
c t i v i t y

te p o r

2009

Theme : Embedded and Real Time Systems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team espresso

Synchronous programming for the trusted
component-based engineering of embedded

systems and mission-critical systems

Rennes - Bretagne-Atlantique

http://www.inria.fr
http://www.inria.fr/recherche/equipes/espresso.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Introduction 1
2.2. Context and motivations 2
2.3. The polychronous approach 2
2.4. Highlights 3

3. Scientific Foundations .3
3.1.1. A synchronous model of computation 4

3.1.1.1. Composition 4
3.1.1.2. Scheduling 5
3.1.1.3. Structure 5

3.1.2. A declarative design language 6
3.1.3. Compilation of Signal 7

3.1.3.1. Synchronization and scheduling specifications 7
3.1.3.2. Synchronization and scheduling analysis 7
3.1.3.3. Hierarchization 7

4. Application Domains .8
5. Software . 8

5.1. The Polychrony workbench 8
5.2. Eclipse plugins for Polychrony 9
5.3. Integrated Modular Avionics design using Polychrony 9
5.4. Multi-clocked mode automata 11

6. New Results . 11
6.1. Polychrony and Kahn Process Networks 11
6.2. An algebraic theory of data-flow processing 12
6.3. New features of Polychrony 12
6.4. Integration of Polychrony in the TopCased platform 12
6.5. Verifications of GALS architectures 13
6.6. A contract-based module system 14
6.7. Virtual prototyping of avionic architecture descriptions 15
6.8. A compilation tool-chain for Synoptic, a space application DSL 15
6.9. Virtual prototyping of imperative programs 16
6.10. A simulation infrastructure for CCSL, the timing model of UML MARTE 16
6.11. Clock-driven real-time implementation of synchronous specifications 17
6.12. From Concurrent Multiclock Programs to Deterministic Asynchronous Implementations 18
6.13. A Megamodel for Cartography of Software Engineering Platforms 18

7. Contracts and Grants with Industry . 18
7.1. ANR project Topcased 18
7.2. RNTL project Spacify 19
7.3. ANR project FotoVP 19
7.4. Fondation EADS 19
7.5. Artemisia project CESAR 19
7.6. ANR project OpenEmbeDD 19
7.7. ITEA2 project OPEES 20

8. Other Grants and Activities . 20
8.1. National Actions 20
8.2. European Actions 20
8.3. Research visitors 21

9. Dissemination . 21

2 Activity Report INRIA 2009

9.1. Advisory 21
9.2. Tutorials 21
9.3. Invited Lectures 21
9.4. Workshops 21
9.5. Conferences 21
9.6. Teaching 22

10. Bibliography .22

1. Team
Research Scientist

Thierry Gautier [Researcher, INRIA]
Paul Le Guernic [Senior Researcher, INRIA]
Jean-Pierre Talpin [[Team leader, Senior Research, INRIA, HdR]

Technical Staff
Loïc Besnard [Research Engineer, CNRS]

PhD Student
Yann Glouche [INRIA]
Yue Ma [INRIA]
Hugo Métivier [University of Rennes, until August 31st.]

Post-Doctoral Fellow
Christian Brunette [Expert Engineer, INRIA, until March 31st.]
Kenneth Johnson [Post-Doctorate, INRIA, since April 1st.]
Julien Ouy [Expert Engineer, INRIA]
Julio Peralta [Expert Engineer, INRIA]
Huafeng Yu [Expert Engineer, INRIA, since July 1st.]

Visiting Scientist
Sandeep Shukla [Invited Professor, Virginia Tech, until June 1st.]

Administrative Assistant
Stéphanie Lemaile [Secretary, INRIA, since October 1st.]
Lydie Mabil [Secretary, INRIA, until October 1st.]

Other
François Fabre [Junior Engineer, INRIA, since October 1st.]
Vincent Mahé [Expert Engineer, INRIA, since April 1st.]

2. Overall Objectives

2.1. Introduction
The Espresso project-team proposes models, methods and tools for computer-aided design of embedded
systems. The model considered by the project-team is polychrony [14]. It is based on the paradigm of the
synchronous hypothesis and allow for the specification of multi-clocked systems. The methods considered
by the project-team put this model to work for the refinement-based (top-down) and component-based
(bottom-up) design of embedded systems using correctness-preserving model transformations. The project-
team makes a continuous effort to develop the Polychrony toolbox, freely available at http://www.irisa.fr/
espresso/Polychrony.

Polychrony is an integrated development environment and technology demonstrator consisting of a compiler,
a visual editor and a model checker. It provides a unified model-driven environment to perform embedded
system design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony. The
company GeenSys supplies its commercial implementation, RT-Builder, used for industrial scale projects by
Snecma/Hispano-Suiza and EADS – Airbus Industries (see http://www.geensys.com).

http://www.irisa.fr/espresso/Polychrony
http://www.irisa.fr/espresso/Polychrony
http://www.geensys.com

2 Activity Report INRIA 2009

2.2. Context and motivations
High-level embedded system design has gained prominence in the face of rising technological complexity,
increasing performance requirements and shortening time to market demands for electronic equipments.
Today, the installed base of intellectual property (IP) further stresses the requirements for adapting existing
components with new services within complex integrated architectures, calling for appropriate mathematical
models and methodological approaches to that purpose.

Over the past decade, numerous programming models, languages, tools and frameworks have been proposed
to design, simulate and validate heterogeneous systems within abstract and rigorously defined mathematical
models. Formal design frameworks provide well-defined mathematical models that yield a rigorous method-
ological support for the trusted design, automatic validation, and systematic test-case generation of systems.

However, they are usually not amenable to direct engineering use nor seem to satisfy the present industrial
demand. As a matter of fact, the attention of the industry tends to shift to modeling frameworks based
on general-purpose programming language variants, in response to a growing industry demand for higher
abstraction-levels in the system design process and an attempt to fill the so-called productivity gap.

At present, a possibility of widening divergences between formal methods and industrial practices is perceiv-
able. It seems that any useful methodology cannot avoid the industrial trend of using emerging programming
languages. This contrasted picture calls for an effort toward the convergence between the theory of formal
methods and the industrial practice and trends in system design.

Project-team Espresso aims at this convergence by considering the formal modeling framework of the
Polychrony toolbox to serve as pivot formalism to import, transform, validate and export heterogeneous
formalisms and languages.

2.3. The polychronous approach
Despite overwhelming advances in embedded systems design, existing techniques and tools merely provide
ad-hoc solutions to the challenging issue of the productivity gap. The pressing demand for design tools
has sometimes hidden the need to lay mathematical foundations below design languages. Many illustrating
examples can be found, e.g. the variety of very different formal semantics found in state-diagram formalisms.
Even though these design languages benefit from decades of programming practice, they still give rise to some
diverging interpretations of their semantics.

The need for higher abstraction-levels and the rise of stronger market constraints now make the need for un-
ambiguous design models more obvious. This challenge requires models and methods to translate a high-level
system specification into a distribution of purely sequential programs and to implement semantics-preserving
transformations and high-level optimizations such as hierarchization (sequentialization) or desynchronization
(protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis” has focused the attention of
many academic and industrial actors. The synchronous paradigm consists of abstracting the non-functional
implementation details of a system and lets one benefit from a focused reasoning on the logics behind the
instants at which the system functionalities should be secured.

With this point of view, synchronous design models and languages provide intuitive models for embedded
systems [5]. This affinity explains the ease of generating systems and architectures and verify their function-
alities using compilers and related tools that implement this approach.

In the relational mathematical model behind the design language Signal, the supportive data-flow notation
of Polychrony, this affinity goes beyond the domain of purely sequential systems and synchronous circuits
and embraces the context of complex architectures consisting of synchronous circuits and desynchronization
protocols: globally asynchronous and locally synchronous architectures (GALS).

Project-Team espresso 3

This unique feature is obtained thanks to the fundamental notion of polychrony: the capability to describe
systems in which components obey to multiple clock rates. It provides a mathematical foundation to a notion
of refinement: the ability to model a system from the early stages of its requirement specifications (relations,
properties) to the late stages of its synthesis and deployment (functions, automata).

The notion of polychrony goes beyond the usual scope of a programming language, allowing for specifications
and properties to be described. As a result, the Signal design methodology draws a continuum from synchrony
to asynchrony, from specification to implementation, from abstraction to refinement, from interface to
implementation. Signal gives the opportunity to seamlessly model embedded systems at multiple levels of
abstraction while reasoning within a simple and formally defined mathematical model.

The inherent flexibility of the abstract notion of signal handled in Signal invites and favors the design of
correct-by-construction systems by means of well-defined model transformations that preserve the intended
semantics and stated properties of the architecture under design.

2.4. Highlights
Sandeep Shukla, Associate Professor with Virginia Tech, continued his visit in the Espresso project-team at
the occasion of his sabbatical. He was jointly funded by the University of Rennes, INRIA Rennes-Bretagne-
Atlantique, the Scientific Board of INRIA and the Artist Network of Excellence.

The main objective of the sabbatical was to jointly investigate the state of the art to modeling multi-
clocked synchronous embedded systems, as in Polychrony, for instance, and to explore alternatives modeling,
analysis and compilation techniques. These discussions resulted in a number of joint publications with INRIA
participants to Artist-Design and are subject to several related and ongoing work [41], [18], [32], [24], [28],
[27], [39], [31], [22], [37], [21], [23]. The most salient dissemination and publication outcomes resulting of
the visit are

• the joint organization of a one-day tutorial at the Design Automation and Test in Europe (DATE)
2009 Conference on "Correct-by-Construction Embedded Software Synthesis: Formal Frame-
works, Methodologies, and Tools" (see http://www.date-conference.com/date09/conference/date09-
tutorial-C for more details) followed up with the publication of a book with Springer, to appear in
2010.

• the joint organization of the 4th Internation Workshop on the Formal Methods for Globally
Asynchronous and Locally Synchronous Design (FMGALS09) as a DATE Friday workshop (see
http://www.date-conference.com/date09/conference/date09-workshop-W7 for more details) which
brought together researchers from different communities interested in GALS design, and in apply-
ing formal methods in creating CAD tools enabling correct by construction GALS design.

Abdoulaye Gamatié, formerly Ph.D. student in the Espresso team, published a book on Signal [2].

3. Scientific Foundations

3.1. Scientific Foundations
Embedded systems are not new, but their pervasive introduction in ordinary-life objects (cars, telephone, home
appliances) brought a new focus onto design methods for such systems. New development techniques are
needed to meet the challenges of productivity in a competitive environment. Synchronous languages rely on
the synchronous hypothesis, which lets computations and behaviors be divided into a discrete sequence of
computation steps which are equivalently called reactions or execution instants. In itself this assumption is
rather common in practical embedded system design.

http://www.date-conference.com/date09/conference/date09-tutorial-C
http://www.date-conference.com/date09/conference/date09-tutorial-C
http://www.date-conference.com/date09/conference/date09-workshop-W7

4 Activity Report INRIA 2009

But the synchronous hypothesis adds to this the fact that, inside each instant, the behavioral propagation
is well-behaved (causal), so that the status of every signal or variable is established and defined prior to
being tested or used. This criterion, which may be seen at first as an isolated technical requirement, is in
fact the key point of the approach. It ensures strong semantic soundness by allowing universally recognized
mathematical models to be used as supporting foundations. In turn, these models give access to a large corpus
of efficient optimization, compilation, and formal verification techniques. The synchronous hypothesis also
guarantees full equivalence between various levels of representation, thereby avoiding altogether the pitfalls
of non-synthesizability of other similar formalisms. In that sense the synchronous hypothesis is, in our view, a
major contribution to the goal of model-based design of embedded systems.

We shall describe the synchronous hypothesis and its mathematical background, together with a range
of design techniques enpowered by the approach. Declarative formalisms implementing the synchronous
hypothesis can be cast into a model of computation [14] consisting of a domain of traces or behaviors and
of semi-lattice structure that renders the synchronous hypothesis using a timing equivalence relation: clock
equivalence. Asynchrony can be superimposed on this model by considering a flow equivalence relation as
well as heterogeneous systems [53] by parameterizing composition with arbitrary timing relations.

3.1.1. A synchronous model of computation
We consider a partially-ordered set of tags t to denote instants seen as symbolic periods in time during which
a reaction takes place. The relation t1 ≤ t2 says that t1 occurs before t2. Its minimum is noted 0. A totally
ordered set of tags C is called a chain and denotes the sampling of a possibly continuous or dense signal over
a countable series of causally related tags. Events, signals, behaviors and processes are defined as follows:

• an event e is a pair consisting of a value v and a tag t,
• a signal s is a function from a chain of tags to a set of values,
• a behavior b is a function from a set of names x to signals,
• a process p is a set of behaviors that have the same domain.

In the remainder, we write tags(s) for the tags of a signal s, vars(b) for the domains of b, b|X for the projection
of a behavior b on a set of names X and b/X for its complementary.

Figure 1 depicts a behavior b over three signals named x, y and z. Two frames depict timing domains
formalized by chains of tags. Signals x and y belong to the same timing domain: x is a down-sampling of
y. Its events are synchronous to odd occurrences of events along y and share the same tags, e.g. t1. Even tags
of y, e.g. t2, are ordered along its chain, e.g. t1 < t2, but absent from x. Signal z belongs to a different timing
domain. Its tags are not ordered with respect to the chain of y.

Figure 1. Behavior b over three signals x, y and z in two clock domains

3.1.1.1. Composition

Synchronous composition is noted p || q and defined by the union b ∪ c of all behaviors b (from p) and c (from
q) which hold the same values at the same tags b|I= c|I for all signal x ∈ I = vars(b) ∩ vars(c) they share.
Figure 2 depicts the synchronous composition (Figure 2, right) of the behaviors b (Figure 2, left) and the
behavior c (Figure 2, middle). The signal y, shared by b and c, carries the same tags and the same values in
both b and c. Hence, b ∪ c defines the synchronous composition of b and c.

Project-Team espresso 5

Figure 2. Synchronous composition of b ∈ p and c ∈ q

3.1.1.2. Scheduling

A scheduling structure is defined to schedule the occurrence of events along signals during an instant t. A
scheduling → is a pre-order relation between dates xt where t represents the time and x the location of the
event. Figure 3 depicts such a relation superimposed to the signals x and y of Figure 1. The relation yt1 → xt1 ,
for instance, requires y to be calculated before x at the instant t1. Naturally, scheduling is contained in time:
if t < t′ then xt →b xt′ for any x and b and if xt →b xt′ then t′¬ < t.

Figure 3. Scheduling relations between simultaneous events

3.1.1.3. Structure

A synchronous structure is defined by a semi-lattice structure to denote behaviors that have the same timing
structure. The intuition behind this relation is depicted in Figure 4. It is to consider a signal as an elastic with
ordered marks on it (tags). If the elastic is stretched, marks remain in the same relative (partial) order but have
more space (time) between each other. The same holds for a set of elastics: a behavior. If elastics are equally
stretched, the order between marks is unchanged.

In Figure 4, the time scale of x and y changes but the partial timing and scheduling relations are preserved.
Stretching is a partial-order relation which defines clock equivalence. Formally, a behavior c is a stretching
of b of same domain, written b ≤ c, iff there exists an increasing bijection on tags f that preserves the timing
and scheduling relations. If so, c is the image of b by f . Last, the behaviors b and c are said clock-equivalent,
written b ∼ c, iff there exists a behavior d s.t. d ≤ b and d ≤ c.

Figure 4. Relating synchronous behaviors by stretching.

6 Activity Report INRIA 2009

3.1.2. A declarative design language
Signal [6] is a declarative design language expressed within the polychronous model of computation. In Signal,
a process P is an infinite loop that consists of the synchronous composition P ||Q of simultaneous equations
x = y f z over signals named x, y, z. The restriction of a signal name x to a process P is noted P/x.

P,Q ::= x = y f z | P/x | P ||Q

Equations x = y f z in Signal more generally denote processes that define timing relations between input and
output signals. There are four primitive combinators in Signal:

• delay x = y $ init v, initially defines the signal x by the value v and then by the previous value of
the signal y. The signal y and its delayed copy x = y $ init v are synchronous: they share the same
set of tags t1, t2, · · ·. Initially, at t1, the signal x takes the declared value v and then, at tag tn, the
value of y at tag tn−1.

y •t1,v1 •t2,v2 •t3,v3 · · ·
y $ init v •t1,v •t2,v1 •t3,v2 · · ·

• sampling x = y when z, defines x by y when z is true (and both y and z are present); x is present
with the value v2 at t2 only if y is present with v2 at t2 and if z is present at t2 with the value true.
When this is the case, one needs to schedule the calculation of y and z before x, as depicted by
yt2 → xt2 ←− zt2 .

• merge x = y default z, defines x by y when y is present and by z otherwise. If y is absent and z
present with v1 at t1 then x holds (t1, v1). If y is present (at t2 or t3) then x holds its value whether
z is present (at t2) or not (at t3).

y • •t2,v2 · · ·
↓

y when z •t2,v2 · · ·
↑

z • •t1,0 •t2,1 · · ·

y •t2,v2 •t3,v3 · · ·
↓ ↓

y default z •t1,v1 •t2,v2 •t3,v3 · · ·
↑

z •t1,v1 • · · ·

The structuring element of a Signal specification is a process. A process accepts input signals originating
from possibly different clock domains to produce output signals when needed. This allows, for instance, to
specify a counter where the inputs tick and reset and the output value have independent clocks. The body
of counter consists of one equation that defines the output signal value. Upon the event reset, it sets the
count to 0. Otherwise, upon a tick event, it increments the count by referring to the previous value of value
and adding 1 to it. Otherwise, if the count is solicited in the context of the counter process (meaning that its
clock is active), the counter just returns the previous count without having to obtain a value from the tick and
reset signals.

process counter = (? event tick, reset ! integer value)
(| value := (0 when reset)

default ((value$ init 0 + 1) when tick)
default (value$ init 0)

|);

Project-Team espresso 7

A Signal process is a structuring element akin to a hierarchical block diagram. A process may structurally
contain sub-processes. A process is a generic structuring element that can be specialized to the timing context
of its call. For instance, the definition of a synchronized counter starting from the previous specification
consists of its refinement with synchronization. The input tick and reset clocks expected by the process
counter are sampled from the boolean input signals tick and reset by using the when tick and when
reset expressions. The count is then synchronized to the inputs by the equation reset ^= tick ^= count.

process synccounter = (? boolean tick, reset ! integer value)
(| value := counter (when tick, when reset)
| reset ^= tick ^= value
|);

3.1.3. Compilation of Signal
Sequential code generation starting from a Signal specification starts with an analysis of its implicit synchro-
nization and scheduling relations. This analysis yields the control and data flow graphs that define the class of
sequentially executable specifications and allow to generate code.

3.1.3.1. Synchronization and scheduling specifications

In Signal, the clock x̂ of a signal x denotes the set of instants at which the signal x is present. It is represented
by a signal that is true when x is present and that is absent otherwise. Clock expressions represent control. The
clock whenx (resp. when notx) represents the time tags at which a boolean signal x is present and true (resp.
false).

The empty clock is written 0 and clock expressions e combined using conjunction, disjunction and symmetric
difference. Clock equations E are Signal processes: the equation ê= e′ synchronizes the clocks e and e′ while
ê<e′ specifies the containment of e in e′. Explicit scheduling relations x→ y when e allow to schedule the
calculation of signals (e.g. x after y at the clock e).

e ::= x̂ | whenx | notx | ê+ e′ | ê− e′ | ê + e′ | 0 (clock expression)
E ::= () | ê= e′ | ê<e′ | x→ y when e | E ||E′ | E/x (clock relations)

3.1.3.2. Synchronization and scheduling analysis

A Signal process P corresponds to a system of clock and scheduling relations E that denotes its timing
structure. It can be defined by induction on the structure of P using the inference system P : E of Figure 5.

x := y$ init v : ^x ^= ^y
x := y when z : ^x ^= ^y when z | y -> x when z
x := y default z : ^x ^= ^y default ^z | y -> x when ^y | z -> x when ^z ^- ^y

Figure 5. Clock inference system

3.1.3.3. Hierarchization

The clock and scheduling relations E of a process P define the control-flow and data-flow graphs that hold
all necessary information to compile a Signal specification upon satisfaction of the property of endochrony.
A process is said endochronous iff, given a set of input signals and flow-equivalent input behaviors, it has the
capability to reconstruct a unique synchronous behavior up to clock-equivalence: the input and output signals
are ordered in clock-equivalent ways.

8 Activity Report INRIA 2009

Figure 6. Hierarchization of clocks

To determine the order x � y in which signals are processed during the period of a reaction, clock relations
E play an essential role. The process of determining this order is called hierarchization and consists of an
insertion algorithm which hooks elementary control flow graphs (in the form of if-then-else structures) one to
the others. Figure 6, right, let h3 be a clock computed using h1 and h2. Let h be the head of a tree from which
h1 and h2 are computed (an if-then-else), h3 is computed after h1 and h2 and placed under h.

4. Application Domains

4.1. Application Domains
The application domains covered by the Polychrony toolbox are engineering areas where a system design-flow
requires high-level model transformations and verifications to be applied during the development-cycle. The
project-team has focused on developing such integrated design methods in the context of avionics applications,
through the European IST projects Sacres, Syrf, Safeair, Speeds, and through the national ANR projects
Topcased, OpenEmbeDD, Spacify. In this context, Polychrony is seen as a platform on which the architecture
of an embedded system can be specified from the earliest design stages until the late deployment stages through
a number of formally verifiable design refinements.

5. Software

5.1. The Polychrony workbench
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic.

Polychrony is an integrated development environment and technology demonstrator consisting of a compiler,
a visual editor and a model checker. It provides a unified model-driven environment to perform embedded
system design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony.
Polychrony supports the synchronous, multi-clocked, data-flow specification language Signal. It is being
extended by plugins to capture SystemC modules or real-time Java classes within the workbench. It allows
to perform validation and verification tasks, e.g., with the integrated SIGALI model checker.

Polychrony provides a formal framework:

1. to validate a design at different levels,

2. to refine descriptions in a top-down approach,

3. to abstract properties needed for black-box composition,

4. to assemble predefined components (bottom-up with COTS).

Project-Team espresso 9

The company GeenSys supplies a commercial implementation of Polychrony, called RT-Builder, used for
industrial scale projects by Snecma/Hispano-Suiza and Airbus Industries (see http://www.geensys.com).

Polychrony is a set of tools composed of:

1. A Signal batch compiler providing a set of functionalities viewed as a set of services for, e.g., pro-
gram transformations, optimizations, formal verification, abstraction, separate compilation, map-
ping, code generation, simulation, temporal profiling, etc.

2. The SIGALI tool, an associated formal system for formal verification and controller synthesis, jointly
developed with the Vertecs project-team (http://www.irisa.fr/vertecs).

3. GUIs (in Java and on top of Eclipse) with interactive access to compiling functionalities.

Polychrony offers services for modeling application programs and architectures starting from high-level and
heterogeneous input notations and formalisms. These models are imported in Polychrony using the data-flow
notation Signal. Polychrony operates these models by performing global transformations and optimizations
on them (hierarchization of control, desynchronization protocol synthesis, separate compilation, clustering,
abstraction) in order to deploy them on mission specific target architectures. C, C++, multi-threaded and real-
time Java and SynDex code generators are provided (http://www-rocq.inria.fr/syndex). Polychrony is open-
source software under CECILL-B license packaging its data-structure and algorithms as service libraries.
These libraries are used by the Eclipse plugins of the SME modeler (Sec. 5.2).

5.2. Eclipse plugins for Polychrony
Participants: Christian Brunette, Loïc Besnard.

We have developed a metamodel and interactive editor of Polychrony in Eclipse. Signal-Meta is the metamodel
of the Signal language. It describes all syntactic elements specified in [55]: all Signal operators (e.g. arithmetic,
clock synchronization), model (e.g. process frame, module), and construction (e.g. iteration, type declaration).
Signal-Meta has been extended to allow the definition of mode automata to extend the functionality-oriented
data-flow paradigm with the capability to model transition systems easily and provide an additional imperative
flavor (Sec. 5.4).

These metamodels aim at providing a user with a graphical framework allowing to model applications
using a component-based approach. Application architectures can be easily described by just selecting these
components via drag and drop, creating some connections between them and specifying their parameters as
component attributes. Using the modeling facilities provided with the Topcased framework, we have created
a graphical environment for Polychrony (see figure 7) called SME (Signal-Meta under Eclipse). To hightlight
the different parts of the modeling in Signal, we split the modeling of a Signal process in three diagrams: one
to model the interface of the process, one to model the computation (or dataflow) part, and one to model all
explicit clock relations and dependences. The SME environment is available through teh Espresso update site
[47], in the current OpenEmbeDD distribution [46], or in the TopCased v2.0 experimental distribution [48].

5.3. Integrated Modular Avionics design using Polychrony
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The Apex interface, defined in the ARINC standard [50], provides an avionics application software with the
set of basic services to access the operating-system and other system-specific resources. Its definition relies on
the Integrated Modular Avionics approach (IMA [51]). A main feature in an IMA architecture is that several
avionics applications (possibly with different critical levels) can be hosted on a single, shared computer system.
Of course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent fault
propagations from one hosted application to another. This is addressed through a functional partitioning of the
applications with respect to available time and memory resources. The allocation unit that results from this
decomposition is the partition.

http://www.geensys.com
http://www.irisa.fr/vertecs
http://www-rocq.inria.fr/syndex

10 Activity Report INRIA 2009

Figure 7. Eclipse SME Environment.

Project-Team espresso 11

A partition is composed of processes which represent the executive units (an ARINC partition/process is akin
to a Unix process/task). When a partition is activated, its owned processes run concurrently to perform the
functions associated with the partition. The process scheduling policy is priority preemptive.

Each partition is allocated to a processor for a fixed time window within a major time frame maintained by
the operating system. Suitable mechanisms and devices are provided for communication and synchronization
between processes (e.g. buffer, event, semaphore) and partitions (e.g. ports and channels).

The specification of the ARINC 651-653 services in Signal [7] is now part of the Polychrony distribution
and offers a complete implementation of the Apex communication, synchronization, process management
and partitioning services. Its Signal implementation consists of a library of generic, parameterizable Signal
modules.

5.4. Multi-clocked mode automata
Participants: Jean-Pierre Talpin, Thierry Gautier, Christian Brunette.

Gathering advantages of declarative and imperative approaches, mode automata were originally proposed
by Maraninchi et al. to extend the functionality-oriented data-flow paradigm with the capability to model
transition systems easily and provide an additional imperative flavor. Similar variants and extensions of the
same approach to mix multiple programming paradigms or heterogeneous models of computation [56] have
been proposed until recently, the latest advance being the combination of stream functions with automata in
[57]. Nowadays, commercial toolsets such as the Esterel Studio’s Scade or Matlab/Simulink’s Stateflow are
largely inspired from similar concepts.

While the introduction of preemption mechanism in the multi-clocked data-flow formalism Signal was
previously studied by Rutten et al. in [62], no attempt has been made to extend mode automata with the
capability to model multi-clocked systems and multi-rate systems. In [63], we extend Signal-Meta with
an inherited metamodel of multi-clocked mode automata. A salient feature is the simplicity incurred by the
separation of concerns between data-flow (that expresses structure) and control-flow (that expresses a timing
model) that is characteristic to the design methodology of Signal.

While the specification of mode automata in related works requires a primary address on the semantics and on
compilation of control, the use of Signal as a foundation allows to waive this specific issue to its analysis and
code generation engine Polychrony and clearly exposes the semantics and transformation of mode automata in
a much simpler way by making use of clearly separated concerns expressed by guarded commands (data-flow
relations) and by clock equations (control-flow relations).

6. New Results

6.1. Polychrony and Kahn Process Networks
Participants: Paul Le Guernic, Thierry Gautier.

We have started fundamental yet published research on reconsidering the polychronous model of computation
with respect to Kahn Process Networks (KPN).

The first question is: are Signal programs KPNs? While synchronous operators are flow functions, poly-
chronous operators (when, default) are not. But they are “synchronized” flow functions when we add a special
value denoting meaningful absence to the domain of values. Then, a result is that a Signal specification denotes
a flow function if it can be rewritten, using syntactic equivalence and clock calculus, as the composition of
endochronous processes, such that the master clocks are free or input signals.

Considering now the question “are KPN Signal programs?”, we propose to extend Signal with an equation
allowing to specify pure flow equality (in Signal+). Asynchronous composition can be defined as synchronous
composition with flow equality (unbounded FIFOs). Then a synchronized program can be expressed as an
unbounded FIFO program, composed with a set of constraints on bounds expressed as Signal equations.

12 Activity Report INRIA 2009

6.2. An algebraic theory of data-flow processing
Participants: Kenneth Johnson, Paul Le Guernic, Jean-Pierre Talpin.

The objective of this work is to define a uniform theoretical framework in the context of the algebraic theory
of data for studying polychronous equational systems and their transformations from abstract specifications to
real-time implementations on specific architecture. The Signal language is used as a concrete support for these
studies.

In the algebraic theory of data, data types are modelled by an algebra consisting of an interface and an
implementation. The interface is given by a signature consisting of symbols naming both data and operations
on the data. The meaning, or implementation of the signature is given by a many sorted algebra consisting of
carrier sets and functions on the sets implementing the data and operations named in the signature.

Our research will study the Signal framework as a data type of streams. A stream is a collection of of data
distributed through time. Let the data come from a set V and time be points (or tags) in a set T. We model
streams by partial functions assigning the data in V to points in T. Functions on streams are derived from
functions on both data and time. Various sets T of tags are being defined depending upon the step in the
design process. Morphisms on these sets will be used to define transformations (such as refinement, code
distribution,...).

One major investigation is of the expressive power of the Signal framework. We aim to give an analysis of
the type of system behaviour that may be expressed in terms of Signal equations. The choice of the Signal
data and operations determine the expressiveness of the equations. Our research emphasises the process of
choosing new data and new Signal operations. Our choices need not be limited to the discrete domain. We
consider cases where data and tags are continuous sets such as the real numbers. Thus, we consider Signal
processes operating in continuous time over continuous data.

6.3. New features of Polychrony
Participants: Loïc Besnard, Thierry Gautier.

To facilitate building the Polychrony environment on the various platforms (Linux, Windows, MacOS), we
have integrated the use of cmake http://www.cmake.org tool. Cmake is a cross-platform build generator.
Projects specify their build process with platform-independent files included in each directory of a source
tree. Users build a project by generating a build system for a native tool on their platform. This technique is
used to export binary distributions.

The team worked on the traceability of program and model transformations in collaboration with Geen-
sys http://www.geensys.com with applications to the simulation embedded spacecraft software. The inter-
operating tools, the Signal compiler and the Geensys simulator, have been modified in order, for the latter, to
reach a variable in the code generated by the former.

Another connection with simulation and visualization tools has been developped to interface the code
generator with the IEEE VCD (Value Change Dump) format. During the simulation of an application, a
VCD file is generated. It can be used as input by viewers such that gtkwave http://gtkwave.sourceforge.net/ or
IVI http://sourceforge.net/projects/ivi. The simulation can equally be played step-by-step and interactively by
using pipes instead of files.

6.4. Integration of Polychrony in the TopCased platform
Participants: Loïc Besnard, Christian Brunette, Julio Peralta.

http://www.cmake.org
http://www.geensys.com
http://gtkwave.sourceforge.net/
http://sourceforge.net/projects/ivi

Project-Team espresso 13

The Espresso project-team participates to the TopCased (Toolkit in OPen source for Critical Applications and
SystEms Development) project, initiative of Airbus. The integration of a tool, such as Polychrony, in TopCased
requires to respect the TopCased quality kit. It consists in the production of the several documents that cover
the different steps of the development:

• The software development plan which provides the definition of the context and the objectives, the
hypotheses and the constraints, the roadmap, the licence, the project organization, the process of
the development, the strategy of verification and validation, the document management, the project
management.

• The specification of the software, which consists in the definition of the functional requirements, the
operational environment requirements (hardware and software environment), the interface require-
ments (interface with other tools, Topcased...), the performance requirements.

• The design of the software. It is the definition of the architectural design that describes the hierarchy
dependency of software components, the design description that defines the interfaces of software
components (API).

• The verification plan. It defines the verification means, the description of the tools used to carry out
the verifications, the verification environments (environments used for the processing of the verifica-
tion), the strategy describing all the types of activities done on the tool: integration tests, validation
tests, performance tests, regression tests, tests of reused components, analysis, the description of the
verifications: for each verification, the objective, the covered specification requirements, the inputs,
the actions and expected results, the name of the file for an automatic verification, and the traceability
to verify that all the specification requirements are tested.

• The verification result which consists in the definition of the date of the verification campaign and the
verified release, the verification results (verification reference, status of the test), and the justifications
for the verifications.

• The software configuration plan which provides the list of the objects (files, components, packages,
makefiles, installation scripts...) of the tool and the list of the modifications/evolutions of the tool
(release notes).

• The installation and administration guide.

• The user guide.

To respect the Topcased Quality Kit, the verification plan and the verification result have still to be completed
for Polychrony. Currently, Polychrony is provided in the TopCased distribution as an experimental tool.

6.5. Verifications of GALS architectures
Participants: Julio Peralta, Thierry Gautier, Loïc Besnard, Jean-Pierre Talpin.

This work is sponsored by project TOPCASED and aims to bridge specifications expressed in a subset of the
synchronous SIGNAL language with tools for model checking, with the aim of validating such specifications
when composed asynchronously (thus forming so-called GALS architectures).

Our current work aims two languages amenable for model checking: FIACRE and SMV [60]. FIACRE is a
language for describing LTS (Labelled Transition Systems), and thus is action-based, whereas SMV is state-
based. Also, FIACRE gives rise (through model checkers CADP [58] and TINA [54]) to so-called explicit-
state models, while SMV is symbolic-based. And finally, SMV is deemed closer to hardware description than
FIACRE since the former semantics assumes a tick while the latter doesn’t. For this reason, the translation into
FIACRE poses more problems.

14 Activity Report INRIA 2009

On the side of translating SIGNAL to FIACRE we found that our translation was not semantics preserving
if we apply it on the source SIGNAL programs, however if we apply the translation after the clock calculus
we found out that a particular interpretation (as LTS) of clock synchronization classes renders the translation
into FIACRE semantics-preserving for the SIGNAL class of endochronous programs. At the moment we are
successfully experimenting on extending our results to so-called poly-endochronous programs. In particular,
our current problem boils down to showing that a trace-based reduction of LTS (our FIACRE generated
programs) corresponds to the right SIGNAL semantics, and the related question of what temporal properties
are preserved through such LTS reduction operation. It is worth noting that the translation here discussed is
implemented in the model transformation language ATL, and it is integrated, together with its documentation,
into two Eclipse plugins.

On the work of translating SIGNAL programs into SMV, we have better results even though SMV is single-
clocked and Signal sources may be multiple-clocked. Additionally, we have succeeded in translating and
model-checking multi-clocked SIGNAL programs [34]. These experiments have helped in correcting some
translation bugs from SIGNAL to its other model-checker, namely SIGALI. It remains to implement this
translation to render it fully automatic, nonetheless our first experiments are promising.

6.6. A contract-based module system
Participants: Yann Glouche, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

Contract-based systems, based on the assume-guarantee paradigm, have become a popular formalism for the
modular specification of object-oriented programs. In the context of the development of embedded systems,
functional (behavioral) contracts are being applied and become part of mainstream industrial tool. Our goal is
to exploit contracts during the developement phase, for instance as a support for early execution (simulation).
In this context, we have introduce a new paradigm to express the essence of encapsulation and inheritance in
a synchronous and a concurrent modeling framework.

A contract is a pair (assumptions, guarantees). Assumptions describe properties expected by a component to
be satisfied by the context in which this component is used; on the opposite guarantees describe properties
that are satisfied by the component when the context satisfies assumptions. We want to provide designers with
such a formal model allowing “simple” but powerful and efficient computation on contracts. Thus we define a
novel algebraic framework to enable logical reasoning on contracts [29]. It is based on two simple concepts.

First, the assumptions and guarantees of a component are defined as filters: assumptions filter the processes a
component may accept and guarantees filter the processes a component provides. A filter is the set of processes,
whatever their input and output variables are, that are compatible with some property (or constraint), expressed
on the component variables.

Second and foremost, the structure of filters is a Boolean algebra and allows for reasoning on contracts with
great flexibility to abstract, refine and combine them. In addition to that, and unlike the related work, the
negation of a contract can formally be expressed from within the model. Moreover, contracts are not limited
to expressing safety properties, as is the case in most related frameworks, but encompass the expression of
liveness properties. This is all again due to the central notion of filter.

We use this algebra to work for the definition of a general purpose module language based on the paradigm
of contract described in [30], for a synchronous multi-clocked formalism, SIGNAL, and applied it to the
specification of a component-based design process. The paradigm we are putting forward is to regard a contract
as the behavioral type of a component and to use it for the elaboration of the functional architecture of a
system together with a proof obligation that validates the correctness of assumptions and guarantees made
while constructing that architecture.

The module system embedding data-flow equations defined in syntax, has been implemented in OCaml. It
produces a proof tree that consists of

• an elaborated Signal program, that hierarchically renders the structure of the system described in the
original module expressions,

Project-Team espresso 15

• a static type assignment, that is sound and complete with respect to the module type inference
system,

• a proof obligation consisting of refinement constraints, that are compiled as an observer or a temporal
property in Signal.

The property is then tended to SIGNAL’s model-checker, Sigali, which allows to prove or disprove that it
is satisfied by the generated program. Satisfaction implies that the type assignment and produced SIGNAL
program are correct with the initially intended specification. The use of our module system is demonstrated by
considering the specification of a protocol for Loosely Time-Triggered Architectures.

This works is presented in the PhD thesis of Yann Glouce [17].

6.7. Virtual prototyping of avionic architecture descriptions
Participants: Yue Ma, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

In the context of the TopCased project, we are designing and developing a tool for the virtual prototyping of
avionic architecture specifications. It aims to interpret specifications expressed in AADL to the synchronous
model of computation of Polychrony in order to provide a framework for the simulation, test and verification
of integrated modular avionics. In particular, we worked on a translation from AADL programs to SIGNAL
programs with tools for simulation and verification.

The SAE AADL is a standard for high level designing and evaluation of the architecture of real-time and
embedded systems. The implementation of embedded systems is often distributed across asynchronous com-
munication infrastructures. Such a distributed system is usually composed of locally synchronous processes
communicating in a globally asynchronous manner, a GALS system. Yet, in a step-wise refinement based
approach, one would prefer to model, simulate and validate such a system in a synchronous programming
framework, and then automatically generate its GALS implementation. Our main objective is to perform sim-
ulation and validation that take into account both the system architecture and functional aspects. We consider
the case where software components are implemented in the synchronous programming language SIGNAL.

First, we use the existing techniques and library of the Polychrony environment, which consist of a model of
the APEX-ARINC-653 real-time operating system sevices. A set of rules are defined for these components
translations, for example, an AADL processor is translated using the APEX partition-level-OS, and an AADL
thread is using the APEX process.

Second, we are experimenting on automatic code distribution starting from system-level AADL specifications
using SIGNAL distribution pragmas [32]. we present a methodology to implement such an approach using the
polychronous model of computation how to generate distributed simulation code starting from system-level
AADL specifications.

Third, we also work on the AADL behavior annex translations. Behavior annex is an extension for the
specifications of the actual behaviors. This translation relies on the use of SSA (Static Single Assignment)
as intermediate representation of programs. We also define a new library for the non-deterministic behaviors,
such as timing actions delay()/computation().

We are currently working on producing a prototype ATL translator from a subset of the AADL metamodel
into Signal metamodel, under Eclipse, and some real test cases (such as avionics application examples) will be
used for testing. Our goal is to producing an automatic translatior from an AADL model to a SIGNAL model.
Future work will focus on the verification and model-checking with some real test cases.

6.8. A compilation tool-chain for Synoptic, a space application DSL
Participants: Julien Ouy, Jean-Pierre Talpin.

In the context of the ANR project Spacify, we are using Polychrony/SME as compilation infrastructure for
the domain-specific modeling language Synoptic, defined in the context of the project from industrial user
requirements.

16 Activity Report INRIA 2009

We implemented a functional version of the tool to perform model transformation from Synoptic to SME. This
transformation is done using the language Kermeta. It is partly described in the Spa4 internal document of the
project. The main developments this year have focused on:

• Processing models of blocks and processes: the transformation should provide an equivalence
between the Synoptic blocks proposed by the designer and SME synchronous blocks that will be
used for implantation, this equivalence should be reflected in the names of the processes, in their
interface and the name of their ports, in the use of constants and types.

• Extraction of implicit information: Synoptic models are based on building patterns which require
properties on the objects they manipulate: hidden signals, synchrony of signal, chronology of actions.
Moreover, the Synoptic design allows the user to provide models partially defined, transformation
must add the elements that are necessary if they are implicit and ensure that additions and changes
implemented do not betray the thought of user.

• Dataflow transformation: the design of dataflow Synoptic is fairly close to that of Signal, the
difficulty occurs mainly in the use of variables: the Synoptic language is far more permissive than
SME about synchronous readings - writes to variables. Replication of variable has been set up to
ensure the assignment of unique values in each variable in one synchronous moment. Automaton
transformation: Synoptic automaton are more complex than those of SME, a major transformation
work is needed to pass each other, this work is based on the document (Spa 6) describing the
synchronous semantics of Synoptic .

• Traceability of transformations: traceability concern two points, the first is in the transformation from
Synoptic to SME, care has been made to names of variables to be able to trace to user design errors
found during code generation. The second point concerns the simulation. For simulation, a table is
generated to provide RT-builder simulator with equivalency names of variables and processes. So
the display of the simulation can be done using the names proposed by the user.

6.9. Virtual prototyping of imperative programs
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

The Espresso project team has integrated a tool which allows to import C functions into Signal and SME. This
work was partly funded by the project FotoVP [25]. We extending this virtual prototyping tool to include the
specification and verification of C components using a deterministic thread library: FairThreads.

In C components using the Fairthreads library, one or more schedulers are defined to which threads can be
connected. The threads associated with a scheduler are expected to be cooperative and are executed in a
strict round-robin fashion. The operation and scheduling of threads connected to a scheduler are completely
deterministic.

The importer translating C programs in an SSA representation to Signal specifications will be extended to
include C programs using the API commands for the fairthreads. The scope of the project is to consider
threaded programs with a bounded number of threads connected to one scheduler. Each thread is a C procedure
and is translated using existing methods. A template for the scheduler has been handwritten, and can be
algorithmically generated to accommodate any number of threads.

6.10. A simulation infrastructure for CCSL, the timing model of UML
MARTE
Participants: Huafeng Yu, Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

Project-Team espresso 17

In the framework of the CESAR project, our work concerns formal analysis and simulation for the design
of embedded systems. We are interested in timed systems that can be specified by using clock constraint
specification language (CCSL) [52] introduced in the MARTE profile [61]. These systems subject to clock
constraints are modeled, specified, analyzed, and simulated within two software environments: TimeSquare
[49] and Polychrony. Clock constraints are solved using a heuristic algorithm in TimeSquare, which is
generally non-deterministic. Simulation can be carried out and demonstrated in the form of waves. In
comparison, Polychrony enables deterministic specifications and formal analysis for the design of safety-
critical systems. It is a promising approach to integrate the complementary technologies present in the two
software environments for the purpose of system design.

In order to benefit from the advantages provided by Polychrony, the clock constraints specified in CCSL are
translated into Signal, therefore, they are analyzed by tools and technologies associated with Polychrony.
For instance, the hierarchization technique is used for the clock analysis and affine clock system allows
clock synchronization analysis. In addition, the code generated in C or Java by Polychrony enables to obtain
deterministic execution traces, compared to the traces obtained by the constraint solver of TimeSquare.
Furthermore, some expected properties such as invariance and reachability can be specified so that a controller
can be calculated and synthesized (through Sigali) to ensure these properties on target system. Hierarchization
extension is also expected so that it can be applied directly on CCSL clock constraints without a Signal
translation.

It is also interesting to translate clock relations specified in Signal into CCSL for the simulation purpose
as TimeSquare provides a graphical interface for simulation demonstration as well as non-deterministic
specifications can be handled. However only Boolean equations are considered in Signal due to CCSL
expressivity. The first advantage of this approach is that non-deterministic simulation driven by the constraints
solver in TimeSquare can be carried out even if the original Signal program is rejected by the Signal compiler
due to the non-determinism issue. The second advantage is that graphical demonstrations of simulation results
in the format of waveform are enabled for Polychrony.

6.11. Clock-driven real-time implementation of synchronous specifications
Participants: Dumitru Potop-Butucaru [EPI Aoste], Robert de Simone [EPI Aoste], Yves Sorel [EPI Aoste],
Jean-Pierre Talpin.

One important line of work in our project concerns the model-based mapping of the computations and com-
munications of the functional specification onto corresponding resources of the implementation architecture.
This mapping comprises both temporal scheduling and spatial allocation aspects. Therefore, we promote an
approach which starts from loosely-timed/asynchronous models and proceeds by refining them to fully syn-
chronized ones, using so-called clock calculus techniques under the architecture constraints.

This year, we provided a modeling framework [35] based on an intermediate representation format, called
clocked graphs, for polychronous endochronous specifications, which are the ones that can be safely consid-
ered for deterministic distributed real-time implementation using static scheduling techniques. Our formalism
allows the specification of both ?intrinsic? correctness properties of the specification, such as causality and
clock consistency, and ?external? correctness properties, such as endochrony, which ensure compatibility with
the desired implementation architecture, including both hardware and software aspects. Using this formal-
ism, we define a new method for distributed real-time implementation of synchronous specification, where
the move from (endochronous) synchronous specification to realtime scheduled implementation is a seamless
sequence of model decorations.

When compared with current state-of-the-art, represented by the AAA/SynDEx methodology, our approach
has the advantage of providing a seamless transformation all the way from specification to implementation
models. Our approach also has the advantage of promoting activation conditions (known as clocks) as first
class citizens, as opposed to SynDEx, where they can be defined only through structured dataflow constructs
(which often results in pessimization of both the specification and the implementation).

18 Activity Report INRIA 2009

6.12. From Concurrent Multiclock Programs to Deterministic Asynchronous
Implementations
Participants: Dumitru Potop-Butucaru [EPI Aoste], Robert de Simone [EPI Aoste], Yves Sorel [EPI Aoste],
Jean-Pierre Talpin.

Current techniques for the compilation of multi-clock synchronous programs often produce implementations
that are over-synchronized. In such implementations, all the clocks (activation conditions) are forced to derive
from a single base clock to allow a simple, hierarchical code generation. This approach is well-suited when
the target is a sequential processor. For distributed implementations, however, it results in unnecessary inter-
processor synchronizations with may result in important performance losses.

We proposed this year a general method to characterize and synthesize correctness-preserving, asyn-
chronous wrappers for synchronous processes on a globally asynchronous locally synchronous (GALS)
architecture [36]. Our technique is mathematically founded on the theory of weakly endochronous systems,
due to Potop, Caillaud, and Benveniste. Weak endochrony gives a compositional sufficient condition establish-
ing that a concurrent synchronous specification exhibits no behavior where information on the absence of an
event is needed. Thus, the synchronous specification can safely be executed with identical results in any asyn-
chronous environment (where absence cannot be sensed). Weak endochrony thus gives a latency-insensitivity
and scheduling-independence criterion.

We defined the first general method to check weak endochrony on multi-clock synchronous programs.The
ethod is based on the construction of so-called generator sets. Generator sets contain minimal synchronization
patterns that characterize all possible reactions of a multi-clocked program. These sets are used to check that a
specification is indeed weakly endochronous, in which case they can be used to generate the GALS wrapper.
In case the specification is not weakly endochronous, the generators can be used to generate intuitive error
messages. Thus, we provide an alternative to classical compilation schemes for multi-clock programs, such as
the clock hierarchization techniques sed in Signal/Polychrony.

We are currently working on the application of our technique in the compilation of the Signal language, and
on the generation of simpler communication protocols in the SynDEx tool.

6.13. A Megamodel for Cartography of Software Engineering Platforms
Participants: Vincent Mahé, Frédéric Jouault [EPI AtlanMod], Jean Bézivin [EPI AtlanMod], Jean-Pierre
Talpin.

Software engineering for real time and critical systems relies on methods and techniques which are embedded
in tools which are packaged in multiple platforms like Topcased, Autosar or Simulink. The engineering
designing and developing an embedded system must rely on features and techniques partially covered by
different engineering platforms which do not collaborate together. We elaborate a prototype of modeling tool
able to capture needed information about those platforms and their tools and process the model to manipulate
platforms and their features at a higher abstraction level. We built such a model by doing reverse engineering
of Eclipse-based platforms and handle extra informations [33].

7. Contracts and Grants with Industry

7.1. ANR project Topcased
Participants: Loïc Besnard, Paul Le Guernic, Julio Peralta, Yue Ma, Jean-Pierre Talpin.

The Espresso project-team participates to the Topcased initiative of Airbus. The aim of the Topcased initiative
is to develop an open-source toolset for the design of avionic architectures. A summary of Topcased appears
in [64]. The Topcased project is funded by the ANR and the Midi-Pyrénée region.

Project-Team espresso 19

7.2. RNTL project Spacify
Participants: Loïc Besnard, Julien Ouy, Jean-Pierre Talpin.

The Espresso project-team participates to the RNTL project Spacify, leaded by CNES and ONERA. Spacify
is a research project aiming at developing a design environment for spacecraft flight software.

More precisely, the project shall promote a top-down method based upon multi-clock synchronous modeling,
formally-verified transformations, exhaustive verification through model-checking and a runtime framework
featuring realtime-friendly distribution and dynamic-reconfiguration services. Furthermore, the various tools
shall be released under FLOSS (free/libre/open-source software) licenses, favouring cost-sharing and sustain-
ability.

The project is led by the French Agences CNES and ONERA. It gathers prime contractors Astrium Satellites
and Thales Alenia Space, GeenSys (formerly TNI Software) and Anyware Technologies, and academic teams
Cama from TELECOM Bretagne, Espresso from INRIA, MV from LaBRI and Acadie from IRIT. It is a 3-
years project (starting in February 2006) partly funded by the French Research Agency (ref. ANR 06 TLOG
27).

7.3. ANR project FotoVP
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin, Kenneth Johnson.

The Espresso project-team participates to the ANR project FotoVP, leaded by Verimag. The aim of the FotoVP
is to develop virtual prototyping tools and techniques for the simulation and verification of system-level
C/SystemC specifications in synchronous models of computation.

7.4. Fondation EADS
Participants: Yann Glouche, Jean-Pierre Talpin.

The Espresso project-team received a grant from the EADS Foundation to fund a Doctorate on contract-
based design in a polychronous model of computation. The aim of this program is to develop a model-driven
engineering framework, based on the Eclipse plugins for Polychrony developed in the frame of the ANR
project OpenEmbeDD, allowing for the seamless integration of heterogeneous embedded system components
within a contract-based design MDD environment.

7.5. Artemisia project CESAR
Participants: Huafeng Yu, Vincent Mahé, Loic Besnard, Thierry Gautier, Jean-Pierre Talpin.

The Espresso project team participates to the European Artemis Joint Undertaking project CESAR, leaded by
AVL, with EADS, OFFIS, Airbus, Volvo, Messier-Bugatti, ABB as work packages leaders. CESAR means
Cost-Efficient methods and processes for SAfety Relevant embedded systems. The project aims at a stronger
integration of safety engineering methods and techniques, all along the phases of the development process.
The purpose is to optimize globally the safety critical embedded system architecture by taking in account
simulatneously all viewpoints and associated criteria (cost, mass, safety).

7.6. ANR project OpenEmbeDD
Participants: Christian Brunette, Vincent Mahé, Jean-Pierre Talpin.

The final review of the ANR project OPENEMBEDD (http://openembedd.inria.fr) was held at IRISA in March
2009. OpenEmbeDD was acknowledged as a “projet phare” for ANR by the board of experts evaluating the
project. The results of the OpenEmbeDD project have been presented at the Neptune’09 workshop (http://
neptune.irit.fr/index.php?option=com_content&view=category&layout=blog&id=21&Itemid=10) and will be
presented at the forthcoming STIC colloquium (http://colloque-stic.org)

http://openembedd.inria.fr
http://neptune.irit.fr/index.php?option=com_content&view=category&layout=blog&id=21&Itemid=10
http://neptune.irit.fr/index.php?option=com_content&view=category&layout=blog&id=21&Itemid=10
http://colloque-stic.org

20 Activity Report INRIA 2009

7.7. ITEA2 project OPEES
Participants: Thierry Gautier, Yann Glouche, Yue Ma, Jean-Pierre Talpin.

The mission of OPEES is to build a community able to ensure long-term availability of innovative engineering
technologies in the domain of dependable / critical software-intensive embedded systems. Its main objectives
are to secure the industrial strategy, improve their competitiveness and develop the European software industry.
A general kickoff meetin of the project is expected early 2010. The contribution of team Espresso in OPEES
consists of the following:

• Provide the SME/Polychrony toolset as an infrastructure for the co-simulation and co-verification
of embedded architectures designed with Geneauto, for its functional aspects, and AADL, for its
non-functional aspects. The infrastructure will be evaluated through industry-scale case studies in
collaboration with CS and Airbus

• Provide the SME/Polychrony distributed code generation and formal verification functionalities in
order to provide means for model-checking automatically generated distributed C code with respect
to intermediate representations of Geneauto/AADL specifications in SME/Polychrony.

8. Other Grants and Activities

8.1. National Actions
8.1.1. ARC Triade – Combining models of computation for the design of real-time and

embedded applications
Participants: Jean-Pierre Talpin, Thierry Gautier, Yann Glouche, Thierry Gautier, Paul Le Guernic.

The Triade Cooperative Research Action (ARC) is a partnership between the AOSTE, DaRT, and ESPRESSO
teams of INRIA. Triade aims at using formal models with structuring programmatic constructs as means to
translate programs and descriptions written in formalisms widely used in Embedded System and SoC design,
and provide a seamless flow of increasingly time-defined and time-accurate models, so as to progressively
obtain the final mapped implementation through provably correct steps from the early description elements.

Thanks to travel financing from Triade we have had regular meetings with our colleagues from Rennes
(ESPRESSO) and Lille (DaRT). Two publications [36], [35] have resulted, and we intend to launch a common
implementation initiative aiming at combining know-how of the various teams.

8.2. European Actions
8.2.1. Network of excellence ARTIST2

Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin, Eric Vecchie.

The Espresso project-team participates to the Artist2 network of excellence. Detailed presentations on the aim
and scope of the network can be found in the book [1] and the website http://www.artist-embedded.org/FP6 of
the project. In particular, we have contributed to a survey of real-time programming languages edited by Alan
Burns [59].

http://www.artist-embedded.org/FP6

Project-Team espresso 21

8.3. Research visitors
• With the support of the University of Rennes I, of INRIA, and of the Artist2 Network, Sandeep

Shukla (Virginia Tech) is visiting team Espresso from July 2008 until April 2009.

• With the support of the NSF project PEGASUS, Jean-Pierre Talpin visited the Fermat Laboratory at
Virginia Tech in October.

9. Dissemination

9.1. Advisory
• Jean-Pierre Talpin is external advisory board member of the center of embedded systems at Virginia

Tech, steering committee member of the ACM-IEEE conference on methods and models for code-
sign (MEMOCODE), steering committee member of the SLAP++ workshop series, organization
committee member of the FMGALS workshop series, and editorial board member of the EURASIP
Journal on Embedded Systems.

• Paul Le Guernic animated the working group on software evaluation at INRIA Rennes and was
editor for the report made by the national working group, July 2009, animated by Daniel Pilaud.
Paul Le Guernic is now a member of the steering comittee for the BIL (base d’information sur les
logiciels) whose aim is to implement the conclusions of the report.

9.2. Tutorials
Jean-Pierre Talpin and Sandeep Shukla jointly organized a one day tutorial, on “Correct-by-Construction
Embedded Software Synthesis”, at the Design Automation and Test in Europe Conference (DATE’09, http://
www.date-conference.com/date09/conference/date09-tutorial-C).

9.3. Invited Lectures
Jean-Pierre Talpin gave an invited lecture at the The 7th International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES’09, http://pan.vmars.tuwien.ac.at/jtres2009).

9.4. Workshops
Jean-Pierre Talpin and Sandeep Shukla jointly organized the 4th Internation Workshop on the Formal Methods
for Globally Asynchronous and Locally Synchronous Design (FMGALS’09) as a DATE Friday workshop
http://www.date-conference.com/date09/conference/date09-workshop-W7.

9.5. Conferences
Jean-Pierre Talpin served as technical program committee member for the conferences

ESOP’09 - http://www.cs.york.ac.uk/etaps09

ACSD’09 - http://www.informatik.uni-augsburg.de/acsd

SIES’09 - http://sies2009.epfl.ch

Jean-Pierre Talpin served as Guest Editor for the IEEE Transactions on Computing, Special Section on Science
of Design for Safety Critical Systems.

http://www.date-conference.com/date09/conference/date09-tutorial-C
http://www.date-conference.com/date09/conference/date09-tutorial-C
http://pan.vmars.tuwien.ac.at/jtres2009
http://www.date-conference.com/date09/conference/date09-workshop-W7
http://www.cs.york.ac.uk/etaps09
http://www.informatik.uni-augsburg.de/acsd
http://sies2009.epfl.ch

22 Activity Report INRIA 2009

9.6. Teaching
• Thierry Gautier and Loïc Besnard taught on real-time programming at the DIIC 2 Graduate program

of the University of Rennes I.

• Thierry Gautier taught on formal methods for component and system synthesis at the Master 2
Graduate program of the University of Rennes 1.

• Hugo Metivier taught programming scientific language at the Licence 1 PCGI Graduate program,
taught web design at the Licence 3 MIAGE and taught oriented object language at the DIIC 1
(Licence 3 of Engineering school) Graduate program.

• Yann Glouche taught on functionnal programming and object oriented programming at the STPI
Graduate program of the INSA of Rennes. Alse he taught on contrainst programming at the fourth
year of the INSA of Rennes.

10. Bibliography
Major publications by the team in recent years

[1] B. BOUYSSOUNOUSE, J. SIFAKIS (editors). Embedded Systems Design. The ARTIST Roadmap for Research
and Development, Springer, Lecture Notes in Computer Science, Vol. 3436, 2005, Thierry Gautier, contribu-
tor.

[2] A. GAMATIÉ (editor). Designing Embedded Systems with the SIGNAL Programming Language, Springer, 2009,
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4.

[3] T. P. AMAGBEGNON, L. BESNARD, P. LE GUERNIC. Implementation of the Data-flow Synchronous Language
Signal, in "Proceedings of the ACM Symposium on Programming Languages Design and Implementation
(PLDI’95)", ACM, 1995, p. 163–173.

[4] A. BENVENISTE, B. CAILLAUD, P. LE GUERNIC. From synchrony to asynchrony, in "CONCUR’99, Con-
currency Theory, 10th International Conference", J. C. M. BAETEN, S. MAUW (editors), Lecture Notes in
Computer Science, vol. 1664, Springer, August 1999, p. 162–177.

[5] A. BENVENISTE, P. CASPI, S. EDWARDS, N. HALBWACHS, P. LE GUERNIC, R. DE SIMONE. The Syn-
chronous Languages Twelve Years Later, in "Proceedings of the IEEE Special issue on Modeling and Design
of Embedded Systems", vol. 91(1), 2003.

[6] A. BENVENISTE, P. LE GUERNIC, C. JACQUEMOT. Synchronous programming with events and relations: the
Signal language and its semantics, in "Science of Computer Programming", vol. 16, 1991, p. 103-149.

[7] A. GAMATIÉ, T. GAUTIER. Synchronous Modeling of Avionics Applications using the SIGNAL Language,
in "Proceedings of the 9th IEEE Real-time/Embedded technology and Applications symposium (RTAS’03),
Washington D.C., USA", IEEE Press, May 2003.

[8] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Embedded Real-Time
Applications, in "ACM Transactions on Software Engineering and Methodology (TOSEM)", 2006.

[9] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Embedded Real-Time
Applications, in "ACM Transactions on Software Engineering and Methodology (TOSEM)", 2007.

http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4

Project-Team espresso 23

[10] T. GAUTIER, P. LE GUERNIC. Code generation in the SACRES project, in "Towards System Safety, Pro-
ceedings of the Safety-critical Systems Symposium, SSS’99, Huntingdon, UK", F. REDMILL, T. ANDERSON
(editors), Springer, February 1999, p. 127–149.

[11] A. KOUNTOURIS, C. WOLINSKI. High-level Pre-synthesis Optimization Steps using Hierarchical Conditional
Dependency Graphs, in "Proceedings of the EUROMICRO’99, Milan, Italie", IEEE Computer Society Press,
August 1999.

[12] P. LE GUERNIC, T. GAUTIER. Data-Flow to von Neumann: the Signal approach, in "Advanced Topics in
Data-Flow Computing", J. L. GAUDIOT, L. BIC (editors), 1991, p. 413–438.

[13] P. LE GUERNIC, T. GAUTIER, M. LE BORGNE, C. LE MAIRE. Programming Real-Time Applications with
Signal, in "Proceedings of the IEEE", vol. 79, no 9, Septembre 1991, p. 1321–1336.

[14] P. LE GUERNIC, J.-P. TALPIN, J.-C. LE LANN. Polychrony for system design, in "Journal of Circuits, Systems
and Computers, Special Issue on Application Specific Hardware Design", 2003.

[15] H. MARCHAND, P. BOURNAI, M. LE BORGNE, P. LE GUERNIC. Synthesis of Discrete-Event Controllers
based on the Signal Environment, in "Discrete Event Dynamic System: Theory and Applications", vol. 10, no

4, October 2000, p. 347–368.

[16] J.-P. TALPIN, P. LE GUERNIC. An algebraic theory for behavioral modeling and protocol synthesis in system
design, in "Formal Methods in System Design", 2006.

Year Publications
Doctoral Dissertations and Habilitation Theses

[17] Y. GLOUCHE. Une méthodologie de spécification et de validation de systèmes hétérogènes fondée sur un
modèle de contrats pour la conception des systèmes embarqués, Université de Rennes 1, 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[18] S. AHUJA, S. GURUMANI, C. SPACKMAN, S. SHUKLA. Hardware Coprocessor Synthesis from an ANSI
C Specification, in "IEEE Design and Test of Computers", 2009, http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=5209963&isnumber=5209950.

[19] C. BRUNETTE, J.-P. TALPIN, A. GAMATIÉ, T. GAUTIER. A metamodel for the design of polychronous
systems, in "Journal of Logic and Algebraic Programming", vol. 78, no 4, April 2009, p. 233–259, http://dx.
doi.org/10.1016/j.jlap.2008.11.005.

[20] A. GAMATIÉ, T. GAUTIER. The Signal Synchronous Multi-Clock Approach to the Design of Distributed
Embedded Systems, in "IEEE Transactions on Parallel and Distributed Systems", 2009, http://doi.
ieeecomputersociety.org/10.1109/TPDS.2009.125.

[21] A. SANGIOVANNI-VINCENTELLI, G. YANG, S. SHUKLA, A. MATHAIKUTTY, J. SZTIPANOVITS. Meta-
modeling: An Emerging Representation Paradigm for System-Level Design, in "IEEE Design and Test of
Computers", 2009, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5167508&isnumber=5167496.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5209963&isnumber=5209950
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5209963&isnumber=5209950
http://dx.doi.org/10.1016/j.jlap.2008.11.005
http://dx.doi.org/10.1016/j.jlap.2008.11.005
http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.125
http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.125
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5167508&isnumber=5167496

24 Activity Report INRIA 2009

[22] S. SHUKLA. Model-Driven Engineering and Safety-Critical Embedded Software, in "IEEE Computer", 2009,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5233515&isnumber=5233491.

[23] S. SUHAIB, A. MATHAIKUTTY, S. SHUKLA. A Trace-Based Framework for Verifiable GALS Composition of
IPs, in "IEEE Transactions on Very Large Scale Integration Systems", 2009, http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=4599241&isnumber=4603036.

International Peer-Reviewed Conference/Proceedings

[24] S. AHUJA, A. MATHAIKUTTY, G. SINGH, J. STETZER, S. SHUKLA, A. DINGANKAR. Power estimation
methodology for a high-level synthesis framework, in "Quality of Electronic Design", ISQED, 2009, http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4810352&isnumber=4810250.

[25] L. BESNARD, T. GAUTIER, M. MOY, J.-P. TALPIN, K. JOHNSON, F. MARANINCHI. Automatic translation
of C/C++ parallel code into synchronous formalism using an SSA intermediate form, in "Automated Verifica-
tion of Critical Systems", EASST, 2009.

[26] A. CORTIER, L. BESNARD, J.-P. BODEVEIX, J. BUISSON, F. DAGNAT, M. FILALI, G. GARCIA, T.
GAUTIER, J. OUY, M. PANTEL, A. RUGINA, M. STRECKER, J.-P. TALPIN. Synoptic: a Domain Specific
Modeling Language for embedded flight-software (extended abstract), in "Formal Methods for Aerospace",
Elsevier, November 2009, p. 76–78.

[27] E. DAYLIGHT, S. SHUKLA. On the Difficulty of Concurrent-System-Design, Illustrated with a 2x2 Switch
Case Study, in "International Symposium on Formal Methods", Springer, 2009.

[28] E. DAYLIGHT, S. SHUKLA, D. SERGIO. Expressing the Behavior of Three Very Different Concurrent
Systems by Using Natural Extensions of Separation Logic, in "International Workshop on Expressiveness
in Concurrency", Elsevier, 2009.

[29] Y. GLOUCHE, P. L. GUERNIC, J.-P. TALPIN, T. GAUTIER. A Boolean algebra of contracts for assume-
guarantee reasoning, in "Formal Aspects of Component Software", Elsevier, 2009.

[30] Y. GLOUCHE, P. L. GUERNIC, J.-P. TALPIN, T. GAUTIER. A module language for typing by contracts, in
"NASA Formal Methods Symposium", Springer, 2009.

[31] B. JOSE, B. XUE, S. SHUKLA. An Analysis of the Composition of Synchronous Systems, in "Interna-
tional Workshop on the Application of Formal Methods for Globally Asynchronous and Locally Syn-
chronous Design", Elsevier, 2009, http://www.sciencedirect.com/science/article/B75H1-4WXBHBT-6/2/
a42f939f6e228137c747dc6d22d44388.

[32] Y. MA, J.-P. TALPIN, S. SHUKLA, T. GAUTIER. Distributed simulation of AADL specifications in a
polychronous model of computation, in "International Conference on Embedded Software and Systems", IEEE
Press, 2009.

[33] V. MAHÉ, F. JOUAULT, H. BRUNELIÈRE. Megamodeling Software Platforms: Automated Discovery of Usable
Cartography from Available Metadata, in "Reverse Engineering Models from Software Artifacts", IEEE,
2009.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5233515&isnumber=5233491
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4599241&isnumber=4603036
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4599241&isnumber=4603036
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4810352&isnumber=4810250
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4810352&isnumber=4810250
http://www.sciencedirect.com/science/article/B75H1-4WXBHBT-6/2/a42f939f6e228137c747dc6d22d44388
http://www.sciencedirect.com/science/article/B75H1-4WXBHBT-6/2/a42f939f6e228137c747dc6d22d44388

Project-Team espresso 25

[34] J. PERALTA, T. GAUTIER. Towards SMV model checking of Signal (multi-clocked) Specifications, in "Auto-
mated Verification of Critical Systems", EASST, 2009.

[35] D. POTOP-BUTUCARU, R. D. SIMONE, Y. SOREL, J.-P. TALPIN. Clock-driven distributed real-time
implementation of endochronous synchronous programs, in "Embedded Software Conference", ACM Press,
2009.

[36] D. POTOP-BUTUCARU, R. D. SIMONE, Y. SOREL, J.-P. TALPIN. From Concurrent Multiclock Programs
to Deterministic Asynchronous Implementations, in "Application of Concurrency to System Design", IEEE
Press, 2009.

[37] S. SUHAIB, B. JOSE, S. SHUKLA, A. MATHAIKUTTY. Formal transformation of a KPN specification to a
GALS implementation," Specification, in "Forum on Design Languages", IEEE, 2009, http://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=4641426&isnumber=4641405.

[38] E. VECCHIE, J.-P. TALPIN, K. SCHNEIDER. Separate compilation and execution of imperative synchronous
modules, in "Design Analysis and Test in Europe", IEEE Press, 2009.

[39] B. XUE, S. SHUKLA. Modeling and Analyzing the Implementation of Latency-Insensitive Protocols Using
the Polychrony Framework, in "International Workshop on the Application of Formal Methods for Globally
Asynchronous and Locally Synchronous Design", Elsevier, 2009, http://www.sciencedirect.com/science/
article/B75H1-4WXBHBT-2/2/77a33e1d0047fb19a1306fcf23338ddb.

National Peer-Reviewed Conference/Proceedings

[40] C. ANDRÉ, A. BELAUNDE, B. BERTHOMIEU, C. BRUNETTE, A. CANALS, H. GARAVEL, S. GRAF, F.
LANG, V. MAHÉ, M. NAKHLÉ, R. SCHNEKENBURGER, R. DE SIMONE, J.-P. TALPIN, F. VERNADAT.
Présentation des résultats du projet OpenEmbeDD, in "Neptune, France Paris", P. BAZEX, A. CANALS, T.
MILLAN (editors), Revue Génie Logiciel - AFCET, 2009, http://hal.inria.fr/inria-00381639/en/.

Scientific Books (or Scientific Book chapters)

[41] B. JOSE, S. SHUKLA, J.-P. TALPIN. Programming models for multi-core embedded systems, Taylor and
Francis, 2009.

[42] D. POTOP-BUTUCARU, R. D. SIMONE, J.-P. TALPIN. The synchronous hypothesis and polychronous
languages, CRC Press, 2009.

Research Reports

[43] L. BESNARD, T. GAUTIER, M. MOY, J.-P. TALPIN, K. JOHNSON, F. MARANINCHI. Automatic translation
of C/C++ parallel code into synchronous formalism using an SSA intermediate form, INRIA, 2009, http://
hal.inria.fr/inria-00400272/en/, RR-6976, Rapport de recherche.

[44] L. BESNARD, T. GAUTIER, J.-P. TALPIN. Code generation strategies in the Polychrony environment, INRIA,
2009, http://hal.inria.fr/inria-00372412/en/, RR-6894, Rapport de recherche.

[45] J.-P. TALPIN, J. OUY, T. GAUTIER, L. BESNARD, A. CORTIER. Modular interpretation of heterogeneous
modeling diagrams into synchronous equations using static single assignment, INRIA, 2009, http://hal.inria.
fr/inria-00417682/en/, RR-7036, Rapport de recherche.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4641426&isnumber=4641405
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4641426&isnumber=4641405
http://www.sciencedirect.com/science/article/B75H1-4WXBHBT-2/2/77a33e1d0047fb19a1306fcf23338ddb
http://www.sciencedirect.com/science/article/B75H1-4WXBHBT-2/2/77a33e1d0047fb19a1306fcf23338ddb
http://hal.inria.fr/inria-00381639/en/
http://hal.inria.fr/inria-00400272/en/
http://hal.inria.fr/inria-00400272/en/
http://hal.inria.fr/inria-00372412/en/
http://hal.inria.fr/inria-00417682/en/
http://hal.inria.fr/inria-00417682/en/

26 Activity Report INRIA 2009

References in notes

[46] OpenEmbeDD website, 2009, http://openembedd.org.

[47] Polychrony Update Site for Eclipse plug-ins, 2009, http://www.irisa.fr/espresso/Polychrony/update/.

[48] TopCased website, 2009, http://www.topcased.org.

[49] INRIA AOSTE TEAM (editor). TimeSquare, 2009, http://www-sop.inria.fr/aoste/dev/time_square/.

[50] AIRLINES ELECTRONIC ENGINEERING COMMITTEE. ARINC Report 651-1: Design Guidance for Integrated
Modular Avionics, Aeronautical radio, Inc., Annapolis, Maryland, 1997, Technical report.

[51] AIRLINES ELECTRONIC ENGINEERING COMMITTEE. ARINC Specification 653: Avionics Application
Software Standard Interface, Aeronautical radio, Inc., Annapolis, Maryland, 1997, Technical report.

[52] C. ANDRÉ, F. MALLET, R. DE SIMONE. Modeling Time(s), in "ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS/UML’07), TN, USA", LNCS 4735, Springer, October 2007,
p. 559–573.

[53] A. BENVENISTE, P. CASPI, L. CARLONI, A. SANGIOVANNI-VINCENTELLI. Heterogeneous Reactive
Systems Modeling and Correct-by-Construction Deployment, in "Embedded Software Conference (EM-
SOFT’03)", Springer Verlag, 2003.

[54] B. BERTHOMIEU, P.-O. RIBET, F. VERNADAT. The tool TINA - construction of abstract state spaces for Petri
Nets and Time Petri Nets, in "International Journal of Production Research", vol. 42, no 14, 2004.

[55] L. BESNARD, T. GAUTIER, P. LE GUERNIC. SIGNAL V4-INRIA version: Reference Manual, 2009, http://
www.irisa.fr/espresso/Polychrony.

[56] J. BUCK, S. HA, E. A. LEE, D. G. MESSERSCHMITT. Ptolemy: A Framework for Simulating and Prototyping
Heterogenous Systems, in "Int. Journal in Computer Simulation", vol. 4, no 2, 1994, p. 155-182.

[57] J.-L. COLACO, B. PAGANO, M. POUZET. A conservative extension of synchronous data-flow with state
machines, in "In Embedded Software Conference.", ACM Press, 2005.

[58] H. GARAVEL, F. LANG, R. MATEESCU, W. SERWE. CADP 2006: A Toolbox for the construction and
Analisys of Distributed Processes, in "Proceedings of the 19th International Conference on Computer Aided
Verification, Springer LNCS", vol. 4590, 2007.

[59] T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Real-Time Applications with SIGNAL,
in "ARTIST Survey of Programming Languages", A. BURNS (editor), 2008, http://www.artist-embedded.org/
artist/ARTIST-Survey-of-Programming.html.

[60] K. L. MCMILLAN. Symbolic Model Checking: An approach to the state explosion problem, Carnegie Mellon
University, May 1992, Ph. D. Thesis.

http://openembedd.org
http://www.irisa.fr/espresso/Polychrony/update/
http://www.topcased.org
http://www-sop.inria.fr/aoste/dev/time_square/
http://www.irisa.fr/espresso/Polychrony
http://www.irisa.fr/espresso/Polychrony
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming.html
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming.html

Project-Team espresso 27

[61] OBJECT MANAGEMENT GROUP (OMG). Modeling and Analysis of Real-time and Embedded systems
(MARTE), Beta 2, June 2008, http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf.

[62] E. RUTTEN, F. MARTINEZ. Signal GTI: implementing task preemption and time intervals in the synchronous
data flow language Signal, in "Proceedings of the 7th Euromicro Workshop on Real-Time Systems, Odense,
Denmark", IEEE Publ., june 1995.

[63] J.-P. TALPIN, C. BRUNETTE, T. GAUTIER, A. GAMATIÉ. Polychronous mode automata, in "Embedded
Software Conference, ACM Press", September 2006.

[64] F. VERNADAT, C. PERCEBOIS, P. FARAIL, R. VINGERHOES, A. ROSSIGNOL, J.-P. TALPIN, D. CHEMOUIL.
The Topcased project - a toolkit in open-source for critical application and system development, in "Interna-
tional Space System Engineering Conference, Eurospace", May 2006.

http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

