usable Verification: NSF workshop on “Usable Verification” (Savannah, GA, USA, 20 January 2009).
Patrick Cousot and Radhia Cousot gave an invited talk [31].

POPL: ACM Symposium on Principles of Programming Languages (Savannah, GA, USA, 21–23 January
2009).
Radhia Cousot attended the conference.

Project-TeamAbstraction 21

COCV: International Workshop “Compiler Optimization meets Compiler Verification” (York, IK, 22
March 2009).
Xavier Rival attended the conference and gave a one-hour invited lecture [66].

CC: International Conference on Compiler Construction (York, UK, 22–29 March 2009).
Xavier Rival attended the conference.

ESOP: European Symposium on Programming (York, UK, 25–27 March 2009).
Xavier Rival attended the conference.

CoSyProofs: Computational and Symbolic Proofs of Security, Spring School and French-Japanese col-
laboration workshop (Highashi Izu Peninsula, Japan, 6–9 April 2009).
Bruno Blanchet gave an invited talk [39].

MITACS: 2nd Canada-France Workshop on Foundations & Practice of Security (Grenoble, France, 31
May–5 June 2009).
Bruno Blanchet gave an invited talk [40].

APNOC: International Workshop on Abstractions for Petri Nets and Other Models of Concurrency (Paris,
France, 22 June 2009).
Radhia Cousot was invited speaker [30].

CAV: 21th International Conference on Computer Aided Verification (Grenoble, France, June 26–July 2,
2009).
Antoine Miné attended.

ASA: 3rd International Workshop on Analysis of Security APIs (Port Jefferson, NY, USA, 10–11 July
2009).
Bruno Blanchet and David Cadé attended the workshop.

ICALP: 36th International Colloquium on Automata, Languages and Programming (Rhodes, Greece, July
5–12, 2009).
Jérôme Feret attended the conference.

CSF: Computer Security Foundations Symposium (Port Jefferson, NY, USA, 8–10 July 2009).
Bruno Blanchet chaired a session. David Cadé attended the conference.

DCM: 5th International Workshop on Developments in Computational Models (Rhodes, July 11, 2009).
Jérôme Feret attended the workshop.

FCC: Workshop on Formal and Computational Cryptography (Port Jefferson, NY, USA, 11–12 July
2009).
Bruno Blanchet chaired a session. David Cadé presented [29].

SAS: 16th International Static Analysis Symposium (Los Angeles, CA, USA, 9–11 August 2009).
Antoine Miné presented [21]. Patrick Cousot and Radhia Cousot attended the conference. Radhia
Cousot chaired a session.

Ecrypt-II Summer School On Provable Security (Barcelona, Spain, 7–11 Sept. 2009).
Bruno Blanchet gave an invited talk [41].

GiorgioLevi Workshop “Logic and Energy: A Visionary Inspirator. A Tribute to Giorgio Levi for Forty
Years of Research” (23 October 2009). Patrick Cousot and Radhia Cousot gave an invited talk on
[15]

SEFM: 7th IEEE International Conference on Software Engineering and Formal Methods (Hanoi, Viet-
nam, 23–27 November 2009).
Pietro Ferrara presented [24].

APLAS: 7th Asian Symposium on Programming Languages and Systems (Seoul, Korea, 14–16 Decem-
ber 2009).
Vincent Laviron presented [26].

9.4.2. Invitations and Participation in Seminars
Julien Bertrane gave a seminar presenting his post-doc work “Developing temporal abstract domains that prove
the temporal specifications of reactive systems” at the university ECNU, Shanghai, China on September the
27th [35].

22 Activity Report INRIA 2009

Bruno Blanchet presented a talk on “CryptoVerif: A Computationally Sound Mechanized Prover for Crypto-
graphic Protocols” at the Università di Padova, Italy, March 2009 [42] and at the Stony Brook University, NY,
USA, July 2009 [43].

Patrick Cousot organizes the seminar “Semantics and Abstract Interpretation” at ENS.

Patrick Cousot visited the Technische Universität München and the Ludwig-Maximilians-Universität
München, Munich, Germany, 17–27 May 2009.

Jérôme Feret presented an abstract interpretation framework for analyzing qualitative properties of biological
pathways [54] in working group of the Laboratory of Nonlinear Systems (LANOS) at the École Polytechnique
de Lausanne. He presented an abstract interpretation framework for reducing differential semantics for
biological networks in the seminar of the CEA-list group [51], in the seminar of the Thrust in Reliable Software
Research (TRESOR) group at the École Polytechnique de Lausanne [50] and in a interdisciplinary seminar
of the department of Dynamics of Membrane Interactions in Normal et Pathological Cells (DIMNP) at the
University of Montpellier 2 [53].

Pietro Ferrara presented a talk on static analysis via abstract interpretation of multithreaded programs in
seminars at the Swiss Federal Institute of Technology Zurich (ETH Zurich) [59] and at IRISA [58].

Élodie-Jane Sims attended the DS-09301 Dagstuhl seminar on “Typing, Analysis and Verification of Heap-
Manipulating Programs” and gave a talk on pointer analysis and separation logic [71].

Antoine Miné gave a talk on the static analysis of run-time errors in parallel embedded C code at the seminar
of the “Laboratoire Preuves, Programmes et Systèmes,” Paris 7, France, Novembre 2009 [65].

Xavier Rival attended the ES_PASS workshop (Feb. 2009, Toulouse) and gave a talk on backward analysis
[69]. Xavier Rival gave a talk on abstract interpretation and shape analysis at the “Une demi-heure de Science”
Seminar at the Comité des Projets of Inria Rocquencourt [68]. Xavier Rival attended the “Fundamentals of
Communications and Networks” joint INRIA-Bell Labs Workshop, and gave a lecture on abstract interpreta-
tion and shape analysis [67]. Xavier Rival attended the DS-09301 Dagstuhl seminar on “Typing, Analysis and
Verification of Heap-Manipulating Programs” and gave a lecture on shape analysis [70].

Laurent Mauborgne was invited to give a talk on disjunctions in static analysis [62] at IMDEA-Software in
Madrid in april 2009. Laurent Mauborgne attended the final ES_PASS workshop (Oct. 2009) and gave a talk
on the new applications for ASTRÉE[63].

9.5. Short-Term Visitors
Chris Hankin (Imperial College, Mar. 2009), Roberto Giacobazzi (Università di Verona, Jun./Aug. 2009),
Daniel Kaestner (Absint, Jan./Fev./Mar. 2009), Stefana Nenova (Absint, Jan./Fev./Mar. 2009), Francesco
Ranzato (Università di Padova, Jun. 2009), Mooly Sagiv (Tel-Aviv University, Mar. 2009), Stephan Wilhelm
(Absint, Jan./Fev./Mar. 2009).

10. Bibliography
Major publications by the team in recent years

[1] B. BLANCHET. A Computationally Sound Mechanized Prover for Security Protocols, in "IEEE Transactions on
Dependable and Secure Computing", vol. 5, no 4, October–December 2008, p. 193–207.

[2] B. BLANCHET, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL.
A Static Analyzer for Large Safety-Critical Software, in "Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI’03), San Diego, California, USA", ACM Press,
June 7–14 2003, p. 196–207.

http://www.astree.ens.fr/

Project-TeamAbstraction 23

[3] P. COUSOT. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation,
in "Theoretical Computer Science", vol. 277, no 1–2, 2002, p. 47–103.

[4] P. COUSOT, R. COUSOT. Temporal Abstract Interpretation, in "Conference Record of the Twentyseventh
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, United States", ACM Press, New York, New York, United States, January 2000, p. 12–25.

[5] P. COUSOT, R. COUSOT. Systematic Design of Program Transformation Frameworks by Abstract Interpreta-
tion, in "Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, United States", ACM Press, New York, New York, United
States, January 2002, p. 178–190.

[6] P. COUSOT, R. COUSOT. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in "Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Los Angeles, California", ACM Press, New
York, NY, 1977, p. 238–252.

[7] J. FERET, V. DANOS, J. KRIVINE, R. HARMER, W. FONTANA. Internal coarse-graining of molecular systems,
in "Proceedings of the National Academy of Sciences", vol. 106, no 16, April 2009, p. 6453–6458 GB US .

[8] L. MAUBORGNE, X. RIVAL. Trace Partitioning in Abstract Interpretation Based Static Analyzers, in "European
Symposium on Programming (ESOP’05)", M. SAGIV (editor), Lecture Notes in Computer Science, vol. 3444,
Springer-Verlag, 2005, p. 5–20.

[9] A. MINÉ. The Octagon Abstract Domain, in "Higher-Order and Symbolic Computation", vol. 19, 2006, p.
31–100.

[10] X. RIVAL. Symbolic Transfer Functions-based Approaches to Certified Compilation, in "Conference Record
of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Venice, Italy", ACM Press, New York, New York, United States, 2004, p. 1–13.

Year Publications
Doctoral Dissertations and Habilitation Theses

[11] P. FERRARA. Static analysis via abstract interpretation of multithreaded programs, École Polytechnique of
Paris (France) and University "Ca’ Foscari" of Venice (Italy), May 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[12] P. COUSOT, R. COUSOT. Bi-inductive structural semantics, in "Information and Computation", vol. 207, no

2, 2009, p. 258–283.

[13] P. COUSOT, R. COUSOT. Grammar Semantics, Analysis, and Parsing by Abstract Interpretation, in "Theoret-
ical Computer Science", 2009, To appear.

[14] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL. Why does ASTRÉE scale up?, in
"Formal Methods in Systems Design", November 2009.

24 Activity Report INRIA 2009

[15] P. COUSOT, R. COUSOT, R. GIACOBAZZI. Abstract Interpretation of Resolution-Based Semantics, in
"Theoretical Computer Science", vol. 410, no 46, Nov. 2009 IT .

[16] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Rule-Based Modelling and Model Perturba-
tion., in "Transactions on Computational Systems Biology", vol. 11, 2009, p. 116-137 GB US .

[17] J. FERET, V. DANOS, J. KRIVINE, R. HARMER, W. FONTANA. Internal coarse-graining of molecular
systems, in "Proceedings of the National Academy of Sciences", vol. 106, no 16, April 2009, p. 6453–6458
GB US .

[18] A. SIMON, A. KING. The Two-Variable-Per-Inequality Abstract Domain, in "Higher Order and Symbolic
Computation", 2010 GB .

International Peer-Reviewed Conference/Proceedings

[19] M. ABADI, B. BLANCHET, H. COMON-LUNDH. Models and Proofs of Protocol Security: A Progress
Report, in "21st International Conference on Computer Aided Verification (CAV’09), Grenoble, France", A.
BOUAJJANI, O. MALER (editors), Lecture Notes in Computer Science, vol. 5643, Springer, June 2009, p.
35–49 US .

[20] O. BOUISSOU, É. CONQUET, P. COUSOT, R. COUSOT, J. FERET, K. GHORBAL, É. GOUBAULT, D.
LESENS, L. MAUBORGNE, A. MINÉ, S. PUTOT, X. RIVAL, M. TURIN. Space Software Validation using
Abstract Interpretation, in "Proceedings of the International Space System Engineering Conference on Data
Systems in Aerospace (DASIA 2009), Istambul, Turkey", vol. SP-669, ESA, May 2009, p. 1–7.

[21] L. CHEN, A. MINÉ, J. WANG, P. COUSOT. Interval Polyhedra: An Abstract Domain to Infer Interval Linear
Relationships, in "Proceedings of the 16th International Static Analysis Symposium (SAS’09), Los Angeles,
CA, USA", LNCS, vol. 5673, Springer, August 2009, p. 309–325 CN .

[22] P. COUSOT, R. COUSOT. Abstract-Interpretation-based Static Analysis of Safety-Critical Embedded Software
(invited talk), in "Verification, Model Checking, and Abstract Interpretation, Savannah, GA, USA", N. D.
JONES, M. MÜLLER-OLM (editors), 2009.

[23] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Investigation of a biological repair scheme,
in "Proceedings of the ninth Workshop on Membrane Computing, WMC9, Edinburgh, UK, 28–31 July 2008",
G. PAUN (editor), LNCS, no 5391, Springer, Berlin, Germany, 2009, p. 1–12 GB US .

[24] P. FERRARA. Checkmate: a Generic Static Analyzer of Java Multithreaded Programs, in "Proceedings of the
Seventh IEEE International Conference on Software Engineering and Formal Methods (SEFM 2009)", IEEE
Computer Society, November 2009, p. 169–178.

[25] B. JEANNET, A. MINÉ. Apron: A Library of Numerical Abstract Domains for Static Analysis, in "Proceedings
of the 21th International Conference on Computer Aided Verification (CAV 2009), Grenoble, France", Lecture
Notes in Computer Science, vol. 5643, Springer, June 2009, p. 661–667.

[26] V. LAVIRON, F. LOGOZZO. Refining Abstract Interpretation-Based Static Analyses with Hints, in "Proceed-
ings of the 7th Asian Symposium on Programming Languages and Systems (APLAS 2009), Seoul, Korea", Z.
HU (editor), Lecture Notes in Computer Science, vol. 5904, Springer, December 14-16 2009, p. 343-358 US .

Project-TeamAbstraction 25

[27] V. LAVIRON, F. LOGOZZO. SubPolyhedra: A (More) Scalable Approach to Infer Linear Inequalities, in "Pro-
ceedings of the 10th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2009), Savannah, GA, USA", N. D. JONES, M. MÜLLER-OLM (editors), Lecture Notes in Com-
puter Science, vol. 5403, Springer, January 18-20 2009, p. 229-244 US .

Workshops without Proceedings

[28] B. BLANCHET, A. D. JAGGARD, J. RAO, A. SCEDROV, J.-K. TSAY. Refining Computationally Sound
Mechanized Proofs for Kerberos, in "Workshop on Formal and Computational Cryptography (FCC 2009),
Port Jefferson, NY, USA", July 2009 US DE .

[29] D. CADÉ. From CryptoVerif Specifications to Computationally Secure Implementations of Protocols (Work in
Progress), in "Workshop on Formal and Computational Cryptography (FCC 2009), Port Jefferson, NY, USA",
July 2009.

[30] R. COUSOT. Abstraction and Approximation in Abstract Interpretation (Invited lecture), in "International
Workshop on Abstractions for Petri Nets and Other Models of Concurrency, Paris, France", N. SIDOROVA,
A. SEREBRENIK (editors), 22 june 2009.

[31] P. COUSOT, R. COUSOT. Scaling up with abstract interpretation, in "NSF Workshop on “Usable Verification”
(Amir Pnueli organizer), Savannah, GA, USA", 2009.

Scientific Books (or Scientific Book chapters)

[32] B. BLANCHET. Using Horn Clauses for Analyzing Security Protocols, in "Formal Models and Techniques for
Analyzing Security Protocols", V. CORTIER, S. KREMER (editors), IOS Press, 2010, To appear.

[33] P. COUSOT, R. COUSOT. A gentle introduction to formal verification of computer systems by abstract
interpretation, NATO Science Series, Series F: Computer and Systems Sciences. IOS Press, 2009.

[34] E. MURPHY, V. DANOS, J. FERET, R. HARMER, J. KRIVINE. Rule Based Modelling and Model Refinement,
in "Elements of Computational Systems Biology", H. LODHI, S. MUGGLETON (editors), Wiley Book Series
on Bioinformatics, 2009 GB .

Other Publications

[35] J. BERTRANE. Developing temporal abstract domains that prove the temporal specifications of reactive
systems, September the 27th 2009, University ECNU, Shanghai, China.

[36] J. BERTRANE. Programming Languages and Compilation, October - December 2009, L3 Practical classes at
École Normale Supérieure, Paris.

[37] J. BERTRANE, P. COUSOT, R. COUSOT, J. FERET, A. MINÉ. Foundations of abstract interpretation:
application to semantics, 2009, M2 course of the MPRI (Master Parisien de Recherche en Informatique).

[38] B. BLANCHET. Automatic Verification of Cryptographic Protocols in the Formal Model: the Automatic Verifier
ProVerif, March 2009, M2 course, Università di Padova, Italy.

26 Activity Report INRIA 2009

[39] B. BLANCHET. CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols, April
2009, Computational and Symbolic Proofs of Security, Spring School and French-Japanese collaboration
workshop Highashi Izu Peninsula, Japan.

[40] B. BLANCHET. CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols, June
2009, 2nd Canada-France Workshop on Foundations & Practice of Security, Grenoble, France.

[41] B. BLANCHET. CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols,
September 2009, Summer School On Provable Security, Barcelona, Spain.

[42] B. BLANCHET. CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols,
March 2009, Seminar, Università di Padova, Italy.

[43] B. BLANCHET. CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols, July
2009, Seminar, Stony Brook University, NY, USA.

[44] D. CADÉ. Traduction de spécifications en implémentations protocoles, École Normale Supérieure, Paris,
France, August 2009, Masters thesis.

[45] P. COUSOT. Abstract Interpretation for the programmer, the end-user, and the theoretician, 23–31 July 2009,
Summer School on Theory and Practice of Language Implementation University of Oregon, Eugene, Oregon,
USA.

[46] P. COUSOT. An Informal Introduction to Abstract Interpretation and applications, 17–27 May 2009, Program
and Model Analysis (Graduiertenkolleg Programm- Und Modell-Analyse) course common to the Technische
Universität München and the Ludwig-Maximilians-Universität München, Munich, Germany.

[47] P. COUSOT. An Informal Introduction to Static Analysis and Verification by Abstract Interpretation, 25
November 2009, Software verification course, ETH Zürich, Switzerland.

[48] P. COUSOT. Basic concepts of abstract interpretation, 2–9 August 2009, Summer School Marktoberdorf 2009
“Logics and Languages for Reliability and Security”, Marktoberdorf, Germany.

[49] P. COUSOT. Foundations of abstract interpretation: application to semantics, 2009, M1 course of the École
Normale Supérieure.

[50] J. FERET. Automatic reduction of ODE semantics for protein-protein interaction networks by abstract
interpretation, 13 February 2009, Seminar: TRESOR — Thrust in Reliable Software Research group, École
Fédérale Polytechnique de Lausanne, Switzerland.

[51] J. FERET. Automatic reduction of ODE semantics for protein-protein interaction networks by abstract
interpretation, 13 January 2009, Seminar: CEA-list, Saclay, France.

[52] J. FERET. Domain Specific Abstract Interpretation, 2009, Graduate student course (19h) at Seoul National
University.

[53] J. FERET. Internal coarse-graining of molecular systems, 9 December 2009, Seminaire interdisciplinaire du
DIMNP, Université Montpellier II, France.

Project-TeamAbstraction 27

[54] J. FERET. Reachability analysis of rule-based models, 12 February 2009, Working group: LANOS —
Laboratory of NOnlinear Systems, École Fédérale Polytechnique de Lausanne, Switzerland.

[55] J. FERET, H. KOEPPL, T. PETROV. Stochastic fragments: A framework for the exact reduction of the stochastic
semantics of rule-based models, November 2009, Poster presented at the All SystemsX Day, Bern, Switzerland
CH .

[56] J. FERET, H. KOEPPL, T. PETROV. Stochastic fragments: A framework for the exact reduction of the stochastic
semantics of rule-based models, December 2009, Poster presented at: Paris Interdisciplinary PhD Symposium:
Frontiers in Life Sciences Graduate School CH .

[57] P. FERRARA. Numerical Domains, March 2009, M2 course, Università di Venezia, Italy.

[58] P. FERRARA. Static analysis by abstract interpretation of Java multithreaded programs, 25 August 2009,
IRISA-INRIA, Rennes, France.

[59] P. FERRARA. Static analysis by abstract interpretation of Java multithreaded programs, 29 January 2009,
Chair of Programming Methodology, ETH, Zurich, Switzerland.

[60] V. LAVIRON. Application d’une analyse de formes à un modèle mémoire réaliste, École Normale Supérieure,
Paris, France, August 2009, Masters thesis.

[61] J. LECONTE. Hiérarchie de sémantique par interprétation abstraite et preuves formelles, École Normale
Supérieure, Paris, France, August 2009, Masters thesis.

[62] L. MAUBORGNE. Disjunctions that Scale Up, March 2009, IMDEA Workshop, Madrid, Spain.

[63] L. MAUBORGNE. New Domains for ASTRÉE, October 2009, ES_PASS Workshop, Madrid, Spain.

[64] L. MAUBORGNE. Static Analysis of Programs, 2009, M1 course of the École Polytechnique.

[65] A. MINÉ. Static analysis of run-time errors in parallel embedded C code, November 2009, Seminar,
Laboratoire Preuves, Programmes et Systèmes, Paris 7, France.

[66] X. RIVAL. A Framework for Certified Compilation, March 2009, COCV Workshop, York, UK.

[67] X. RIVAL. Abstract interpretation-based static analysis of programs, June 2009, Bell Labs, Murray Hill, USA.

[68] X. RIVAL. Analyse statique par interprétation abstraite, April 2009, INRIA, Rocquencourt, France.

[69] X. RIVAL. Extension of ASTRÉE with backward analysis, February 2009, ES_PASS Workshop, Toulouse,
France.

[70] X. RIVAL. Shape Analysis Applied to C Code, July 2009, Shloss Dagstuhl, Germany.

[71] É.-J. SIMS. A glimpse of my Ph.D.: pointer analysis and separation logic, July 2009, Shloss Dagstuhl,
Germany.

28 Activity Report INRIA 2009

References in notes

[72] B. BLANCHET. Computationally Sound Mechanized Proofs of Correspondence Assertions, in "20th IEEE
Computer Security Foundations Symposium (CSF’07), Venice, Italy", IEEE, July 2007, p. 97–111.

[73] B. BLANCHET. A Computationally Sound Mechanized Prover for Security Protocols, in "IEEE Transactions
on Dependable and Secure Computing", vol. 5, no 4, October–December 2008, p. 193–207.

[74] B. BLANCHET, A. D. JAGGARD, A. SCEDROV, J.-K. TSAY. Computationally Sound Mechanized Proofs
for Basic and Public-key Kerberos, in "ACM Symposium on Information, Computer and Communications
Security (ASIACCS’08), Tokyo, Japan", ACM, March 2008, p. 87–99 US .

[75] L. CHEN, A. MINÉ, P. COUSOT. A Sound Floating-Point Polyhedra Abstract Domain, in "Proc. of the Sixth
Asian Symposium on Programming Languages and Systems (APLAS’08), Bangalore, India", Lecture Notes
in Computer Science, vol. 5356, Springer, December 2008, p. 3–18.

[76] P. COUSOT. Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code, invited tutorial, in "Pro-
ceedings of the Seventh ACM & IEEE International Conference on Embedded Software, EMSOFT’2007", C.
M. KIRSCH, R. WILHELM (editors), ACM Press, New York, NY, USA, 2007, p. 7–9.

[77] P. COUSOT. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique de programmes (in French), Université scientifique et médicale de Greno-
ble, Grenoble, France, 21 March 1978, Thèse d’État ès sciences mathématiques.

[78] P. COUSOT. The Calculational Design of a Generic Abstract Interpreter, invited chapter, in "Calculational
System Design", M. BROY, R. STEINBRÜGGEN (editors), vol. 173, NATO Science Series, Series F: Computer
and Systems Sciences. IOS Press, Amsterdam, The Netherlands, 1999, p. 421–505.

[79] P. COUSOT, R. COUSOT. Basic Concepts of Abstract Interpretation, invited chapter, in "Building the Infor-
mation Society", R. JACQUART (editor), chap. 4, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2004, p. 359–366.

[80] P. COUSOT, R. COUSOT. Grammar Analysis and Parsing by Abstract Interpretation, invited chapter, in
"Program Analysis and Compilation, Theory and Practice: Essays dedicated to Reinhard Wilhelm on the
Occasion of his 60th Birthday", T. W. REPS, M. SAGIV, J. BAUER (editors), Lecture Notes in Computer
Science, vol. 4444, Springer, Berlin, Germany, 2007.

[81] P. COUSOT, R. COUSOT. Systematic design of program analysis frameworks, in "Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio,
Texas", ACM Press, New York, New York, United States, 1979, p. 269–282.

[82] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. The ASTRÉE
analyser, in "Proceedings of the Fourteenth European Symposium on Programming Languages and Sys-
tems, ESOP’2005, Edinburg, Scotland", M. SAGIV (editor), Lecture Notes in Computer Science, vol. 3444,
Springer, Berlin, Germany, 2–10 April 2005, p. 21–30.

[83] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. Varieties
of Static Analyzers: A Comparison with ASTRÉE, invited paper, in "Proceedings of the First IEEE &
IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE’07, Shanghai, China,

Project-TeamAbstraction 29

Shanghai, China", M. HINCHEY, J. HE, J. SANDERS (editors), IEEE Computer Society Press, Los Alamitos,
California, USA, 6–8 June 2007.

[84] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Rule-based modelling, symmetries, re-
finements., in "Proceedings of the First International Workshop, Formal Methods in Systems Biology,
FMSB’2008, Cambridge, UK", J. FISHER (editor), Lecture Notes in BioInformatics, vol. 5054, Springer,
Berlin, Germany, 4–5 June 2008, p. 103–122 GB US .

[85] A. SIMON, A. KING, J. M. HOWE. Two Variables per Linear Inequality as an Abstract Domain, in "Logic-
Based Program Synthesis and Transformation, Madrid, Spain", M. LEUSCHEL (editor), LNCS, vol. 2664,
Springer, September 2003, p. 71–89 UK .

