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2. Overall Objectives

2.1. Overall Objectives
The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models and particle filtering,

• risk evaluation and simulation of rare events,

• global optimization.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas in
which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods, etc.
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Intuitively speaking, interacting Monte Carlo methods are sequential simulation methods, in which particles

• explore the state space by mimicking the evolution of an underlying random process,

• learn the environment by evaluating a fitness function,

• and interact so that only the most successful particles (in view of the value of the fitness function)
are allowed to survive and to get offsprings at the next generation.

The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in

target tracking, computer vision, mobile robotics, ubiquitous computing and ambient intelli-
gence, sensor networks, etc.,

each particle represents a possible hidden state, and is multiplied or terminated at the next generation on
the basis of its consistency with the current observation, as quantified by the likelihood function. With these
genetic–type algorithms, it becomes easy to efficiently combine a prior model of displacement with or without
constraints, sensor–based measurements, and a base of reference measurements, for example in the form of a
digital map (digital elevation map, attenuation map, etc.). In the most general case, particle methods provide
approximations of Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann distributions,
by means of the weighted empirical probability distribution associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events, simulation of conditioned or constrained random variables, interacting
MCMC methods, molecular simulation, etc.

The main applications currently considered are geolocalisation and tracking of mobile terminals, terrain–aided
navigation, data fusion for indoor localisation, detection in sensor networks, risk assessment in air traffic
management, protection of digital documents, and credit risk estimation.

Our second research area concerns nearest neighbor estimation. This set of methods belongs to the class
of supervised statistical learning algorithms. They aim at predicting some feature of a new object from a
learning N–sample in the form of already known object–feature pairs. There are many different approches to
this problem, and we decided to focus on the nearest neighbor approach, which only considers the k nearest
objects of the new one, with k smaller than N , and for some given metric. Then we predict the unkown feature
value by a mean on the features of the neighbors in the case of regression (continuous case), or a majority vote
in the case of classification (discrete case). Despite its simplicity, this approach works very well in practice and
has led to a large amount of both applied and theoretical literature. Nevertheless, there are still open questions,
especially about the convergence of the method when the objects take values in an infinite dimensional space,
or in general about the rate of convergence in different settings, or for different choices of k.

3. Scientific Foundations

3.1. Monte Carlo methods
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually
Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated,
that can be expressed in terms of the expected value of a functional of the process trajectory, which includes
as an important special case the probability that a given event has occurred. Numerous examples can be found,
e.g. in financial engineering (pricing of options and derivative securities) [48], in performance evaluation
of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state
estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression
is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process.
The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate
instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the



Project-Team ASPI 3

weighted empirical probability distribution associated with the resulting independent sample. By the law of
large numbers, the above estimator converges as the size N of the sample goes to infinity, with rate 1/

√
N and

the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce the variance
of the estimator, many variance reduction techniques have been proposed. Still, running independent Monte
Carlo simulations can lead to very poor results, because trajectories are generated blindly, and only afterwards
are the corresponding weights evaluated. Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator, i.e. computing power has been wasted.

A recent and major breakthrough, a brief mathematical presentation of which is given in 3.2, has been the
introduction of interacting Monte Carlo methods, also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample, called system of particles, is propagated in time, where the
particles

• explore the state space under the effect of a mutation mechanism which mimics the evolution of the
underlying process,

• and are replicated or terminated, under the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.

In full generality, the underlying process is a discrete–time Markov chain, whose state space can be

finite, continuous, hybrid (continuous / discrete), graphical, constrained, time varying, pathwise,
etc.,

the only condition being that it can easily be simulated. The very important case of a sampled continuous–time
Markov process, e.g. the solution of a stochastic differential equation driven by a Wiener process or a more
general Lévy process, is also covered.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal Bayesian filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly weighted) empirical probability distribution of
the system of particles. In its simplest version, introduced in several different scientific communities under
the name of bootstrap filter [51], Monte Carlo filter [55] or condensation (conditional density propagation)
algorithm [53], and which historically has been the first algorithm to include a redistribution step, the selection
mechanism is governed by the likelihood function: at each time step, a particle is more likely to survive and to
replicate at the next generation if it is consistent with the current observation. The algorithms also provide as
a by–product a numerical approximation of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction error or the conditional least–squares
criterion.

Particle methods are currently being used in many scientific and engineering areas

positioning, navigation, and tracking [52], [45], visual tracking [53], mobile robotics [46], [72],
ubiquitous computing and ambient intelligence, sensor networks, risk evaluation and simulation
of rare events [49], genetics, molecular simulation [47], etc.

Other examples of the many applications of particle filtering can be found in the contributed volume [28] and
in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Methods for Statistical
Signal Processing in February 2002, where the tutorial paper [29] can be found, and in the textbook [68]
devoted to applications in target tracking. Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics, can be found in [66].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field
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target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods.

3.2. Particle approximations of Feynman–Kac distributions
The following abstract point of view, developed and extensively studied by Pierre Del Moral [37], [35],
has proved to be extremely fruitful in providing a very general framework to the design and analysis of
numerical approximation schemes, based on systems of branching and / or interacting particles, for nonlinear
dynamical systems with values in the space of probability distributions, associated with Feynman–Kac flows.
Feynman–Kac distributions are characterized by a Markov chain and by nonnegative potential functions that
play the role of selection functions. They naturally arise whenever importance sampling is used: this applies
for instance to simulation of rare events, to filtering, i.e. to state estimation in hidden Markov models (HMM),
etc. To solve numerically the recurrent equation satisfied by the Feynman–Kac distributions, and in view of the
basic assumption that it is easy to simulate r.v.’s according to the Markov transition kernel, i.e. to mimic the
evolution of the Markov chain, and that it is easy to evaluate the potential functions, the original idea behind
particle methods consists of looking for an approximation in the form of a (possibly weighted) empirical
probability distribution associated with a system of particles. The approximation is completely characterized
by the set of particle positions and weights, and the algorithm is completely described by the mechanism
which builds this set recursively. In practice, in the simplest version of the algorithm, known as the bootstrap
algorithm, particles

• are selected according to their respective weights (selection step),

• move according to the Markov transition kernel (mutation step),

• are weighted by evaluating the fitness function (weighting step).

The algorithm yields a numerical approximation of the Feynman–Kac distribution as the weighted empirical
probability distribution associated with a system of particles, and many asymptotic results have been proved
as the number N of particles (sample size) goes to infinity, using techniques coming from applied probability
(interacting particle systems, empirical processes [73]), see e.g. the survey article [37] or the recent textbook
[35], and references therein

convergence in Lp, convergence as empirical processes indexed by classes of functions, uniform
convergence in time, see also [8], [9], central limit theorem, see also [59], [63], propagation of
chaos, large deviations principle, moderate deviations principle [38], etc.

Beyond the simplest bootstrap version of the algorithm, many algorithmic variations have been proposed [40],
[31], and are commonly used in practice. For instance (i) in the selection step, sampling with replacement could
be replaced with other redistribution schemes so as to reduce the variance (this issue has also been addressed in
genetic algorithms), and (ii) to reduce the variance and to save computational effort, it is often a good idea not
to redistribute the particles at each time step, but only when the weights are too far from equidistribution. Even
with interacting Monte Carlo methods, it could happen that some particles generated in one time step have a
negligible weight: if this happens for too many particles in the sample, then computing power has been wasted,
and it has been suggested to use importance sampling again in the mutation step, i.e. to let particles explore
the state space under the action of an alternate wrong mutation kernel, and to weight the particles according
to their likelihood for the true model, so as to compensate for the wrong modeling. More specifically, using
an arbitrary importance decomposition results in the following general algorithm, known as the sampling with
importance resampling (SIR) algorithm, in which particles

• are selected according to their respective weights (selection step),

• move according to the proposed importance Markov transition kernel (mutation step),

• are weighted by evaluating the corresponding importance function, which now depends on the
Markov transition (weighting step).
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Many of the early convergence results proved in the literature assume that particles are redistributed (i) using
sampling with replacement and (ii) at each time step, and move according to the original Markov transition
kernel. Systematically studying the impact of the proposed algorithmic variants on the convergence results is
still the subject of active research.

3.3. Statistics of HMM
Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems, in
which the state of a Markov process (in discrete or continuous time, with finite or continuous state space)
should be estimated from noisy observations. The conditional probability distribution of the hidden state
given past observations is a well–known example of a normalized (nonlinear) Feynman–Kac distribution,
see 3.2. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space [32], including estimation of model parameters, early monitoring
and diagnosis of small changes in model parameters, etc.

Large time asymptotics A fruitful approach is the asymptotic study, when the observation time increases to
infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the
prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all
previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other
clasical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of
the extended Markov chain.

The following general approach has been proposed

• first, prove an exponential stability property (i.e. an exponential forgetting property of the initial
condition) of the prediction filter and its derivative, for a misspecified model,

• from this, deduce a geometric ergodicity property and the existence of a unique invariant probability
distribution for the extended Markov chain, hence a law of large numbers and a central limit
theorem for a large class of contrast processes and their derivatives, and a local asymptotic normality
property,

• finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast
function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [7], and has been generalized [39] under
an uniform minoration assumption for the Markov transition kernel, which typically does only hold when the
state space is compact. Clearly, the whole approach relies on the existence of an exponential stability property
of the prediction filter, and the main challenge currently is to get rid of this uniform minoration assumption
for the Markov transition kernel [36], [9], so as to be able to consider more interesting situations, where the
state space is noncompact.

Small noise asymptotics Another asymptotic approach can also be used, where it is rather easy to obtain
interesting explicit results, in terms close to the language of nonlinear deterministic control theory [58]. Taking
the simple example where the hidden state is the solution to an ordinary differential equation, or a nonlinear
state model, and where the observations are subject to additive Gaussian white noise, this approach consists
in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to
zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic
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approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity
assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher
information matrix, asymptotic covariance matrix, etc.) take here a much more explicit form than in the large
time asymptotics.

The following results have been obtained using this approach

• the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global
minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques,
with an analytical approach [54],

• if the abovementioned set M does not reduce to the true parameter value, i.e. if the model is not
identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [6]: in
the simple case where the state equation is a noise–free ordinary differential equation and using a
Bayesian framework, it has been shown that (i) if the rank r of the Fisher information matrix I is
constant in a neighborhood of the set M , then this set is a differentiable submanifold of codimension
r, (ii) the posterior probability distribution of the parameter converges to a random probability
distribution in the limit, supported by the manifold M , absolutely continuous w.r.t. the Lebesgue
measure on M , with an explicit expression for the density, and (iii) the posterior probability
distribution of the suitably normalized difference between the parameter and its projection on the
manifold M , converges to a mixture of Gaussian probability distributions on the normal spaces to
the manifold M , which generalized the usual asymptotic normality property,

• it has been shown [64] that (i) the parameter dependent probability distributions of the observations
are locally asymptotically normal (LAN) [61], from which the asymptotic normality of the maxi-
mum likelihood estimator follows, with an explicit expression for the asymptotic covariance matrix,
i.e. for the Fisher information matrix I , in terms of the Kalman filter associated with the linear
tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized,
converges to a Gaussian r.v. with zero mean and covariance matrix I .

3.4. Multilevel splitting for rare event simulation
See 4.2, 6.3, 6.4, 6.5, 6.6, 6.9, 7.1, 7.3 and 7.7.

The estimation of the small probability of a rare but critical event, is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [60], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. As shown in [5], the
Feynman–Kac formalism of 3.2 is well suited for the design and analysis of splitting algorithms for rare event
simulation.

Propagation of uncertainty Multilevel splitting can be used in static situations. Here, the objective is to learn
the probability distribution of an output random variable Y = F (X), where the function F is only defined
pointwise for instance by a computer programme, and where the probability distribution of the input random
variable X is known and easy to simulate from. More specifically, the objective could be to compute the
probability of the output random variable exceeding a threshold, or more generally to evaluate the cumulative
distribution function of the output random variable for different output values. This problem is characterized
by the lack of an analytical expression for the function, the computational cost of a single pointwise evaluation
of the function, which means that the number of calls to the function should be limited as much as possible,
and finally the complexity and / or unavailability of the source code of the computer programme, which makes
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any modification very difficult or even impossible, for instance to change the model as in importance sampling
methods.

The key issue is to learn as fast as possible regions of the input space which contribute most to the computation
of the target quantity. The proposed splitting methods consists in (i) introducing a sequence of intermediate
regions in the input space, implicitly defined by exceeding an increasing sequence of thresholds or levels,
(ii) counting the fraction of samples that reach a level given that the previous level has been reached already,
and (iii) improving the diversity of the selected samples, usually using an artificial Markovian dynamics. In
this way, the algorithm learns

• the transition probability between successive levels, hence the probability of reaching each interme-
diate level,

• and the probability distribution of the input random variable, conditionned on the output variable
reaching each intermediate level.

A further remark, is that this conditional probability distribution is precisely the optimal (zero variance)
importance distribution needed to compute the probability of reaching the considered intermediate level.

Rare event simulation To be specific, consider a complex dynamical system modelled as a Markov process,
whose state can possibly contain continuous components and finite components (mode, regime, etc.), and the
objective is to compute the probability, hopefully very small, that a critical region of the state space is reached
by the Markov process before a final time T , which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal behaviour).

The proposed splitting method consists in (i) introducing a decreasing sequence of intermediate, more and
more critical, regions in the state space, (ii) counting the fraction of trajectories that reach an intermedi-
ate region before time T , given that the previous intermediate region has been reached before time T , and
(iii) regenerating the population at each stage, through redistribution. In addition to the non–intrusive be-
haviour of the method, the splitting methods make it possible to learn the probability distribution of typical
critical trajectories, which reach the critical region before final time T , an important feature that methods based
on importance sampling usually miss. Many variants have been proposed, whether

• the branching rate (number of offsprings allocated to a successful trajectory) is fixed, which allows
for depth–first exploration of the branching tree, but raises the issue of controlling the population
size,

• the population size is fixed, which requires a breadth–first exploration of the branching tree, with
random (multinomial) or deterministic allocation of offsprings, etc.

Just as in the static case, the algorithm learns

• the transition probability between successive levels, hence the probability of reaching each interme-
diate level,

• and the entrance probability distribution of the Markov process in each intermediate region.

Contributions have been given to

• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to the
shape of the intermediate regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

• controlling the probability of extinction (when not even one trajectory reaches the next intermediate
level),

• designing and studying variants suited for hybrid state space (resampling per mode, marginalization,
mode aggregation),

and in the static case, to

• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to
intermediate levels, to the Metropolis kernel introduced in the mutation step, etc.
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A related issue is global optimization. Indeed, the difficult problem of finding the set M of global minima of
a real–valued function V can be replaced by the apparently simpler problem of sampling a population from
a probability distribution depending on a small parameter, and asymptotically supported by the set M as the
small parameter goes to zero. The usual approach here is to use the cross–entropy method [69], [34], which
relies on learning the optimal importance distribution within a prescribed parametric family. On the other hand,
multilevel splitting methods could provide an alternate nonparametric approach to this problem.

3.5. Nearest neighbor estimates
See 6.1 and 6.2.

In pattern recognition and statistical learning, nearest neighbor algorithms are amongst the most simple
available. Nevertheless, they are also very powerful and since the pioneering works by Fix and Hodges [41],
[42] they have generated a large amount of literature and developments. Basically, given a training set of
data, i.e. an N–sample of i.i.d. object–feature pairs (Xi, Yi) for i = 1, · · · , N , with real–valued features, we
want to be able to generalize, that is to guess the feature Y associated with any new object X , with the same
probability distribution as the Xi’s. To achieve this, one chooses some integer k smaller than N , and takes the
mean–value of the k features associated with the k objects that are nearest to the new object X , for some given
metric. From the beginning it was clear that even simple, this method is very powerful.

In general, there is no way to guess exactly the value of Y , and the minimal error that can be done is that of
the Bayes estimate E[Y | X], which cannot be computed by lack of knowledge of the distribution of the pair,
but the Bayes estimate will help us to characterize the strength of the method. So the best we can wish is that
our estimate converges, say when the sample size grows, to the Bayes estimate. This is what has been proved
in great generality by Stone [71] for the mean square convergence, provided that X is a d-dimensional vector,
Y is square–integrable, and the ratio k/N goes to 0. Nearest neighbor estimate is not the only local averaging
estimate having this property, but it is arguably the simplest.

The situation is radically different in general infinite dimensional spaces. In this respect, Cérou and
Guyader [3] present counterexamples indicating that the estimate is not consistent, and they argue that re-
strictions on the state space and the distribution of (X, Y ) cannot be dispensed with. First of all, it must be
separable for the norm used to compute the neighbors, as already noticed by Cover and Hart [33]. But this is
not enough. By working out arguments in Preiss [67], Cérou and Guyader [3] exhibit a random variable X
with Gaussian distribution in a separable Hilbert space for which the estimate fails to be consistent. On the
positive side, these authors provide a general condition, called the µ–continuity condition, which ensures the
consistency of the estimate. Even with this recent results, the situation in infinite dimension is not completly
clear, and this is still an interesting field for investigation.

In settings for which the estimate is convergent, there is still the question of the rate of convergence, and how
to choose the parameter k in order to achive the best rate of convergence. As noticed by Kulkarni and Posner
[57], the rate of convergence of the nearest neighbors is closely related to the notion of entropy, introduced in
the late fifties by Kolmogorov and Tikhomirov [56]. These tools are to be used to study cases and algorithm
refinements that are not yet to be found in the literature.

4. Application Domains

4.1. Localisation, navigation and tracking
See 5.1, 6.11, 7.2, 7.4 and 7.5.
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Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has
decided to focus on applications in localisation (or positioning), navigation and tracking [52], [45], which
already covers a very broad spectrum of application domains. The objective here is to estimate the position
(and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information,
including

• a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior
model for inertial errors,

• measurements provided by sensors,

• and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at
each possible position.

In some applications, another useful source of information is provided by

• a map of constrained admissible displacements, for instance in the form of an indoor building map,

which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is
also called filtering, and its numerical implementation using particle methods, known as particle filtering, has
been introduced by the target tracking community [51], [68], which has already contributed to many of the
most interesting algorithmic improvements and is still very active, and has found applications in

target tracking, integrated navigation, points and / or objects tracking in video sequences,
mobile robotics, wireless communications, ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing to several applications of particle filtering in positioning, navigation and tracking, such
as geolocalisation and tracking in a wireless network, terrain–aided navigation, see 7.2, and data fusion for
indoor localisation, see 7.5.

4.2. Rare event simulation
See 3.4, 6.3, 6.4, 6.5, 6.6, 6.9, 7.1, 7.3 and 7.7.

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided
to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [60], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. This approach not
only makes it possible to estimate the probability of the rare event, but also provides realizations of the ran-
dom trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an
important feature that methods based on importance sampling usually miss.

ASPI is contributing to several applications of multilevel splitting for rare event simulation, such as risk
assessment in air traffic management, see 7.1, detection in sensor networks, see 7.3, protection of digital
documents, see 7.7, and credit risk estimation.

5. Software

5.1. Demos
Participant: François Le Gland [corresponding person].
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See 4.1, 7.2 and 7.5.

To illustrate that particle filtering algorithms are efficient, easy to implement, and extremely visual and intuitive
by nature, for localisation, navigation and tracking problems in complex environments, with geometrical
constraints, that would be very difficult to solve with usual Kalman filters. This material has proved very
useful in training sessions and seminars that have been organized in response to the demand from industrial
partners (SAGEM, CNES and EDF), and also in teaching. At the moment, the following three demos are
available

Terrain–aided navigation of an aircraft Inertial position and velocity estimates are known to drift away
from their true values, and need to be combined with some external source of information. In this
demo, noisy measurements of the terrain height below an aircraft are obtained as the difference
between (i) the aircraft altitude above the sea level (provided by a pression sensor) and (ii) the
aircraft altitude above the terrain (provided by an altimetric radar), and are compared to the terrain
height in any possible point (read on the elevation map). A cloud (swarm) of particles explores
various possible trajectories generated from inertial navigation estimates and from a model of inertial
navigation errors, and are replicated or discarded depending on whether the terrain height below the
particle (i.e. at the same horizontal position) matches or not the available noisy measurement of the
terrain height below the aircraft.

Positioning and tracking in the presence of obstacles In this demo, several stations cooperate to locate
and track a mobile from noisy angle measurements, in the presence of obstacles (walls, tunnels, etc),
which make the mobile temporarily invisible from one or several stations.

Indoor navigation of a mobile robot In this demo, a mobile robot is finding its way inside a building, a
digital map of which (including walls, doorways, etc.) is provided. The initial position, velocity and
orientation of the robot are unknown, and noisy measurements of its rotation and linear displacement
are given by an odometer. In addition, a ring of laser sensors detects with some error the distance
from the robot to obstacles in sixteen different directions. A cloud (swarm) of particles explores
various possible trajectories generated from odometer navigation estimates and from a model of
odometer navigation errors, and are replicated or discarded depending on whether the distance
from the particle to obstacles matches or not the available noisy measurement of the distance from
the robot to the obstacles, in all sixteen directions, and depending also on whether the generated
trajectories are compatible with the presence of obstacles.

6. New Results

6.1. Rate of convergence of the bagged nearest neighbor estimate
Participants: Frédéric Cérou, Arnaud Guyader.

See 3.5

This is a collaboration with Gérard Biau, from université Pierre et Marie Curie, ENS Paris and INRIA Paris
Rocquencourt (project–team CLASSIC).

Bagging is a simple way to combine estimates in order to improve their performance. This method, suggested
by Breiman in 1996, proceeds by resampling from the original data set, constructing a predictor from each
subsample, and decide by combining. By bagging an n-sample, the crude nearest neighbor regression estimate
is turned into a consistent weighted nearest neighbor regression estimate, which is amenable to statistical
analysis. Letting the resampling size kn grows with n in such a manner that kn →∞ and kn/n → 0, we have
shown that this estimate achieves optimal rate of convergence, independently from the fact that resampling
is done with or without replacement. Since the estimate with the optimal rate of convergence depends on the
unknown distribution of the observations, adaptation results by data–splitting are also obtained [12], [24].
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6.2. Rates of convergence of the functional k–nearest neighbor estimate
Participants: Frédéric Cérou, Arnaud Guyader.

See 3.5

This is a collaboration with Gérard Biau, from université Pierre et Marie Curie, ENS Paris and INRIA Paris
Rocquencourt (project–team CLASSIC).

Motivated by a broad range of potential applications, such as regression on curves, we investigate rates of
convergence of the k-nearest neighbor estimate of the regression function, based on N independent copies
of the pair (X, Y ), when X is in a suitable ball in some functional space. Using compact embedding theory,
we present explicit and general finite sample bounds on the expected squared difference between k-nearest
neighbor estimator and Bayes regression function, in a very general setting. We also particularize our results
to classical function spaces such as Sobolev spaces, Besov spaces and reproducing kernel Hilbert spaces. The
rates obtained are genuine nonparametric convergence rates, and up to our knowledge the first of their kind for
k–nearest neighbor regression [13], [25].

6.3. Estimating the minimal length of Tardos code
Participants: Frédéric Cérou, Arnaud Guyader.

See 3.4, 4.2 and 7.7.

This is a collaboration with Luis Pérez–Feire from GRADIANT (Galician R&D Center in Advanced Telecom-
munications, Vigo, Spain) and with Teddy Furon from INRIA Rennes Bretagne Atlantique (project–team
TEMICS).

We are interested in the minimal length of a binary probabilistic traitor tracing code. We consider the code
construction proposed by Gábor Tardos in 2003, with the symmetric accusation function as improved by Boris
Škorić et al. The length estimation is based on two pillars. First, we consider the worst case attack that a group
of c colluders can lead. This attack minimizes the mutual information between the code sequence of a colluder
and the pirated sequence. Second, an algorithm pertaining to the field of rare event analysis is constructed in
order to estimate the probabilities of error: the probability that an innocent user is framed, and the probabilities
that all colluders are missed. Therefore, for a given collusion size, we are able to estimate the minimal length
of the code satisfying some error probabilities constraints [21]. This estimation is far lower than the known
lower bounds.

6.4. Estimating the probability of false alarm for a zero–bit watermarking
technique
Participants: Frédéric Cérou, Arnaud Guyader, Cyrille Jégourel.

See 3.4, 4.2 and 7.7.

This is a collaboration with Teddy Furon from INRIA Rennes Bretagne Atlantique (project–team TEMICS).

Assessing that a probability of false alarm is below a given significance level is a crucial issue in watermarking.
We have proposed an iterative and self–adapting algorithm which estimates very low probabilities of error.
Some experimental investigations validates its performance for a rare detection scenario where there exists
a close form formula of the probability of false alarm. Our algorithm appears to be much quicker and
more accurate than a classical Monte Carlo estimator. It even allows the experimental measurement of error
exponents [17].

6.5. Credit risk estimation
Participants: Frédéric Cérou, Arnaud Guyader.

See 3.4 and 4.2.
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We applied our rare event techniques to the Credit Metrics model in order to estimate the probability of
large loss. We found that at least on this Gaussian model, our methods compares well with state of the art
importance sampling techniques, as proposed by Glasserman et al. [50]. We are now investigating other
models of multifactor portfolio credit risk, as our method is versatile, and can be easily adapted to new models.
This is still a work in progress. Preliminary investigations have been made during the internship of Hang Khuc
(université de Rennes 2).

6.6. Rare event techniques for integral estimation
Participants: Frédéric Cérou, Arnaud Guyader, Jean-Baptiste Le Meur.

See 3.4 and 4.2.

This is a collaboration with Éric Matzner–Løber, from université de Rennes 2.

We applied our rare event techniques to the estimation of integrals that are too complicated to be computed
by either numerical methods, or Monte Carlo. Typically, one can think of the partition function of a Gibbs
measure. Very preliminary results indicate that the proposed method may prove very useful for some difficult
cases. This is still a work in progress.

6.7. Particle methods with adaptive resampling
Participant: François Le Gland.

This is a collaboration with Élise Arnaud, from université Joseph Fourier and INRIA Grenoble Rhône Alpes
(project–team PERCEPTION).

A longstanding problem in particle or sequential Monte Carlo (SMC) methods is to mathematically prove the
popular belief that resampling does improve the performance of the estimation (this of course is not always
true, and the real question is to clarify classes of problems where resampling helps). A more pragmatic answer
to the problem is to use adaptive procedures that have been proposed on the basis of heuristic considerations,
where resampling is performed only when it is felt necessary, i.e. when some criterion (effective number of
particles, entropy of the sample, etc.) reaches some prescribed threshold. It still remains to mathematically
prove the efficiency of such adaptive procedures. Our first contribution has been to consider a design where
resampling is performed at some intermediate fixed time instants, and to optimize the asymptotic variance of
the estimation error w.r.t. the resampling time instants. The second contribution [15] has been to prove a central
limit theorem for particle methods with adaptive resampling, using an interpretation of particle methods where
importance weights are interpreted as particles [62], as long as they are not used for resampling purpose, and
to minimize the asymptotic variance w.r.t. the threshold.

6.8. Non–parametric learning of the optimal importance distribution
Participant: François Le Gland.

This is a collaboration with Nadia Oudjane, from EDF R&D Clamart.

Evaluating an integral or a mathematical expectation of a nonnegative function can always be seen as com-
puting the normalization constant in a Boltzmann–Gibbs probability distribution. When the probability distri-
bution and the nonnegative function do not agree, i.e. have significant contributions in different parts of the
integration space, then the variance of the estimator can be very large, and one should use another importance
distribution, ideally the optimal (zero variance) importance distribution µ∗ which unfortunately cannot be used
since it depends on the desired (but unknown) integral. Alternatively, sequential methods have been designed
(under different names, such as annealed sampling, progressive correction, multilevel splitting, etc., depending
on the context) which not only provide an expression for the desired integral as the product of intermediate
normalization constants, but ultimately provide as well an N–sample approximately distributed according to
the optimal importance distribution. From the weighted empirical probability distribution associated with this
sample, a regularized probability distribution µN can be obtained, using a kernel method or a simple his-
togram, and can be used as an almost optimal importance distribution to estimate the original integral with a
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M–sample distributed according to µN . The variance of the resulting estimator depends on the product of the
inverse sample size 1/M by the χ2–distance between the almost optimal importance distribution µN and the
optimal (zero variance) importance distribution µ∗.

Our contribution has been to provide an estimate of this χ2–distance, under mild assumptions. The impact
of dimension on density estimation is a limiting factor here, but the variance reduction is very significant in
moderate dimensions.

6.9. Estimation of extreme quantiles and isoquantile curves
Participants: François Le Gland, Rudy Pastel.

See 3.4 and 4.2.

This is a collaboration with Jérôme Morio, from ONERA Châtillon.

Many reliability or hedging problems reduce to quantile estimation, and increasing safety standards creates a
need for extreme quantile estimation. Adaptive multilevel splitting methods are studied in this context, which
significantly reduce the variance of the relative error. A multilevel definition of quantile is proposed, under the
name of isoquantile curves and is compared with the classical definition in terms of circular error probables.
Its main advantage is a better use of the angular distribution, as illustrated in an example regarding the impact
location of a ballistic launcher.

6.10. Path planning for navigation in a geographic information system
Participants: Jean–Pierre Le Cadre, Francis Céleste.

The problem we considered is the optimization of the navigation of an intelligent mobile in a real world
environment, described by a map. The map is composed of features representing natural landmarks in the
environment. The vehicle is equipped with sensors which allows it to obtain landmark parameter estimates.
These measurements are correlated with the map so as to estimate the mobile position. The optimal trajectory
must be designed in order to control a measure of the performance for the filtering algorithm used for mobile
navigation. As the mobile state and the measurements are random, a well–suited measure can be a functional of
the posterior Cramer–Rao bound (PCRB). In many applications, it is crucial to be able to estimate accurately
the state of the mobile during the execution of the plan. So it is necessary to couple the planning and the
execution stages.

A classical tool is the constrained Markov decision process (MDP) framework. However, our optimality
criterion is based on the posterior Cramer–Rao bound, and the nature of the objective function for path
planning makes it impossible to perform complete optimization within the MDP framework. Indeed, the
reward in one stage of our MDP depends on all the history of the trajectory. To overcome this problem, the
cross–entropy method [69], [34], originally used for rare–event simulation, is a valuable tool. Its principle is to
translate a classical optimization method into an associated stochastic problem and then to solve it adaptively
as the simulation of rare events. This approach has been tested on various (simple) geographic environments
and performs satisfactorily. Our contribution, conducted in the context of Francis Céleste PhD work, has been
devoted to the derivation of closed–form approximations of the information we can gain from an elementary
motion. Using them, it is possible to immerse the problem within an optimal control framework and to use
efficiently the maximum principle.

6.11. Extracting information from a video sensor network
Participants: Jean–Pierre Le Cadre, Adrien Ickowicz.

See 4.1 and 7.4.
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Recent trends lead to consider globally networks of (video) sensors. These networks can be relatively large,
so we have to face specific problems. How can we use the data at the sensor level, how to represent the
information collected at the sensor level, how to fuse ? A first step consists in extracting spatio–temporal
informations from video sensors. Of course, these sensors are generally uncalibrated and asynchronous. So
we have to consider rather rough informations. Roughness can go up to reduce the information to proximity
and to a binary information about object motion (closing or not). A first step has been to consider the use of
the estimated closest point of approach (CPA) times for estimating the parameters of the target trajectories.
This study is relatively simple but has the great advantage to put in evidence the basic requirements and the
limits of this approach. In a second step, we considered the estimation of the CPA times from a sequence of
images.

The limits of the above approach are quite obvious. If it is able to exploit a temporal contrast, there is a strong
need to use a spatio–temporal contrast at the (binary) sensor network level. Actually, it has been shown that
the separation problem we have to solve present strong similarities with the optimization problems we have to
solve in a SVM context. The benefits of this approach are multiple: it is well adapted to (robust) tracking and
the combinatorial problems which plagued multitarget tracking are fundamentally reduced. For the tracking
step, particle filtering is the natural way since it can easily include complex priors, non–linear measurements
as well as separation properties, within a hierarchical context. Our contribution this year has been a first step
towards multiple target tracking within this framework [18], [20].

7. Contracts and Grants with Industry

7.1. Safety, complexity and responsibility based design and validation of highly
automated air traffic management (iFLY) — FP6 Aerospace
Participant: François Le Gland.

See 3.4 and 4.2.

INRIA contract ALLOC 2399 — May 2007 to August 2010.

This FP6 project is coordinated by National Aerospace Laboratory (NLR) (The Netherlands). The academic
partners are University of Cambridge and University of Leicester (United Kingdom), Politecnico di Milano and
Universita dell’Aquila (Italy), University of Twente (The Netherlands), ETH Zürich (Switzerland), University
of Tartu (Estonia), National Technical University of Athens (NTUA) and Athens University of Economics and
Business (Greece), Direction des Services de la Navigation Aérienne (DSNA), École Nationale de l’Aviation
Civile (ENAC), Eurocontrol Experimental Center (EEC) and INRIA Rennes Bretagne Atlantique (France),
and the industrial partners are Honeywell (Czech Republic), Isdefe (Spain), Dedale (France), NATS En Route
Ltd. (United Kingdom).

The objective of iFLY is to develop both an advanced airborne self separation design and a highly automated air
traffic management (ATM) design for en–route traffic, which takes advantage of autonomous aircraft operation
capabilities and which is aimed to manage a three to six times increase in current en–route traffic levels. The
proposed research combines expertise in air transport human factors, safety and economics with analytical and
Monte Carlo simulation methodologies. The contribution of ASPI to this project concerns the work package on
accident risk assessment methods and their implementation using conditional Monte Carlo methods, especially
for large scale stochastic hybrid systems: designing and studying variants [30] suited for hybrid state space
(resampling per mode, marginalization) are currently investigated.

7.2. Terrain–aided navigation — contract with Thalès Communications
Participants: François Le Gland, Nordine El Baraka.

See 4.1 and 5.1.

http://ifly.nlr.nl/
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INRIA contract ALLOC 2857 — September 2007 to August 2010.

This collaboration with Thalès Communications is supported by DGA (Délégation Générale à l’Armement)
and is related with the supervision of the CIFRE thesis of Nordine El Baraka.

The overall objective is to study innovative algorithms for terrain–aided navigation, and to demonstrate these
algorithms on four different situations involving different platforms, inertial navigation units, sensors and
georeferenced databases. The thesis also considers the special use of image sensors (optical, infra–red, radar,
sonar, etc.) for navigation tasks, based on correlation between the observed image sequence and a reference
image available on–board in the database.

Marginalized particle filters [70] and regularized particle filters [10] have been implemented, and several
propositions have been studied to adapt the sample size, such as KLD–sampling [44], which could be useful
in the case of a poor initial information, or if the platform flies over a poorly informative area. Besides particle
methods, which are proposed as the basic navigation algorithm, simpler algorithms such as the extended
Kalman filter (EKF) or the unscented Kalman filter (UKF) have also been investigated.

7.3. Optimization of sensors location and activation — contract with DGA /
CTSN (centre technique des systèmes navals)
Participants: Jean–Pierre Le Cadre, François Le Gland.

See 3.4 and 4.2

INRIA contract ALLOC 4233 — April 2009 to March 2011.

This is a collaboration with Sébastien Paris, from université Paul Cézanne, related with the supervision of the
PhD thesis of Mathieu Chouchane.

The objective of this project is to optimize the position and activation times of a few sensors deployed by a
platform over a search zone, so as to maximize the probability of detecting a moving target. The difficulty
here is that the target can detect an activated sensor before it is detected itself, and it can then modify its own
trajectory to escape from the sensor. Because of the many constraints including timing constraints involved
in this optimization problem, a stochastic algorithm is preferred here over a deterministic algorithm. The
underlying idea is to replace the problem of maximizing a cost function (the probability of detection) over
the possible configurations (admissible position and activation times) by the apparently simpler problem
of sampling a population according to a probability distribution depending on a small parameter, which
asymptotically concentrates on the set of global maxima of the cost function, as the small parameter goes
to zero. The usual approach here is to use the cross–entropy method [69], [34].

The contribution of ASPI has been to propose a multilevel splitting algorithm, in order to evaluate the
probability of detection for a given configuration. When this probability is small, these methods are known to
provide a significant reduction in the variance of the relative error.

7.4. Tracking in a binary sensor network — contract with DGA / CEP (centre
d’expertise parisien)
Participants: Jean–Pierre Le Cadre, Adrien Ickowicz, Nicolas Ramin.

See 4.1 and 6.11.

INRIA contract ALLOC 2338 — April 2007 to October 2009.

This contract deals with surveillance of large zones via a network of video sensors. Of course, sensor outputs
can be treated in a centralized architecture. However, centralized architectures suffer from serious drawbacks.
Communication constraints (e.g. bandwidth) are frequently evoked, but still more fundamentally we have to
face many problems inherent of this architecture, like:

• sensor calibration, positioning and synchronization,
• false alarms, multiple objects, occlusions, etc.
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Overall, there is a strong need for extracting a global picture at the network level. This means that we have
to focus on the level of information we can extract at the sensor level and how to fuse them. Work has
been done on the first point, using both simulated and real video sequences. The less informative level of
information is the binary one. However, there is a fundamental difference between a {0, 1} information and
{−,+} information. A general {0, 1} information corresponds to a detection / non–detection information.
Such architecture has been widely studied in a distributed detection framework, but is not well suited to our
context. However {0, 1} information is especially interesting if the detection process includes geographic
constraints like proximity, field–of–view, etc. The {−,+} information corresponds to a motion information:
the object gets closer or is going far away. At the network level, this is a very rich information which can
present definite advantages (robustness, multi–target tracking). However, its interest depends on the network
density. So, it is also necessary to consider various and complementary decentralized architectures according
to the sensing capabilities, the target behaviors and, overall, the combinatorial complexity of the problem.
Work has been done for defining processings and architectures adapted to this context.

Work has been devoted to the processing of image sequences for extracting the binary information. After
considering the divergence of a local motion model, its estimation and use on real data, we turned toward
a temporal analysis of the bearing information. More precisely, bearing rates and bearing rate changes give
us an estimate of the (local) target behavior. It is thus possible to derive a local estimate of the ratio ṙ/r,
through purely passive measurements, at the sensor level. Although this analysis is purely local, it performs
satisfactorily on simulated sequences.

Concerning the information processing at the sensor level, work has been done in three directions. First, the
{−,+} informations can be summarized via the times of CPA (closest point approach) on the various sensors.
A complete analysis of the target motion analysis has been done in this framework, with various models of
target motion. Then, we turned toward the analysis of the spatio–temporal {−,+} informations. An original
method based on a separation principle allows us to obtain an estimate of the target motion parameters via
multiple SVM. Second, we considered random target trajectories and target tracking. To that aim, a specific
method based on multiple corrections has been developed.

7.5. Information fusion for localisation (FIL) — ANR Télécommunications
Participants: François Le Gland, Liyun He.

See 4.1 and 5.1.

INRIA contract ALLOC 2856 — January 2008 to December 2010.

This ANR project is coordinated by Thalès Alenia Space. Academic partners are LAAS (laboratoire
d’architecture et d’analyse des systèmes), TeSA consortium including ENAC (école nationale de l’aviation
civile). Industrial partners are Microtec and Silicom.

The overall objective is to study and demonstrate information fusion algorithms for localisation of pedestrian
users in an indoor environment, where GPS solution cannot be used. The sought design combines

• a pedestrian dead–reckoning (PDR) unit, providing noisy estimates of the linear displacement,
angular turn, and possibly of the level change through an additional pression sensor,

• range and / or proximity measurements provided by beacons at fixed and known locations, and
possibly indirect distance measurements to access points, through a measure of the power signal
attenuation,

• constraints provided by an indoor map of the building (map-matching),

• collaborative localisation when two users meet and exchange their respective position estimates.
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Besides particle methods, which are proposed as the basic information fusion algorithm for the centralized
server–based implementation, simpler algorithms such as the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) have been investigated, to be used for the local PDA–based implementation with a
map of a smaller part of the building. Constraints could be taken care of automatically with the help of a
Voronoi graph [65], but this approach implies heavy pre–computations. A more direct approach, taking care
of constraints on the fly, using a simple rejection method, has been preferred. Adapting the sample size using
KLD–sampling [44] has also been investigated, which could be useful in the case of a poor initial information,
or if the user walks in poorly informative area (open zone, absence of beacons). Collaboration between users
has been implemented [43], which allows from a user with a poor localization to benefit from the more
accurate localization of another user. In this implementation, the latter user is seen by the former user as a
ranging beacon with uncertain position. See [16], [19] for a description of the overall fusion algorithm and an
illustration with simulation results.

7.6. Ensemble methods for prediction and data assimilation
(PREVASSEMBLE) — ANR Conception et Simulation
Participants: François Le Gland, Sébastien Beyou, Vu–Duc Tran.

INRIA contract ALLOC 3767 — January 2009 to December 2011.

This ANR project is coordinated by École Normale Supérieure, Paris. The other partner is Météo–France.
This is a collaboration with Étienne Mémin from INRIA Rennes Bretagne Atlantique (project–team FLUMI-
NANCE) and with Anne Cuzol and Valérie Monbet from université de Bretagne Sud in Vannes.

The contribution of ASPI to this project is to continue the comparison [11], [23] of sequential data assimilation
methods, such as the ensemble Kalman filter (EnKF) and the weighted ensemble Kalman filter (WEnKF), with
particle filters. This comparison will be made on the basis of asymptotic variances, as the ensemble or sample
size goes to infinity, and also on the impact of dimension on small sample behavior.

7.7. Security and reliability in digital watermarking (NEBBIANO) — ANR
Sécurité
Participants: Frédéric Cérou, Arnaud Guyader, Cyrille Jégourel, Fida El Haje Hussein.

See 3.4, 4.2, 6.3 and 6.4.

INRIA contract ALLOC 2229 — January 2007 to December 2009.

Arnaud Guyader is coordinator of this ANR project. This is a collaboration with Teddy Furon from INRIA
Rennes Bretagne Atlantique (project–team TEMICS) and Pierre Del Moral from INRIA Bordeaux Sud–Ouest
(project–team ALEA). Besides these project–teams, the other partner is LIS–INPG in Grenoble.

There are mainly two strategic axes in NEBBIANO: watermarking and independent component analysis,
and watermarking and rare event simulations. To protect copyright owners, user identifiers are embedded
in purchased content such as music or movie. This is basically what we mean by watermarking. This
watermarking is to be “invisible” to the standard user, and as difficult to find as possible. When content is found
in an illegal place (e.g. a P2P network), the right holders decode the hidden message, find a serial number, and
thus they can trace the traitor, i.e. the client who has illegally broadcast their copy. However, the task is not
that simple as dishonest users might collude. For security reasons, anti–collusion codes have to be employed.
Yet, these solutions (also called weak traceability codes) have a non–zero probability of error defined as the
probability of accusing an innocent. This probability should be, of course, extremely low, but it is also a very
sensitive parameter: anti–collusion codes get longer (in terms of the number of bits to be hidden in content) as
the probability of error decreases. Fingerprint designers have to strike a trade–off, which is hard to conceive
when only rough estimation of the probability of error is known. The major issue for fingerprinting algorithms
is the fact that embedding large sequences implies also assessing reliability on a huge amount of data which
may be practically unachievable without using rare event analysis. Our task within this project is to adapt our

http://anr-nebbiano.irisa.fr/
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methods for estimating rare event probabilities to this framework, and provide watermarking designers with
much more accurate false detection probabilities than the bounds currently found in the literature. We have
already applied these ideas to some randomized watermarking schemes and obtained much sharper estimates
of the probability of accusing an innocent.

A patent “Validation de schémas de verrous numériques en watermarking et fingerprinting” has been
submitted by INRIA and by université de Rennes 2.

7.8. Coherent detection for QPSK 40Gb systems (COHDEQ40) — ANR
Télécommunications
Participant: Frédéric Cérou.

INRIA contract ALLOC 2205 — December 2006 to November 2009.

This ANR project is coordinated by Alcatel–Lucent. The other partners are Alcatel Thales III–V Lab, INT
Évry, INRIA Rennes Bretagne Atlantique (project–teams ASPI and TEMICS), Kylia, Photline and XLIM
(université de Limoges).

The project COHDEQ40 intends to demonstrate the potential of coherent detection associated with digital
signal processing for the next generation high density 40Gb/s WDM systems optimized for transparency and
flexibility. Key integrated optoelectronics components and specific algorithms will be developed and system
evaluation performed. The INRIA task is to develop these signal processing algorithms needed to recover
the message on the decoder side. This makes full use of our knowledge of equalization and synchronization
techniques involved in digital communications.

A patent “A decision directed algorithm for adjusting a polarization demultiplexer in a coherent detection
optical receivers” has been jointly submitted in September by Alcatel Lucent and by INRIA.

7.9. Real–time adaptive coherent heterodyne detector for future optical
netowrks (TCHATER) — ANR Télécommunications
Participant: Frédéric Cérou.

INRIA contract ALLOC 2801 — January 2008 to December 2010.

This ANR project is coordinated by Alcatel–Lucent. The other partners are E2V, TELECOM ParisTech, LIP
(ENS Lyon).

The primary goal of the TCHATER project is to demonstrate a coherent terminal operating at 40Gb/s
using real–time digital signal processing and efficient polarization division multiplexing. The terminal will
benefit to next-generation high information-spectral density optical networks, while offering straightforward
compatibility with current 10Gbit/s networks. It will require that advanced high–speed electronic components,
especially analog–to–digital converters, are designed within the project. Specific algorithms for polarisation
demultiplexing and forward error correction with soft decoding will also have to be developed.

7.10. Slightly–multimodal transmission and detection (STRADE) — ANR
Réseaux du Futur et Services
Participant: Frédéric Cérou.

INRIA contract ALLOC 4402 — November 2009 to October 2012.

This ANR project is coordinated by Alcatel–Lucent Bell Labs France. The other partners are Draka, Kylia,
Université Lille 1, Institut Télécom / Télécom & Management Sud Paris
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The focus of our project is to reduce the impact of nonlinear effect. The objective is twofold: specify, design,
realize and evaluate fibres of reduced nonlinear effects by firstly increasing the effective area to unprecedented
values and secondly, by splitting optical power along two modes, using bimodal propagation. While the first
step is ambitious but primarily relies in the evolution of current fibre technologies, the second is disruptive and
requires not only deep changes in fibre technologies but also new advanced transmitter / receiver equipment,
preferably based on coherent detection. Naturally, bimodal propagation also brings another key advantage,
namely a twofold increase of system capacity.

8. Dissemination

8.1. Scientific animation
Arnaud Guyader and Frédéric Cérou have organized, with Éric Matzner–Løber from université de Rennes 2,
the workshop JSTAR (Journées de Statistique de Rennes) in October 2009.

François Le Gland has reported on the PhD thesis of Benoît Landelle (université Paris Sud, advisor: Élisabeth
Gassiat). He was also a member of the committee and co–advisor for the PhD thesis of Vu–Duc Tran
(université de Bretagne Sud, Vannes, co–advisor: Valérie Monbet).

Arnaud Guyader is a member of the “comité de sélection” in applied mathematics (section 26) of université
d’Angers. François Le Gland is a member of the “comité de sélection” in mathematics (sections 25–26) of
INSA (institut national de sciences appliquées) Rennes, and he is a member of the “conseil d’UFR” of the
department of mathematics of université de Rennes 1.

8.2. Teaching
François Le Gland gives a course on Kalman filtering and hidden Markov models, at université de Rennes 1,
within the Master SISEA (signal, image, systèmes embarqués, automatique, école doctorale MATISSE), a
3rd year course on Bayesian filtering and particle approximation, at ENSTA (école nationale supérieure de
techniques avancées), Paris, within the systems and control module, a 3rd year course on linear and nonlinear
filtering, at ENSAI (école nationale de la statistique et de l’analyse de l’information), Ker Lann, within the
statistical engineering track, and a 3rd year course on hidden Markov models, at Télécom Bretagne, Brest.

Arnaud Guyader is a member of the committee of “oraux blancs d’agrégation de mathématiques” for ENS
Cachan at Ker Lann.

8.3. Participation in workshops, seminars, lectures, etc.
In addition to presentations with a publication in the proceedings, and which are listed at the end of the
document, members of ASPI have also given the following presentations.

Arnaud Guyader has given a talk at École Polytechnique in the working group on rare events, in March 2009.
He has also given a talk on the rate of convergence for the bagged nearest neighbor estimators during the
annual meeting of the SFdS (Société Française de Statistique) in Bordeaux in May 2009.

François Le Gland has given a talk on the multilevel splitting approach to rare event simulation at the workshop
on rare events held at ONERA Châtillon in December 2009. He has also given an introductory talk on
applications of particle methods at a meeting held at EDF R&D in Clamart in December 2009.

Vu–Duc Tran has defended her PhD thesis on the asymptotic properties of the ensemble Kalman filter, in
Vannes in June 2009.

 http://www.irisa.fr/aspi/fcerou/STAR%202009/Accueil.html
http://www.irisa.fr/aspi/legland/rennes-1/
http://www.irisa.fr/aspi/legland/ensta/
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