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2. Overall Objectives

2.1. Presentation
Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as Schönhage–Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.
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Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

2.2. Highlights of the year
K. Belabas has co-organised the international conference “Number theory and applications” from Novem-
ber 30 to December 4 at Luminy (http://www.cirm.univ-mrs.fr/web.ang/liste_rencontre/Rencontres2009/
Renc377/Renc377.html) together with partners of the ANR ALGOL, see 8.1.1.

The week after the conference, A. Morra has defended her PhD on “Comptage asymptotique et algorithmique
d’extensions cubiques relatives” [11].

3. Scientific Foundations

3.1. Number fields, class groups and other invariants
Participants: Karim Belabas, Jean-François Biasse, Jean-Paul Cerri, Henri Cohen, Andreas Enge, Pierre
Lezowski, Pascal Molin, Anna Morra.

Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [6]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x + y)(x + ζy)(x + ζ2y) · · · (x + ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3

5 is a root of 25X2 − 3. A number field
consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3

5 is not. The ring of integers of K is denoted by OK ; it plays the same role in
K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

http://www.cirm.univ-mrs.fr/web.ang/liste_rencontre/Rencontres2009/Renc377/Renc377.html
http://www.cirm.univ-mrs.fr/web.ang/liste_rencontre/Rencontres2009/Renc377/Renc377.html
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Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [1] for a recent account.

The analytic class number formula links the invariants hK and RK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)−1, which is meaningful when R(s) > 1, but which
may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number field K may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Jean-François Biasse, Andreas Enge, Jérôme Milan, Pascal Molin, Vincent
Verneuil.

Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X, Y ) = 0 with coefficients in a finite field Fq. The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X, Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√

q − 1)2g 6 | JacC | 6 (
√

q + 1)2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elements D1 and D2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.
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For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC

and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Karim Belabas, Henri Cohen, Andreas Enge.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [9], for more background material, [8]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

4. Application Domains

4.1. Number theory
Being able to compute quickly and reliably algebraic invariants is an invaluable aid to mathematicians: It
fosters new conjectures, and often shoots down the too optimistic ones. Moreover, a large body of theoretical
results in algebraic number theory has an asymptotic nature and only applies for large enough inputs;
mechanised computations (preferably producing independently verifiable certificates) are often necessary to
finish proofs.
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For instance, many Diophantine problems reduce to a set of Thue equations of the form P (x, y) = a for an
irreducible, homogeneous P ∈ Z[x, y], a ∈ Z, in unknown integers x, y. In principle, there is an algorithm
to solve the latter, provided the class group and units of a rupture field of P are known. Since there is no
other way to prove that the full set of solutions is obtained, these algebraic invariants must be computed and
certified, preferably without using the GRH.

Deeper invariants such as the Euclidean spectrum are related to more theoretical concerns, e.g., determining
new examples of principal, but not norm-Euclidean number fields, but could also yield practical new
algorithms: Even if a number field has class number larger than 1 (in particular, it is not norm-Euclidean),
knowing the upper part of the spectrum should give a partial gcd algorithm, succeeding for almost all pairs of
elements of OK . As a matter of fact, every number field whose unit group has rank strictly greater than 1 is
almost norm-Euclidean [31],[4].

Algorithms developed by the team are implemented in the free PARI/GP system for number theory maintained
by K. Belabas, which is a reference and the tool of choice for the worldwide number theory community.

4.2. Cryptology
Public key cryptology has become a major application domain for algorithmic number theory. This is already
true for the ubiquitous RSA system, but even more so for cryptosystems relying on the discrete logarithm
problem in algebraic curves over finite fields [7]. For the same level of security, the latter require smaller key
lengths than RSA, which results in a gain of bandwidth and (depending on the precise application) processing
time. Especially in environments that are constrained with respect to space and computing power such as
smart cards and embedded devices, algebraic curve cryptography has become the technology of choice. Most
of the research topics of the LFANT team concern directly problems relevant for curve-based cryptology: The
difficulty of the discrete logarithm problem in algebraic curves determines the security of the corresponding
cryptosystems. Complex multiplication, point counting and isogenies provide, on one hand, the tools needed
to create secure instances of curves. On the other hand, isogenies have been found to have direct cryptographic
applications to hash functions [32] and encryption [37]. Pairings in algebraic curves have proved to be a rich
source for novel cryptographic primitives. Class groups of number fields also enter the game as candidates for
algebraic groups in which cryptosystems can be implemented. However, breaking these systems by computing
discrete logarithms has proved to be easier than in algebraic curves; we intend to pursue this cryptanalytic
strand of research.

Apart from solving specific problems related to cryptology, number theoretic expertise is vital to provide
cryptologic advice to industrial partners in joint projects. It is to be expected that continuing pervasiveness
and ubiquity of very low power computing devices will render the need for algebraic curve cryptography more
pressing in coming years.

5. Software

5.1. Pari/Gp
Participants: Karim Belabas [release manager], Bill Allombert [University of Montpellier].

http://pari.math.u-bordeaux.fr/

License: GPL 2+

Current stable version: 2.3.3, 2008
Current testing version: 2.4.2.alpha, 2007

http://pari.math.u-bordeaux.fr/
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PARI/GP is a widely used computer algebra system designed for fast computations in number theory
(factorisation, algebraic number theory, elliptic curves, ...), but it also contains a large number of other
useful functions to compute with mathematical entities such as matrices, polynomials, power series, algebraic
numbers, etc., and many transcendental functions.

• PARI is a C library, allowing fast computations.
• GP is an easy-to-use interactive shell giving access to the PARI functions.
• gp2c, the GP-to-C compiler, combines the best of both worlds by compiling GP scripts to the C

language and transparently loading the resulting functions into GP; scripts compiled by gp2c will
typically run three to four times faster.

5.2. Cubic
Participant: Karim Belabas.

http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.0.tgz

License: GPL 2+

Current stable version: 1.0, 2009

CUBIC is a standalone program that prints out generating equations for cubic fields of either signature and
bounded discriminant. It depends on the PARI library. The algorithm is quasi-linear time in the size of the
output.

5.3. Mpc
Participants: Andreas Enge [release manager], Philippe Théveny [INRIA project-team CACAO], Paul Zim-
mermann [INRIA project-team CACAO].

http://mpc.multiprecision.org/

License: LGPL 2.1+

Current version: 0.8.1 Dianthus deltoides, 2009

MPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding
of the result. It is built upon and follows the same principles as MPFR. The MPC library has been registered
in France by the Agence pour la Protection des Programmes on 2003-02-05 under the number IDDN FR 001
060029 000 R P 2003 000 10000.

It has become a requirement for the upcoming release 4.5 of the GNU compiler collection GCC, where it is
used in the C and Fortran frontends for constant folding, the evaluation of constant mathematical expressions
during the compilation of a program.

5.4. Mpfrcx
Participant: Andreas Enge.

http://mpfrcx.multiprecision.org/

License: LGPL 2.1+

Initial public release: version 0.2 Ananas, 2009

MPFRCX is a library for the arithmetic of univariate polynomials over arbitrary precision real (MPFR) or
complex (MPC) numbers, without control on the rounding. For the time being, only the few functions needed
to implement the floating point approach to complex multiplication are implemented. On the other hand, these
comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

5.5. Cm
Participant: Andreas Enge.

http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.0.tgz
http://mpc.multiprecision.org/
http://mpfrcx.multiprecision.org/
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http://cm.multiprecision.org/

License: GPL 2+

Initial public release: version 0.1 Apfelkraut, 2009

The CM software implements the construction of ring class fields of imaginary quadratic number fields and
of elliptic curves with complex multiplication via floating point approximations. It consists of libraries that
can be called from within a C program and of executable command line applications. For the implemented
algorithms, see [17].

6. New Results

6.1. Discrete logarithms
Participant: Andreas Enge.

In [34], we presented for the first time an algorithm for the discrete logarithm problem in certain algebraic
curves that runs in subexponential time less than L(1/2), namely, L(1/3 + ε) for any ε > 0. In [27], we
lower this complexity to L(1/3), showing that the corresponding algebraic curves (essentially Cab curves of
genus g growing at least quadratically with the logarithmic size of the finite field of definition, log q) result in
cryptosystems that are as easily attacked as RSA or tradtional cryptosystems based on discrete logarithms in
finite fields. We provide a complete classification of all the curves to which the attack applies. The article has
been accepted by Journal of Cryptology.

6.2. Class groups and other invariants of number fields
Participants: Jean-François Biasse, Jean-Paul Cerri.

J.-F. Biasse has made practical improvements to the sieving-based algorithm of Jacobson [36] for computing
the group structure of the ideal class group of an imaginary-quadratic number field. These improvements,
based on the use of large prime variations combined with structured Gaussian elimination, have led to the
computation of the class group structure of a number field with a 110-digit discriminant (whereas older
techniques were limited to 90-digit discriminants). The resulting article [23] has been accepted for publication
in Advances in Mathematics of Communications.

Biasse has also determined a class of number fields for which the ideal class group, the regulator, and a
system of fundamental units of the maximal order can be computed in subexponential time L(1/3, O(1))
(whereas the best previously known algorithms have complexity L(1/2, O(1))). This class of number fields is
analogous to the class of curves described in [27], cf. 6.1. The article [24] has been submitted to Mathematics
of Computation.

In joint work with Eva Bayer Fluckiger and Jérôme Chaubert (EPF Lausanne), J.-P. Cerri has generalised the
notion of norm-Euclideanity to central division algebras, and in particular to quaternion algebras. They have
established deep theoretical results in the spirit of Cerri’s achievements for number fields (rationality of the
minimum, properties of the spectra, ...), and they have obtained good bounds for the Euclidean minimum [12].
This theory should make it possible to formulate algorithms similar to those given by Cerri in the number field
case, with the aim of establishing complete lists of Euclidean quaternion algebras over quadratic fields.

Using new theoretical ideas and his novel algorithmic approach, J.-P. Cerri has discovered examples of gen-
eralised Euclidean number fields and of 2-stage norm-Euclidean number fields in degree greater than 2 [25].
These notions, extending the link between usual Euclideanity and principality of the ring of integers of a
number field had already received much attention before; however, examples were only known for quadratic
fields.

http://cm.multiprecision.org/
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In joint work with Mark van Hoeij (Florida State), Jürgen Klüners (Paderborn), and Allan Steel (Sydney),
K. Belabas has proved the polynomial time complexity of the now standard algorithm of van Hoeij (as
extended by Belabas) to factor univariate polynomials over number fields, and in particular over the rational
numbers [13]. The same approach also yields polynomial time complexity results for bivariate polyomials
over a finite field.

6.3. Number field enumeration
Participants: Karim Belabas, Henri Cohen, Anna Morra.

In joint work with Étienne Fouvry (Orsay), K. Belabas has proved a new case of Malle’s conjecture, a strong
effective form of the inverse Galois problem [22]. They have given an asymptotic enumeration of Galois sextic
fields with group S3, ordered by discriminant, using classical Davenport-Heilbronn theory in a novel way. The
same result was independently obtained by Bhargava and Wood using a different method. The article [22] will
appear in International Journal of Number Theory.

Classical theorems of Davenport and Heilbronn enumerate cubic fields and estimate the average 3-torsion
of class groups of quadratic fields. In joint work with Manjul Bhargava (Princeton) and Carl Pomerance
(Dartmouth College), K. Belabas has proved the first power-saving error terms for those results, lending
support to a conjecture of Roberts. As a corollary, the generating Dirichlet series associated to cubic
discriminants can be analytically continued to the left of its simple pole at s = 1, proving a conjecture of
Cohen. The article [21] will appear in Duke Mathematical Journal.

H. Cohen and A. Morra have obtained an explicit expression for the Dirichlet generating function associated
to cubic extensions of an arbitrary number field with a fixed quadratic resolvent. As a corollary, they have
proved refinements of Malle’s conjecture in this context. The article [26] has been submitted to the Journal of
Algebra.

A. Morra has devised and implemented an algorithm to enumerate cubic extensions of principal imaginary
quadratic fields, by increasing discriminant. Her algorithm is essentially linear in the output size. The
article [30] has been submitted.

These last two results constitute the heart of Morra’s thesis [11], which she has defended in December.

6.4. Complex multiplication
Participant: Andreas Enge.

A. Enge’s article analysing and comparing the complexity of algorithms computing complex multiplication
elliptic curves and ring class fields of imaginary-quadratic orders [17] has appeared in print. The new algorithm
of quasi-linear complexity (that is, linear up to logarithmic factors) in the size of the output class polynomial
has been implemented in the CM software, see 5.5, relying on the helper libraries MPFRCX, see 5.4, and MPC,
see 5.3; parts of the algorithm have also been included into the development version of PARI/GP, see 5.1. The
results are summarised in an overview article aimed at the computer algebra community [18].

With F. Morain, A. Enge has determined exhaustively under which conditions “generalised Weber functions”,
that is, simple quotients of η functions of not necessarily prime transformation level and not necessarily of
genus 1, yield class invariants [28]. The result is a new infinite family of generators for ring class fields, usable
to determine complex multiplication curves. We examine in detail which lower powers of the functions are
applicable, thus saving a factor of up to 12 in the size of the class polynomials, and describe the cases in which
the polynomials have integral rational instead of integral quadratic coefficients.

In the same vein as the result for univariate class polynomials, [16] proposes a quasi-linear algorithm to
compute bivariate modular polynomials, which are at the heart of modern point counting algorithms for
elliptic curves. The algorithm relies on asymptotically fast evaluation and interpolation. Its unpublished
implementation has been used to compute polynomials of degree around 10000, each filling 16 GB of disk
space. This has enabled the current point counting record for a curve of 2500 decimal digits [35].
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6.5. Pairings
Participants: Andreas Enge, Jérôme Milan.

The year has been marked by the kick-off of the ANR PACE, leading to the publication of two surveys. Much
in the spirit of [33], the paper [20] gives a low-brow introduction to the Weil and the Tate pairings as well as
to algorithms computing them. In particular, simple proofs of the main properties of these pairings, as well
as of the equivalence of the three different definitions of the Weil pairing are presented. We briefly comment
on techniques for generating suitable curves and on cryptographic standards. The survey [19] is devoted to
a succinct presentation of the main computational asumptions underlying pairing-based cryptography, and in
particular protocols related to e-cash.

7. Contracts and Grants with Industry

7.1. Industrial ANR PACE
Participants: Andreas Enge, Jérôme Milan.

https://pace.rd.francetelecom.com/

The PACE project unites researchers of France Télécom, Gemalto, ST-Ericsson, Cryptolog International, the
INRIA project teams CASCADE and LFANT and University of Caen. It deals with electronic commerce and
more precisely with electronic cash systems. Electronic cash refers to money exchanged electronically, with
the aim of emulating paper money and its traditional properties and use cases, such as the anonymity of users
during spending. The goal of PACEis to use the new and powerful tool of bilinear pairings on algebraic curves
to solve remaining open problems in electronic cash, such as the strong unforgeability of money and the strong
unlinkability of transactions, which would allow users to conveniently be anonymous and untraceable. It also
studies some cryptographic tools that are useful in the design of e-cash systems.

7.2. Thèse cifre
Participants: Karim Belabas, Vincent Verneuil.

Vincent Verneuil, co-directed with B. Feix (Inside Contactless) and C. Clavier (Gemalto), works at Inside
Contactless on elliptic curve cryptography, with an emphasis on embedded systems and side-channel attacks.

8. Other Grants and Activities

8.1. National actions
8.1.1. Anr AlgoL: Algorithmics of L-functions

Participant: Karim Belabas.

http://www.math.u-bordeaux1.fr/~belabas/algol/index.html

The ALGOL project comprises research teams in Bordeaux, Montpellier, Lyon, Toulouse and Besançon.

It studies the so-called L-functions in number theory from an algorithmic and experimental point of view.
L-functions encode delicate arithmetic information, and crucial arithmetic conjectures revolve around them:
Riemann Hypotheses, Birch and Swinnerton-Dyer conjecture, Stark conjectures, Bloch-Kato conjectures, etc.

https://pace.rd.francetelecom.com/
http://www.math.u-bordeaux1.fr/~belabas/algol/index.html
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Most of current number theory conjectures originate from (usually mechanised) computations, and have been
thoroughly checked numerically. L-functions and their special values are no exception, but available tools
and actual computations become increasingly scarce as one goes further away from Dirichlet L-functions. We
develop theoretical algorithms and practical tools to study and experiment with (suitable classes of) complex
or p-adic L-functions, their coefficients, special or general values, and zeroes. For instance, it is not known
whether K-theoretic invariants conjecturally attached to special values are computable in any reasonable
complexity model. On the other hand, special values are often readily computed and sometimes provide,
albeit conjecturally, the only concrete handle on said invariants.

New theoretical results are translated into new or more efficient functions in the PARI/GP system.

8.2. Exterior research visitors
The following researchers have visited the LFANT team:

• Marco Streng, University of Leiden, November 16–20

• Gaëtan Bisson, INRIA Lorraine and University of Eindhoven, November 18–20

9. Dissemination

9.1. Thesis committees
A. Enge has reported on N. El Mrabet’s PhD thesis “Arithmétique des couplages, performance et résistance
aux attaques par canaux cachés” at University of Montpellier.

He has been a committee member for Cédric Faure’s PhD defense on “Études de systèmes cryptographiques
construits à l’aide de codes correcteurs, en métrique de Hamming et en métrique rang” at École polytechnique.

9.2. Editorships
K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

H. Cohen is an editorial board member of Journal de Théorie des Nombres de Bordeaux; he is an editor for
the Springer book series Algorithms and Computations in Mathematics (ACM).

A. Enge is an editor of Designs, Codes and Cryptography since 2004.

9.3. Invited talks
A. Enge has given a talk at Selected Areas in Cryptography, Calgary, on “Elliptic complex multiplication in
cryptography”.

H. Cohen, A. Enge and A. Morra have attended the workshop Algorithms and Number Theory at Dagstuhl;
A. Enge has spoken about “CM – Software for complex multiplication” and A. Morra has presented “An
algorithm to compute relative cubic fields”.

9.4. Conference organisation and programme committees
K. Belabas has co-organised the international conference “Number theory and applications” from
November 30 to December 4 at Luminy.

A. Enge has been a member on the programme committee of the 9th Central European Conference on
Cryptography, Třebíč, Czech Republic. He acts on the scientific advisory board of the Journées Nationales
de Calcul Formel.
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9.5. Seminar
The following external speakers have given a presentation at the LFANT seminar
http://www.math.u-bordeaux1.fr/~enge/lfant/index.php?category=seminar

• Luca De Feo, École polytechnique: “Calcul d’isogénies en petite caractéristique”

• Marco Streng, University of Leiden: “Abelian surfaces admitting an (l, l)-endomorphism”

• Gaëtan Bisson, INRIA Lorraine and University of Eindhoven: “Calcul des anneaux
d’endomorphismes des variétés abéliennes sur les corps finis”

9.6. Teaching
K. Belabas has taught a bachelor course in cryptology, and master courses on computer algebra, elliptic curves,
and the algorithmic of public key cryptography. He has supervised master projects on cyclotomic proofs of
(cases of) Fermat’s Last Theorem, optimal elliptic curves models for cryptography, factorisation of univariate
polynomials over a finite field, asymptotically fast integer multiplication (from Karatsuba to Fürer), and sub-
quadratic integer division algorithms.

J.-P. Cerri has been invited to give three lectures at the GTEM summer school “Lattices and Applications” at
EPFL in July (http://alg-geo.epfl.ch/workshops/lss09/).

A. Enge is a “Chargé d’enseignement” at the Department of Informatics of École polytechnique. He has
taught a master course on cryptology and a bachelor course on web programming. He has supervised projects
concerning factorisation by the quadratic sieve, implemented in CUDA on graphics card for the master course
on parallel programming. At the summer school Calcul numérique certifié CNC ’2 at Nancy, he has given a
lecture entitled “MPC - Arithmétique complexe en précision arbitraire avec arrondi garanti”.

9.7. Research administration
K. Belabas is the head of the computer science support service (“cellule informatique”) of the Institute of
Mathematics of Bordeaux; he also coordinates the participation of the institute in the regional computation
cluster PlaFRIM.

He is an elected member of the councils of both the math and computer science department (UFR) and the
Math Institute (IMB).
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