
c t i v i t y

te p o r

2009

Theme : Distributed Systems and Services

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team indes

Informatique Diffuse et Sécurisée

Sophia Antipolis - Méditerranée

http://www.inria.fr
http://www.inria.fr/recherche/equipes/indes.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Parallelism, concurrency, and distribution 2
3.2. Web and functional programming 2
3.3. Security of diffuse programs 2

4. Application Domains .2
4.1. Web programming 2
4.2. Multimedia 3
4.3. House Automation 3

5. Software . 3
5.1. Introduction 3
5.2. Functional programming 3

5.2.1. The Bigloo compiler 4
5.2.2. The FunLoft language 4
5.2.3. ULM 4

5.3. Web programming 4
5.3.1. The HOP web programming environment 4
5.3.2. Scheme2JS 5

5.4. Old software 5
6. New Results . 5

6.1. Security 5
6.1.1. Secure information flow in ULM 5
6.1.2. A Security-Preserving Compiler for Distributed Programs 6
6.1.3. Proof Carrying Code 6
6.1.4. Secure session calculi 6

6.2. Models and semantics 6
6.2.1. Semantics of concurrent programming 7
6.2.2. A multi-tier semantics for Hop 7

6.3. Functional and concurrent programming 8
6.3.1. Bigloo 8
6.3.2. FunLoft 9

6.4. Web programming 9
6.4.1. Hop 9
6.4.2. Scm2Js 10
6.4.3. Ordered networks 10

7. Contracts and Grants with Industry . 12
7.1.1. CRE France-Télécom R-D 12
7.1.2. DGE SmartImmo 12

8. Other Grants and Activities . 12
8.1.1. STIC-AmSud FMCRYPTO 12
8.1.2. COLOR project MATYSS 12
8.1.3. ANR SETIN ParSec 12
8.1.4. ANR DEFIS ParTout 12
8.1.5. ANR DEFIS PWD 13

9. Dissemination . 13
9.1. Seminars and conferences 13
9.2. Animation 14
9.3. Teaching 14

2 Activity Report INRIA 2009

10. Bibliography .14

1. Team
Research Scientist

Gérard Berry [Research Director, Inria, HdR]
Gérard Boudol [Research Director, Inria, HdR]
Frédéric Boussinot [Research Director, CMA, HdR]
Ilaria Castellani [Research Scientist, Inria]
Tamara Rezk [Research Scientist, Inria]
Bernard Serpette [Research Scientist, Inria]
Manuel Serrano [Team Leader, Research Director, Inria, HdR]

Faculty Member
Christian Queinnec [Professor, University Pierre et Marie Curie - Paris 6, HdR]

Technical Staff
Marcos Dione [Inria, from October 1]
Florian Loitsch [MENRT, from March 13, till December 31]
Cyprien Nicolas [Inria, from March 1]

PhD Student
Florian Loitsch [MENRT, till March 13]
Zhengqin Luo [MENRT]
Gustavo Petri [IP Mobius]

Administrative Assistant
Anais Cassino [Inria]

2. Overall Objectives

2.1. Overall Objectives
The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are the new
applications emerging from the convergence of broad network accessibility, rich personal digital environment,
and vast sources of information. Strong security guarantees are required for these applications, which
intrinsically rely on sharing private information over networks of mutually distrustful nodes connected by
unreliable media.
Diffuse computing requires an original combination of nearly all previous computing paradigms, ranging from
classical sequential computing to parallel and concurrent computing in both their synchronous / reactive and
asynchronous variants. It also benefits from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.
The Indes team contributes to the whole chain of research on models and languages for diffuse computing,
going from the study of foundational models and formal semantics to the design and implementation of
new languages to be put to work on concrete applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation of high-level programs. The research are
partly inspired by and built around Hop, the web programming model recently proposed by the former Mimosa
team, which takes the web as its execution platform and targets interactive and multimedia applications.

2 Activity Report INRIA 2009

3. Scientific Foundations

3.1. Parallelism, concurrency, and distribution
Concurrency magagement is at the heart of diffuse programming. Since the execution platforms are highly
heterogeneous, many different concurrency principles and models may be at stake. Asynchronous concurrency
is the basis of shared-memory process handling within multiprocessor or multicore computers, of direct or fifo-
based message passing in distributed networks, and of fifo- or interrupt-based event handling in web-based
human-machine interaction or sensor handling. Synchronous or quasi-synchronous concurrency is the basis of
signal processing, of real-time control, and of safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles within HOP or other diffuse programming
languages will require better understanding of the underlying concurrency models and of the way they can
nicely cooperate, a currently ill-resolved problem.

3.2. Web and functional programming
We are studying new paradigms for programming Web applications that rely on multi-tier functional program-
ming [4]. This research has been initiated in the MIMOSA team, the predecessor of the INDES team, where
we have created the new Web programming environment named HOP. It relies on a single formalism for
programming the server-side and the client-side of the applications as well as for configuring the execution
engine.
HOP is a functional language based on the SCHEME programming language. That is, it is a strict functional
language, fully polymorphic, supporting side effects, and dynamically type-checked. HOP is implemented has
an extension of the BIGLOO compiler that we develop [5]. In the past, we have extensively studied static
analyses (type systems and inference, abstract interpretations, as well as classical compiler optimizations) to
improve the efficiency of compilation in both space and time.

3.3. Security of diffuse programs
The main goal of our security research is to provide scalable and rigorous language-based techniques that can
be integrated into multi-tier compilers to enforce security of diffuse programs. Research on language-based
security has been carried on before in both the MIMOSA [2] and EVEREST [1] teams). In particular previous
research has focused on controlling information flow to ensure confidentiality.
Typical language-based solutions to these problems are founded on static analysis, logics, provable cryptog-
raphy, and compilers that generate correct code by construction [3]. Relying on the multi-tier programming
language HOP that tames the complexity of writing and analysing secure diffuse applications, we are studying
language-based solutions to prominent web security problems such as code injection and cross-site scripting,
to name a few.

4. Application Domains

4.1. Web programming
Along with games, multimedia applications, electronic commerce, and email, the web has popularized
computers in everybody’s life. The revolution is engaged and we may be at the dawn of a new era of computing
where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and
open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it
is likely than most of the computer programs we will write in the future, for professional purposes as well as
for our own needs, will extensively rely on the web.

Team indes 3

In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed.
Implementing an application with a web interface makes it instantly open to the world and accessible from
much more than one computer. The web also partially solves the problem of platform compatibility because
it physically separates the rendering engine from the computation engine. Therefore, the client does not have
to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable.
While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking
backward compatibility, modern web browsers that render on the edge web pages are still able to correctly
display the web pages of the early 1990’s.
For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting
and interaction based on HTML forms. However, we think that it still lacks programming abstractions that
minimize the overwhelming amount of technologies that need to be mastered when web programming is
involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia
Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in
industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile
phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are
also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or
the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with
mostly isolated devices.
The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are
Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to
access the various multimedia resources available all over the Internet via their web browser. The convergence
between our new electronic environment and the multimedia facilities offered by the web will allow engineers
to create new applications. However, since these applications are complex to implement this will not happen
until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and
libraries that address this problem.

4.3. House Automation
The web is the de facto standard of communication for heterogeneous devices. The number of devices able to
access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it
could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing
applications relying on the "ambient" computing facilities. However, since current programming languages do
not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions.
Programming ambient computing via the web is still to be explored. The tools developed in the Indes team
allow us to build prototypes of a web-based home automation platform. For instance, we experiment with
controlling heaters, air-conditioners, and electronic shutters with our mobile phones using web GUIs.

5. Software

5.1. Introduction
Most INDES software packages, even the older stable ones that are not described in the following sections are
freely available on the Web. In particular, some are available directly from the INRIA Web site:
http://www.inria.fr/valorisation/logiciels/langages.fr.html
Most other software packages can be downloaded from the INDES Web site:
http://www-sop.inria.fr/teams/indes

5.2. Functional programming
Participants: Frédéric Boussinot, Florian Loitsch, Zhengqin Luo, Bernard Serpette, Manuel Serrano.

http://www.inria.fr/valorisation/logiciels/langages.fr.html
http://www-sop.inria.fr/teams/indes

4 Activity Report INRIA 2009

5.2.1. The Bigloo compiler
The programming environment for the Bigloo compiler [5] is available on the INRIA Web site at the following
URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo. The distribution contains an optimizing compiler that
delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler, and various
Bigloo development tools. The distribution also contains several user libraries that enable the implementation
of realistic applications.
BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting it to Microsoft Windows
is pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

5.2.2. The FunLoft language
FunLoft (described in http://www-sop.inria.fr/indes/rp/FunLoft/) is a new programming language in which the
focus is put on safety and multicore.
FunLoft is built on the model of FairThreads which makes concurrent programming simpler than usual
preemptive-based techniques by providing a framework with a clear and sound semantics. FunLoft is designed
with the following objectives:

• provide a safe language, in which, for example, data-races are impossible.

• control the use of resources (CPU and memory), for example, memory leaks cannot occur in FunLoft
programs, which always react in finite time.

• have an efficient implementation which can deal with large numbers of concurrent components.

• benefit from the real parallelism offered by multicore machines.

A first experimental version of the compiler is available on the Reactive Programming site http://www-
sop.inria.fr/indes/rp/). Several benchmarks are given, including cellular automata and simulation of colliding
particles.

5.2.3. ULM
ULM (Un langage pour la mobilité) is a language for mobility that was developed in the MIMOSA team.
The ULM Scheme implementation is an embedding of the ULM primitives in the Scheme language. The
bytecode compiler is available on PCs only but there are two ULM Virtual Machines: one for PCs and one
for embedded devices supporting Java 2 Mobile Edition (J2ME) such as most mobile phones. The current
version has preliminary support for a mixin object model, mobility over TCP/IP or Bluetooth Serial Line,
reactive event loops, and native procedure calls with virtual machine reentry. The current version is available
at http://www-sop.inria.fr/teams/mimosa/Stephane.Epardaud/ulm.

5.3. Web programming
Participants: Florian Loitsch, Manuel Serrano.

5.3.1. The HOP web programming environment
HOP is a new higher-order language designed for programming interactive web applications such as web
agendas, web galleries, music players, etc. It exposes a programming model based on two computation levels.
The first one is in charge of executing the logic of an application while the second one is in charge of executing
the graphical user interface. HOP separates the logic and the graphical user interface but it packages them
together and it supports strong collaboration between the two engines. The two execution flows communicate
through function calls and event loops. Both ends can initiate communications.
The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. The broker embeds a HOP interpreter for executing server-side code and a HOP
client-side compiler for generating the code that will get executed by the client.

http://www-sop.inria.fr/teams/indes/fp/Bigloo
http://www-sop.inria.fr/indes/rp/FunLoft/
http://www-sop.inria.fr/indes/rp/
http://www-sop.inria.fr/indes/rp/
http://www-sop.inria.fr/teams/mimosa/Stephane.Epardaud/ulm

Team indes 5

An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS streams, or
managing blogs.
HOP has won the software open source contest organized by the ACM Multimedia Conference 2007 (http://
mmc36.informatik.uni-augsburg.de/acmmm2007/). It is released under the GPL license. It is available at http://
hop.inria.fr.

5.3.2. Scheme2JS
Scm2JS is a Scheme to JavaScript compiler distributed under the GPL license. Even though much effort has
been spent on being as close as possible to R5RS, we concentrated mainly on efficiency and interoperability.
Usually Scm2JS produces JavaScript code that is comparable (in speed) to hand-written code. In order to
achieve this performance, Scm2JS is not completely R5RS compliant. In particular it lacks exact numbers.
Interoperability with existing JavaScript code is ensured by a JavaScript-like dot-notation to access JavaScript
objects and by a flexible symbol-resolution implementation.
Scm2JS is used on a daily basis within HOP, where it generates the code which is sent to the clients (web-
browsers).
Scm2JS can be found

5.4. Old software
5.4.1. Skribe

SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of the SCHEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document with SKRIBE is as simple as with
HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratio markup/text is smaller than with the other markup systems we
have tested.
Executing a SKRIBE program with a SKRIBE evaluator produces a target document. It can be HTML files
for Web browsers, a LaTeX file for high-quality printed documents, or a set of info pages for on-line
documentation.

6. New Results

6.1. Security
Participants: Gérard Boudol, Ilaria Castellani, Zhengqin Luo, Tamara Rezk.

6.1.1. Secure information flow in ULM
We have pursued and extended our study of secure information flow as a safety property (paper by Boudol
at FAST’08). We have applied this approach [20] to a significative fragment of the ULM language, namely
the functional, imperative and concurrent fragment. This language follows the reactive style developed by
Boussinot, where cooperative threads communicate and synchronize by means of broadcast events. Since
these events determine for a part the flow of control of an ULM program, they convey some knowledge of the
security level the program has at the point where events are emitted or received. Then this knowledge has to
be controlled in order to ensure that the flow of information along the execution of a program is secure. This
is done by means of a run-time monitoring mechanism. Moreover, a static analysis (type and effect system) of
programs is designed, and proved to guarantee that the monitoring always succeeds. In other words, typable
programs are secure, in the sense that their monitored execution does not encounter any security violation. The
monitoring mechanism has been implemented, and some experimentations with scenarios provided by France
Télécom R&D are planned.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://hop.inria.fr
http://hop.inria.fr

6 Activity Report INRIA 2009

6.1.2. A Security-Preserving Compiler for Distributed Programs
In language-based security, confidentiality and integrity policies conveniently specify the permitted flows of
information between different parts of a program with diverse levels of trust. These policies enable a simple
treatment of security, and they can often be verified by typing. However, their enforcement in concrete systems
involves delicate compilation issues.
We consider cryptographic enforcement mechanisms for distributed programs with untrusted components. In
source programs, security depends on an abstract information-flow policy for accessing the shared memory. In
their implementations, shared memory is unprotected and security depends instead on encryption and signing.
In [3] we develop a cryptographic type system for a target probabilistic language. Our typing rules enforce the
correct usage of cryptographic primitives against active adversaries; from an information-flow viewpoint, they
capture controlled forms of robust declassification and endorsement.
In [13], we develop a uniform language-based model of security, ranging from computational non-interference
for probabilistic programs down to standard cryptographic hypotheses. The theory has been implemented in a
prototype called “CFlow”. It has been coded in F#. The code is under the terms of the CeCILL-B license.

6.1.3. Proof Carrying Code
Proof Carrying Code provides trust in mobile code by requiring certificates that ensure the code adherence
to specific conditions. The prominent approach to generate certificates for compiled code is Certifying
Compilation, that automatically generates certificates for simple safety properties.
In [10] we propose a security certifying compilation for multithreaded programs with secure information flow.
In [8] we present Certificate Translation, a novel extension for standard compilers that automatically trans-
forms formal proofs for more expressive and complex properties of the source program to certificates for the
compiled code. We outline the principles of certificate translation, instantiated for a non optimizing compiler
and for standard compiler optimizations in the context of an intermediate RTL Language.

6.1.4. Secure session calculi
This work has been mainly carried out within the MATYSS project, whose goal was to study type systems
for safe and secure sessions. A session is an abstraction for various forms of “structured communication”
which may occur in a parallel and distributed computing environment. Examples of sessions are a client-
service negotiation, a financial transaction, or a multiparty interaction among different services within a web
application. Language-based support for sessions has now become the subject of active research. Primitives for
enabling programmers to code sessions in a flexible way, as well as type systems (session types) ensuring the
compliance of programs to session specifications, have been studied for various calculi and languages in the
last decade. The key properties ensured by session types are communication safety, namely the consistency
of the communication patterns exhibited by the various partners (implying the absence of communication
errors at run time), and progress, assuring the absence of deadlock. On the other hand, security properties
such as confidentiality have so far received little attention within the session type community. In collaboration
with our MATYSS partners in Torino, we have addressed the question of incorporating access control and
secure information flow requirements within session types, in the setting of a name-passing calculus akin to
the π-calculus, with asynchronous communication and multiparty sessions.
In [19] we consider a calculus of multiparty sessions with delegation, enriched with security levels for both
participants and data. A suitable type system ensures access control, namely that each participant can only
receive data of security levels less than or equal to its own security level. For instance, in a well-typed session
involving a Customer, a Seller and a Bank, the secret credit card number of the Customer is communicated
to the Bank, but not to the Seller. This is obtained also by making delegation explicit in the typing of the
delegated session channel. Moreover, the type system prevents undue flows of information via the selection
and branching constructs of the language. This work reveals an interesting interplay between the constraints
used in security types and those used in session types to ensure properties like communication safety and
progress.

6.2. Models and semantics
Participants: Gérard Berry, Gérard Boudol, Gustavo Petri, Christian Queinnec, Manuel Serrano.

Team indes 7

6.2.1. Semantics of concurrent programming
We are investigating the theory of multithreading. Multithreading is a form of concurrent programming
where sequential programs (threads) run in parallel and communicate via a shared mutable store. Parallel
execution is usually ruled according to some scheduling policy (in our work we consider preemptive, non-
deterministic scheduling, that is the standard interleaving model), and controlled, from the threads, by means of
synchronization constructs, like acquiring and releasing locks. It is well-known that this model is not correctly
implemented in optimized execution platforms introducing some further parallelism in the computation, for
instance in the accesses to the shared memory, like in weak memory models. Our work of last year on the
write- buffering memory model has been published this year, see [12]. We have extended our approach to
capture more relaxed memory models and, more generally, relaxed execution models where pieces of code
can be executed in advance (or in parallel with the rest of the program), like with the write-buffers memory
model where the updates to the memory are issued, and placed in buffers, while pursuing with the rest of
the program. Such optimization mechanisms are known as speculative computation. We have proposed a
formalization of a fully general notion of speculative computation, including branch prediction and value
prediction. This is done in [17] for an expressive language (CoreML, or CoreScheme, that is the functional
and imperative fragment of these languages, enriched with concurrent programming constructs) by means of
Berry and Lévy’s equivalence by permutation of computations. We have to define in particular a notion of
valid speculation, since some speculative computation may be exploring the wrong branch in a conditional
branching sub-program, the condition of which is not yet determined. We have shown that, for programs
enjoying the property that their speculative execution does not create data-races (hence in particular for
sequential programs), the speculative semantics correctly implements the standard interleaving semantics. We
also propose in [18] a source programming language where a distinction is explicitly made between shared and
private variables, and where we introduce a synchronization construct for temporarily having exclusive access
to a shared variable. We show that, guided by a type and effect system guaranteeing that a private variable is
indeed not shared, we can translate the (typable) programs of this language into programs that are correctly
executed in the speculative semantics.
Regarding the latter core language for multithreaded programming, we have investigated another problem,
namely the one of deadlocks. It is well-known that synchronization is needed to ensure exclusive access
to shared data (like in updating a bank account, for instance), but that synchronization usually introduces
deadlocks, a configuration where some threads cannot make any progress, being circularly blocked in waiting
for a resource held by another thread. This is a kind of error that must be dealt with, and there are three
techniques to do so: deadlock prevention (usually by means of static analysis or verification), deadlock
detection and recovery (by means of a monitoring mechanism involving roll-back), and deadlock avoidance.
Surprisingly enough, the last technique has not been explored at the programming language level. In [11], we
design, for a language similar to the one of [18], a type and effect system where the locks that are anticipated to
be acquired are recorded in the effect of a program. Then, guided by this analysis, we design a semantics where
a lock is acquired only if no other lock that could be acquired in the future, that is, a lock in the effect of the
program, is already held by another thread. We show that this provides, for typable programs, a deadlock-free
semantics.

6.2.2. A multi-tier semantics for Hop
HOP is a multi-tier programming language where a single program specifies servers and clients behaviors
altogether. Hop adheres to the standard web programming style where servers elaborate HTML pages
containing JavaScript code. This JavaScript code responds locally to user’s interactions but also (following the
so-called Ajax style) requests services from remote servers. These services bring back new HTML fragments
containing additional JavaScript code replacing or modifying the state of the client.
We have proposed a continuation-based denotational semantics for a sequential subset of Hop. Though
restricted to a single server and a single client, this semantics takes into account the nature of the web where
the server elaborates some JavaScript code to be run in the client’s browser. This new client-code dynamically
requests services from the server which, again, elaborates new JavaScript code to be run in the client’s browser.

8 Activity Report INRIA 2009

This semantics details the programming model advocated by Hop and provides a sound basis for future studies
such as web continuations and concurrency. The semantics has been presented at the event dedicated to Mitch
Wand that took place in Boston in August.

6.3. Functional and concurrent programming
Participants: Frédéric Boussinot, Ilaria Castellani, Florian Loitsch, Cyprien Nicolas, Manuel Serrano.

6.3.1. Bigloo
Software distribution: The new Bigloo branch 3.2 has been released this year. This branch has introduced
the following novelties:
Bigloo packaging: In order to spread Bigloo and Hop more easily, we are currently working on building
the packages for several Linux distributions. We have thus accommodated the Bigloo install process to these
distributions. So far, Bigloo is now compatible with the demanding Debian distribution model.
New FairThread support: The previous releases of the Bigloo compiler, prior to 3.2c, come with two multi-
threading APIs, named pthread and fthread. The former is an implementation of the Posix’s threading library,
based on the primitives provided by the LibC, or constructed over Java or the .NET thread system, the latter
relies on the same base, but offered cooperative scheduling of threads. The developer had the choice to use
one of these APIs to write multi-threaded programs in Bigloo.
In the new Bigloo version the developers may use both APIs at the same time, which means that they are able
to embed one fthread scheduler into a pthread. We also wanted to rewrite the fthread API in Scheme only, and
make calls to the pthread API to manage fthread life cycle and scheduling (which means locks in practice).
These changes have been included in release 3.2c, where fthreads are now thread-safe with pthreads.
A new fast multi-threaded DNS support: The traditional BSD implementation of sockets uses function that
are not thread-safe (gethostbyname, gethostbyaddr, ...). Hence, the only way to use these functions in a
multi-threaded context is to protect each call with mutexes. Unfortunately, this is intrinsically inefficient. If
at some point of the execution a DNS is answering to one host, all the other running threads that are also
needing information from the DNS will get blocked too. In the context of HOP this may reduce dramatically
the overall performance of the whole server. To get rid of this problem, we have implemented a new cache
DNS for BIGLOO. It is thread-safe and uses no lock. It is based on the POSIX-1 functions getaddrinfo. This
new implementation has significantly increased the performance of the HOP web server.
Cryptography: We have implemented a cryptography library for BIGLOO. This library supports most of the
common cryptographic primitives. Among the public-key cryptography systems it includes RSA, DSA, and
ElGamal. It furthermore features the following block-ciphers: AES, CAST128, DES, and IDEA.
Floating-point: We have developed a fast binary-to-decimal floating-point conversion. It is up to 5 times
faster than previously existing techniques. We have explored different use-cases and implemented different
variants. The fastest and simplest solution produces decimal representations that might be unnecessarily long.
Evolutions trim the output to produce shorter outputs. The algorithm can furthermore be adapted to produce
the shortest possible output, but in this case it will reject a small percentage (about 0.6%) of all possible IEEE
754 floating-point numbers.

Team indes 9

6.3.2. FunLoft
This year, the effort has been concentrated on developing several aspects of FunLoft, according to the
objectives of the PARTOUT project.

Efficient Programming. The implementation in the FunLoft compiler of the garbage collection RGC
(for reactive garbage collector) has been completed. RGC is adapted to the synchronous/reactive
framework and is partially based on a reference counting approach. RGC is tested on a list
of benchmarks, including a graphical simulation of colliding particles, using multicore. RGC is
presently only described in an internal report.

Distributed Programming. Primitives for distributed programming have been introduced in FunLoft,
and tested on a little "ping-pong" demo. This work is currently under development. We use HOP as
a "proxy" for distribution and, in the course of the project PARTOUT, we plan to propose HOP as a
general interface for SugarCubes and ReactiveML.

Safe Programming. FunLoft proposes ways of programming without data-races which preserve the
natural atomicity of user programs within a multicore framework. Basically, FunLoft states a
memory separation property which is statically checked. A paper considering a kernel in which
the soundness of the approach could be formally proved is under work.

Dynamic Aspects. A small language to program reactive scripts has been designed and a first experimen-
tal version of it has been implemented in FunLoft. The scripts actually do not define new functions
for data manipulations, but rather just describe some kind of "orchestration" of calls of already exist-
ing functions. The production of SugarCubes code is also planned. A paper is in the course of being
written on that matter.

6.4. Web programming
Participants: Marcos Dione, Florian Loitsch, Zhengqin Luo, Cyprien Nicolas, Tamara Rezk, Bernard Ser-
pette, Manuel Serrano.

6.4.1. Hop
Software distribution: Two new major branches have been released this year: HOP 1.10.x and 1.11.x. Branch
1.10.x has carried new APIs and new features. HOP 1.11.x has focused on the implementation. In particular it
has deployed a new version of the client-side compiler.
Multimedia Applications: We have completed HopAudio, the ubiquitous home media center started in 2008
and presented at the conference MMCN’09 [14]. Taking advantage of the ubiquity of the Web, this application
implements features that other programs used for playing music rarely propose. HopAudio can use many
sources of music and radios and it can control several output speakers. All the electronic devices that can run
a HOP broker (i.e., a dedicated Web server) can be used to serve musical content. All the devices that can run
a stock web browser can be used to control the music being played back. HopAudio can be considered as a
realistic prototype. It is operational and used on a daily basis although some implementation details must still
be polished and some minor features must still be added.
Fast server events: server events, or server push is a central element of reactive Web applications. They enable
servers to notify clients when some informations need to be updated. Server events simplify the programming
of applications and they avoid inefficient client pulls that clutter network traffic. Unfortunately, HTTP is not
well suited for server events. According to HTTP, only clients may initiate communications and the protocol
is stateless. As a consequence, it is difficult to implement server push efficiently. HOP now contains three
different implementations that are chosen dynamically according to the characteristics of the client the program
executes on.

10 Activity Report INRIA 2009

• if the client supports multipart XMLHttpRequest then when the program is installed on the client, a
background request is spawned. This opens a tunnel (i.e., a socket) between the client and the server
that lets the latter send data piece by piece. More precisely, each time the server needs to send a
signal to a client, it uses that tunnel and sends a new information. This implementation is efficient
because it uses only one communication channel and because the browser natively implements the
wake up of the client. Unfortunately, it is not very portable.

• If the client supports Flash, then a new socket is opened when the program is installed on the client.
This socket is used by the server to push data to the client. This method is reasonably efficient
but creating the socket is slow and complex because it requires JavaScript and ActionScript to
communicate and synchronize. Obviously, it also requires the browser to support Flash, which is
a severe portability issue.

• If none of the previous techniques can be deployed, then HOP falls back to a generic method which
consists in creating a background request per signal. The client spawns a request. When the server
sends a signal, it writes the date on the connection created for the request and closes the request.
Upon reception, the client parses the data received and spawns a new request. This method is slow
because it keeps opening sockets, and unreliable because there is a time lag in which the client and
the server are disconnected. However, it is portable because it is supported by all browsers.

Hop, a Fast Server for the Diffuse Web: Diffuse Web applications have similarities with Web 2.0 applica-
tions: first, they rely on fast bi-directional interactions between servers and clients, and second, they make
extensive use of non-cachable dynamic contents. On the other hand, diffuse applications have also an impor-
tant difference with respect to traditional Web applications: they generally do not need to deal with a huge
number of simultaneous users. That is, diffuse Web applications are built on top of standard technologies but
they use them differently. Therefore they demand different optimizations and tunings.
The HOP software development kit contains two compilers, one interpreter, and a bootstrapped Web server.
That is, the HOP Web server is implemented in HOP. We have implemented a new strategy that allows HOP
to dramatically outperform the popular mainstream Web servers for delivering dynamic contents. Contrary to
most servers, HOP delivers static and dynamic contents at a comparable pace. This has been described in an
invited paper presented at the COORDINATION’09 conference [9]
HSS css compiler: HSS is a compiler for CSS. It can be either used as a stand-alone HSS-to-CSS compiler in
the goal of enriching CSS with user defined variables, functions, and element types. It can also be used with
the Hop web development kit in which case, working hand in hand with the Hop programming language, it can
be used to implement skinning or theming of web applications. HSS has been described in a paper currently
submitted [22].

6.4.2. Scm2Js
We have continued the development of SCM2JS, our Scheme to JavaScript compiler. In particular we improved
the code generation. A pretty-printing pass produces clean code, or, alternatively, obfuscated short code. We
furthermore worked on error handling. Compared to previous versions, error messages contain much more
useful information that helps developers debug their program. In a similar vein we have introduced runtime-
checks (activated by the -g flag).

6.4.3. Ordered networks
A network is a graph of nodes where edges represent physical or logical connections. The main role of the
network is to dispatch messages between nodes, a mechanism known as the routing process. To locate the
destination of a message, each node has its own identifiers, e.g. IP addresses are the identifiers for the Internet.
In logical networks, nodes also manage a set of identifiers. Thus, such a network does not resolve only queries
like send a message to the node whose identifier is id, but also more general queries like send a message to the
node who manages the identifier (or key) id. In the networks we have studied, we force, by construction, the
uniqueness of identifiers: an identifier is managed by one and only one node. Moreover, we want to guarantee
that messages reach their destinations, that is, that the network does not lose messages during the routing
process. The approach we have followed is to consider a hamiltonian cycle over the network: a cycle which
traverses all nodes of the graph once and only once.

Team indes 11

Hamiltonian cycles are generally extracted from an existing graph, which is known to be an NP-complete
problem. In our case, the cycle is established at the beginning, when the network is initiated with a first node,
and preserved during insertion and deletion of nodes. As we consider oriented graphs, each node is only
required to maintain its successor in the cycle. It is particularly convenient to consider a strict order < over
nodes. Given this order, a finite set of nodes can be sorted, thus giving an Hamiltonian path. The cycle is then
achieved by artificially connecting the two bounds of the path.
We have experimented several orders,

1. natural: the basic order on natural numbers,

2. gray code: also based on natural numbers, it forms a Hamiltonian cycle on a hypercube, where each
bit is seen as one dimension,

3. space-filling curve: based on 2D points with the Hilbert curve,

4. alphabetic: the basic order on strings.

To avoid a routing proportional to the number of nodes, each node has a set of perfect identifiers used to build
shortcuts over the hamiltonian cycle. The general aim is, having a logarithmic number of perfect identifiers
per node, to insure a logarithmic routing. We have experimented several functions computing the perfect
identifiers,

1. exponential: associated to the natural order, it gives the well established Chord network.

2. symmetrical: with 2D points, perfects are chosen in symmetric sub-squares.

3. hypercube: all identifiers differ by only one bit.

Figure 1. Performance of some ordered networks

The figure 1 shows the general performance of some ordered networks. All have the desired logarithmic
behavior. Pictures on the right are snapshots of networks in stable state. The pixel at position i,j represents the
number of nodes a message has to go through during the routing process (i.e. the number of hops), when this
message starts from the ith node and wants to reach the jth successors of this node. Blue pixels represent a low
number of hops, while green ones are used for a high number of hops. Thus the first column is in dark blue
since a direct successor is always at one hop.
The attribution of a node for a perfect identifier, i.e. a shortcut, is done during the routing process. Some extra
informations are added during message exchanges in order to share informations between neighbors in the
networks. Th experiences we have made show that this strategy is relevant even in the case of a large amount
of insertions and deletions of nodes.

12 Activity Report INRIA 2009

Independently of the order and of the perfect identifier calculation, we have formalized the protocols for
routing processes and for insertion and deletion of nodes. We have partially proven that messages reach their
destination, as well as the absence of dead-locks and live-locks.

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
7.1.1. CRE France-Télécom R-D

A CRE (contract for external research) started in 2006, funded by France-Télécom R&D on “Analysis of
security properties for global programming frameworks”. The initial duration of the project was 3 years. It
has then been extended to 3.5 years. The total funding is 120 kEuros. The purpose of the project was initially
to support the research done in the former MIMOSA team on security issues and mobile code, and to study
the applicability of our methods and results to concrete problems investigated at France-Télécom R&D. The
INDES team is now in charge of this project that will end in December 2009.

7.1.2. DGE SmartImmo
The SmartImmo DGE project of the world class ICT cluster SCS (Solutions Communicantes Sécurisées)
started in 2009. It aimed at controlling and reducing the costs associated with building management. The
duration of the project is 2 years, and the funding of 75 kEuros. In the context of this project, the INDES team
will focus on making the Hop Web development kit compatible with industrial house automation systems.

8. Other Grants and Activities

8.1. National initiatives
8.1.1. STIC-AmSud FMCRYPTO

The FMCRYPTO project (for “Formal Methods for Cryptographically Secure Distributed Computations”) is
funded by the STIC-AmSud programme for 2 years, starting January 2009. The partners of this project are the
INDES team at INRIA (coordinator), Universidade Estadual de Campinas in Brazil, Universidad de Chile in
Chile, and Universidad de la Republica in Uruguay.

8.1.2. COLOR project MATYSS
The one-year project MATYSS (Models And TYpes for Secure Sessions) is funded by the INRIA Sophia
Antipolis COLOR programme. The partners of this project are the team INDES (coordinator) and the
“Semantics and Logic of Computation” group at the Computer Science Department of the University of
Torino.

8.1.3. ANR SETIN ParSec
The PARSEC project (for “Parallélisme et Sécurité”) has been funded by the ANR Sécurité Informatique
programme for 4 years, starting January 2007. The partners of this project are the teams INDES formerly
MIMOSA (coordinator) and EVEREST at INRIA Sophia Antipolis, LANDE at IRISA, MOSCOVA at INRIA
Rocquencourt and CONCURRENCY at the PPS Laboratory of Paris 7 University and CNRS.

8.1.4. ANR DEFIS ParTout
The PARTOUT project (PARTOUT = PARallélisme parTOUT) is funded by the ANR DEFIS programme
for 4 years, starting January 2009 (ANR-08-EMER-010). The partners of this project are the teams INDES
(coordinator), CNAM/Cédric, and LRI, Université d’Orsay.

Team indes 13

8.1.5. ANR DEFIS PWD
The PWD project (for "Programmation du Web diffus") has been funded by the ANR Défis programme for
4 years, starting November 2009. The partners of this project are the teams INDES (coordinator), LIP6 at
University Pierre et Marie Curie and PPS at University Denis Diderot.

9. Dissemination

9.1. Seminars and conferences
Gérard Berry participated in the Causality Workshop organized in Venezia by the Academia Europaea,

of which he is a member. He participated and gave a talk in the ERCIM annual meeting, being a
member of the ERCIM Advisory Committee. He gave several seminars in research or industrial
conferences.

Gérard Boudol participated in the POPL’09 conference, where [12] was presented by Gustavo Petri.
Gustavo also presented this work at the Journées INRIA Multicœur, which Boudol also attended.
G. Boudol gave a three hours tutorial on Language Based Security at the first FMCrypto meeting in
Campinas (Brazil). He also participated in the COORDINATION’09 conference. He presented [11]
at a workshop of the PARSEC project and at the ICTAC’09 conference.

Ilaria Castellani presented her work on security for process calculi in the first MATYSS meeting at the
University of Torino, on April 23. In September and December 2009 she spent two visits at the
university of Torino, to pursue the MATYSS collaborative work [19].

Zhengqin Luo presented his work on cetified proof of anonymity protocols in the FMCrypto workshop,
in Campinas (Brazil), April 2009. He also participated in the summer school “Logics and Languages
for Reliability and Security” in Marktoberdorf (Germany), August 2009.

Gustavo Petri presented the work [12] in the journées “Informatique Massivement Multiprocesseur et
Multicoeur” in Paris, February 2009. He was invited to present the same work at the Modeling and
Verification group in May, at LIAFA, Paris. Later Gustavo was invited to the seminar “Design and
Validation of Concurrent Systems” in Dagstuhl, September 2009, where he presented the work [17]

Christian Queinnec has been invited to the Symposium in Honor of Mitchell Wand (in cooperation
with ACM SIGPLAN and co-located with Scheme and Functional Programming 2009) where he
presented a semantics for Hop (a work done with Manuel Serrano) [21].

Tamara Rezk presented her work on the Cflow compiler in the ANR PARSEC meeting, in Paris. On
February the 10th, she was invited by Bogdan Warinschi to spend a week at University of Bristol,
where she gave a talk. On the 13th of the same month, she was invited by Kohei Honda to present
her work at Queen Mary University, London. On April 23rd, Tamara participated in the first Matyss
meeting in Torino, where she presented her work on “Security preserving compiler for multithreaded
programs”. In march, she participated as track chair in ACM SAC 09. On April, Tamara was invited
to attend the Spring School and French-Japanese collaboration workshop "Cosyproofs", on proofs
for cryptography. This workshop was organized by Hubert Common-Lundh, Highashi Izu Peninsula
in Japan. On April the 28th and the 30th, Tamara presented her work on anonymity protocols and
the Cflow compiler in the FMCrypto workshop, organized in University of Campinas, Campinas,
Brasil.

Manuel Serrano gave several presentations of the HOP system. In particular, he gave a keynote talk at
the 11th international conference on Coordination Models and Languages about fast Web 2.0 server
[9]. Manuel Serrano has been invited by professor J. Misra to spend a week at University of Texas
where he gave a talk about Hop. He also gave another talk about Hop at IBM Watson, invited by
O. Tardieu et J. Field. M. Serrano gave a presentation about multimedia applications in Hop at the
MMCN’09 [14] conference in Jan Jose, USA. Manuel Serrano participated in the Inria-Alumni JAM
session where he was involved in the panel about the Web.

14 Activity Report INRIA 2009

9.2. Animation
Gérard Boudol is the coordinator of the ANR SETIN PARSEC project. He was a member of the

Programme Committees of the conference COORDINATION’09 and the workshop SecCo’09. He
was a member of the jury for the HDR (Habilitation à Diriger des Recherches) of Daniel Hirschkoff
(ENS Lyon).

Frédéric Boussinot is the coordinator of the ANR DEFIS project PARTOUT.

Ilaria Castellani was the coordinator of the one-year COLOR project MATYSS.

Manuel Serrano is the coordinator of the ANR DEFIS project PWD. He serves the program committee
of the IFL2009 conference.

9.3. Teaching
Gérard Berry is giving a course at Collège de France called “Penser, modéliser et maîtriser le calcul

informatique” [15] (Thinking About, Modeling and Mastering computation), where he discusses
numerous models of sequential, parallel or diffuse computation. Manuel Serrano will give a seminar
about diffuse and HOP computation in the seminar series associated with this course.

Ilaria Castellani participated in the course “Secure diffuse computing” of the Ubinet master at Nice
University (in October-November 2009), both as a lecturer and as the course responsible.

Christian Queinnec is teaching at UPMC two courses (20 hours each). The first one, a M1 course,
is devoted to compilation. The second one, a M2 course, is centered on Web technologies, from
database to client. Hop is presented within that course as an emerging new paradigm.

Tamara Rezk participated as a lecturer in the course "Secure Diffuse Computing" of the Ubinet master
(October-November 2009), University of Nice.

Manuel Serrano supervised the summer internship of Pierre Karpman, an undergraduate student of Insa
Lyon, who worked during two months on implementing an efficient interpreter for Hop. In October
2009, Manuel Serrano gave a 6 hour-course on multi-tier Web programming at the Master Ubinet of
University of Nice.

10. Bibliography
Major publications by the team in recent years

[1] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS", 2007, p. 2-18.

[2] G. BOUDOL, I. CASTELLANI. Noninterference for Concurrent Programs and Thread Systems, in "Theoretical
Computer Science", vol. 281, no 1, 2002, p. 109-130.

[3] C. FOURNET, T. REZK. Cryptographically sound implementations for typed information-flow security, in
"Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008", 2008, p. 323-335.

[4] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium, Portland, Oregon, USA", October 2006.

[5] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", vol. 10, no 2, May 2000, p. 1–43.

Team indes 15

Year Publications
Doctoral Dissertations and Habilitation Theses

[6] M. KOLUNDZIJA. Type Systems for Access Control and Information Flow in Programming Languages,
Universities of Nice - Sophia Antipolis and Torino, March 2009, Ph. D. Thesis.

[7] F. LOITSCH. Scheme to JavaScript Compilation, Universit de Nice - Sophia Antipolis, Mar 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[8] G. BARTHE, B. GRÉGOIRE, C. KUNZ, T. REZK. Certificate translation for optimizing compilers, in "ACM
Trans. Program. Lang. Syst. (TOPLAS)", vol. 31, no 5, 2009.

Invited Conferences

[9] M. SERRANO. HOP, a Fast Server for the Diffuse Web, in "Invited paper of the 11th international conference
on Coordination Models and Languages (COORDINATION’09), Lisbon, Portugal", Jun 2009.

International Peer-Reviewed Conference/Proceedings

[10] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS’07 Special Issue in ACM Transactions on Information and System Security (TISSEC)", 2009.

[11] G. BOUDOL. A deadlock-free semantics for shared memory concurrency, in "ICTAC’09", August 2009, p.
140-154, LNCS 5684.

[12] G. BOUDOL, G. PETRI. Relaxed memory models: an operational approach, in "POPL’09", 2009, p. 392-403.

[13] C. FOURNET, G. LE GUERNIC, T. REZK. A Security-Preserving Compiler for Distributed Programs, in
"ACM Conference on Computer and Communications Security (CCS))", 2009.

[14] M. SERRANO. Anatomy of a Ubiquitous Media Center, in "Proceedings of the Sixteenth Annual Multimedia
Computing and Networking (MMCN’09), San Jose, CA, USA", (taux d’acceptation 12/34), Jan 2009.

Scientific Books (or Scientific Book chapters)

[15] G. BERRY. Penser, modéliser et maîtriser le calcul informatique, 2009.

Other Publications

[16] L. ABBAS-TURKI, S. VIALLE. European Option Princing on a GPU Cluster, 2009, http://hal-supelec.
archives-ouvertes.fr/hal-00364242/en/, Note bidon.

[17] G. BOUDOL, G. PETRI. A theory of speculative computation, October 2009, Submitted.

[18] G. BOUDOL, G. PETRI. On speculative computation and thread safe programming, November 2009, Draft.

[19] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI, T. REZK. Session types for access and informa-
tion flow control, Dec 2009, Draft.

http://hal-supelec.archives-ouvertes.fr/hal-00364242/en/
http://hal-supelec.archives-ouvertes.fr/hal-00364242/en/

16 Activity Report INRIA 2009

[20] Z. LUO. Secure information flow in ULM as a safety property, April 2009, Draft.

[21] M. SERRANO, C. QUEINNEC. A multi-tier semantics for Hop, 2010, Submitted.

[22] M. SERRANO. HSS: a compiler for Cascading Style Sheets, 2010, Submitted.

