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Nancy 1 (UHP), University Nancy 2 and National Polytechnic Institute of Lorraine.
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2. Overall Objectives

2.1. Overall Objectives
The goal of our research is to study the properties and computational capacities of distributed, numerical and
adaptative networks, as observed in neuronal systems. In this context, we aim to understand how complex
high level properties may emerge from such complex systems including their dynamical aspects. In close
reference to our domain of inspiration, Neuroscience, this study is carried out at three scales, namely neurons,
population, cerebral region.
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1. Neurons: At the microscopic level, our approach relies on precise and realistic models of neurons
and of the related dynamics, analyzing the neural code in small networks of spiking neurons
(cf. § 3.2).

2. Population of neurons: At the mesoscopic level, the characteristics of a local circuit are integrated
in a high level unit of computation, i.e. a dynamic neural field (cf. § 3.3). This level of description
allows us to study larger neuronal systems, such as cerebral maps, as observed in sensori-motor
loops.

3. Higher level functions: At the macroscopic level, the analysis of physiological signals and psycho-
metric data is to be related to more behavioral hints. This is for instance the case with electroen-
cephalographic (EEG) recordings, allowing to measure brain activity, including in brain computer
interface paradigms (cf. § 3.4).

Very importantly, these levels are not studied independently and we target progresses at the interface between
levels. The microscopic/mesoscopic interface is the place to consider both the analog and asynchronous/event-
based mechanisms and derive computational principles coherent across scales. The mesoscopic/macroscopic
interface is the place to understand the emergence of functions from local computations, by means of
information flow analysis and study of interactions.

Learning is a central issue at each level. At the microscopic level, the pre/post synaptic interactions are
studied in the framework of Spike Time Dependent Plasticity (STDP). At the mesoscopic level, spatial and
temporal patterns of activity in neural population are the cues to be memorized (e.g. via the BCM rule). At
the macroscopic level, behavioral skills are acquired along time, through incremental strategies, e.g. using
conditioning, unsupervised or reinforcement learning.

Our research is linked to several scientific domains (cf. § 3.1). In the domain of computer science, we generate
novel paradigms of distributed spatial computation and we aim at explaining their properties, intrinsic (e.g.
robustness) as well as functional (e.g. self-organization). In the domain of cognitive science, our models are
used to emulate various functions (e.g. attention, memory, sensori-motor coordination) which are consequently
fully explained by purely distributed asynchronous computations. In the domain of neuroscience, we share
with biologists, not only data analysis, but also frameworks for the validation of biological and computational
assumptions in order to validate or falsify existing models. This is the best way to increase knowledge and
improve methods in both fields.

In order to really explore these kinds of bio-inspired computations, the key point is to remain consistent
with biological and ecological constraints. Among computational constraints, computations have to be really
distributed, without central clock or common memory. The emerging cognition has to be situated (cf. § 3.6),
i.e. resulting from a real interaction in the long term with the environment. As a consequence, our models
are particularly well validated with parallel architectures of computations (e.g. FPGA, clusters, cf. § 3.5) and
embodied in systems (robots) that interact with their environment (cf. § 3.6).

Accordingly, four topics of research have been carried out this year.

• Microscopic level (cf. § 6.1): neural code; time coding and synchronization; simulation; application
to olfaction.

• Mesoscopic level (cf. § 6.2): motion perception; visual attention; motor anticipation; neural field
implementation.

• Macroscopic level (cf. § 6.3): neural information processing; brain computer interface.

with a transversal topic related to:

• Embodied and embedded systems (cf. § 6.4): dedicated architectures.

3. Scientific Foundations
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3.1. Computational neuroscience
With regards to the progress that has been made in anatomy, neurobiology, physiology, imaging, and behavioral
studies, computational neuroscience offers a unique interdisciplinary cooperation between experimental and
clinical neuroscientists, physicists, mathematicians and computer scientists. It combines experiments with data
analysis and functional models with computer simulation on the basis of strong theoretical concepts and aims
at understanding mechanisms that underlie neural processes such as perception, action, learning, memory or
cognition.

Today, computational models are able to offer new approaches of the complex relations between the structural
and the functional level of the brain thanks to models built at several levels of description. In very precise
models, a neuron can be divided in several compartments and its dynamics can be described by a system of
differential equations. The spiking neuron approach (cf. § 3.2) proposes to define simpler models concentrated
on the prediction of the most important events for neurons, the emission of spikes. This allows to compute
networks of neurons and to study the neural code with event-driven computations.

Larger neuronal systems can be considered when the unit of computation is defined at the level of the popu-
lation of neurons and when rate coding is supposed to bring enough information. Studying Dynamic Neural
Fields (cf. § 3.3) consequently lays emphasis on information flows between populations of neurons (feed-
forward, feed-back, lateral connectivity) and is well adapted to defining high-level behavioral capabilities
related for example to visuomotor coordination.

Furthermore, these computational models and methods have strong implications for other sciences (e.g.
computer science, cognitive science, neuroscience) and applications (e.g. robots, cognitive prosthesis) as well
(cf. § 4.1). In computer science, they promote original modes of distributed computation (cf. § 3.5); in cognitive
science, they have to be related to current theories of cognition (cf. § 3.6); in neuroscience, their predictions
have to be related to observed behaviors and measured brain signals (cf. § 3.4).

3.2. Computational neuroscience at the microscopic level: spiking neurons and
networks
Computational neuroscience is also interested in having more precise and realistic models of the neuron and
especially of its dynamics. We consider that the latter aspect can not be treated at the single unit level only; it
is also necessary to consider interactions between neurons at the microscopic scale.

On one hand, compartmental models describe the neuron at the inner scale, through various compartments
(axon, synapse, cellular body) and coupled differential equations, allowing to numerically predict the neural
activity at a high degree of accuracy. This, however, is intractable if analytic properties are to be derived, or
if neural assemblies are considered. We thus focus on phenomenological punctual models of spiking neurons,
in order to capture the dynamic behavior of the neuron isolated or inside a network. Generalized conductance
based leaky integrate and fire neurons (emitting action potential, i.e. spike, from input integration) or simplified
instantiations are considered in our group.

On the other hand, one central issue is to better understand the precise nature of the neural code. From rate
coding (the classical assumption that information is mainly conveyed by the firing frequency of neurons) to
less explored assumptions such as high-order statistics, time coding (the idea that information is encoded
in the firing time of neurons) or synchronization aspects. At the biological level, a fundamental example
is the synchronization of neural activities, which seems to play a role in olfactory perception: it has been
observed that abolishing synchronization suppresses the odor discrimination capability. At the computational
level, recent theoretical results show that the neural code is embedded in periodic firing patterns, while,
more generally, we focus on tractable mathematical analysis methods coming from the theory of nonlinear
dynamical systems.

For both biological simulations and computer science emerging paradigms, the rigorous simulation of large
neural assemblies is a central issue. Our group is at the origin, up to our best knowledge, of the most efficient
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event-based neural network simulator, based on well-founded discrete event dynamic systems theory, and now
extended to other simulation paradigms, thus offering the capability to push the state of the art on this topic.

3.3. Computational neuroscience at the mesoscopic level: dynamic neural field
Our research activities in the domain of computational neurosciences are also interested in the understanding
of higher brain functions using both computational models and robotics. These models are grounded on
a computational paradigm that is directly inspired by several brain studies converging on a distributed,
asynchronous, numerical and adaptive processing of information and the continuum neural field theory
(CNFT) provides the theoretical framework to design models of population of neurons.

This mesoscopic approach underlines that the number of neurons is very high, even in a small part of
tissue, and proposes to study neuronal models in a continuum limit where space is continuous and main
variables correspond to synaptic activity or firing rates in population of neurons. This formalism is particularly
interesting because the dynamic behavior of a large piece of neuronal tissue can be studied with differential
equations that can integrate spatial (lateral connectivity) and temporal (speed of propagation) characteristics
and display such interesting behavior as pattern formation, travelling waves, bumps, etc.

The main cognitive tasks we are currently interested in are related to the autonomous navigation of a robot
in an unknown environment (perception, sensorimotor coordination, planning). The corresponding neuronal
structures we are modeling are part of the cortex (perceptive, associative, frontal maps) and the limbic system
(hippocampus, amygdala, basal ganglia). Corresponding models of these neuronal structures are defined at
the level of the population of neurons and functioning and learning rules are built from neuroscience data
to emulate the corresponding information processing (filtering in perceptive maps, multimodal association
in associative maps, temporal organization of behavior in frontal maps, episodic memory in hippocampus,
emotional conditioning in amygdala, selection of action in basal ganglia). Our goal is to iteratively refine these
models, implement them on autonomous robots and make them cooperate and exchange information, toward
a completely adaptive, integrated and autonomous behavior.

3.4. Brain Signal Processing
The observation of brain activity and its analysis with appropriate data analysis techniques allow to extract
properties of underlying neural activity and to better understand high level functions. This study needs to
investigate and integrate, (i) in a single trial, information (ii) spread in several cortical areas and (iii) available
at different scales (MUA, LFP, ECoG, EEG).

One major problem is how to be able to deal with the variability between trials. Thus, it is necessary to develop
robust techniques based on stable features. Specific modeling techniques should be able to extract features
investigating the time domain and the frequency domain. In the time domain, template-based unsupervised
models allows to extract graphic-elements. Both the average technique to obtain the templates and the distance
used to match the signal with the templates are important, even when the signal has a strong distorted shape.
The study of spike synchrony is also an important challenge. In the frequency domain, features such as phases,
frequency bands and amplitudes contain different pieces of information that should be properly identified using
variable selection techniques. In both cases, compression techniques such as PCA can reduce the fluctuations
of the cortical signal. Then, the developed models have to be able to track the drift of these features over the
time.

Another problem is how to integrate information spreads in different areas and relate this information in
a proper time window of synchronization to behavior. For example, feedbacks are very important to better
understand a closed-loop control of hand grasp. But between the preparatory signal, the execution of the
movement and the visual and somatosensory feedbacks a delay exists. Here, it is also necessary to use stable
features to build a mapping between areas using supervised models taking into account a time window shift.



Project-Team CORTEX 5

Several recoding techniques exist providing different kinds of information. Some of them provide very local
information such as multiunit activities (MUA) and local field potential (LFP) in one or several well-chosen
cortical areas. Other ones provide global information about close regions such electrocorticography (ECoG)
or the whole scalp such as electroencephalography (EEG). If surface electrodes allow to easily obtain brain
imaging, it is more and more necessary to better investigate the neural code.

3.5. Connectionist parallelism
Connectionist models, such as neural networks, are the first models of parallel computing. Artificial neural
networks now stand as a possible alternative with respect to the standard computing model of current
computers. The computing power of these connectionist models is based on their distributed properties: a
very fine-grain massive parallelism with densely interconnected computation units.

The connectionist paradigm is the foundation of the robust, adaptive, embeddable and autonomous processings
that we develop in our team. Therefore their specific massive parallelism has to be fully exploited. Furthermore,
we use this intrinsic parallelism as a guideline to develop new models and algorithms for which parallel
implementations are naturally made easier.

Our approach claims that the parallelism of connectionist models makes them able to deal with strong
implementation and application constraints. This claim is based on both theoretical and practical properties
of neural networks. It is related to a very fine parallelism grain that fits parallel hardware devices, as well
as to the emergence of very large reconfigurable systems that become able to handle both adaptability and
massive parallelism of neural networks. More particularly, digital reconfigurable circuits (e.g. FPGA, Field
Programmable Gate Arrays) stand as the most suitable and flexible device for fully parallel implementations
of neural models, according to numerous recent studies in the connectionist community. We carry out various
arithmetical and topological studies that are required by the implementation of several neural models onto
FPGAs, as well as the definition of hardware-targetted neural models of parallel computation.

This research field has evolved within our team by merging with our activities in behavioral computational
neuroscience. Taking advantage of the ability of the neural paradigm to cope with strong constraints, as well
as taking advantage of the highly complex cognitive tasks that our behavioral models may perform, a new
research line has emerged that aims at defining a specific kind of brain-inspired hardware based on modular
and extensive resources that are capable of self-organization and self-recruitment through learning when they
are assembled within a perception-action loop.

3.6. The embodiment of cognition
Recent theories from cognitive science stress that human cognition emerges from the interactions of the body
with the world. Through motor actions, the body can orient toward objects to better perceive and analyze
them. The analysis is performed on the basis of physical measurements and more or less elaborated emotional
reactions of the body, generated by the stimuli. This will elicit other orientation activities of the body (approach
and grasping or avoidance). This elementary behavior is made possible by the capacity, at the cerebral level,
to coordinate the perceptive representation of the outer world (including the perception of the body itself)
with the behavioral repertoire that it generates either on the physical body (external actions) or on a more
internal aspect (emotions, motivations, decisions). In both cases, this capacity of coordination is acquired
from experience and interaction with the world.

The theory of the situatedness of cognition proposes to minimize representational contents (opposite to
complex and hierarchical representations) and privileges simple strategies, more directly coupling perception
and action and more efficient to react quickly in the changing environment.

A key aspect of this theory of intelligence is the Gibsonian notion of affordance: perception is not a passive
process and, depending on the current task, objects are discriminated as possible “tools” that could be used to
act in the environment. Whereas a scene full of details can be memorized in very different and costly ways,
a task-dependent description is a very economical way that implies minimal storage requirements. Hence,
remembering becomes a constructive process.
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For example with such a strategy, the organism can keep track of relevant visual targets in the environment by
only storing the movement of the eye necessary to foveate them. We do not memorize details of the objects but
we know which eye movement to perform to get them: The world itself is considered as an external memory.

Our agreement to this theory has several implications for our methodology of work. In this view, learning
emerges from sensorimotor loops and a real body interacting with a real environment are important character-
istics for a learning protocol. Also, in this view, the quality of memory (a flexible representation) is preferred
to the quantity of memory.

4. Application Domains

4.1. Overview
Our application domain is twofold:

On one hand, neuro-scientists are end-users of our research. Data analysis is one issue, but the main outcomes
concern the validation of biological assumptions either at a theoretical level or via numerical experiments and
simulation of bio-processes. This includes algorithmic expertises and dedicated softwares.

On the other hand, science and technology of information processing is impacted. This concerns embedded
systems such as in-silico implementations of bio-inspired processes, focusing on spatial and distributed
computing. This also concerns embodied systems such as robotic implementation of sensori-motor loops,
the bio-inspiration yielding such interesting properties as adaptivity and robustness.

5. Software

5.1. Spiking neural networks simulation
Participants: Dominique Martinez, Thierry Viéville.

A spiking neuron is usually modeled as a differential equation describing the evolution over time of its
membrane potential. Each time the voltage reaches a given threshold, a spike is sent to other neurons depending
on the connectivity. A spiking neural network is then described as a system of coupled differential equations.
For the simulation of such a network we have written two simulation engines : (i) mvaspike based on an
event-driven approach and (ii) sirene based on a time-driven approach.

• Mvaspike : The event-driven simulation engine was developed in C++ by O. Rochel during his
PhD thesis and is available on http://gforge.inria.fr/projects/mvaspike. Mvaspike is a general event-
driven purpose tool aimed at modeling and simulating large, complex networks of biological neural
networks. It allows to achieve good performance in the simulation phase while maintaining a high
level of flexibility and programmability in the modeling phase. A large class of spiking neurons can
be used ranging from standard leaky integrate-and-fire neurons to more abstract neurons, e.g. defined
as complex finite state machines.

• Sirene : The time-driven simulator engine was written in C and developed for the simulation of
biologically detailed models of neurons —such as conductance-based neurons— and synapses. Its
high flexibility allows the user to implement easily any type of neuronal or synaptic model and use
the appropriate numerical integration routine (e.g. Runge-Kutta at given order).

5.2. DANA: Implementation of computational neuroscience mechanisms
Participants: Nicolas Rougier, Thomas Girod, Mathieu Lefort.

http://gforge.inria.fr/projects/mvaspike
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Computational neuroscience is a vast domain of research going from the very precise modeling of a single
spiking neuron, taking into account ion channels and/or dendrites spatial geometry up to the modeling of very
large assemblies of simplified neurons that are able to give account of complex cognitive functions. DANA
attempts to address this latter modeling activity by offering a python computing framework for the design
of very large assemblies of neurons using numerical and distributed computations. However, there does not
exist something as a unified model of neuron: if the formal neuron has been established some sixty years ago,
there exists today a myriad of different neuron models that can be used within an architecture. Some of them
are very close to the original definition while some others tend to refine it by providing extra parameters or
variables to the model in order to take into account the great variability of biological neurons. DANA makes
the assumption that a neuron is essentially a set of numerical values that can vary over time due to the influence
of other neurons and learning. DANA aims at providing a constrained and consistent python framework that
guarantee this definition to be enforced anywhere in the model, i.e., no symbol, no homonculus, no central
executive.

5.3. ENAS: Event Neural Assembly Simulation
Participants: Frédéric Alexandre, Axel Hutt, Nicolas Rougier, Thierry Viéville.

EnaS (that stands for “Event Neural Assembly Simulation”) is a middleware implementing our last numerical
and theoretical developments, allowing to simulate and analyze so called "event neural assemblies". The
recent achievements include (in collaboration with the Neuromathcomp EPI): spike trains statistical analysis
via Gibbs distributions, spiking network programing for exact event’s sequence restitution, discrete neural
field parameters algorithmic adjustments and time-constrained event-based network simulation reconciling
clock and event based simulation methods. It has been designed as plug-in for our simulators (e.g. DANA or
MVASpike) as other existing simulators (via the NeuralEnsemble meta-simulation platform) and additional
modules for computations with neural unit assembly on standard platforms (e.g. Python or the Scilab
platform).

5.4. GINNet-DynNet: Decision-making platform
Participant: Laurent Bougrain.

GINNet (Graphical Interface for Neural Networks) is a decision-aid platform written in Java, intended to
make neural network teaching, use and evaluation easier, by offering various parametrizations and several
data pre-treatments. GINNet is based upon a local library for dynamic neural network developments called
DynNet. DynNet (Dynamic Networks) is an object-oriented library, written in Java and containing base
elements to build neural networks with dynamic architecture such as Optimal Cell Damage and Growing
Neural Gas. Classical models are also already available (multi-layer Perceptron, Kohonen self-organizing
maps, ...). Variable selection methods and aggregation methods (bagging, boosting, arcing) are implemented
too.

The characteristics of GINNet are the following: Portable (100% Java), accessible (model creation in few
clicks), complete platform (data importation and pre-treatments, parametrization of every models, result and
performance visualization). The characteristics of DynNet are the following: Portable (100% Java), extensible
(generic), independent from GINNet, persistent (results are saved in HML), rich (several models are already
implemented), documented.

This platform is composed of several parts:

1. Data manipulation: Selection (variables, patterns), descriptive analysis (stat., PCA..), detection of
missing, redundant data.

2. Corpus manipulation: Variable recoding, permutation, splitting (learning, validation, test sets).
3. Supervised networks: Simple and multi-layer perceptron.
4. Competitive networks: Kohonen maps, Neural Gas, Growing Neural Gas.
5. Metalearning: Arcing, bagging, boosting.
6. Results: Error curves, confusion matrix, confidence interval.
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DynNet and GINNet are free softwares, registrated to the APP and distributed under CeCILL license,
Java 1.4 compatible (http://ginnet.gforge.inria.fr). GINNet is available as an applet. For further information,
see http://gforge.inria.fr/projects/ginnet (news, documentations, forums, bug tracking, feature requests, new
releases...)

5.5. EEG acquisition module for OpenViBE
Participants: Laurent Bougrain, Baptiste Payan.

In the domain of Brain-Computer Interface (BCI), we developed an acquisition module to interface the
OpenViBE plateform (http://www.irisa.fr/bunraku/OpenViBE) to an EEG (electroencephalographic) amplifier
by TMSi. This module allows to send data collected from our experiments to this well-known platform. We
aim to compare our algorithms with the ones developed by the other community members.

6. New Results

6.1. Spiking neurons
Participants: Maxime Ambard, Hana Belmabrouk, Yann Boniface, Dominique Martinez, Thierry Viéville,
Thomas Voegtlin.

6.1.1. Analysis of experimental data:
We study the encoding of sensory information in the mammal olfactory bulb –in collaboration with P.M.
Lledo from the Pasteur Institute, Paris– and in the insect antennal lobe –in collaboration with J.P. Rospars
from INRA, Versailles–.

In the collaborative work with the Pasteur Institute, we analysed the correlation between the firing of
individual neurons and the network oscillation. Analysis of electrophysiological data, recorded in vitro from
rat olfactory bulb slices, shows that mitral cell firing is phase-locked to the fast (gamma range) local field
potential oscillation. This phase-locking is largely reduced when the inhibitory synaptic conductance is
pharmacologically blocked, hence highlighting the important role of synaptic inhibition. In order to extract the
time course of the inhibitory synaptic conductance, we have developed a new method based on the adjustment
of a neuron model from experiments with local injections of a synaptic blocker. Using this method, we found
that the inhibitory conductance fluctuations are correlated to the local field potential oscillations. A relationship
between the received inhibition and the phase of mitral action potentials is also revealed. The probability to fire
a phase-locked action potential increases if the neuron receives a large number of inhibitory synaptic events,
and if these events are themselves phase-locked [1]. This finding confirms our model prediction.

In the collaborative work with INRA, we analysed the spike timing precision of pheromone sensitive neurons
in the antennal lobe of the moth Agrotis ipsilon. Spike train activity from several neurons was first recorded in
vivo in responsive areas of the macroglomerular complex and individual spike trains were identified using
spike sorting. A statistical tool was then developed to segment and characterize individual spike trains.
It reveals that antennal lobe neurons have a stereotyped and synchronized response in the presence of
pheromones. From repeated measurements, we show that the response is both precise (temporal jitter of spikes
over trials < 4ms) and robust (probability of loosing spikes over trials < 0.1) [25]. The stereotyped response
and its extreme precision leads to certain hypotheses concerning intrinsic properties of these neurons.

http://ginnet.gforge.inria.fr
http://gforge.inria.fr/projects/ginnet
http://www.irisa.fr/bunraku/OpenViBE
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6.1.2. Modeling at the neuronal level:
A major paradigm in computational neuroscience is that information is encoded in the precise timing of
individual spikes, rather than in the mean firing rate. In order to understand the neural code, it seems therefore
important to focus on the response of a neuron to an incoming current. This response depends on its internal
state, in a way that is described by a Phase Response Curve. We have developed a theory of temporal coding
based on this principle. The idea is that the meaning of a spike arriving at a synapse depends on the post-
synaptic neuron’s dynamic state. If the post-synaptic neuron is in a highly excitable state, and responds well to
incoming currents, then an incoming spike will code for a high value. Therefore the time at which this neuron
is excitable can be used to encode high values. Conversely, low values correspond to times when the neuron is
less excitable. We have derived a learning algorithm for spiking neural networks, based on this principle, that
generalizes single-layer and multi-layer perceptron learning in spiking neurons [12]. Another development of
this theory uses Spike Timing Dependent Plasticity, a biologically plausible learning mechanism, in order to
extract the principal components of the distribution of a time-coded random input vector [15].

Following this line of research, we carried on with a study that focuses on synchronized firings across neurons
and phase-locking to the network oscillation. More precisely, we investigated the formation of synchronized
neural assemblies in inhibitory networks. First, a mathematical analysis revealed that oscillatory synchroniza-
tion requires precise and balanced inhibition. This model prediction was further tested on experimental data
from olfactory bulb slices (see above, section about data analysis). Second, we studied the role of inhibitory,
noisy interactions in producing stimulus-specific synchrony. From theoretical analysis and computer simula-
tions, we found that slow inhibition plays a key role in desynchronizing neurons. Depending on the balance
between fast and slow inhibitory inputs, particular neurons may either synchronize or desynchronize them-
selves. The complementary roles of the two synaptic time scales in the formation of neural assemblies suggest
a wiring scheme that produces stimulus-specific inhibitory interactions and endows inhibitory sub-circuits
with properties of binary memories. The relative number between fast GABA-A and slow GABA-B inputs
regulates synchrony and determines whether particular projection neurons engage in the neural assembly.

6.1.3. Mathematical analysis of spiking networks
6.1.3.1. Overview of facts and issues about neural coding by spikes: introducing numerical bounds to explain spiking

neural networks limits and improve event-based neural network simulation.

In the present colloborative work, we have clarified some aspects of coding with spike-timing, through a
simple review of well-understood technical facts regarding spike coding. Our goal is a better understanding
of the extent to which computing and modeling with spiking neuron networks might be biologically plausible
and computationally efficient [4].

We intentionally restrict ourselves to a deterministic implementation of spiking neuron networks and we
consider that the dynamics of a network is defined by a non-stochastic mapping. By staying in this rather
simple framework, we are able to propose results, formula and concrete numerical values, on several topics:
(i) general time constraints, (ii) links between continuous signals and spike trains, (iii) spiking neuron networks
parameter adjustment. Beside an argued review of several facts and issues about neural coding by spikes, we
propose new results, such as a numerical evaluation of the most critical temporal variables that schedule the
progress of realistic spike trains [51].

When implementing spiking neuron networks, for biological simulation or computational purpose, it is
important to take into account the indisputable facts here unfolded [6]. This precaution could prevent one from
implementing mechanisms that would be meaningless relative to obvious time constraints, or from artificially
introducing spikes when continuous calculations would be sufficient and more simple. It is also pointed out
that implementing a large-scale spiking neuron network is finally a simple task.

6.1.3.2. Reverse-engineering of spiking neural networks parameters

We consider the deterministic evolution of a time-discretized network of spiking neurons with connection
weights having delays, modeled as a discretized neural network of the generalized integrate and fire (gIF)
type. The purpose is to study a class of algorithmic methods allowing to calculate the proper parameters to
reproduce exactly a given spike train generated by an hidden (unknown) neural network.
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This standard problem is known as NP-hard when delays are to be calculated. We propose here a reformulation,
now expressed as a Linear-Programming (LP) problem, thus allowing to provide an efficient resolution.
This allows us to “back-engineer” a neural network, i.e. to find out, given a set of initial conditions, which
parameters (i.e., connection weights in this case), allow to simulate the network spike dynamics.

More precisely we make explicit the fact that the back-engineering of a spike train, is a Linear (L) problem if
the membrane potentials are observed and a LP problem if only spike times are observed, with a gIF model.
Numerical robustness is discussed. Furthermore, we point out how the L or LP adjustment mechanism is local
to each unit and has the same structure as an “Hebbian” rule [42].

A step further, this paradigm has been generalizabled to the design of input-output spike train transformations.
This means that we have a practical method to “program” a spiking network, i.e. find a set of parameters
allowing us to exactly reproduce the network output, given an input [43].

6.1.3.3. Parametric Estimation of spike train statistics, with Gibbs Distributions and application to Synaptic
Adaptation Mechanisms

We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics
instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this
context, but as a conditional probability: "Reading the code" consists in inferring such a probability.

This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism
in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs
distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman, Bialek
and collaborators [40].

A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is
proposed, minimizing the relative entropy, yielding fast convergent implementations. It is also made explicit
how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the
parametric estimation [41].

This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare
different models, thus answering comparative questions about the neural code such as : are correlations (or
time synchrony or a given set of spike patterns, ..) significant with respect to rate coding ?

A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are
also discussed [44].

A step further, we use this mechanism to help Bruno Cessac (from NeuroMathComp EPI) to study the effects
of synaptic plasticity on these statistics and introduce a framework in which spike trains are associated to a
coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit
examples (the so-called gIF models). For instance, it has been shown that Gibbs distributions naturally arise
when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite
longer than the characteristic time for neurons dynamics [5].

6.1.4. Simulation tools :
We have developed two simulators for the numerical simulation of spiking neural network models. In SIRENE,
a time-stepping method (Runge-Kutta) approximates the membrane voltage of neurons on a discretized time.
In MVASpike, computation of the firing times is driven by local or global events.

• Global event-driven: In a pure event-driven strategy, an event corresponds to the reception or the
emission of a spike. The spike timings are analytically given and are calculated with an arbitrary
precision (up to the machine precision). This scheme allows an exact simulation where no spike
is missed. However only a limited class of simplified neuron models of integrate-and-fire type is
amenable to exact simulations.

• Local event-driven: we have recently proposed a novel integration scheme, called voltage-stepping,
that discretizes the voltage state-space [16]. Voltage stepping produces new events: the events are
not only firing times or spike receptions but also the times when the current voltage reaches a new
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voltage interval. Local events correspond to a significant variation of the potential of the neuron.
Voltage-stepping defines an implicit and adaptive time-step tuned to the dynamics of the membrane
potential. We have demonstrated some advantages of voltage-stepping over classical time-stepping
methods and global-event driven methods [16]. Voltage-stepping actually combines the advantages
of the two approaches, the accuracy of an event driven strategy with the genericity of a time-stepping
scheme.

6.2. Dynamic Neural Fields
Participants: Frédéric Alexandre, Yann Boniface, Laurent Bougrain, Mauricio Cerda, Hervé Frezza-Buet,
Bernard Girau, Thomas Girod, Axel Hutt, Mathieu Lefort, Nicolas Rougier, Wahiba Taouali, Thierry Viéville,
Thomas Voegtlin.

The work reported this year represents both extensions of previous works and new results linked to the notion
of neural population, considered at (i) a formal level (theorical studies of neural fields), (ii) a numerical level
(interface with the spike level) and (iii) a more embodied one (implementations).

6.2.1. Formal Level
6.2.1.1. Synchronous and Asynchronous Computations

Several artificial neuron models are best described by a set of continuous differential equations that define
the evolution of some variables over time, e.g. the membrane potential of the neuron. When these models are
connected together, we obtain a differential equation system with complex inter-dependent interactions. To
gain the solution of such a system, in general it requires a numerical integration since in the vast majority
of cases there is no analytical solution. Regardless of the numerical method used, we emphasize the fact that
all these numerical methods actually require a central clock to synchronize computations. In this context,
we would like to study the extent to which we can remove this central clock and implement asynchronous
computations. We have thus studied this phenomenon in some details and characterized the relation between
noise, synchronous evaluation (the “regular” mathematical integration) and asynchronous evaluation in the
case of a simple dual particle system [33]. More generally, we aim at explaining the behavior of a general
differential equation system when it is considered as a set of particles that may or may not be iterated by
synchronous computations.

6.2.1.2. Algorithmic adjustment of neural field parameters.

We have completed this study of neural-field calculation maps parameter adjustment in the discrete case.
Algorithmic mechanisms allowing to choose a right set of parameters in order to both (i) guaranty the stability
of the calculation and (ii) tune the shape of the output map, have been proposed. These results do not “prove”
the existence of stable bump solutions, this being already known and extensively verified numerically, but
allow to calculate algorithmically the related parameters. The results apply to scalar and vectorial neural-fields
thus allowing to bypass the inherent limitations brought by mean frequency models and also take the laminar
structure of the cortex or high-level representation of cortical computations into account [50].

6.2.2. Numerical level
6.2.2.1. Learning.

Feed-forward, feed-back and lateral information flows can be extracted in cortically-inspired neural fields.
Beyond the question of their respective effects stands the question of the learning rules that can be associated to
each of them and of their interactions. We are studying the question with learning rules inspired from the BCM
paradigm1, where a dynamic threshold between LTP and LTD (resp. Long Term Potentiation and Depression)
depends on the history of activations. Such learning rules are local and unsupervised, which is very interesting
in the framework of neural fields, and have demontrated the ability to learn orientation selectivity from feed-
forward and lateral connectivity. In this framework, we have also shown that the feed-back flow could be used
as a modulatory influence, for example to signal the interest of some stimuli and accelerate their learning [27].

1Bienenstock, E.L. and Cooper, L.N. and Munro, P.W.; Theory for the Development of Neuron Selectivity: Orientation Specificity and
Binocular Interaction in Visual Cortex. J Neurosci (2); 1982
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6.2.2.2. Qualitatively quantifying neural fields.

In collaboration with Supelec, we have proposed to define the properties of a neural field through a set of
behaviors it should display, when facing certain characteristic inputs. Accordingly, we have defined some
statistical measurements to quantify the performances of a neural field in such situations. On this basis, we have
proposed a new neural field model [18] particularly suited to implement the competitive processing required in
a map performing self organization. With the addition of Kohonen-like learning rules on the input information
flow, we therefore obtain a self organization process emerging from purely distributed computations, which
was not possible with Kohonen-like self-organizing maps. Future works correspond to the implementation of
the model on a really distributed architecture and to its extension to multi-maps multimodal learning.

6.2.2.3. Multimodal learning through joint dynamic neural fields

This work relates to the development of a coherent multimodal learning for a system with multiple sensory
inputs in order to obtain different maps which are topographically organized (two spatially close neurons
respond to close stimuli). We have modified the BCM synaptic rule, a local learning rule, to obtain the self
organization of our neuronal inputs maps and we use a CNFT based competition to drive the BCM rule. In
practice, we introduce a feedback modulation of the learning rule, representing multimodal constraints of the
environment. This feedback is obtained using a relaxation between the different layers of the sensory and
associative maps of the system.

6.2.2.4. Dynamic Neural Field using spikes

We’ve been studying the spiking diffusion of a neural field model that is an extension of lateral inhibition-
type neural field models. The major breakthrough of this work is the possibility to use both spiking neurons
(instead of regular rate-coding neuron models) and a restricted pattern of lateral connectivity. The suppression
of the common global inhibition signal is compensated by a diffusion phenomenon that allows to transport
information from one point to another. In the end we obtain a model of fast visual tracking that aimed to be
implemented on FPGA hardware allowing real time multi-target tracking.

6.2.3. Embodied level
6.2.3.1. Motion detection.

We develop bio-inspired neural architectures to detect, extract and segment the direction and speed components
of the optical flow within sequences of images. The structure of these models derives from the course of the
optical flow in the human brain. It begins in the retina and receives various treatments at every stages of its
magnocellular pathway through the thalamus and the cortex. Our models mostly handle the properties of three
cortical areas called V1 (primary visual area), MT (middle temporal), and MST (middle superior temporal):
the MT area detects patterns of movement, while spatio-temporal integration is made at the local level by V1
and at the global level by both MT and MST. This work faces many concrete difficulties, such as specular
effects, shadowing, texturing, occlusion and aperture problems. Moreover, the complexity of this task must be
dealt with within the implementation constraint of real-time processing. Recent works have focused on two
extensions of our initial models.

• We have developped a bio-inspired parallel architecture to perform detection of motion, providing a
wide range of operation and avoiding the error propagation associated with the usual serial multiscale
approaches [24]. Our architecture is inspired by biological experiments that show that human motion
perception seems to follow a parallel multiscale scheme.

• We now address the complex task of recognizing visual motion patterns such as walking, fighting and
face gestures among others. Based on experiments in psychophysics, electro-physiological data and
functional imaging techniques, we show that several key features of the human recognition of visual
motion patterns may be modeled using 2D asymmetric neural fields [34]. Our model implements
template-based recognition, that may be related to the existence of units or populations acting as
snapshots in the dorsal pathway. To validate our model on real video sequences, we have defined a
setup for the acquisition of synchronized 2D and 3D sequences based on Vicon cameras. This work
has been performed in relation with our STIC-AmSud BAVI project depicted in § 7.4.
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6.2.3.2. Modeling the superior colliculus by mean of a neural field.

In the context of the ANR MAPS project (cf. § 7.2), we have been studying the superior colliculus in
tight collaboration with Laurent Goffart from the Institut de Neurosciences Cognitives de la Méditerranée.
Considering the cortical magnification induced by the non homogeneous distribution of retina rods and cones
on the retina surface, we modeled the superior colliculus using a dynamic neural field that may explain the
stereotyped nature of colliculus activity. The process of building experimental setup using monkeys to check
model predictions is currently ongoing. In the same context in collaboration with the Maia team, we are
studying the cerebellum structure in order to understand how the motor command from the colliculus can be
adjusted/modulated through learning.

6.2.3.3. Modeling of neural activity during anaesthesia.

Anaesthesia plays an important role in medical surgery though its neural mechanism is still poorly understood.
Besides several different molecular and behavioral phenomena, the administration of anaesthetic agents affects
the power spectrum of electro-encephalographic activity (EEG) in a characteristic way. The theoretical study
aims to model the power spectrum changes in EEG subject to the concentration of the specific anaesthetic
agent propofol. The work developed a neural model involving two neuron types and synapse types while
taking into account the synaptic effect of propofol. The mathematical derivation of the power spectrum allows
for the investigation of suitable physiological parameters which reproduce the experimental effect of propofol.
Several mathematical conditions on physiological parameters have been derived and the EEG-power spectrum
during the administration of different concentration levels of propofol has been modeled successfully.

6.3. Higher level functions
Participants: Frédéric Alexandre, Laurent Bougrain, Axel Hutt, Nanying Liang, Randa Kassab, Maxime Rio,
Carolina Saavedra.

This year, our activities concerned information analysis and interpretation and the design of numerical
distributed and adaptive algorithms in interaction with biology and medical science. To better understand
cortical signals, we choose a top-down approach for which data analysis techniques extract properties of
underlying neural activity. To this end several unsupervised methods and supervised methods are investigated
and integrated to extract features in measured brain signals.

6.3.1. Template-based classifiers to detect evoked potentials
To detect efficiently transient events in multivariate time series, we develop pattern recognition techniques for
graphic elements, e.g. event-related potential, auditory evoked potential, k-complex, sleep spindles or vertex
waves, which are present in electroencephalographic signals [17]. More specifically, template-based classifiers
have been proposed to robustly detect evoked potentials in a single trial from noisy and multi-sources electro-
encephalographic (EEG) signals. In this context, we have extended the learning vector quantization (LVQ)
algorithm by Kohonen to non-identity assignment to robustly detect evoked potentials in noisy electro-
encephalographic (EEG) signals for brain-computer interfaces (BCIs). The improved LVQ is obtained by
optimizing its assignment layer using the minimum-norm least-square algorithm, the same scheme used by
extreme learning machine (ELM)2. The proposed LVQ is evaluated using the Wadsworth P300 speller dataset
from BCI competition III. The experimental results show that the proposed algorithm improves the accuracy
with less computational units compared to original LVQ and ELM. Based on these results, an international
STIC AmSud project started in 2009 on P300 single-trial detection (cf. § 7.4).

6.3.2. Decoding Finger Flexion from ECoG in Brain-Machine Interfaces (BMI)
Over the last two decades, major advances in both multi-electrode recording techniques and the development of
decoding algorithms have provided new tools for brain-machine interfaces (BMIs). We developed data analysis
techniques to extract properties of underlying neural activity from multi-electrode recordings for direct BMIs

2Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K., Extreme learning machine: A new learning scheme of feedforward neural networks,
Proceedings of International Joint Conference on Neural Networks, Vol. 2, 985-990, Budapest, Hungary, (2004).
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for the control of a skilled hand movement. We won the international BCI competition IV, datasets 4, on
the prediction of individual finger flexion from electro-corticogram (ECoG) using amplitude modulation in
specific bands. We built a linear decoding scheme based on bandspecific amplitude modulation with a window
to the past for predicting finger flexion from ECoG signals. The sensitivity profile of ECoG is clearly band-
specific. The gamma band (60-100Hz) seems to provide more useful information. Only a few features are
useful. A half-second window through the past improves the prediction [28], [22].

6.3.3. Detection of synchronization in Local Field Potentials
The brain represents a network of brain areas whose interaction is still poorly understood. It is supposed that
the interaction mechanism between these areas is based on the synchronization of the dendritic activities in
the areas. Since Local Field Potentials (LFPs) reflect this activity, we focus on the study of LFPs obtained
experimentally to better understand the inter-area information exchange. In collaboration with the Max Planck
Institute for Biological Cybernetics, we investigate the synchronization of LFPs obtained intracranially from
various monkey brain areas. The corresponding experiment combines visual attention and motor action and
thus allows for the study of the visio-motor feedback loop. The data analysis [49] aims to detect time windows
of increased phase synchronization between brain areas and relates these time windows to the monkey
behavior.

6.3.4. Detection of event-related components in single trial EEG
In cognitive experiments, electroencephalograpic data (EEG) may be recorded to investigate the brain activity
during cognition and to reveal the information processing pathways in the brain. Typically, the experimental
task (one trial) is repeated many times and the resulting brain activity is averaged over trials. The main reason
for this averaging is the low signal-to-noise ratio (SNR) in the single trials and average increases the SNR
dramatically. The average activity allows to extract easily event-related components, which are strongly related
to cognitive processes in the brain.
However, this averaging assumes that the brain responds to the external stimuli identically in all trials. However
it has been shown in several previous studies that this assumption is not valid. Consequently, to improve the
analysis we develop an algorithm to extract event-related components from single trials. This algorithm is part
of the PhD-project of Maxime Rio. It is based on a Gaussian mixture model and is implemented in a Bayesian
framework.

6.4. Embodied and embedded systems
Participants: Yann Boniface, Hervé Frezza-Buet, Bernard Girau, Mathieu Lefort, Dominique Martinez, Jean-
Charles Quinton, Nicolas Rougier.

6.4.1. InterCell
Our research in the field of dedicated architectures and connectionist parallelism mostly focuses on embedded
systems (cf. §3.5). Nevertheless we are also involved in a new project that considers coarse-grain parallel
machines as implementation devices. The core idea of this InterCell project (part of the MIS axis of the CPER
(cf. §7.1); cf. also http://intercell.metz.supelec.fr) is to map fine grain computation (cells) to the actual structure
of PC clusters. The latter rather fit coarse grain processing, using relatively few packed communication,
which a priori contradicts neural computing. Another fundamental feature of the InterCell project is to
promote interaction between the parallel process and the external world. Both features, cellular computing
and interaction, allow to consider the use of neural architectures on the cluster on-line, for the control of
situated systems, as robots.

This year, the whole setting up of interactive cellular computation has been realized. It consists of the booz
library, released by Hervé Frezza-Buet, that allows the design of cellular computation, providing tools for
vizualization, savings, step-by-step execution, on-line communication with the external world. From this
core library, the implementation of the escabooz suite has been achieved, allowing to solve PDEs by cellular
computation. The Intercell cluster is thus available for such a purpose, rather oriented toward physicists. The
implementation of cortically inspired neural networks (the bijama model) is at work, as well as interfaces for
integrating on the cluster visual units coupled with a video device, for situated robotic experiments mainly.

http://intercell.metz.supelec.fr
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6.4.2. Embodied/embedded olfactory systems
In the framework of the associate team BioSens, we constructed a micro-electronic nose model using
a semiconductor gas sensor array which incorporates spiking neurons encoding sensory information as
suggested by the time-to-first-spike paradigm. This study pioneers the translation of neurophysiological
findings into hardware for the processing of electronic noses. Another example of bio-inspired processing is
our autonomous olfactory robot, for which we have implemented the novel probabilistic technique Infotaxis of
Vergassola et al.: we have shown that, although animal behavioral patterns are not pre-programmed or imposed
through explicit rules of movement, these behaviors do actually emerge naturally from the underlying model.
New improvements of these systems are currently studied.

6.4.3. Specific hardware implementations
In the field of dedicated embeddable neural implementations, we use our expertise in both neural networks
and FPGAs so as to propose efficient implementations of applied neural networks on FPGAs.

Recent works in this axis have mainly focused on implementations of spiking neural models with on-chip
learning. This work takes advantage of a highly modular and flexible architecture that is able to fit various
hardware constraints and parallelism levels. It mainly consists of a population hardware coding module based
on bio-inspired gaussian receptive fields [31], and a spiking neural computation module with or without on-
chip learning (using the SpikeProp algorithm) [32]. This work has been carried out within the activities of the
CorTexMex associate team (cf. §7.4).

6.4.4. Brain-inspired hardware
Our activities on dedicated architectures have strongly evolved in the last years. We now focus on the definition
of brain-inspired hardware-adapted frameworks of neural computation. The long-term goal is to define and
implement modular and extensive resources that are capable of self-organization and self-recruitment through
learning when they are assembled within a perception-action loop. This goal gathers our expertise in neural
hardware implementations and behavioral models for sensori-motor tasks.

This year, we have mostly carried out upstream studies that still need a hardware development:

• Our works are based here on dynamic neural fields. In order to cope with hardware connectivity
requirements, we have defined a model of dynamic spiking neural fields (in the context of visual
attention) that only handles local lateral connections within bio-inspired maps of spiking neurons
(see §6.2).

• We also address the problem of the costful local storage of lateral kernels by defining hardware-
friendly lateral kernels based on non-euclidean norms or random generation of local influences.

• We have carried out upstream studies to define hardware-compatible protocols to assemble various
perception-action modalities that are implemented and associated by different bio-inspired neural
maps. The hardware plausibility of this model requires simplified local interconnections. We have
introduced a new perceptive level that only needs a local feedback interaction from the competitive
layer (see the paragraph on “Multimodal learning” in §6.2). We intend to mix this approach with
our definition of spiking neural fields (at the competitive level), to be able to satisfy the hardware
constraints of the assembling of neural maps.

7. Other Grants and Activities

7.1. Regional initiatives
7.1.1. Action Modeling, Simulation and Interaction of the CPER

Participants: Frédéric Alexandre, Hervé Frezza-Buet, Nicolas Rougier.



16 Activity Report INRIA 2009

In the framework of the Contrat de Projet État Région, we are contributing to the axis MIS (Modeling,
Interaction and Simulation) through the project InterCell whose goal is to study massive cellular computations
in an interactive framework (cf. § 6.4).

7.2. National initiatives
7.2.1. DGE Ministry grant COMAC “Optimized multitechnique control of aeronautic

composite structures”
Participants: Laurent Bougrain, Marie Tonnelier.

The goal of this three-years project is to develop a powerful system of control on site, in production and
in exploitation, of aeronautical pieces made of composite. It takes up the challenge of the precise, fast and
local inspection on composite pieces of aeronautical structures new or in service by using techniques of non-
destructive control more effective and faster to increase the lifespans of the structures of planes. This project
requires a decision-making system including fast methods of diagnostic based on several optical technics as
non-destructive control.

7.2.2. Bio-inspired spatial computing: ARC Amybia
Participant: Bernard Girau.

Our regular collaborations with researchers from the Maia team have shown that we share common com-
putation paradigms based on massively distributed and local models that are inspired by biological systems.
This has led us to join our efforts in an original collaboration within the Amybia project led by Nazim Fatès
(ARC INRIA), together with Hugues Berry who works on similar models by exploring a bio-inspired ap-
proach to propose challenging paradigms for spatial computing within the Alchemy team. This collaboration
is also linked with our hardware implementation activities, since it has resulted in an embedded implemen-
tation of a biological inspired model for the decentralized gathering of computing agents, as well as in a
block-synchronous implementation of the environment of this model to study its phase transition properties
[7].

7.2.3. ARC MACCAC
Participants: Frédéric Alexandre, Thierry Viéville.

Since neuronal information processing is related to the brain bio-electrical activity, measured by current
neuro imaging techniques at different time and space scales, from neurons to the brain as a whole (e.g.
LFP, ECoG, EEG, MEG), the analysis of such complex data coming from these measurements requires the
parallel development of suitable models. Namely, these models have to be, on the one hand, close enough to
phenomenology, taking into account the various types of bio-electrical activity and their scales relations, in
order to propose a coherent representation of information processing in the brain (from neurons to neuronal
populations, cortical columns, brain area, etc). On the other hand, these models must be well posed and
analytically tractable. This requires a constant interaction between neurobiology, modeling and mathematics.
In this spirit, this project, directed by Bruno Cessac (NEUROMATHCOMP), aims to tackle the following
questions: (i) Mesoscopic modeling of cortical columns, bifurcations, and imaging. (ii) Statistical analysis of
spike trains. The CORTEX team brings its computer science expertise, mainly regarding the question (ii) and
the OI modality regarding the question (i). Collaborations with other teams (ALCHEMY (INRIA); CORTEX
(INRIA); INCM (CNRS); LJAD (U NiceCNRS); NEUROMATHCOMP (INRIA)) are developed thanks to
this initiative.

7.2.4. ANR project PHEROSYS
Participants: Dominique Martinez, Hana Belmabrouk.

This collaborative project in systems Biology (ANR-BBSRC SysBio) with INRA (Paris, FR) and the Uni-
versity of Sussex (UK) explores olfactory coding in the insect pheromone pathway through models and experi-
ments. More information available at http://www.informatics.sussex.ac.uk/research/projects/PheroSys/index.php/.

http://www.informatics.sussex.ac.uk/research/projects/PheroSys/index.php/
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7.2.5. ANR project MAPS
Participants: Frédéric Alexandre, Yann Boniface, Elham Ghassemi, Nicolas Rougier, Thierry Viéville.

This collaborative project with INCM (Marseille), UMR Perception and Movement (Marseille) and LIRIS
(Lyon) aims at re-examining the relationship between structure and function in the brain, taking into account
the topological (spatial aspects) and hodological (connectivity) constraints of the neuronal substrate. We think
that those constraints are fundamental for the understanding of integrative processes, from the perception level
to the motor level and the initiation of coordinated actions.

7.2.6. Project of the CNRS NeuroInformatics program on olfaction
Participant: Dominique Martinez.

The project "Olfactory coding" (2008-2009) from the CNRS program "Neuroinformatics" with the CNRS
UMR5020 (Lyon) explores the role of spike timing in olfactory coding.

7.2.7. Project of the CNRS NeuroInformatics program on reinforcement learning
Participants: Frédéric Alexandre, Hervé Frezza-Buet, Nicolas Rougier.

In this collaboration with the MAIA team, Supelec Campus de Metz and the Interative and Cognitive
Neuroscience Centre in Bordeaux, we are developing bio-inspired reinforcement learning procedures, on the
basis of experimental data from behavioral recordings in rats.

7.2.8. Project of the CNRS NeuroInformatics program on neural coding in the retina
Participants: Frédéric Alexandre, Laurent Bougrain, Axel Hutt, Thierry Viéville.

The new project "Sensory Transduction to Perception " (2009-2010) from the CNRS program "Neuroinfor-
matics" aims to initiate the research cooperation of groups at the University of Nice, the University of Santiago
de Chile and the University of Valparaiso in Chile. The aim of the project is the better understanding of the
neural coding in the retina in the presence of natural stimuli. To this end, in-vivo experiments are performed
in the Chilean laboratories and the French groups analyse and model the data obtained.

7.3. European initiatives
7.3.1. FP7-ICT project NEUROCHEM

Participant: Dominique Martinez.

The european project NEUROCHEM explores biologically inspired computation for chemical sensing, in
collaboration with the University of Barcelona, the royal institute of technology (Sweden), INRA (Paris),
the university of Manchester, the university Pompeu Fabra (Spain), CNR-IMM (Italy) and the university of
Leicester. More information is available at http://www.neurochem-project.org/

7.4. International cooperation
7.4.1. INRIA associate team CorTexMex

Participants: Bernard Girau, Yann Boniface, Mauricio Cerda, Nicolas Rougier.

We are working with the Computer science department of the INAOEP (national institute of astrophysics,
optics and electronics of Puebla) and the Cinvestav Tamaulipas research center (both in Mexico) on massively
distributed connectionist models for embedded perception, within the INRIA associate team CorTexMex led
by Bernard Girau.

http://www.neurochem-project.org/
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Some perceptive tasks cannot be performed satisfactorily by standard algorithms due to the over simplified
nature of classical models compared to the intrinsic complexity of the environment. To alleviate this problem,
the research line of our team is directed to using brain-inspired models of perception. But the high compu-
tational cost of these models usually exceeds the time-multiplexed bounded computational resources of con-
ventional systems. A solution lies in alternative hardware/software based processing architectures, supporting
biological realism and providing the large scale computational resources to satisfy application constraints.
The CorTexMex associate team focuses on the analysis, methods and techniques for the embedded imple-
mentation of bio-inspired connectionist processing for perception tasks on reconfigurable devices under a
hardware/software approach. The main goal is to provide methods able to handle the massive distribution and
the connection complexity of these models, as well as their specific recurrent differential computations. An-
other goal is to provide bio-inspired connectionist processing models to be embedded and directly integrated
in perception-action loops.

This year, our activities have been mostly oriented towards a preliminary study of the properties of massively
distributed elementary computations in bio-inspired models for sensori-motor systems in order to provide effi-
cient implementations into reconfigurable logic devices. Three main subjects have been addressed: embedded
spiking connectionist processing, biologically inspired visual perception on FPGAs (based on spiking neural
fields), and bio-inspired models on-chip for the perception-action loop (based on Central pattern generators
and multimodal neural maps). All these activities are strongly linked with §6.2 and §6.4.

7.4.2. STIC-AmSud project BAVI
Participants: Bernard Girau, Mauricio Cerda.

This collaboration with the Computer science department of the University of Santiago (Chile) and the
Laboratory for System Dynamics and Signal Processing, of the National University of Rosario (Argentina),
lies in the field of audio-visual information integration. The approach is based on the derivation of distributed
models from neurophysiologic studies of motion perception in the human brain, and takes advantage of
advanced methods for audio-visual information integration and visual animation. Extracting visual patterns of
phoneme-related face motions, and then relating acoustic signals, face motion features and visual animation,
we aim at defining a bio-inspired model for audio-visual integration that derives from an implicit cortical
sensory (audio/visual)-motor (animation) loop.

7.4.3. STIC-AmSud project BCI
Participants: Frédéric Alexandre, Laurent Bougrain, Carolina Saavedra.

The STIC Amsud project (2009-2010) BCI “Robust single-trial evoked potential detection for brain-computer
interfaces using computational intelligence techniques” aims to develop computational intelligence techniques
for pattern recognition of graphic elements (e.g. event-related potential, auditory evoked potential, k-complex,
spindle) included in electro-encephalographic signals. More precisely, we want to develop adaptive compu-
tational intelligence techniques based on artificial neural networks, support vector machines and classical
data analysis techniques to robustly detect evoked potentials in a single trial from noisy and multi-sources
electro-encephalographic signals. The participants are: the Laboratory of Engineering Rehabilitation and Neu-
romuscular and Sensorial Research (L.I.R.I.N.S), Facultad de Ingeniería, Universidad Nacional de Entre Ríos,
Argentina ; The Department of Biomedical Engineering, Valparaíso University, Valparaiso, Chile ; The Com-
puter Science Department, Federico Santa María University, Valparaiso, Chile ; The Laboratory of Neuro
Imaging Research, Autonomous Metropolitan University, Mexico DF, Mexico.

7.4.4. Common project with United Kingdom
Participant: Axel Hutt.

The project partner is the Herriot-Watts University of Edinburgh and the project aims to study stochastic effects
in neural networks. To this end the Royal Society of Scotland supported the initial visit in Edinburgh to discuss
first mathematical details and software implementations besides a schedule for future common activities.
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8. Dissemination

8.1. Leadership within the scientific community
8.1.1. Responsabilities

• Responsible for the axis MIS “Modeling, Interaction Simulation”, of the CPER with the Lorraine
Region (F. Alexandre).

• Head of the Network Grand-Est for Cognitive Science (F. Alexandre)

• Member of the steering committee of the ARP PIRSTEC (Prospective on cognitive science and
technology for the ANR) (F. Alexandre)

• Member of the steering committee of the french association for Artificial Intelligence (AFIA) (F.
Alexandre)

• F. Alexandre and T. Viéville are members (and moderators) of the scientific committee of Neuro-
Comp, the initiative to gather the french community in Computational Neuroscience (annual con-
ference and web site: http://www.neurocomp.fr/). They were in the scientific committee of Neuro-
comp’09.

8.1.2. Review activities

• Reviewing for journals: Mathematical modelling of natural phenomena, SMC-Part B (F. Alexandre);
Neurocomputing, Frontiers in Neuroscience, IJCNN,etc.. and several Computer Vision journals (T.
Viéville).

• Member of program committees: BioMed’09, CAP’09, ICDL’09, Sinfra’09, TAIMA’09 (F. Alexan-
dre); Reconfig’09 (B. Girau);

• Expertise for the European Commission (FP7; ICT) (F. Alexandre), for grants submitted to Dutch
National Science Foundation (A. Hutt)

• Expertise for several programs of the ANR and member of the evaluation committee of the program
“Domaines Emergents” (F. Alexandre)

• Expertise for french laboratories and Conseils Régionaux (Aquitaine, Bourgogne) (F. Alexandre)

8.1.3. Workshops, conferences and seminars

• Organization of conferences: organization of a workshop about cognition and computational neuro-
science in the program PIRSTEC (F. Alexandre, Paris, 16 june);

• Invited talks: Thierry Viéville, has been invited as speaker by the ASTS-PACA, in partnership
with the Institut des Neurosciences Cognitives de la Méditerranée, for a large-public conference on
Computational Neuroscience «Peut-on parler d’intelligence mécanique ?» and has been included as
teacher in the «Formation Informatique et Objets Numériques» organized by INRIA for high-shool
teachers.

8.1.4. International cooperations

• in neurophysiology with MPI for Biological Cybernetics (Tubingen)

• on modeling visual attention with university of Chemnitz (Germany)

8.2. Teaching
• Courses given at different levels (LMD) by most team members, in computer science and in cognitive

science;

http://www.neurocomp.fr/
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• T. Viéville: 50h of teaching about Computer Science in sessions of permanent formation of 2ndary
schools teachers.

• B. Girau has been the head of the first year of the Master in Computer Science of Nancy University.
He is now the head of one of the three specialities (RAR, recognition, learning, reasoning) of the
second year of this same Master Programme.

• Member of PhD and HDR defense committees in France and abroad (F. Alexandre, B. Girau, D.
Martinez, N. Rougier);

8.3. Miscellaneous
• Thierry Viéville is a member of the Scientific Committee of the University of Nice Sophia-

Antipolis; is a member of the ASTI PhD Price board. The other half-time of his activity is dedicated
to popularization of science (http://interstices.info (scientific animation from the creation to 2007),
http://www.fuscia.info (scientific board animator)).
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