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2. Overall Objectives

2.1. Overall Objectives
The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on the
design, formalization and implementation of functional programming languages, with particular emphasis on
type systems and type inference, formal verification of compilers, and interactions between programming and
program proof. The Caml language embodies many of our earlier research results. Our work spans the whole
spectrum from theoretical foundations and formal semantics to applications to real-world problems.



2 Activity Report INRIA 2009

3. Scientific Foundations

3.1. Programming languages: design, formalization, implementation
Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array accesses, etc) to the programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type checking) and run-time checks.

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers around the statically-typed functional pro-
gramming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with
full imperative features and objects for additional expressiveness, and modules and classes for compositional-
ity. The Objective Caml language and system embodies many of our earlier results in this area [41]. Through
collaborations, we also gained experience with several domain-specific languages based on a functional core,
including XML processing (XDuce, CDuce), reactive functional programming, distributed programming (Jo-
Caml), and hardware modeling (ReFLect).

3.2. Type systems
Type systems [43] are a very effective way to improve programming language reliability. By grouping the data
manipulated by the program into classes called types, and ensuring that operations are never applied to types
over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it were
a function), a tremendous number of programming errors can be detected and avoided, ranging from the trivial
(mis-spelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are also
very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.
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The enforcement of such typing restrictions is called type checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot analyze
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[39], [34], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [48], integrated in Objective Caml, extended the benefits of this approach (reusable code
with no loss of typing precision) to object-oriented programming, extensible records and extensible variants.
Another example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the
type system [44].

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
typechecker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too little annotations make type checking undecidable, possibly requiring heuristics,
which is unsatisfactory. Objective Caml requires explicit type information at data type declarations and at
component interfaces, but infers all other types.
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In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for typechecking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
designs of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts. One is a superb body of performance optimization algorithms, techniques and
methodologies that cries for application to more exotic programming languages. The other is the whole field
of static program analysis, which now serves not only to increase performance but also to increase reliability,
through automatic detection of bugs and establishment of safety properties. The work on compilation
carried out in the Gallium group focuses on two less investigated topics: compiler certification and efficient
compilation of “exotic” languages.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.
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3.3.2. Efficient compilation of high-level languages.
High-level and domain-specific programming languages raise fascinating compilation challenges: on the one
hand, compared with Fortran and C, the wider semantic gap between these languages and machine code
makes compilation more challenging; on the other hand, the stronger semantic guarantees and better controlled
execution model offered by these languages facilitate static analysis and enable very aggressive optimizations.
A paradigmatic example is the compilation of the Esterel reactive language: the very rich control structures
of Esterel can be resolved entirely at compile-time, resulting in software automata or hardware circuits of the
highest efficiency.

We have been working for many years on the efficient compilation of functional languages. The native-
code compiler of the Objective Caml system embodies our results in this area. By adapting relatively basic
compilation techniques to the specifics of functional languages, we achieved up to 10-fold performance
improvements compared with functional compilers of the 80s. We are currently considering more advanced
optimization techniques that should help bridge the last factor of 2 that separates Caml performance from that
of C and C++. We are also interested in applying our knowledge in compilation to domain-specific languages
that have high efficiency requirements, such as modeling languages used for simulations.

3.4. Interface with formal methods
Formal methods refer collectively to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other INRIA projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed
in interaction, and are interested in developing ways and means to facilitate this approach. One possibility
that we currently investigate is to extend functional programming languages such as Caml with the ability
to state logical invariants over data structures and pre- and post-conditions over functions, and interface with
automatic or interactive provers to verify that these specifications are satisfied. Another approach that we
practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly
within Coq. Finally, we also participated in the Focal project, which designed and implemented an environment
for combined programming and proving [46].

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains
4.1. High-assurance software

A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming and static type-checking contribute significantly to this goal.
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Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as Caml are eminently suitable to develop
the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes (null
references, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data structures.
Judicious uses of type abstraction and other encapsulation mechanisms also allow static type checking to
enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as Caml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [42] and enforcement of data confidentiality through type-based inference of information flows
and noninterference properties [45].

4.3. Processing of complex structured data
Like most functional languages, Caml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to de-structure data; and compile-time exhaustiveness tests. Languages such as
CDuce and OCamlDuce extend these benefits to the handling of semi-structured XML data [38]. Therefore,
Caml is an excellent match for applications involving significant amounts of symbolic processing: compilers,
program analyzers and theorem provers, but also (and less obviously) distributed collaborative applications,
advanced Web applications, financial modeling tools, etc.

4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the Caml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the Caml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language has an impact on the teaching of programming. Caml Light is one of the
programming languages selected by the French Ministry of Education for teaching Computer Science in
classes préparatoires scientifiques. Objective Caml is also widely used for teaching advanced programming
in engineering schools, colleges and universities in France, USA, and Japan.
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5. Software

5.1. Objective Caml
Participants: Xavier Leroy [correspondant], Xavier Clerc [team SED], Damien Doligez, Alain Frisch [Lex-
iFi], Jacques Garrigue [Kyoto University], Maxence Guesdon [team SED], Luc Maranget [EPI Moscova],
Michel Mauny, Nicolas Pouillard, Pierre Weis [EPI Estime].

Objective Caml is our flagship implementation of the Caml language. From a language standpoint, it extends
the core Caml language with a fully-fledged object and class layer, as well as a powerful module system, all
joined together by a sound, polymorphic type system featuring type inference. The Objective Caml system
is an industrial-strength implementation of this language, featuring a high-performance native-code compiler
for several processor architectures (IA32, AMD64, PowerPC, ARM, etc) as well as a bytecode compiler and
interactive loop for quick development and portability. The Objective Caml distribution includes a standard
library and a number of programming tools: replay debugger, lexer and parser generators, documentation
generator, compilation manager, and the Camlp4 source pre-processor.

Web site: http://caml.inria.fr/.

5.2. CompCert C
Participant: Xavier Leroy.

The CompCert C verified compiler is a compiler for a large subset of the C programming language that
generates code for the PowerPC and ARM processors. The distinguishing feature of Compcert is that it has
been formally verified using the Coq proof assistant: the generated assembly code is formally guaranteed
to behave as prescribed by the semantics of the source C code. The subset of C supported is quite large,
including all C types except long long and long double, all C operators, almost all control structures
(the only exception is unstructured switch), and the full power of functions (including function pointers and
recursive functions but not variadic functions). The generated PowerPC code runs 2–3 times faster than that
generated by GCC without optimizations, and only 7% (resp. 12%) slower than GCC at optimization level 1
(resp. 2).

Web site: http://compcert.inria.fr/.

5.3. Zenon
Participant: Damien Doligez.

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargetted to output scripts for different frameworks (for example, Isabelle).

Web site: http://focal.inria.fr/zenon/.

5.4. Menhir
Participants: François Pottier [correspondant], Yann Régis-Gianas [university Paris Diderot].

Menhir is a new LR(1) parser generator for Objective Caml. Menhir improves on its predecessor, ocamlyacc,
in many ways: more expressive language of grammars, including EBNF syntax and the ability to parameterize
a non-terminal by other symbols; support for full LR(1) parsing, not just LALR(1); ability to explain conflicts
in terms of the grammar.

http://caml.inria.fr/
http://compcert.inria.fr/
http://focal.inria.fr/zenon/
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Web site: http://gallium.inria.fr/~fpottier/menhir/.

6. New Results

6.1. Semantics and type systems for imperative programs
6.1.1. Semantic analysis of hidden state in imperative programs

Participants: François Pottier, Lars Birkedal [IT Univ. of Copenhagen], Jan Schwinghammer [Saarland
Univ.], Hongseok Yang [Queen Mary Univ. of London], Bernhard Reus [Univ. of Sussex].

In collaboration with Lars Birkedal, Jan Schwinghammer, Hongseok Yang, and Bernhard Reus, François
Pottier studied a semantic model of a separation logic equipped with higher-order frame and anti-frame rules.
The purpose of these rules is to enable local reasoning on functions and higher-order functions that maintain
and operate upon hidden state: mutable data structures that persist between function invocations and are used
only internally by the function, but not directly exposed to the caller.

The anti-frame rule was introduced by Pottier in earlier work [6]. At the time, a syntactic proof of its
soundness was only sketched. This new work uses a very different proof technique, namely the construction of
a semantic model, in order to establish the soundness of the rule. A paper describing this result was accepted
for presentation at the FoSSaCS 2010 conference [23].

6.1.2. Semantic analysis of general references
Participant: François Pottier.

The construction of a semantic model for a typed programming language implicitly contains a translation of
this language into a mathematical meta-language. In some cases, it is possible to make this translation explicit
and to view it as a type-preserving translation of the programming language into a well-defined, typed core
calculus.

Inspired by this idea, which arose from his collaborative work with Schwinghammer et al., François Pottier
developed a type-preserving translation of System F , equipped with general references, into a typed core
calculus, baptised FORK, which can be defined as an extension of System Fω with certain recursive kinds. The
translation is a type-preserving, store-passing translation. It is analogous to the classic monadic translation,
but is significantly more complex, because it deals with dynamic memory allocation and higher-order store. It
is in fact the first type-preserving store-passing translation that deals with these features. A prototype FORK
type-checker was developed and used to check the validity of the translation.

6.1.3. A type sytem for monotonicity
Participants: Alexandre Pilkiewicz, François Pottier.

Alexandre Pilkiewicz and François Pottier studied the notion of monotonicity in type systems.

Last year, Charguéraud and Pottier designed a type system, based on capabilities, allowing a powerful
management of mutable locations in imperative programs [1]. The type of such locations can be freely
modified at the cost of a fine-grained control of aliasing, thus prohibiting a function from having a private
hidden state. Then, Pottier presented a extension of this type system—the anti-frame rule—allowing hidden
state [6]. Mutable state can be seen as freely aliased at the cost of an immutable type.

This year, Alexandre Pilkiewicz and François Pottier explored a middle ground that allows to modify the type
of an aliased location, provided this is done in a monotonic way. The new value can only have a type that is
more precise that the one of the old value, so that any assumption made by other clients of the mutable location
remains correct.

http://gallium.inria.fr/~fpottier/menhir/
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To achieve this, they developed a notion of fates that can be viewed as ghost logical references whose contents
can only evolve monotonically according to a user-defined law. A fate can be associated with a run-time
variable, forcing its content to follow the same law. It is then possible to state logical properties about the
future evolutions of this run time variable through predictions over its fate. A paper describing this approach
was submitted [32].

6.2. Partial type inference with first-class polymorphism
Participants: Didier Rémy, Boris Yakobowski [University Paris 7 Diderot], Paolo Herms.

The ML language uses simple types (first-order types without quantifiers) enriched with type schemes
(simple types with outer-most universal quantifiers). This allows for simple type inference based on first-order
unification, relieving the user from the burden of writing type annotations. However, it only enables a limited
form of parametric polymorphism. In contrast, System F uses second-order types (types with inner universal
quantifiers at arbitrary depth) that are much more expressive. As a result, type inference is undecidable in
System F, which forces the user to provide all type annotations.

Didier Le Botlan and Didier Rémy have proposed a type system, called MLF, which enables type synthesis as
in ML while retaining the expressiveness of System F. Only type annotations on parameters of functions that
are used polymorphically in their body are required. All other type annotations, including all type abstractions
and type applications are inferred. Remarkably, type inference in MLF reduces to a new form of unification
that amounts to performing first-order unification in the presence of second-order types. The journal version
of this work was published this year in Information and Computation [14]. The initial MLF design was then
simplified and made more expressive by Boris Yakobowski in his Ph.D. dissertation [49], using graphs rather
than terms to represent types and also to perform type inference.

This year, Didier Rémy and Boris Yakobowski have further improved the graphical presentation of MLF by
following a more algebraic approach. This is described in two journal articles in preparation. Didier Rémy and
Boris Yakobowski also revisited the fully explicit version of ML, that can be used both to show the preservation
of types during reduction and as an internal language for MLF [33].

Paolo Herms (master’s intern from University of Pisa) and Didier Rémy proposed an extension of MLF with
higher-order types. To avoid the problem of undecidable second and higher-order unification that would appear
with implicit higher-order types, the implicit type abstraction and type application mechanism of MLF are first
combined with the original explicit type abstraction and type application mechanism of System F, and explicit
coercions between the two forms. Then, higher-order types can be added but only in the explicit forms. This
gives MLFω the power of System Fω while still retaining the possibility of leaving introduction and elimination
of polymorphism at second-order types implicit. Paolo Herms showed how to adapt graphical types to cope
with MLFω [31].

6.3. First-class module systems
Participants: Benoît Montagu, Didier Rémy.

Advanced module systems have now been in use for two decades in modern, statically typed languages.
Modules are easy to understand intuitively and also easy to use in simple cases. However, they remain
surprisingly difficult to formalize and also often become harder to use in larger, more complex but practical
examples. In fact, useful extensions such as recursive modules or mixin modules are technically challenging
and still an active topic of research.

This persisting gap between the apparent simplicity and formal complexity of modules is surprising. Benoît
Montagu and Didier Rémy have identified at least two orthogonal sources of complexity, width-wise and
depth-wise. On the one hand, the stratified presentation of modules as a small calculus of functions and records
on top of the underlying base language duplicates the base constructs and therefore complicates the language
as a whole. On the other hand, the use of paths to designate abstract types relatively to value variables, in order
to keep track of sharing, pulls the whole not-so-simple formalism of dependent types, even though only a very
limited form of dependent types is effectively used.
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Benoît Montagu and Didier Rémy’s work aims at providing a new presentation of modules that is conceptually
more economical while retaining (or increasing) the expressiveness and conciseness of the actual approaches.
This presentation relies on first-class modules to avoid duplications of constructs, a new form of open
existential types to represent type abstraction, and the theory of singleton kinds to handle type definitions
and to preserve the conciseness of writing.

Open existential types improve over existential types with a novel, open-scoped, unpacking construct that is the
essence of type abstraction in modules, and can also easily handle recursive modules. This work was presented
at the symposimum on Principles of Programming Languages (POPL 2009) that was held in Savannah, USA
in January 2009 [21].

Benoît Montagu and Didier Rémy currently focus their efforts on the study of the singleton kinds system, more
specifically on giving an alternative definition in which type equivalence would be based on βη-conversion.
This work would give a more operational presentation of the singleton kinds system and hopefully facilitate
extensions.

6.4. Formal verification of compilers
6.4.1. The Compcert verified compiler for the C language

Participants: Xavier Leroy, Sandrine Blazy [ENSIIE then U. Rennes 1].

In the context of our work on compiler verification (see section 3.3.1), since 2005 we have been developing
and formally verifying a moderately-optimizing compiler for a large subset of the C programming language,
generating assembly code for the PowerPC and ARM architectures [17]. This compiler comprises a back-end
part, translating the Cminor intermediate language to PowerPC assembly and reusable for source languages
other than C [16], and a front-end translating the Clight subset of C to Cminor [35]. The compiler is mostly
written within the specification language of the Coq proof assistant, from which Coq’s extraction facility
generates executable Caml code. The compiler comes with a 40000-line, machine-checked Coq proof of
semantic preservation establishing that the generated assembly code executes exactly as prescribed by the
semantics of the source Clight program.

This year, we improved the Compcert C compiler in several ways. First and foremost, we added support for
"goto" and labeled statements to the Clight language. While the compilation of "goto" is trivial, it was difficult
to find a suitable operational semantics for this unstructured control operation. The solution was a transition
semantics using continuations to represent the current control point within the program. The proofs of semantic
preservation from Clight to C#minor to Cminor were entirely re-done with this new, extended semantics. Other
improvements to the C compiler include:

• A new optimization pass: recognition of tail calls to functions.

• Small improvements in the speed and size of the generated code.

• Better modularization of the compiler between the architecture-independent and the architecture-
dependent parts.

• Accounting for alignment constraints in the memory model.

• Reduced compilation times and compile-time memory requirements.

Two versions of the Compcert development were publically released, integrating these improvements: version
1.4 in April and 1.5 in August.

Three journal articles on the Compcert project were published this year: a short general overview in the
Research Highlights column of Communications of the ACM [17]; a very detailed (80 pages) description of
the back-end and its proof of correctness in Journal of Automated Reasoning [16]; a description of the Clight
source language and the mechanization of its semantics, also in Journal of Automated Reasoning [13].

6.4.2. Verified translation validation
Participants: Jean-Baptiste Tristan, Silvain Rideau, Xavier Leroy.
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Verified translation validation provides an alternative to proving semantics preservation for the transformations
involved in a certified compiler. Instead of proving that a given transformation is correct, we validate it a
posteriori, i.e. we verify that the transformed program behaves like the original. The validation algorithm is
described using the Coq proof assistant and proved correct, i.e. that it only accepts transformed programs
semantically equivalent to the original. In contrast, the program transformation itself can be implemented in
any language and does not need to be proved correct.

Jean-Baptiste Tristan, under the supervision of Xavier Leroy, investigated this approach in the case of software
pipelining. Software pipelining is a very ambitious loop optimization that exploits instruction level parallelism
between consecutive iterations of a loop. This year, Jean-Baptiste Tristan succesfully designed, implemented,
and verified a validator for a software pipeliner, the key component of the software pipelining optimization.
The validator is based on symbolic evaluation, here applied for the first time to the verification of a loop
optimization. This result was accepted for publication at the forthcoming POPL 2010 symposium [25].

Jean-Baptiste Tristan completed his Ph.D. dissertation, titled Formal Verification of Translation Validators
[12] and successfully defended in November. The dissertation consolidates the results of four case studies of
verified validation applied to advanced optimizations: lazy code motion, list scheduling, trace scheduling, and
software pipelining.

Silvain Rideau, first-year student at ENS Paris supervised by Xavier Leroy, developed and proved correct
another translation validator dedicated to the register allocation and spilling/reloading phases of a compiler.
While state-of-the-art register allocation algorithms have been formally verified before in the context of the
Compcert project [16] [36], the spilling and reloading algorithm that has been verified so far is quite naive and
inappropriate for register-poor target processors such as the popular x86 architecture. Silvain Rideau designed
a translation validation algorithm, based on backward dataflow analysis, that can validate a posteriori the
results of register allocation with aggressive spilling and reloading strategies, including live range splitting,
reuse of reloaded quantities, and coalescing. He proved the soundness of this validator using the Coq proof
assistant, and validated it experimentally on a nontrivial spilling strategy involving live range splitting at
each use and definition of a spilled temporary. These results were accepted for publication at the Compiler
Construction 2010 conference [22].

6.4.3. Verified compilation of object-oriented languages
Participants: Tahina Ramananandro, Xavier Leroy.

Object layout and management, including dynamic allocation, field resolution, method dispatch and type casts,
is a critical part of the compilation and runtime systems of object-oriented languages such as Java or C++.
Formal verification of this part needs relating an abstract formalization of object operations at the level of
the source language semantics with a concrete representation of objects in the memory model provided by
the target low-level language. As this work heavily uses pointer arithmetic, the proofs must be treated with
specific methods.

This year, under Xavier Leroy’s supervision, Tahina Ramananandro tackled the issue of formally verifying
object layout and management in class-based, single-inheritance languages. This is a step towards building a
formally verified static compiler from a subset of Java bytecode to RTL (a CFG-style intermediate language
of the CompCert back-end). Then, Tahina Ramananandro has been extending this formalization to multiple
inheritance to deal with a subset of C++ as a source language.

6.5. Program specification and proof
6.5.1. Characteristic formulae for modular verification of functional programs

Participant: Arthur Charguéraud.

In previous work [37], Arthur Charguéraud has proposed a framework for modular verification of purely
functional OCaml code using the Coq proof assistant. The approach relied on a deep embedding, that is, a
description of the syntax and the semantics of a programming language in the logic of a proof assistant.
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This year, Arthur Charguéraud has introduced characteristic formulae, which are higher-order logic formulae
that can be used to reason on programs. Intuitively, characteristic formulae can be viewed as an abstract layer
built on the top of a deep embedding. By hiding all the technical details associated with deep embeddings,
characteristic formulae make program verification significantly easier.

The result of this work is a practical, sound and complete approach to the compositional verification of total
correctness properties. It applies to call-by-value, well-typed, purely functional programs, and relies on the
use of a standard higher-order logic proof assistant, namely Coq, for carrying out formal reasoning.

Characteristic formulae are described in an article submitted for publication [29]. A characteristic formulae
generator has been implemented in OCaml and used to formally prove correct implementations of advanced
purely-functional data structures such as persistent real-time queues.

6.5.2. The Zenon automatic theorem prover
Participant: Damien Doligez.

Damien Doligez continued the development of Zenon, a tableau-based prover for first-order logic with equality
and theory-specific extensions. The major extensions this year include: support for TLA+’s character strings;
support for CASE expressions; support for Hilbert’s choice operator. Zenon’s handling of equality was also
improved.

6.5.3. Tools for TLA+
Participants: Damien Doligez, Leslie Lamport [Microsoft Research], Stephan Merz [EPI Mosel], Kaustuv
Chaudhuri [Microsoft Research-INRIA Joint Centre], Simon Zambrowski [Microsoft Research-INRIA Joint
Centre].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-INRIA Joint Centre. The aim of this
team is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing the ideas in
[40], and to build tools for writing TLA+ specifications and mechanically checking the corresponding formal
proofs.

This year, the TLA+ project released the first version of the TLA+ tools: the GUI-based TLA Toolbox and
the TLA+ Proof System, and an environment for writing and checking TLA+ proofs. Kaustuv Chaudhuri,
the post-doc who developped the Proof System, left in November. He is replaced by Denis Cousineau, on a
2-year post-doc position. Dan Ricketts was hired as an engineer to continue the development of the Toolbox,
replacing Simon Zambrowski who left in October.

6.6. Meta-programming
Participants: Nicolas Pouillard, François Pottier.

In an effort to improve meta-programming support (the ability to write programs that manipulate other
programs) in programming languages, we have focused first on the issue of binders.

Programming with data structures containing binders occurs very often: from compilers and static analysis
tools to theorem provers and code generators, it is necessary to manipulate abstract syntax trees, type
expressions, logical formulae, proof terms, etc. All these data structures contain variables and binding
constructs.

At first sight, it seems very easy to represent binders in general purpose programming languages. Several
approaches are known: named variables; de-Bruijn indices; the “locally nameless” technique (a combination
of both); higher order abstract syntax; etc. However, with more experience, it appears that the obvious
representations are hard to manage, and that delicate programming errors occur often.

Our initial goal was to improve one of the known languages that provides support for binders: Pure FreshML
[5]. We obtained a clean and quite general view of data structures with binders. In this presentation, data
structures are indexed by a so-called “world”. In particular, the type for names (called atom) is also indexed.
Then, name abstraction is achieved via an existential type for the inner world and a safe way to move across
this abstraction frontier.
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We gave a presentation of this ongoing work at the Computational Applications of Nominal Sets seminar
at Cambridge University. We are currently working on finishing the last details of a very core system and
mechanically proving its soundness using the AGDA proof system. This work will soon be submitted to a
conference.

6.7. The Objective Caml system
Participants: Xavier Clerc [team SED], Damien Doligez, Alain Frisch [Lexifi], Jacques Garrigue [University
of Nagoya], Xavier Leroy, Maxence Guesdon [team SED], Luc Maranget [EPI Moscova], Michel Mauny,
Nicolas Pouillard, Pierre Weis [EPI Estime].

This year, we released version 3.11.1 of the Objective Caml system. This is a minor release that corrects about
50 problem reports. Damien Doligez acted as release manager for this version.

Three important extensions of the Caml language were designed and implemented, and will be made available
in the next major release of Objective Caml:

• Polymorphic recursion: programmers can now declare polymorphic type schemes for recursive
and mutually-recursive function definitions, enabling these definitions to reference themselves at
different types. (Jacques Garrigue.)

• First-class modules: the ability to encapsulate modules as value of the core language, manipulate
them like any other value, then extract them back to module expressions. This design extends an
earlier proposal by Claudio Russo implemented in Moscow ML [47]. (Alain Frisch.)

• A new type parameterization mechanism whereas a module-level type name, local to a core-language
expression, is mapped to a core-language type variable outside of that expression. (Alain Frisch.)

Xavier Clerc, research engineer at SED, joined the Caml development team at 40% of his time in early 2009.
He improved and updated the replay debugger, studied cross-compilation issues, restructured the Caml test
suite, and participated in bug-fixing.

Xavier Leroy and Xavier Clerc converted the Caml source repository from CVS to Subversion, making it
easier for non-INRIA developers to access the repository.

7. Contracts and Grants with Industry
7.1. The Caml Consortium

The Caml Consortium is a formal structure where industrial and academic users of Caml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 10 member companies: CEA, Citrix, Dassault Aviation, Dassault Systèmes,
LexiFi, Intel, Jane Street Capital, Microsoft, OCamlCore, and SimCorp. For a complete description of
this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the scientific committee of the
Consortium.

8. Other Grants and Activities
8.1. The CIRILL laboratory

Roberto Di Cosmo is working on the creation of the CIRILL (Centre d’Innovation et Recherche sur le Logiciel
Libre), also known as FSRII (Free Software Research and Innovation Institute), which has the ambition of
providing an attractive environment to researchers working on the new, emerging scientific issues coming
from Free Software (the work on package dependencies is an archetypical example), and to industry players
willing to collaborate with researchers on these issues. The CIRILL is supported by INRIA, and its activities
are expected to start in the first semester of 2010.

http://caml.inria.fr/consortium/
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8.2. National initiatives
The Gallium project participates in the “U3CAT” project of the Arpège programme of Agence Nationale de la
Recherche. This 3-year action (2009-2011) is coordinated by CEA LIST and focuses on program verification
tools for critical embedded C codes. Sandrine Blazy and Xavier Leroy are involved in this project on issues
related to memory models and formal semantics for the C language, at the interface between compilers and
verification tools.

The Gallium project is involved in the “CeProMi” Actions de Recherche Collaborative. This ARC
(2008–2009) is coordinated by Claude Marché at INRIA Saclay and involves François Pottier, Arthur
Charguéraud and Alexandre Pilkiewicz. It focuses on deductive verification of imperative, functional and
object-oriented programs.

Finally, Xavier Leroy participates in the “Ascert” project (2009-2011), coordinated by David Pichardie at
INRIA Rennes and funded by Fondation de Recherche pour l’Aéronautique et l’Espace. The objective of
Ascert is the formal verification of static analyzers.

8.3. Regional initiatives
We participate in two projects of the Digiteo RTRA. The first, named “Metal” (2008-2010), is coordinated by
François Pottier and involves also Nicolas Pouillard. This project focuses on formal foundations and static type
systems for meta-programming. The second, named “Hisseo” (2008-2010), is coordinated by Pascal Cuoq at
CEA LIST and involves Xavier Leroy at Gallium. It studies issues related to floating-point arithmetic in static
analyzers and verified compilers.

9. Dissemination
9.1. Interactions with the scientific community
9.1.1. Collective responsibilities within INRIA

Xavier Leroy was a member of the hiring committee for the INRIA Paris-Rocquencourt CR2 and CR1
competitions.

François Pottier is a member of INRIA’s COST (Conseil d’Orientation Scientifique et Technologique).

François Pottier is a member of the selection committee for post-doctoral grants at INRIA Paris-Rocquencourt.

François Pottier is a member of the organizing committee for Le modèle et l’algorithme, a seminar series
at INRIA Paris-Rocquencourt intended for a general scientific audience. François Pottier also organizes the
Gallium-Moscova local seminar.

Didier Rémy was a member of the hiring committee for the joint Chair position between INRIA and University
of Bordeaux.

9.1.2. Collective responsibilities outside INRIA
Sandrine Blazy was a member of the Board (conseil d’administration) of ENSIIE.

Roberto Di Cosmo acted as an expert for the selection of the Integrated Projects in Objective 1.2 of the Call 5
of the FP7 european research program.

Roberto Di Cosmo was head of graduate studies for Computer Science at University Paris Diderot.

Roberto Di Cosmo is a member of the Scientific Advisory Board and of the Board of Trustees of the IMDEA
Software research center in Madrid.

9.1.3. Editorial boards
Xavier Leroy is co-editor in chief of the Journal of Functional Programming. He is a member of the editorial
boards of the Journal of Automated Reasoning and the Journal of Formalized Reasoning.
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François Pottier is an associate editor for the ACM Transactions on Programming Languages and Systems.

Didier Rémy is a member of the editorial board of the Journal of Functional Programming.

9.1.4. Program committees and steering committees
Sandrine Blazy served on the program committee for the AFADL 2009 (Approches Formelles dans
l’Assistance au Développement de Logiciels) conference.

Damien Doligez was a member of the program comittees of the ACM 2009 workshop on ML and of the JFLA
2010 conference.

Xavier Leroy served on the program committees of the ACM International Conference on Functional
Committee (ICFP 2009), of the Theorem Proving in Higher-Order Logics (TPHOLs 2009) conference, and of
the ACM Programming Languages meet Program Verification (PLPV 2010) workshop.

François Pottier served on the program committees of the Logic in Computer Science (LICS) 2009 conference,
the Functional and Logic Programming (FLOPS) 2010 symposium, the Programming Languages and Analysis
for Security (PLAS) 2009 worksop, and the 2009 workshop on Mechanized Metatheory (WMM). He is a
member of the steering committee for the International Conference on Functional Programming (ICFP).

Didier Rémy served on the program committee of the 2010 European Symposium on Programming (ESOP).

9.1.5. Ph.D. and habilitation juries
Roberto Di Cosmo was president of the Ph.D. jury of Jean-Baptiste Tristan (University Paris Diderot,
november 2009) and a member of the Ph.D. juries of Benoît Razet (University Paris Diderot, november 2009)
and Denis Cousineau (Ecole Polytechnique, december 2009).

Xavier Leroy was external examiner (rapporteur) for the Ph.D. theses of Yannick Moy (University Paris Sud,
january 2009), Cesar Kunz (École des Mines ParisTech, february 2009), and Magnus Myreen (Cambridge
University, april 2009). He was a member of the Ph.D. juries of his students Zaynah Dargaye (University Paris
Diderot, july 2009) and Jean-Baptiste Tristan (University Paris Diderot, november 2009).

9.1.6. Learned societies
Xavier Leroy and Didier Rémy are members of IFIP Working Group 2.8 (Functional Programming).

9.2. Interactions with industry
As founder, president and now vice-president of the Free Software thematic group of the Systematic compet-
itiveness cluster (also known as GTLL), Roberto Di Cosmo played a major role in fostering the emergence
of 17 collaborative R&D projects, with a budget over 30 MEUR. These projects bring together researchers
from most of the universities and research centers in the Paris area, and industries ranging from SMEs to large
corporations. See http://www.gt-logiciel-libre.org/projets/ for more informations on the ongoing projects.

9.3. Teaching
9.3.1. Supervision of Ph.D. and internships

Sandrine Blazy supervises Benoît Robillard’s Ph.D. in cooperation with Eric Soutif (CNAM) and William
Bartlett’s Ph.D. in cooperation with Loïc Correnson (CEA).

Roberto Di Cosmo supervises the Ph.D. of Jaap Boender at University Paris Diderot.

Xavier Leroy was Ph.D. advisor for Zaynah Dargaye and Jean-Baptiste Tristan, who both defended this year.
Xavier Leroy currently supervises Tahina Ramananandro’s Ph.D. He also supervised the 2-month summer
internship of Silvain Rideau (first-year student at ENS Paris).

François Pottier is Ph.D. advisor for Arthur Charguéraud (since 2007), Alexandre Pilkiewicz (since 2008), and
Nicolas Pouillard (since 2008).

http://www.gt-logiciel-libre.org/projets/
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Didier Rémy is Ph.D. advisor for Benoît Montagu (since 2007). He supervised Paolo Herms master’s
internship (from University of Pisa) between april and july.

9.3.2. Graduate courses
The Gallium project-team is involved in the Master Parisien de Recherche en Informatique (MPRI), a research-
oriented graduate curriculum co-organized by University Paris Diderot, École Normale Supérieure Paris, École
Normale Supérieure de Cachan, and École Polytechnique.

Xavier Leroy participates in the organization of the MPRI, as INRIA representative on its board of directors
and as a member of the commission des études.

François Pottier, Didier Rémy and Giuseppe Castagna (PPS) taught a 24-hour lecture on functional program-
ming languages and type systems at the MPRI.

Roberto Di Cosmo gave a 12-hour lecture on Linear Logic at the MPRI (september-october 2009).

Sandrine Blazy taught a 22-hour lecture on abstract interpretation at the MOPS master curriculum of university
of Évry.

Xavier Leroy taught a 4-hour course on mechanized semantics with applications to program proof and
compiler verification at the Marktoberdorf summer school 2009, attended by about 80 Ph.D. students.

9.3.3. Undergraduate courses
François Pottier is a part-time assistant professor (professeur chargé de cours) at École Polytechnique.

Until september 2009, Zaynah Dargaye was an instructor (ATER) at ENSIIE in Évry.

Alexandre Pilkiewicz was teaching assistant at University Paris Diderot for the courses “Concepts Informa-
tiques” and “Internet et outils”.

Tahina Ramananandro was teaching assistant at University Paris Diderot for the courses “Datatypes and ob-
jects in Java” (first-year undergraduate students, 52 hours, february–june) and “Object-oriented programming
with Java” (third-year undergraduate students, 26 hours, september–december).

9.4. Participation in conferences and seminars
9.4.1. Participation in international conferences

POPL: Principles of Programming Languages (Savannah, USA, january).
Benoît Montagu presented [21]. Xavier Leroy participated in a panel discussion on future trends in
programming language research. Damien Doligez, Didier Rémy and Jean-Baptiste Tristan attended.

PLDI: Programming Languages Design and Implementation (Dublin, Ireland, june)
Jean-Baptiste Tristan presented [24]. Sandrine Blazy and Xavier Leroy attended.

LCTES: Languages, Compilers, and Tools for Embedded Systems (Dublin, Ireland, june)
Sandrine Blazy attended.

IFIP working group 2.8 “Functional programming” (Frauenchiemsee, Germany, june).
Xavier Leroy gave a talk on dependently-typed programming. Didier Rémy gave a talk on xMLF
[33].

ICFP: International Conference on Functional Programming (Edimburgh, Great Britain, september).
Xavier Leroy and Didier Rémy attended.

MLW: ACM workshop on ML and its applications (Edimburgh, Great Britain, september).
Didier Rémy participated in a panel discussion on the future of ML. Xavier Leroy attended.

9.4.2. Participation in national conferences

http://mpri.master.univ-paris7.fr/
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AFADL: Approches Formelles dans l’Assistance au Développement de Logiciels (Toulouse, France, jan-
uary)
Sandrine Blazy attended.

Plenary meeting of the GDR “Génie de la Programmation et du Logiciel” (Toulouse, France, january)
Xavier Leroy presented an invited talk on compiler verification. Sandrine Blazy attended.

JFLA: Journées Francophones des Langages Applicatifs (Saint-Quentin sur Isère, France, February).
Damien Doligez and Nicolas Pouillard attended.

OCaml users’s meeting (Grenoble, France, february)
Xavier Leroy gave the opening talk. Xavier Clerc, Damien Doligez and Nicolas Pouillard attended.

Working group “Langages, types et preuves” of the GDR GPL (Créteil, France, october)
Benoît Montagu gave a presentation on first-class modules. François Pottier gave a presentation on
System Fω with recursive kinds. Didier Rémy attended.

Open World Forum (Paris, France, october)
Roberto Di Cosmo gave a talk on the Mancoosi project.

FOSSA: Free Open Source Software Academia Conference (Grenoble, France, november)
Roberto Di Cosmo gave a talk on “Mancoosi: helping communities build better packages”.

9.4.3. Invitations and participation in seminars
Sandrine Blazy gave a talk about the CompCert memory model at the LIFO seminar (Orléans, january), a talk
about the Clight formal semantics at the 68NQRT seminar (Rennes, march) and a talk about formal verification
of register allocation at the LABRI seminar (Bordeaux, march).

Sandrine Blazy was invited to present the results of the CompCert project to the Comité scientifique sectoriel
STIC of ANR (Paris, may).

Xavier Leroy was invited to speak at the Morgenstern colloquium of INRIA Sophia-Antipolis (october 2009).

Nicolas Pouillard gave a presentation at the Computational Applications of Nominal Sets seminar, Cambridge
University.

9.4.4. Participation in summer schools
Tahina Ramananandro participated in the École des Jeunes Chercheurs en Programmation (EJCP) summer
school (Dinard and Rennes, France, june 2009).

9.5. Other dissemination activities
Roberto Di Cosmo and Alexandre Pilkiewicz participated in the Fête de la science in november 2009. Roberto
Di Cosmo gave a tutorial titled “the complexity of free software”. Alexandre Pilkiewicz participated in an
introduction to programming for the 6 to 20 age group.

Arthur Charguéraud is co-trainer of the French team for the International Olympiads in Informatics (IOI). He
participates in the France-IOI association, which aims at promoting programming and algorithmics among
high-school students.
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