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2. Overall Objectives

2.1. Introduction
The Arénaire project aims at elaborating and consolidating knowledge in the field of Computer Arithmetic,
which studies how a machine deals with numbers. Reliability, accuracy, and performance are the major goals
that drive our research. We study basic arithmetic operators such as adders, dividers, etc. We work on new
operators for the evaluation of elementary and special functions (log, cos, erf , etc.), and also consider the
composition of previous operators. In addition to these studies on the arithmetic operators themselves, our
research focuses on specific application domains (cryptography, signal processing, linear algebra, lattice basis
reduction, etc.) for a better understanding of the impact of the arithmetic choices on solving methods in
scientific computing.

We contribute to the improvement of the available arithmetic on computers, processors, dedicated or embedded
chips, etc., both at the hardware level and at the software level. Improving computing does not necessarily
mean getting more accurate results or getting them faster: we also take into account other constraints such as
power consumption, code size, or the reliability of numerical software. All branches of the project focus on
algorithmic research and on the development and the diffusion of corresponding libraries, either in hardware
or in software. Some distinctive features of our libraries are numerical quality, reliability, and performance.

The study of the number systems and, more generally, of data representations is a first topic of uttermost
importance in the project. Typical examples are: the redundant number systems used inside multipliers and
dividers; alternatives to floating-point representation for special purpose systems; finite field representations
with a strong impact on cryptographic hardware circuits; the performance of an interval arithmetic that heavily
depends on the underlying real arithmetic.

Another general objective of the project is to improve the validation of computed data, we mean to provide
more guarantees on the quality of the results. For a few years we have been handling those validation aspects
in the following three complementary ways: through better qualitative properties and specifications (correct
rounding, error bound representation, and portability in floating-point arithmetic); by proposing a development
methodology focused on the proven quality of the code; by studying and allowing the cooperation of various
kinds of arithmetics such as constant precision, intervals, arbitrary precision and exact numbers.

These goals may be organized in four directions: hardware arithmetic, software arithmetic for algebraic and
elementary functions, validation and automation, and arithmetics and algorithms for scientific computing.
These directions are not independent and have strong interactions. For example, elementary functions are also
studied for hardware targets, and scientific computing aspects concern most of the components of Arénaire.

• Hardware Arithmetic. From the mobile phone to the supercomputer, every computing system relies
on a small set of computing primitives implemented in hardware. Our goal is to study the design of
such arithmetic primitives, from basic operations such as the addition and the multiplication to more
complex ones such as the division, the square root, cryptographic primitives, and even elementary
functions. Arithmetic operators are relatively small hardware blocks at the scale of an integrated
circuit, and are best described in a structural manner: a large operator is assembled from smaller ones,
down to the granularity of the bit. This study requires knowledge of the hardware targets (ASICs,
FPGAs), their metrics (area, delay, power), their constraints, and their specific language and tools.
The input and output number systems are typically given (integer, fixed-point of floating-point), but
internally, non-standard internal number systems may be successfully used.

• Algebraic and Elementary Functions. Computer designers still have to implement the basic arith-
metic functions for a medium-size precision. Addition and multiplication have been much studied
but their performance may remain critical (silicon area or speed). Division and square root are less
critical, however there is still room for improvement (e.g. for division, when one of the inputs is
constant). Research on new algorithms and architectures for elementary functions is also very ac-
tive. Arénaire has a strong reputation in these domains and will keep contributing to their expansion.
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Thanks to past and recent efforts, the semantics of floating-point arithmetic has much improved.
The adoption of the IEEE-754 standard for floating-point arithmetic has represented a key point for
improving numerical reliability. Standardization is also related to properties of floating-point arith-
metic (invariants that operators or sequences of operators may satisfy). Our goal is to establish and
handle new properties in our developments (correct rounding, error bounds, etc.) and then to have
those results integrated into the future computer arithmetic standards.

• Validation and Automation. Validation corresponds to some guarantee on the quality of the eval-
uation. Several directions are considered, for instance the full error (approximation plus rounding
errors) between the exact mathematical value and the computed floating-point result, or some guar-
antee on the range of a function. Validation also comprises a proof of this guarantee that can be
checked by a proof checker. Automation is crucial since most development steps require specific
expertise in floating-point computing that can neither be required from code developers nor be mo-
bilised manually for every problem.

• Arithmetics and Algorithms. When conventional floating-point arithmetic does not suffice, we use
other kinds of arithmetics. Especially in the matter of error bounds, we work on interval arithmetic
libraries, including arbitrary precision intervals. Here a main domain of application is global
optimization. Original algorithms dedicated to this type of arithmetic must be designed in order
to get accurate solutions, or sometimes simply to avoid divergence (e.g., infinite intervals). We also
investigate exact arithmetics for computing in algebraic domains such as finite fields, unlimited
precision integers, and polynomials. A main objective is a better understanding of the influence
of the output specification (approximate within a fixed interval, correctly rounded, exact, etc.) on
the complexity estimates for the problems considered. Those problems mainly come from two
application domains: exact linear algebra and lattice basis reduction.

Our work in Arénaire since its creation in 1998, and especially since 2002, provides us a strong expertise in
computer arithmetic. This knowledge, together with the technology progress both in software and hardware,
draws the evolution of our objectives towards the synthesis of validated algorithms.

2.2. Highlights of the Year
Our Handbook of Floating-Point Arithmetic (Birkhäuser Boston, November 2009, 600 pages, ISBN 78-0-
8176-4704-9) gathers years of common work on IEEE floating-point arithmetic.

3. Scientific Foundations
3.1. Introduction

As stated above, four major directions in Arénaire are hardware arithmetic, algebraic and elementary
functions, validation and automation, and arithmetics and algorithms. For each of those interrelated topics,
we describe below the tools and methodologies on which it relies.

3.2. Hardware Arithmetic
A given computing application may be implemented using different technologies, with a large range of trade-
offs between the various aspects of performance, unit cost, and non-recurring costs (including development
effort).

• A software implementation, targeting off-the-shelf microprocessors, is easy to develop and repro-
duce, but will not always provide the best performance.

• For cost or performance reasons, some applications will be implemented as application specific
integrated circuits (ASICs). An ASIC provides the best possible performance and may have a very
low unit cost, at the expense of a very high development cost.

• An intermediate approach is the use of reconfigurable circuits, or field-programmable gate arrays
(FPGAs).
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In each case, the computation is broken down into elementary operations, executed by elementary hardware
elements, or arithmetic operators. In the software approach, the operators used are those provided by the
microprocessor. In the ASIC or FPGA approaches, these operators have to be built by the designer, or taken
from libraries. Our goals include studying operators for inclusion in microprocessors and developing hardware
libraries for ASICs or FPGAs.

Operators under study. Research is active on algorithms for the following operations:

• Basic operations (addition, subtraction, multiplication), and their variations (multiplication and
accumulation, multiplication or division by constants, etc.);

• Algebraic functions (division, inverse, and square root, and in general, powering to an integer, and
polynomials);

• Elementary functions (sine, cosine, exponential, etc.);

• Combinations of the previous operations (norm, for instance).

A hardware implementation may lead to better performance than a software implementation for two main
reasons: parallelism and specialization. The second factor, from the arithmetic point of view, means that
specific data types and specific operators, which would require costly emulation on a processor, may be
used. For example, some cryptography applications are based on modular arithmetic and bit permutations,
for which efficient specific operators can be designed. Other examples include standard representations with
non-standard sizes, and specific operations such as multiplication by constants.

Hardware-oriented algorithms. Many algorithms are available for the implementation of elementary oper-
ators (see for instance [54]). For example, there are two classes of division algorithms: digit-recurrence and
function iteration. The choice of an algorithm for the implementation of an operation depends on, and some-
times imposes, the choice of a number representation. Besides, there are usually technological constraints such
as the area and power budget, and the available low-level libraries.

The choice of the number systems used for the intermediate results is crucial. For example, a redundant system,
in which a number may have several encodings, will allow for more design freedom and more parallelism,
hence faster designs. However, the hardware cost can be higher. As another example, the power consumption
of a circuit depends, among other parameters, on its activity, which in turn depends on the distribution of the
values of the inputs, hence again on the number system.

Alternatives exist at many levels in this algorithm exploration. For instance, an intermediate result may be
either computed, or recovered from a precomputed table.

Parameter exploration. Once an algorithm is chosen, optimizing its implementation for area, delay, accuracy,
or energy consumption is the next challenge. The best solution depends on the requirements of the application
and on the target technology. Parameters which may vary include the radix of the number representations, the
granularity of the iterations (between many simple iterations, or fewer coarser ones), the internal accuracies
used, the size of the tables (see [55] for an illustration), etc.

The parameter space quickly becomes huge, and the expertise of the designer has to be automated. Indeed, we
do not design operators, but operator generators, programs that take a specification and some constraints as
input, and output a synthesizable description of an operator.

3.3. Algebraic and Elementary Functions
Elementary Functions and Correct Rounding. Many libraries for elementary functions are currently
available. We refer to [54] for a general insight into the domain. The functions in question are typically those
defined by the C99 and LIA-2 standards, and are offered by vendors of processors, compilers or operating
systems.
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Though the 1985 version of the IEEE-754 standard does not deal with these functions, there is some attempt
to reproduce some of their mathematical properties, in particular symmetries. For instance, monotonicity can
be obtained for some functions in some intervals as a direct consequence of accurate internal computations
or numerical properties of the chosen algorithm to evaluate the function; otherwise it may be very difficult
to guarantee, and the general solution is to provide it through correct rounding. Preserving the range (e.g.,
atan(x) ∈ [−π/2, π/2]) may also be a goal though it may conflict with correct rounding (when supported).

Concerning the correct rounding of the result, it was not required by the IEEE-754-1985 standard: during the
elaboration of this standard, it was considered that correctly rounded elementary functions were impossible
to obtain at a reasonable cost, because of the so-called Table Maker’s Dilemma: an elementary function is
evaluated to some internal accuracy (usually higher than the target precision), and then rounded to the target
precision. What is the minimum accuracy necessary to ensure that rounding this evaluation is equivalent to
rounding the exact result, for all possible inputs? This question could not be answered in a simple manner,
meaning that correctly rounding elementary functions may require arbitrary precision, which is very slow and
resource-consuming.

Indeed, correctly rounded libraries already exist, such as GNU MPFR (http://www.mpfr.org/), the Accurate
Portable Library released by IBM in 2002, or the libmcr library, released by Sun Microsystems in late
2004. However they have worst-case execution time and memory consumption up to 10,000 worse than usual
libraries, which is the main obstacle to their generalized use.

We have focused in the previous years on computing bounds on the intermediate precision required for
correctly rounding some elementary functions in IEEE-754 double precision. This allows us to design
algorithms using a tight precision. That makes it possible to offer the correct rounding with an acceptable
overhead: we have experimental code where the cost of correct rounding is negligible in average, and less than
a factor 10 in the worst case. These performances led the IEEE-754 revision committee to recommend (yet
not request) correct rounding for some mathematical functions. It also enables to prove the correct-rounding
property, and to show bounds on the worst-case performance of our functions. Such worst-case bounds may
be needed in safety critical applications as well as a strict proof of the correct rounding property. Concurrent
libraries by IBM and Sun can neither offer a complete proof for correct rounding nor bound the timing because
of the lack of worst-case accuracy information. Our work actually shows a posteriori that their overestimates
for the needed accuracy before rounding are however sufficient. IBM and Sun for themselves could not provide
this information. See also §3.4 concerning the proofs for our library.

Approximation and Evaluation. The design of a library with correct rounding also requires the study of
algorithms in large (but not arbitrary) precision, as well as the study of more general methods for the three
stages of the evaluation of elementary functions: argument reduction, approximation, and reconstruction of
the result.

When evaluating an elementary function for instance, the first step consists in reducing this evaluation to
the one of a possibly different function on a small real interval. Then, this last function is replaced by an
approximant, which can be a polynomial or a rational fraction. Being able to perform those processes in a very
cheap way while keeping the best possible accuracy is a key issue [2]. The kind of approximants we can work
with is very specific: the coefficients must fulfill some constraints imposed by the targeted application, such as
some limits on their size in bits. The usual methods (such as Remez algorithm) do not apply in that situation
and we have to design new processes to obtain good approximants with the required form. Regarding the
approximation step, there are currently two main challenges for us. The first one is the computation of excellent
approximations that will be stored in hardware or in software and that should be called thousands or millions
of times. The second one is the target of automation of computation of good approximants when the function
is only known at compile time. A third question concerns the evaluation of such good approximants. To
find a best compromise between speed and accuracy, we combine various approaches ranging from numerical
analysis (tools like backward and forward error analysis, conditioning, stabilization of algorithms) to computer
arithmetic (properties like error-free subtraction, exactly-computable error bounds, etc.). The structure of the

http://www.mpfr.org/
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approximants must further be taken into account, as well as the degree of parallelism offered by the processor
targeted for the implementation.

Adequation Algorithm/Architecture. Some special-purpose processors, like DSP cores, may not have
floating-point units, mainly for cost reasons. For such integer or fixed-point processors, it is thus desirable
to have software support for floating-point functions, starting with the basic operations. To facilitate the
development or porting of numerical applications on such processors, the emulation in software of floating-
point arithmetic should be compliant with the IEEE-754 standard; it should also be very fast. To achieve this
twofold goal, a solution is to exploit as much as possible the characteristics of the target processor (instruction
set, parallelism, etc.) when designing algorithms for floating-point operations.

So far, we have successfully applied this “algorithm/architecture adequation” approach to some VLIW
processor cores from STMicroelectronics, in particular the ST231; the ST231 cores have integer units only, but
for their applications (namely, multimedia applications), being able to perform basic floating-point arithmetic
very efficiently was necessary. When various architectures are targeted, this approach should further be (at least
partly) automated. The problem now is not only to write some fast and accurate code for one given architecture,
but to have this optimized code generated automatically according to various constraints (hardware resources,
speed and accuracy requirements).

3.4. Validation and Automation
Validating a code, or generating a validated code, means being able to prove that the specifications are met. To
increase the level of reliability, the proof should be checkable by a formal proof checker.

Specifications of qualitative aspects of floating-point codes. A first issue is to get a better formalism and
specifications for floating-point computations, especially concerning the following qualitative aspects:

• specification: typically, this will mean a proven error bound between the value computed by the
program and a mathematical value specified by the user in some high-level format;

• tight error bound computation;

• floating-point issues: regarding the use of floating-point arithmetic, a frequent concern is the
portability of code, and thus the reproducibility of computations; problems can be due to successive
roundings (with different intermediate precisions) or the occurrence of underflows or overflows;

• precision: the choice of the method (compensated algorithm versus double-double versus quadruple
precision for instance) that will yield the required accuracy at given or limited cost must be studied;

• input domains and output ranges: the determination of input domain or output range also constitutes
a specification/guarantee of a computation;

• other arithmetics, dedicated techniques and algorithms for increased precision: for studying the
quality of the results, most of conception phases will require multiple-precision or exact solutions to
various algebraic problems.

Certification of numerical codes using formal proof. Certifying a numerical code is error-prone. The use of
a proof assistant will ensure the code correctly follows its specification. This certification work, however, is
usually a long and tedious work, even for experts. Moreover, it is not adapted to an incremental development,
as a small change to the algorithm may invalidate the whole formal proof. A promising approach is the use of
automatic tools to generate the formal proofs of numerical codes with little help from the user.
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Instead of writing code in some programming language and trying to prove it, we can design our own
language, well-suited to proofs (e.g., close to a mathematical point of view, and allowing metadata related to
the underlying arithmetics such as error bounds, ranges, and so on), and write tools to generate code. Targets
can be a programming language without extensions, a programming language with some given library (e.g.,
MPFR if one needs a well-specified multiple-precision arithmetic), or a language internal to some compiler:
the proof may be useful to give the compiler some knowledge, thus helping it to do particular optimizations.
Of course, the same proof can hold for several targets.

We worked in particular also on the way of giving a formal proof for our correctly rounded elementary function
library. We have always been concerned by a precise proof of our implementations that covers also details of
the numerical techniques used. Such proof concern is mostly absent in IBM’s and Sun’s libraries. In fact,
many misroundings were found in their implementations. They seem to be mainly due to coding mistakes that
could have been avoided with a formal proof in mind. In CRlibm we have replaced more and more hand-
written paper proofs by Gappa (http://lipforge.ens-lyon.fr/www/gappa/) verified proof scripts that are partially
generated automatically by other scripts. Human error is better prevented.

Integrated and interoperable automatic tools. Various automatic components have been independently
introduced above, see §3.2 and §3.3. One of our main objectives is to provide an entire automatic approach
taking in input an expression to evaluate (with possible annotations), and returning an executable validated
code. The complete automation with optimal or at least good resulting performance seems to be far beyond
the current knowledge. However, we see our objective as a major step for prototyping future compilers. We
thus aim at developing a piece of software that automates the steps described in the previous pages. The result
should be an easy-to-use integrated environment.

3.5. Arithmetics and Algorithms

When computing a solution to a numerical problem, an obvious question is that of the quality of the produced
numbers. One may also require a certain level of quality, such as: approximate with a given error bound,
correctly rounded, or –if possible– exact. The question thus becomes twofold: how to produce such a well-
specified output and at what cost? To answer it, we focus on polynomial and integer matrix operations,
Euclidean lattices and global optimization, and study the following directions:

• We investigate new ways of producing well-specified results by resorting to various arithmetics
(intervals, Taylor models, multi-precision floating-point, exact). A first approach is to combine some
of them: for example, guaranteed enclosures can be obtained by mixing Taylor model arithmetic
with floating-point arithmetic [9]. Another approach is to adapt the precision or even change the
arithmetic during the course of a computation. Typical examples are iterative refinement techniques
or exact results obtained via floating-point basic operations. This often requires arithmetics with
very-well specified properties (like the IEEE-754 standard for floating-point arithmetic).

• We also study the impact of certification on algorithmic complexity. A first approach there is to
augment existing algorithms with validated error bounds (and not only error estimates). This leads
us to study the (im)possibility of computing such bounds on the fly at a negligible cost. A second
approach is to study the algorithmic changes needed to achieve a higher level of quality without, if
possible, sacrificing for speed. In exact linear algebra, for example, the fast algorithms recently
obtained in the bit complexity model are far from those obtained decades ago in the algebraic
complexity model.

Numerical Algorithms using Arbitrary Precision Interval Arithmetic. When validated results are needed,
interval arithmetic can be used. New problems can be solved with this arithmetic, which provides sets instead
of numbers. In particular, we target the global optimization of continuous functions. A solution to obviate the
frequent overestimation of results is to increase the precision of computations.

http://lipforge.ens-lyon.fr/www/gappa/
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Our work is twofold. On the one hand, efficient software for arbitrary precision interval arithmetic is
developed, along with a library of algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and compared.

To reduce the overestimation of results, variants of interval arithmetic have been developed, such as Taylor
models arithmetic or affine arithmetic. These arithmetics can also benefit from arbitrary precision computa-
tions.

Algorithms for Exact Linear Algebra and Lattice Basis Reduction. The techniques for exactly solving
linear algebra problems have been evolving rapidly in the last few years, substantially reducing the complexity
of several algorithms (see for instance [6] for an essentially optimal result, or [53]). Our main focus is on
matrices whose entries are integers or univariate polynomials over a field. For such matrices, our main interest
is how to relate the size of the data (integer bit lengths or polynomial degrees) to the cost of solving the problem
exactly. A first goal is to design asymptotically faster algorithms, to reduce problems to matrix multiplication
in a systematic way, and to relate bit complexity to algebraic complexity. Another direction is to make these
algorithms fast in practice as well, especially since applications yield very large matrices that are either sparse
or structured. Within the LinBox international project, we work on a software library that corresponds to our
algorithmic research on matrices. LinBox is a generic library that allows to plug external components in a
plug-and-play fashion. The library is devoted to sparse or structured exact linear algebra and its applications.

We recently started a direction around lattice basis reduction. Euclidean lattices provide powerful tools in
various algorithmic domains. In particular, we investigate applications in computer arithmetic, cryptology,
algorithmic number theory and communications theory. We work on improving the complexity estimates
of lattice basis reduction algorithms and providing better implementations of them, and on obtaining more
reduced bases. The above recent progress in linear algebra may provide new insights.

Certified Computing. Most of the algorithmic complexity questions that we investigate concern algebraic
or bit-complexity models for exact computations. Much less seems to be known in approximate computing,
especially for the complexity of computing (certified) error bounds, and for establishing bridges between exact,
interval, and constant precision complexity estimates. We are developing this direction both for a theoretical
impact, and for the design and implementation of algorithm synthesis tools for arithmetic operators, and
mathematical expression evaluation.

4. Application Domains

4.1. Application Domains
Our expertise covers application domains for which the quality, such as the efficiency or safety, of the
arithmetic operators is an issue. On the one hand, it can be applied to hardware oriented developments, for
example to the design of arithmetic primitives which are specifically optimized for the target application and
support. On the other hand, it can also be applied to software programs, when numerical reliability issues
arise: these issues can consist in improving the numerical stability of an algorithm, computing guaranteed
results (either exact results or certified enclosures) or certifying numerical programs.

• The application domains of hardware arithmetic operators are digital signal processing, image
processing, embedded applications, reconfigurable computing and cryptography.

• Developments of correctly rounded elementary functions is critical to the reproducibility of
floating-point computations. Exponentials and logarithms, for instance, are routinely used in ac-
counting systems for interest calculation, where roundoff errors have a financial meaning. Our cur-
rent focus is on bounding the worst-case time for such computations, which is required to allow
their use in safety critical applications, and in proving the correct rounding property for a complete
implementation.
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• Certifying a numerical application usually requires bounds on rounding errors and ranges of
variables. Some of the tools we develop compute or verify such bounds. For increased confidence in
the numerical applications, they may also generate formal proofs of the arithmetic properties. These
proofs can then be machine-checked by proof assistants like Coq.

• Arbitrary precision interval arithmetic can be used in two ways to validate a numerical result.
To quickly check the accuracy of a result, one can replace the floating-point arithmetic of the
numerical software that computed this result by high-precision interval arithmetic and measure the
width of the interval result: a tight result corresponds to good accuracy. When getting a guaranteed
enclosure of the solution is an issue, then more sophisticated procedures, such as those we develop,
must be employed: this is the case of global optimization problems.

• The design of faster algorithms for matrix polynomials provides faster solutions to various problems
in control theory, especially those involving multivariable linear systems.

• Lattice reduction algorithms have direct applications in public-key cryptography. They also naturally
arise in computer algebra. A new and promising field of applications is communications theory.

5. Software

5.1. Introduction
Arénaire proposes various software and hardware realizations that are accessible from the web page http://
www.ens-lyon.fr/LIP/Arenaire/Ware/. We describe below only those which progressed in 2009.

Figure 1. Relationships between some Arénaire developments.

5.2. FLIP: a floating-point library for integer processors
Participants: Christman Fagbohoun, Claude-Pierre Jeannerod, Jingyan Jourdan Lu, Guillaume Revy.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/
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FLIP is a C library for the efficient software support of binary32 IEEE 754-2008 floating-point arithmetic on
processors without floating-point hardware units, such as VLIW or DSP processors for embedded applications.
The current target architecture is the VLIW ST200 family from STMicroelectronics (especially the ST231
cores).

FLIP 1.0 has been released in 2009. Most notably, it implements highly-parallel algorithms for correctly-
rounded division and square root. Also, more functions have been added to the FLIP project this year, such
as square, reciprocal, reciprocal square root, cube root, reciprocal cube root, reciprocal fourth root, fused
multiply-add, fused square-add, as well as lower level functions for comparisons, multiplication by 2, min,
max, etc. A systematic validation framework has further been set up.
Status: Stable, version 1.0 / Target: VLIW processors (ST200 family from STMicroelectronics) / License: LGPL / OS: Linux /
Programming Language: C / URL: http://flip.gforge.inria.fr/

5.3. Sollya: a toolbox of numerical algorithms for the development of safe
numerical codes
Participants: Sylvain Chevillard, Mioara Joldes.

Sollya aims at providing a safe, user-friendly, all-in-one environment for manipulating numerical functions.
Its distinguishing feature is that the focus is on safety: numerical results are certified, or a warning is produced.
Functionalities include plotting, infinite norm, polynomial approximation (including an original minimax
approximation among polynomials with floating-point coefficients), zero finding, etc., and an interpreter for
the Sollya scripting language.

During 2009, the development of Sollya has been reduced to small improvements and bug corrections. Sollya
is used by several teams in France (we are aware of its use by people in the Arénaire team, at INRIA Saclay,
INRIA Rocquencourt and Perpignan University). It is used not only by members of state funded research
teams but also by engineers at private companies, in particular in the US and Russia.
Status: Stable, version 1.1 / Target: ia32, ia64, PPC, ia32-64, other / License: CeCILL-C / OS: Unix / Programming Language: C /
URL: http://sollya.gforge.inria.fr/

5.4. Metalibm, a code generator for elementary functions
Participants: Sylvain Chevillard, Florent de Dinechin.

The Metalibm project provides a tool for the automatic implementation of mathematical (libm) functions.
A function f is automatically transformed into Gappa-certified C code implementing an approximation
polynomial in a given domain with given accuracy. Metalibm is based on the Sollya tool and has been used to
produce large parts of CRlibm.
Status: alpha / Target: any / License: LGPL / OS: Unix / Programming Language: C / URL: http://lipforge.ens-lyon.fr/www/metalibm/

5.5. CGPE: Code Generation for Polynomial Evaluation
Participants: Guillaume Revy, Christophe Mouilleron, Claude-Pierre Jeannerod.

The CGPE project, which has been created this year, aims at generating C codes for fast and certified
polynomial evaluation, given various accuracy and architectural constraints. Version 0.1.0 has been released
by Guillaume Revy. This first version implements generation and certification algorithms for bivariate
polynomials and fixed-point arithmetic, and is parameterized by the operator latencies and the kind of
parallelism available on the targeted processor. The numerical accuracy of the generated C codes is certified
using multiple-precision interval arithmetic as available in tools like Gappa and MPFI. CGPE 0.1.0 has been
used to generate significant parts of the codes of the FLIP library.
Status: beta / Target: any / License: CeCiLL / OS: Unix / Programming Language: C++ / URL: http://cgpe.gforge.inria.fr/

http://flip.gforge.inria.fr/
http://sollya.gforge.inria.fr/
http://lipforge.ens-lyon.fr/www/metalibm/
http://cgpe.gforge.inria.fr/
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5.6. CRlibm: a Library of Elementary Functions with Correct Rounding
Participants: Florent de Dinechin, Jean-Michel Muller, Guillaume Revy.

The CRlibm project aims at developing a mathematical library (libm) which provides implementations of the
double precision C99 standard elementary functions,

• correctly rounded in the four IEEE-754 rounding modes,

• with a comprehensive proof of both the algorithms used and their implementation,

• sufficiently efficient in average time, worst-case time, and memory consumption to replace existing
libms transparently.

In 2008, the main objective of the CRlibm project was reached when the revised floating-point standard IEEE-
754-2008 was published with a recommendation for correctly rounded functions.

Version 1.0beta2 was released with a much improved power function xy . However the development focus has
now turned to automated libm development with the Metalibm project.
Status: Beta release / Target: ia32, ia64, Sparc, PPC / License: LGPL / OS: Unix / Programming Language: C / URL: http://www.ens-
lyon.fr/LIP/Arenaire

5.7. FloPoCo: a Floating-Point Core generator for FPGAs
Participants: Florent de Dinechin, Bogdan Pasca.

The purpose of the FloPoCo project is to explore the many ways in which the flexibility of the FPGA target
can be exploited in the arithmetic realm. FloPoCo is a generator of operators written in C++ and outputting
synthesizable VHDL automatically pipelined to an arbitrary frequency.

In 2009, FloPoCo has undergone a complete rewrite that makes automatic pipeline much simpler. Division
and square root operators were added. Sylvain Collange, from U. Perpignan, contributed basic operators for
Logarithm Number System arithmetic, so FloPoCo is now a strict superset of FPLibrary, which is therefore
no longer supported. Non-standard operators developed in 2009 include squarers, sum of squares, Karatsuba
multipliers, integer adder trees, table-based constant multipliers and floating-point logarithm. Versions 0.9.3,
0.11, 1.15.0, 1.15.1 and 1.15.2 were released in 2009.

Among the known users of FloPoCo are U.T. Cluj-Napoca, Imperial College, U. Madrid, U. P. Milano, T.U.
Muenchen, U. Paderborn, U. Pennsylvania, U. Pernambuco, U. Perpignan, U. Tokyo, and several companies.
Status: stable / Target: any / License: GPL/LGPL / OS: Unix, Linux, Windows / Programming Language: C++ / URL: http://www.
ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

5.8. GNU MPFR: a multiple-precision floating-point library with correct
rounding
Participants: Vincent Lefèvre, Philippe Théveny.

GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying
the good ideas from the IEEE-754 standard), in particular correct rounding. GNU MPFR provides about
80 mathematical functions, in addition to utility functions (assignments, conversions...). Special data (Not
a Number, infinities, signed zeros) are handled like in the IEEE-754 standard.

Since the end of 2006, it has become a joint project between the Arénaire and CACAO project-teams. MPFR
became a GNU package on 26 January 2009, with the release of GNU MPFR 2.4.0. GNU MPFR 2.4.1 and
2.4.2 were released on 25 February 2009 and 30 November 2009 respectively. On 3 March 2009, the trunk
switched from LGPL version 2.1 or later to LGPL version 3 or later.

The main changes done in 2009 on the Arénaire side are bug fixes, better portability, more tests and the
distribution of examples with MPFR.

http://www.ens-lyon.fr/LIP/Arenaire
http://www.ens-lyon.fr/LIP/Arenaire
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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Moreover an ODL (Opération de Développement Logiciel) called MPtools had been supported by the INRIA
between September 2007 and August 2009: An engineer, Philippe Théveny, was hired to work on MPFR in
particular. He was in the CACAO project-team, but in addition to the collaboration by e-mail, Philippe came
in Lyon for a few days in January 2008 and in May 2009, and an MPtools meeting took place in Paris in
September 2008. Philippe has been in Arénaire since October 2009.

Many software systems use MPFR. The most common one is GCC, which, as of its version 4.3.0 released in
March 2008, now even requires MPFR (the use of MPFR was previously optional).
Status: stable / Target: any / License: LGPL / OS: Unix, Windows (Cygwin or MinGW) / Programming Language: C / URL: http://
www.mpfr.org/

5.9. MPFI: Multiple Precision Floating-Point Interval Arithmetic
Participants: Nathalie Revol, Sylvain Chevillard, Hong Diep Nguyen, Philippe Théveny.

MPFI is a library in C for interval arithmetic using arbitrary precision (arithmetic and algebraic operations,
elementary functions, operations on sets). It is based on MPFR (see §5.8). MPFI is maintained on par
with MPFR: it offers the interval counterpart of all mathematical functions provided by MPFR. This year,
exhaustive tests have been added. The compliance has been enforced with the proposal in [52] for the
implementation of interval arithmetic using floating-point arithmetic. A new release is planned for the first
semester of 2010.
Status: Beta release / Target: any / License: LGPL / OS: Unix, Linux, Windows (Cygwin) / Programming Language: C / URL:
http://mpfi.gforge.inria.fr/

5.10. fpLLL: lattice reduction using floating-point arithmetic
Participants: Ivan Morel, Xavier Pujol, Gilles Villard.

FPLLL is a library which allows to perform several fundamental tasks on Euclidean lattices, most notably
compute a LLL-reduced basis and compute a shortest non-zero vector in a lattice. The latter functionality has
been added in July 2008 by X. Pujol at the end of his Master’s degree internship with D. Stehlé. This led to the
release of version 3.0 of fpLLL. The fpLLL library relies on floating-point arithmetic for all the computations
involving the Gram-Schmidt orthogonalisation of the lattice bases under scope.

FPLLL is becoming the reference for lattice reduction. It is, or adaptations of it are, included in SAGE,
PARI GP and MAGMA.
Status: stable / License: LGPL / Programming Language: C++ / URL: http://perso.ens-lyon.fr/damien.stehle

5.11. Exhaustive Tests for the Correct Rounding of Mathematical Functions
Participant: Vincent Lefèvre.

The programs to search for the worst cases for the correct rounding of mathematical functions (exp, log, sin,
cos, etc.) in a fixed precision (mainly double precision) using Lefèvre’s algorithm have been further improved,
in particular: The computations can optionally stop at the right time in case of high load average, in order
to get results faster. Heuristics based on consistency of the results have been added to detect bugs in the
compiler/libraries/etc.

5.12. SIPE: Small Integer Plus Exponent
Participant: Vincent Lefèvre.

SIPE (Small Integer Plus Exponent) is a C header file providing a fast floating-point arithmetic with
correct rounding to the nearest in very small precision. Implemented operations are the addition, subtraction,
multiplication, FMA, and minimum/maximum/comparison functions (of the signed numbers or in magnitude).
SIPE has been written for exhaustive tests of simple algorithms in small precision in order to prove results or
find conjectures (which could then be proved).

http://www.mpfr.org/
http://www.mpfr.org/
http://mpfi.gforge.inria.fr/
http://perso.ens-lyon.fr/damien.stehle
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Status: alpha / License: LGPL / Programming Language: C / URL: http://www.vinc17.net/software/sipe.h

6. New Results
6.1. Hardware Arithmetic Operators

Participants: Nicolas Brisebarre, Mioara Joldes, Florent de Dinechin, Jean-Michel Muller, Bogdan Pasca,
Guillaume Revy.

6.1.1. Complex Division, Table-Based Complex Reciprocal Approximation
A complex division algorithm introduced in 2003 by Ercegovac and Muller requires a prescaling step by a
constant factor. Techniques for obtaining this prescaling factor had been mentioned by the authors, which
serves to justify the feasibility of the algorithm, but were inadequate for obtaining efficient implementations.
Pouya Dormiani, Milos Ercegovac (Univ. of California at Los Angeles) and Jean-Michel Muller formulated
Table based solutions [24] for obtaining the prescaling factor, a low precision reciprocal approximation for
a complex value, using techniques adopted from univariate function approximations. The main contribution
of this work is the extension of generalized multipartite table methods to a function of two variables. The
multipartite tables derived were up to 67% more memory efficient than their single table counterparts. They
designed a radix-4 complex division unit that uses their technique [23].

6.1.2. Hardware complex polynomial evaluation
Milos Ercegovac (Univ. of California at Los Angeles) and Jean-Michel Muller proposed [14] an efficient
hardware-oriented method for evaluating complex polynomials. The method is based on solving iteratively a
system of linear equations. The solutions are obtained digit-by-digit on simple and highly regular hardware.
The operations performed are defined over the reals. They described a complex-to-real transform, a complex
polynomial evaluation algorithm, the convergence conditions, and a corresponding design and implementation.
The main features of the method are: the latency of about m cycles for an m-bit precision; the cycle time
independent of the precision; a design consisting of identical modules; and digit-serial connections between
the modules. The number of modules, each roughly corresponding to serial-parallel multiplier without a
carry-propagate adder, is 2(n + 1) for evaluating an n-th degree complex polynomial. The design allows
straightforward tradeoffs between latency and cost: a factor k decrease in cost leads to a factor k increase in
latency. The proposed method is attractive for programmable platforms because of its regular and repetitive
structure of simple hardware operators.

6.1.3. Large multipliers and squarers with fewer DSP blocks
Large integer multipliers and squarers are pervasively used to build floating-point operators. Bogdan Pasca and
Florent de Dinechin proposed three methods to build them using fewer of the small multipliers available in
the DSP blocks of current FPGAs [33]. A careful implementation of the classical Karatsuba-Ofman approach
has a low overhead and may reduce embedded multiplier count from 4 to 3, from 9 to 6, or from 16 to 10.
Building dedicated squarers entails the same savings without any overhead. For the recent Xilinx multipliers
whose embedded multipliers are rectangular, these two approaches are inefficient, but a third approach, based
on non-standard tiling, is proposed. The multipliers built this way are smaller and faster than those offered
by vendor tools. In all the cases, the proposed architectures also try to make best use of the accumulation
hardware present in the DSP blocks.

6.1.4. Multiplier-based square roots on FPGAs
Florent de Dinechin, Bogdan Pasca, Mioara Joldes, and Guillaume Revy also studied how these embedded
multipliers can be used to implement the square root operation [34]. Compared to state-of-the-art digit
recurrence approaches, an original polynomial approach, shown to be more efficient than classical quadratic
iterations in this context, leads to a very short latency and low-power architecture for single precision. For
double-precision, it appears that the amount of glue logic in these multiplier-based approaches is comparable
to the cost of a complete digit-recurrence approach, so only the advantage of shorter latency remains.

http://www.vinc17.net/software/sipe.h
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6.1.5. Design of an arithmetic-oriented operator generator framework
Florent de Dinechin, Bogdan Pasca, and Cristian Klein, then an internship student, showed how the arithmetic
context can be exploited to build generators of highly efficient arithmetic operators [32]. The salient features
of the FloPoCo open-source architecture generator framework are: an easy learning curve from VHDL, the
ability to embed arbitrary synthesizable VHDL code, portability to mainstream FPGA targets from Xilinx and
Altera, automatic management of complex pipelines with support for frequency-directed pipeline, and support
for automatic test-bench generation.

6.2. Efficient Floating-Point Arithmetic and Applications
Participants: Nicolas Brisebarre, Claude-Pierre Jeannerod, Vincent Lefèvre, Nicolas Louvet, Jean-Michel
Muller, Adrien Panhaleux, Guillaume Revy, Gilles Villard.

6.2.1. Computation of Integer Powers in Floating-point Arithmetic
Peter Kornerup (Odense University, Denmark), Christoph Lauter (Intel, USA), Vincent Lefèvre, Nicolas
Louvet and Jean-Michel Muller have introduced several algorithms for accurately evaluating powers to a
positive integer in floating-point arithmetic, assuming a fused multiply-add (fma) instruction is available. For
bounded, yet very large values of the exponent, they aim at obtaining correctly-rounded results in round-to-
nearest mode, that is, their algorithms return the floating-point number that is nearest the exact value [17].

6.2.2. Correctly Rounded Sums
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, and Jean-Michel Muller have presented a study of some
basic blocks needed in the design of floating-point summation algorithms. In particular, they have shown that
among the set of the algorithms with no comparisons performing only floating-point additions/subtractions,
the 2Sum algorithm introduced by Knuth is minimal, both in terms of number of operations and depth of the
dependency graph. Under reasonable conditions, they have also proven that no algorithms performing only
round-to-nearest additions/subtractions exist to compute the round-to-nearest sum of at least three floating-
point numbers. Starting from an algorithm due to Boldo and Melquiond, they have presented new results
about the computation of the correctly-rounded sum of three floating-point numbers [29].

6.2.3. Midpoints and Exact Points of Algebraic Functions
When implementing a function f in floating-point arithmetic with correct rounding, it is important to know
if there are input floating-point values x such that f(x) is either the middle of two consecutive floating-point
numbers or a floating-point number: In the first case f(x) is said to be a midpoint, and in the second case
f(x) is said to be an exact point. In [42], Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller and
Adrien Panhaleux have studied the midpoints and the exact points of some usual algebraic functions: division,
inversion, square root, reciprocal square root, 2D Euclidean norm and its reciprocal, and 2D normalization.
The results and the techniques presented in this paper can be used to deal with both the binary and the decimal
formats defined in the IEEE 754-2008 standard.

6.2.4. Binary Floating-point Operators for VLIW Integer Processors
In a joint work with H. Knochel and C. Monat (STMicroelectronics Compilation Expertise Center, Grenoble),
C.-P. Jeannerod, G. Revy, and G. Villard [26] have extended the bivariate polynomial evaluation-based square
rooting method of [46] to division. Compared to square root, the main difficulty was to automatically validate
the numerical accuracy of the fast bivariate polynomial evaluation code that used to approximate the quotient.
This required first to introduce a new set of approximation and evaluation error conditions that are sufficient to
ensure correct rounding. Then, some efficient heuristics have been proposed to generate such evaluation codes
and to validate their accuracy according to the new error conditions. Finally, a complete C implementation has
been written (which is also part of FLIP 1.0 (§5.2)). With the ST200 VLIW compiler the speed-up factor is
almost 1.8 (compared to FLIP 0.3).
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C.-P. Jeannerod and G. Revy have worked on the design and implementation of a correctly-rounded reciprocal
square root operator. They proposed in [27] a high-ILP algorithm as well as an efficient rounding algorithm
(for rounding to nearest even). Their implementation, which fully supports subnormals, allowed to speed up
the reciprocal square root of FLIP (§5.2) by a factor of 2. This compound operator is also about twice faster
than a division followed by a square root, and entails only one rounding error instead of two.

6.2.5. Exact and Approximated Error of the FMA
The fused multiply-add (FMA) instruction, specified by the IEEE 754-2008 Standard for Floating-Point
Arithmetic, eases some calculations, and is already available on some current processors. Sylvie Boldo (Proval
Team, Saclay) and Jean-Michel Muller have first extended an earlier work on the computation of the exact error
of an FMA (by giving more general conditions and providing a formal proof). Then, they have presented a
new algorithm that computes an approximation to the error of an FMA, and provide error bounds and a formal
proof for that algorithm [39].

6.3. Correct Rounding of Elementary Functions
Participants: Sylvain Chevillard, Florent de Dinechin, Mioara Joldes, Vincent Lefèvre, Jean-Michel Muller,
Andrew Novocin.

6.3.1. Computing a certified bound of the supremum norm of an error
When implementing functions in libms, the function f to be implemented is often replaced by an approxima-
tion polynomial p on a closed bounded interval [a, b]. In order to guarantee the correctness of the implemen-
tation, one has to compute a tight upper bound of the supremum norm of the approximation error, being it
absolute p− f or relative p/f − 1, on the interval.

S. Chevillard, M. Joldes and C. Lauter proposed an algorithm for computing efficiently such a bound [22].
The algorithm uses automatic differentiation and interval arithmetic for overcoming the drawbacks of previous
approaches. However, due mainly to the combination of several techniques that are not currently available in
formal proof checkers (like automatic differentiation), this algorithm did not provide any formal proof. Also,
there is no "a priori" control of the accuracy obtained for the supremum norm.

In consequence, in [41], S. Chevillard, J. Harrison, M. Joldes and Ch. Lauter proposed a novel algorithm for
efficient and accurate computation of upper bounds of approximation errors. Key elements of this algorithm are
the use of intermediate approximation polynomials with bounded truncation remainder and a non-negativity
test based on a Sum-of-squares expression of polynomials. This algorithm is fully automated and the accuracy
obtained for the result is controlled “a priori” by the user. It can handle not only the cases when f is a simple
function (such as exp, arcsin, tan, etc.) but also more complicated cases when f is obtained as a composition
of functions such as exp(1 + cos (x)2) or sin(x)/ log(1 + x) for instance. It can deal uniformly with both
absolute and relative errors. The algorithm focuses also on formally proving the numerical result and paves the
way for formally certified supremum norms. It was implemented as a prototype using the scripting language
of Sollya and is going to be integrated as a part of Sollya.

Both articles include experimental results on real-life examples.

6.3.2. Computation of function erf with correct rounding in arbitrary precision
Implementations of functions in arbitrary precision are useful in any context when the precision of the
computations has to be modified on-the-fly, or when a high accuracy is required. In particular, when designing
a libm (such as CRlibm), many crucial steps involve arbitrary precision computations.

S. Chevillard proposed an implementation of the special functions erf and erfc in arbitrary precision [13]. In
fact, three algorithms are proposed: a heuristic can be used to choose the best algorithm depending on the
desired accuracy. The implementation is proved in the very details (with explicit error bounds) and can serve
as a reference for the implementation of other functions. Finally, this implementation has been compared to
the reference library MPFR and proved to be more efficient, in particular when the precision becomes high.
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6.4. Interval Arithmetic
Participants: Vincent Lefèvre, Hong Diep Nguyen, Nathalie Revol.

6.4.1. Efficient Implementation of Algorithms for Interval Linear Algebra
H.-D. Nguyen and N. Revol [49] proposed an algorithm for interval linear system solving, based on iterative
refinement techniques and on a relaxation of the interval linear system. This algorithm is competitive with
the best competitors in terms of efficiency while obtaining more accurate solutions. Ongoing work is the
development of an algorithm for interval matrix product: this algorithm is a tradeoff between speed – it is
almost as fast as the implementation in IntLab – and accuracy – the overestimation is smaller.

6.4.2. Standardization of Interval Arithmetic
We contributed to the creation, and now chair, an IEEE working group on the standardization of interval
arithmetic. The main achievements of this working group, for the year 2009, are a working framework
(notations, structure in levels), the first basic definitions (interval, arithmetic operations, elementary functions)
and finally implementation issues (exception handling). We envision future discussion to address other
operations on intervals (endpoints, midpoint...), on sets (union, intersection...), comparison and we will do
our best to impel work on these topics.

6.5. Linear Algebra and Lattice Basis Reduction
Participants: Guillaume Hanrot, Claude-Pierre Jeannerod, Nicolas Louvet, Ivan Morel, Andrew Novocin,
Xavier Pujol, Gilles Villard.

6.5.1. Elimination-free Algorithms for Cauchy- and Vandermonde-like matrices
In [47] Claude-Pierre Jeannerod, Christophe Mouilleron, and Gilles Villard have studied asymptotically
fast algorithms for generating matrix inverses of families of structured matrices like those of Cauchy and
Vandermonde type. To control the growth of intermediate generators, such algorithms typically rely on
a compression step based on fast Gaussian elimination. In practice, this step makes the analysis more
complicated and requires some care at the implementation level. The main contribution of this study is to
show that this step is in fact unnecessary for Cauchy- and Vandermonde-like matrices. For such matrices, this
allowed to propose new asymptotically fast inversion algorithms that are simpler to analyze and implement.

6.5.2. LLL-Reduction and Numerical Analysis
In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and Laszló Lovász introduced an efficiently computable notion
of reduction of basis of a Euclidean lattice that is now commonly referred to as LLL-reduction. The precise
definition involves the R-factor of the QR factorisation of the basis matrix. A natural mean of speeding up
the LLL reduction algorithm is to use a (floating-point) approximation to the R-factor. Xiao-Wen Chang
(McGill University), Damien Stehlé and Gilles Villard [44] have investigated the accuracy of the factor R
of the QR factorisation of an LLL-reduced basis. This has already proved very useful to devise LLL-type
algorithms relying on floating-point approximations, as this is a key ingredient for the results of the following
two subsections.

In parallel, a survey was written by Ivan Morel, Damien Stehlé and Gilles Villard, on the state-of-the art results
about the use of numerical analysis within the LLL algorithm [21].

6.5.3. Floating-Point LLL-Reduction
Ivan Morel, Damien Stehlé and Gilles Villard [30] introduced a new LLL-type algorithm, H-LLL, that relies
on Householder transformations to approximate the underlying Gram-Schmidt orthogonalizations. The latter
computations are performed with floating-point arithmetic. They proved that a precision essentially equal to the
dimension suffices to ensure that the output basis is reduced. H-LLL resembles the L2 algorithm of Nguyen
and Stehlé that relies on a floating-point Cholesky algorithm. However, replacing Cholesky’s algorithm by
Householder’s is not benign, as their numerical behaviors differ significantly. Broadly speaking, the new
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correctness proof is more involved, whereas the new complexity analysis is more direct. Thanks to the new
orthogonalization strategy, H-LLL is the first LLL-type algorithm that admits a natural vectorial description,
which leads to a complexity upper bound that is proportional to the progress performed on the basis (for fixed
dimensions).

6.5.4. Improving the LLL-Reducedness of an LLL-Reduced Basis
The LLL algorithm allows one to reduce a basis to an LLL-reduced basis in polynomial time. The quality
of the obtained reduction is directly related to a parameter δ (the 3/4 factor in the original algorithm): the
higher δ, the better the reduction. It was suggested by LaMacchia that one could gradually reduce the basis
by first using a small value of δ and then increasing the value of δ to reach the maximum quality. Ivan Morel,
Damien Stehlé and Gilles Villard designed an algorithm for the second phase, which is further reducing a basis
that is already reduced. They take advantage of the knowledge of the lattice obtained from the first reduction
to perform the second one. The results corresponding to this work are currently being written down.

6.5.5. Tweaking LLL for Particular Inputs
Mark van Hoeij and Andrew Novocin [51] introduced a new lattice algorithm specifically designed for some
classical applications of lattice reduction. The applications are for lattice bases with a generalized knapsack-
type structure, where the target vectors are boundably short. For such applications, the complexity of the
algorithm improves traditional lattice reduction by replacing some dependence on the bit-length of the input
vectors by some dependence on the bound for the output vectors. If the bit-length of the target vectors is
unrelated to the bit-length of the input, then the algorithm is only linear in the bit-length of the input entries,
which is an improvement over the quadratic complexity of floating-point LLL algorithms. To illustrate the
usefulness of this algorithm, it is showed that a direct application to factoring univariate polynomials over
the integers leads to the first complexity bound improvement since 1984. A second application is algebraic
number reconstruction, where a new complexity bound is obtained as well.

6.5.6. Solving the Shortest Lattice Vector Problem
Xavier Pujol and Damien Stehlé [50] improved a Monte Carlo algorithm recently proposed by Daniele
Micciancio and Panagiotis Voulgaris (to be published at SODA 2010), which finds a shortest non-zero vector
of a given lattice in time 23.199n where n is the lattice dimension. Pujol and Stehlé modified the algorithm so
that they could use the birthday paradox in the last stage of the algorithm. They achieve a time complexity
bound of 22.465n.

6.6. Code and Proof Synthesis
Participants: Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan Lu, Vincent Lefèvre, Nicolas
Louvet, Christophe Mouilleron, David Pfannholzer, Nathalie Revol, Guillaume Revy, Philippe Théveny, Gilles
Villard.

6.6.1. LEMA: a representation language for mathematical expressions
A study has begun to establish and implement a language that enables the programmer to represent not only
the numerical code, but also the intended semantics and the programmer’s knowledge. This language is based
on MathML, which enables to represent mathematical content, and it adds to MathML properties such as
range and error bounds, taking the underlying arithmetic into account. This language should also facilitate the
transformation of the original code into another code which can be more efficient and/or more accurate for
instance. This work takes place in the framework of the ANR project EVA-Flo.

7. Contracts and Grants with Industry
7.1. Grant from Minalogic/EMSOC

Participants: Christman Fagbohoun, Claude-Pierre Jeannerod, Jingyan Jourdan Lu, Jean-Michel Muller,
Andrew Novocin, Guillaume Revy, Philippe Théveny, Gilles Villard.
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This project is headed by C.-P. Jeannerod and J.-M. Muller. From October 2006 to September 2009, we have
been involved in Sceptre, a project of the EMSOC cluster of the Minalogic Competitivity Centre. This project,
led by STMicroelectronics, aims at providing new techniques for implementing software on system-on-chips.
Within Arénaire, we are focusing on the generation of optimized code for accurate evaluation of mathematical
functions; our partner at STMicroelectronics is the Compiler Expertise Center (Grenoble).

7.2. Grant from Région Rhône-Alpes
Participants: Nicolas Brisebarre, Sylvain Chevillard, Claude-Pierre Jeannerod, Mioara Joldes, Jingyan Jour-
dan Lu, Jean-Michel Muller, Nathalie Revol, Guillaume Revy, Gilles Villard.

Since October 2008, we have obtained a 3-year grant from Région Rhône-Alpes. That grant funds a PhD
student, Mioara Joldes. The project consists in automating as much as possible the generation of code for
approximating functions. Instead of calling functions from libraries, we wish to elaborate approximations
at compile-time, in order to be able to directly approximate compound functions, or to take into account
some information (typically, input range information) that might be available at that time. In this project, we
collaborate with the STMicroelectronics’ Compilation Expertise Center in Grenoble (C. Bertin, H. Knochel,
and C. Monat). STMicroelectronics is funding another PhD grant on these themes (see the next item).

7.3. STMicroelectronics CIFRE Ph.D. Grant
Participants: Claude-Pierre Jeannerod, Jingyan Jourdan Lu, Jean-Michel Muller.

Jingyan Jourdan Lu is supported by a CIFRE Ph.D. Grant (Mar. 2009-Feb. 2012) from STMicroelectronics
(Compilation Expertise Center, Grenoble) on the theme of arithmetic code generation and specialization for
embedded processors. Advisors: C.-P. Jeannerod and J.-M. Muller (Arénaire), C. Monat (STMicroelectronics).

7.4. Mediacom Project
Participants: Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan Lu, Jean-Michel Muller, David
Pfannholzer, Nathalie Revol.

We have been involved in Mediacom since September 1, 2009. Mediacom is a 40-month joint project with
the Compiler Expertise Center (STMicroelectronics Grenoble) and INRIA project-teams Alchemy, Alf, and
Compsys, and a Nano 2012 partner project. For Arénaire, it funds in particular the 3-year MEFI PhD grant of
David Pfannholzer. Our long-term goal with this project is the design and implementation of a dynamic code
generation tool, for numerical kernels typical of intensive mediaprocessing, and that could be integrated into
production compilers.

7.5. Stone Ridge Technology donation
Participants: Florent de Dinechin, Bogdan Pasca.

Stone Ridge Technology has donated a RDX-11 FPGA-based accelerator board to support the FloPoCo
project.

8. Other Grants and Activities

8.1. National Initiatives
8.1.1. ANR EVA-Flo Project

The EVA-Flo project (Évaluation et Validation Automatiques de calculs Flottants, 2006-2010) is headed by N.
Revol (Arénaire). The other teams participating in this project are Dali (Eliaus, U. Perpignan), Measi (LIST,
CEA Saclay) and Tropics (INRIA Sophia-Antipolis).
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This project focuses on the way a mathematical formula is evaluated in floating-point arithmetic. The approach
is threefold: study of algorithms for approximating and evaluating mathematical formulae, validation of such
algorithms, and automation of the process.

The EVA-Flo project appears on Cahiers de l’ANR no 3 and will be the subject of a talk and a poster during
the ANR STIC colloque "Quelle recherche pour les STIC de demain?" in January 2010.

We had a meeting in Lyon in September this year. The work done so far encompasses the definition of the
LEMA language, cf §6.6. Philippe Théveny has been hired to implement LEMA and interfaces between
LEMA and software related to EVA-Flo topics.

8.1.2. ANR LaRedA Project
Participant: Ivan Morel.

The LaRedA project (Lattice Reduction Algorithms, 2008-2010) is funded by the ANR and headed by Brigitte
Vallée (CNRS/GREYC) and Valérie Berthé (CNRS/LIRMM). The aim of the project is to finely analyze lattice
reduction algorithms such as LLL, by using experiments, probabilistic tools and dynamic analysis. Among the
major goals are the average-case analysis of LLL and its output distribution. In Lyon, we concentrate on the
experimental side of the project (by using fpLLL and MAGMA) and the applications of lattice reduction
algorithms.

8.1.3. ANR TCHATER Project
Participants: Florent de Dinechin, Honoré Takeugming, Gilles Villard.

The TCHATER project (Terminal Cohérent Hétérodyne Adaptatif TEmps Réel, 2008-2010) is a collabora-
tion between Alcatel-Lucent France, E2V Semiconductors, GET-ENST and the INRIA Arénaire and ASPI
project/teams. Its purpose is to demonstrate a coherent terminal operating at 40Gb/s using real-time digital
signal processing and efficient polarization division multiplexing. In Lyon, we study the FPGA implementa-
tion of specific algorithms for polarization demultiplexing and forward error correction with soft decoding.

8.1.4. PHC Sakura - INRIA Ayame junior program (France-Japan)
Participants: Nicolas Brisebarre, Guillaume Hanrot.

Software and Hardware Components for Pairing-Based Cryptography, 2 years (2008-2009), headed by G.
Hanrot (LORIA) and E. Okamoto (LCIS, Univ. of Tsukuba).

Keywords: cryptography, (hyper)elliptic curves, pairing, finite field arithmetic, hardware accelerator, FPGA.

Participant: N. Brisebarre.

The project “Software and Hardware Components for Pairing-Based Cryptography”, (2008-2009), was headed
by G. Hanrot (CACAO/LORIA then Arénaire/LIP) and E. Okamoto (LCIS, Univ. of Tsukuba).

The participants belong to the Arénaire (LIP, ENS Lyon) and CACAO (LORIA, Nancy) teams for the French
part and to the LCIS (Univ. of Tsukuba, Japan) and the Future Univ. of Hakodate (Japan). The goal of this
project was the enhancement of software and hardware implementations of pairings defined over algebraic
curves. We worked on the development of a more efficient arithmetic over Jacobian of (hyper)elliptic curves,
implementing genus 2 curve based pairings and designing algorithms and implementations resistant to side
channel attacks.

8.1.5. CNRS Grant PEPS ELRESAS
Participants: Nicolas Brisebarre, Sylvain Chevillard, Guillaume Hanrot, Mioara Joldes, Andrew Novocin,
Xavier Pujol, Gilles Villard.

The project ELRESAS (Réduction de réseaux : solutions exactes et approchées. Applications à la cryptologie
et à l’arithmétique des ordinateurs) is within the 2009 program Programmes Exploratoires Pluridisciplinaires
(PEPS) of the ST2I department of the CNRS. The participants belong to the Arénaire (LIP, ENS Lyon),
CACAO (LORIA, Nancy), CASYS (LJK, Grenoble), MOAIS (LIG, Grenoble) and “Théorie des nombres”
(Inst. C. Jordan, Univ. Lyon 1) teams. The general goal is the improvement of the algorithmic of euclidean
lattices and some of its applications.
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8.1.6. CNRS Grant Échange de chercheurs
Participant: Gilles Villard.

In 2008, G. Villard obtained a grant to visit the Magma team at the University of Sydney, Australia. The visit
will take place within the end of 2009. [VL: À mettre à jour.]

8.1.7. Rhône-Alpes Region Grant Exploradoc
Participant: Ivan Morel.

I. Morel obtained this funding (Jul. 2008 - Jul. 2010) to cover the costs of his cotutelle PhD thesis between
ENS Lyon (local advisor: G. Villard) and the University of Sydney (local advisor: J. Cannon). His research
focuses on the development, analysis and implementation of fast LLL-type lattice reduction algorithms.

8.2. International Initiatives
8.2.1. Contributions to Standardization Bodies

V. Lefèvre participates in the Austin Common Standards Revision Group (for the revision of POSIX IEEE Std
1003.1).

N. Revol chairs the IEEE P1788 working group on the standardization of interval arithmetic. There were
sessions dedicated to this work at the following conferences: ARITH-19 (19th IEEE Symposium on Computer
Arithmetic, USA, June 2009), PPAM (8th International Conference on Parallel Processing and Applied
Mathematics, Poland, September 2009) and during the 09471 Dagstuhl Seminar on Computer-assisted proofs
- tools, methods and applications (Germany, November 2009).

9. Dissemination

9.1. Conferences, Edition
F. de Dinechin was in the program committee of FPL’09 (Field Programmable Logic and Applications) and
FPT’09 (Field-Programmable Technologies). He is a member of the Steering Committee of the Symposium en
Architectures de Machines.

J.-M. Muller was in the program committee of ARITH-19 (19th IEEE Symposium on Computer Arith-
metic, June 2009), and in the program committee of ASAP’2009 (20th IEEE International Conference on
Application-specific Systems, Architectures and Processors). With P. Montuschi (Politecnico di Torino), E.
Schwarz (IBM), P. Kornerup (Odense Univ.), he was guest editor of a special section on Computer Arithmetic,
published in the February issue of IEEE Transactions on Computers. He is a member of the steering committee
of the RNC series of conferences. He is a member of the board of foundation editors of JUCS (Journal for
Universal Computer Science).

G. Villard is in the editorial board of the Journal of Symbolic Computation.

9.2. Doctoral School Teaching
N. Brisebarre gave a 16h Master course "Cryptographic Algorithms" (November 2009) at the ENSIAS of
Rabat (Morocco).

F. de Dinechin gave a 32h ÉNSL Master course “Computer Arithmetic”.

G. Hanrot, V. Lefèvre and J.-M. Muller gave a 24h ÉNSL Master course “Multiple-Precision Arithmetic” (fall
2009).

G. Hanrot gave a 24h ÉNSL Master course “Lattice basis reduction and applications” (fall 2009).

C.-P. Jeannerod, N. Louvet, and N. Revol gave a 24h ÉNSL Master course “Certified Linear Algebra” (fall
2009).
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V. Lefèvre gives a 24h Master course “Computer Arithmetic” at Université Claude Bernard - Lyon 1
(2009/2010).

N. Louvet gave a 37h Master course “Numerical algorithms in floating-point arithmetic” at U. Claude
Bernard - Lyon 1 (spring 2009).

J.-M. Muller gave a 10h ÉNSL Master course “Multiple-Precision Arithmetic” (fall 2009).

9.3. Other Teaching and Service
F. de Dinechin gave a 32h License course “Architecture, networks and systems”. He is responsible of the
international exchanges of the computer science department at ENS Lyon.

N. Louvet gave 97h of License courses during the academic year 2008/2009 at U. Claude Bernard - Lyon 1.

9.4. Leadership within Scientific Community
F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, N. Louvet, and N. Revol organized the 3es Rencontres “Arithmé-
tique de l’Informatique Mathématique” (RAIM’09) at ENS-Lyon (3 days, over 70 participants).

C.-P. Jeannerod co-organized (jointly with F. Rastello) a one-day workshop at ENS Lyon on the theme of
Compiler Optimization for Embedded Systems (June 15, 2009 - about 25 participants).

J.-M. Muller has been “chargé de mission” at the ST2I department of CNRS from April 2006 to September
2009.

N. Revol chairs the IEEE P1788 working group on the standardization of interval arithmetic since November
2008.

G. Villard has been vice chair of the LIP laboratory until December 2008, and is chair starting January 2009.

G. Villard and J.M. Muller are members of the board of the CNRS-GDR Informatique Mathématique (headed
by B. Vallée). The working group “Calcul formel, arithmétique, protection de l’information, géométrie” of
this GDR is headed by G. Villard.

9.5. Committees
N. Brisebarre was a member of the board of examiners for the PhD defense of S. Chevillard (July 2009).

N. Brisebarre has been examiner for the ÉNS admissions (spring - summer 2009).

F. de Dinechin has been a reviewer for the habilitation thesis of L.-S. Didier (U. Pierre et Marie Curie, 2009).

G. Hanrot is the vice-president of INRIA Evaluation Committee.

G. Hanrot is a member of INRIA “Comité d’animation du domaine thématique” for theme “Algorithmics,
Programming, Software and Architecture”.

C.-P. Jeannerod and G. Villard were members of the board of examiners for the PhD defense of G. Revy
(December 2009).

J.-M. Muller participated to the evaluation committees of the following laboratories: GSCOP (Grenoble,
January 2008), LIP6 (Paris, January 2008), LIPN (Villetaneuse, January 2008), LIX (Palaiseau, February
2008), LORIA (Nancy, February 2008), LSV (Cachan, December 2008), LIFL (Lille, December 08).

J.-M. Muller is a member of the Scientific Committee of Grenoble INP (former INPG) since 2008.

J.-M.Muller was reviewer of the PhD dissertation of A.Vazquez (Univ. Santiago de Compostela, 2009). He
was a member of the board of examiners for the PhD defense of S. Chevillard.

N. Revol belonged to the hiring committees for junior scientists at INRIA Grenoble - Rhône-Alpes in 2009.
She belongs to the INRIA Rhône-Alpes committee for recruiting post-doctoral researchers since 2007.

G. Villard was in the habilitation committee of L. Imbert (U. Montpellier), and member of the board of
examiners for the PhD defense of O. Bouissou (École Polytechnique).
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G. Villard was a member of the evaluation committee of the ANR program Défis.

F. de Dinechin and J.M. Muller manage the PhD and habilitation theses for the LIP.

9.6. Seminars, Conference and Workshop Committees, Invited Conference
Talks
National meetings:
F. de Dinechin gave a lecture at the spring school ARCHI’09 (Pleumeur-Bodou, spring 2009).

V. Lefèvre gave a presentation of MPFR at the CNC’2 summer school (Certified Numerical Computation) at
LORIA (June 2009).

I. Morel gave a talk at the École Jeunes Chercheurs en Informatique (Clermont-Ferrand, April 2009).

J.-M. Muller gave a 3-hour invited lecture at the conference “Numeration: Mathematics and Computer Sci-
ence” (Marseille/Luminy, march 2009). He gave another talk at an “open meeting” organized by STMicro-
electronics (Grenoble), in January 2009.

N. Revol gave a talk at a MEA meeting, in December 2009. MEA (Méthodes Ensemblistes pour
l’Automatique) is a working group of the GDR MACS on Control Theory.
International seminars and meetings:
N. Revol gave a talk at the Dagstuhl Seminar 09471 on Computer-assisted proofs - tools, methods and
applications, Germany, November 2009.
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