%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team LogNet

Logical Networks: Self-organizing Overlay
Networks and Generic Overlay Computing
Systems

Sophia Antipolis - Méditerranée

Theme : Distributed Systems and Services

qlctivity

http://www.inria.fr
http://www.inria.fr/recherche/equipes/lognet.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

t—m

Table of contents

oA ...
Overall Objectives i e

2.1. LogNet’s Motto and Logo
2.2. Overall objectives
2.3. Highlights of the year

Scientific Foundations

3.1. Lognet’s general context

3.2. General definitions

3.3. Background: Arigatoni overlay network computer
3.3.1. Arigatoni units
3.3.2. Virtual organizations
3.3.3. Resource discovery protocol (RDP)
3.3.4. Virtual Intermittent Protocol (VIP)
3.3.5. Two simple examples

3.4. General research directions
3.4.1. On Virtual organizations
3.4.2. On Resource discovery
3.4.3. Execution model

Application Domains

4.1. Panorama
4.2. Potential applications

SO tWaLe . .. o

5.1. Ariwheels

5.2. Arigatoni simulator

5.3. BabelChord simulator

5.4. Synapse simulator

5.5. Synapse client

5.6. Open Synapse client

5.7. Husky interpreter

5.8. myTransport Gui

5.9. “Perinet” site of the GIR Maralpin

New Results

6.1. Babelchord, a DHT’s tower

6.2. Synapse, interconnecting heterogeneous overlay networks

6.3. DHT formal specification

6.4. Resource discovery and Self-stabilizing in Tree-bases P2P systems
6.5. Intersection and Union Types a la Church

6.6. Dealing with uncertain knowledge in Logical Frameworks

Other Grants and Activities i,

7.1.1. Interreg Alcotra: myMed, 2010-2012
7.1.2. FP6 FET Global Computing: IST AEOLUS, 2005-2009
7.1.3. FP6 TEMPUS DEUKS, 2007-2009

Dissemination

8.1. Participation in committees and referees
8.2. Teaching and Meeting organizations
8.3. Spare presentations

8.4. Visitors

Bibliography

LogNet is an INRIA team.

1. Team

Research Scientist
Luigi Liquori [Team Leader, Research associate, CR INRIA, HdR]

External Collaborator
Claudio Casetti [Assistant professor, Politecnico di Torino, Italy]
Carla-Fabiana Chiasserini [Associate professor, Politecnico di Torino, Italy]
Michel Cosnard [CEO INRIA, HdR]

Technical Staff
Laurent Vanni [from September 1st 2009 to December 31th 2009]

PhD Student
Francesco Bongiovanni [INRIA-PACA grant, from October 1st 2008 to October 1st 2009]
Vincenzo Ciancaglini [MENRT grant, since October 1st 2009, defense planned in 2012]
Petar Maksimovic [TEMPUS-BASILEUS grant, since December 1st 2008, defense planned in 2011]
Bojan Marinkovic [INRIA-TEMPUS grant, MISANU, Serbia, from February 2009 to May 2009]

Post-Doctoral Fellow
Cédric Tedeschi [INRIA grant, from October 1st 2008 to September 1st 2009]

Administrative Assistant
Nathalie Bellesso [INRIA]

Other
Marthe Bonamy [ENSL, from June 1st 2009 to July 15th 2009]
Luc Marongiu [IUT, from April 10th 2009 to June 12th 2009]
Alexis Paoleschi [IUT, from April 10th 2009 to June 12th 2009]

2. Overall Objectives

2.1. LogNet’s Motto and Logo

Our Motto is “Computer is moving on the edge of the Network...” by Jan Bosch, Nokia Labs, [LNCS 4415,
2007] and our logo is in Figure 1.

2.2. Overall objectives

We propose foundations for generic overlay networks and overlay computing systems. Such overlays are built
over a large number of distributed computational agents, virtually organized in colonies, and ruled by a leader
(broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators (primus inter
pares). Every agent asks the broker to log into the colony by declaring the resources that can be offered (with
variable guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively
be considered as evolved agents who can log into an outermost colony governed by another super-leader.
Communications and routing intra-colonies goes through a broker-2-broker PKI-based negotiation. Every
broker routes intra- and inter- service requests by filtering its resource routing table, and then forwarding
the request firstly inside its colony, and secondly outside, via the proper super-leader (thus applying an
endogenous-first-estrogen-last strategy). Theoretically, queries are formule in first-order logic equipped with
a small program used to orchestrate and synchronize atomic formul (atomic services). When the client agent
receives notification of all of (or part of) the requested resources, then the real resource exchange is performed
directly by the server(s) agents, without any further mediation of the broker, in a pure peer-to-peer fashion.
The proposed overlay promotes an intermittent participation in the colony, since peers can appear, disappear,

2 Activity Report INRIA 2009

Figure 1. Our logo

and organize themselves dynamically. This implies that the routing process may lead to failures, because some
agents have quit or are temporarily unavailable, or they were logged out manu militari by the broker due to
their poor performance or greediness. We aim to design, validate through simulation, and implement these
foundations in a generic overlay network computer system.

2.3. Highlights of the year

3 Applcations Places system @ U @OE @O« HN @ 5 R = $@ - 1007 @
I 5 ; S| [

3
)
L

EUROPEAN COMMI
Information Society and Media

Brussels, 25 NOV. 2008

A Emer nd I .
* Future & Emerging Technologies (FET) - Proactive INFSO/FI/JLF/st/ D(2008) 948860

Subject: IST Project AEOLUS (015964) - Report of the third review held on 5 and 6
November 2008 covering period from 01/09/2007 to 31/08/2008 and update

to the Final Implementation Plan.

Dear Professor Kaklamanis,

The outreach to industry and practitioners still needs to be strengthened. Promising activities
around the Arigatoni and Pub-Web projects, as well as on sensor networks, could lead to

success stories.

networks. The interesting coo;;cra!ion with A}iga!oni and Arriwheels will continue and give
experiences on how overlay computing strategies will perform in a real wireless environment.
Still missing is a description of the outputs from SP2 that will be integrated into the AEOLUS
testbed.

Figure 2. The Ariwheels simulator and the European Commission point of view

e The Ariwheels overlay network is being proposed as a publish & subscribe protocol in the vehicular
platform under development in the VICSUM project (2Meur, founded by the Regione Piemonte) led
by Politecnico di Torino and involving the Centro Ricerche Fiat (CRF) and the Centro Supercal-
colo Piemonte [7], [2]. The project ended successfully with a demo in front of Piemonte authorities
and members of the press, see http://www.lastampa.it/_web/cmstp/tmplrubriche/tecnologia/grubrica.
asp?ID_blog=30&ID_articolo=6876&ID_sezione=38&sezione=News. The Arigatoni and the Ari-
wheels projects have been highlighted in the third year report of the IST Project AEOLUS, covering

http://www.lastampa.it/_web/cmstp/tmplrubriche/tecnologia/grubrica.asp?ID_blog=30&ID_articolo=6876&ID_sezione=38&sezione=News
http://www.lastampa.it/_web/cmstp/tmplrubriche/tecnologia/grubrica.asp?ID_blog=30&ID_articolo=6876&ID_sezione=38&sezione=News

Team LogNet 3

< cc1 NICE coreo AZUR = & o
7‘ INRIA sz
e

C - AEurocm A" I
RN \ TEA ':' w 1 ey —y e

Figure 3. The myMed social network

the period from 01/09/2007 to 31/08/2008

e Another outcome of the Arigatoni research conducted in the team is the founding by the Interreg
Alcotra office of the three-year project myMed : un réseau informatique transfrontalier pour
léchange de contenus dans un environnement fixe et mobile. LogNet will head the project; other
partners are Vulog PME, GIR Maralpin, Politecnico di Torino, Uni. Torino, Uni. Piemonte Orientale.
The total budget 1380Keur (796Keur for I'INRIA) - the external founding is 932Keur (526Keur for
I’INRIA). The founders are UE, PACA, CG06, PREF06, and INRIA, see http://www-sop.inria.fr/
mymed.

3. Scientific Foundations

3.1. Lognet’s general context

The explosive growth of the Internet gives rise to the possibility of designing large overlay networks and
virtual organizations consisting of Internet-connected computers units, able to provide a rich functionality of
services which make use of aggregated computational power, storage, information resources, etc. We would
like to start our first activity report with the standard definition of a Computer System.

Definition 1 (Computer System)
A computer system consists of computer hardware and computer software.

e Computer Hardware is the physical part of a computer, including the digital circuitry, as distin-
guished from the computer software that is executed within the hardware. The hardware of a com-
puter is infrequently changed, in comparison with software and data.

e Computer Software consists of three parts, namely: system software, program software, and appli-
cation software.

— System Software helps run the computer hardware and the computer system. Examples are
operating systems (OS), device drivers, diagnostic tools, servers, windowing systems...

— Program Software usually provides tools to assist the programmer in writing computer
programs and software using different programming languages. Examples are text editors,
compilers, interpreters, linkers, debuggers for general purpose languages...

— Application Software allows end-users to accomplish one or more specific (non computer-
related) tasks, pertaining to fields such as industrial automation, business software, educa-
tional software, medical software, databases, computer games...

http://www-sop.inria.fr/mymed
http://www-sop.inria.fr/mymed

4 Activity Report INRIA 2009

Starting from the previous basic skeleton definition, we elaborate the LogNet’s vision of what an Overlay
Network Computer System is. The reader can focus on the tiny, yet crucial differences.

Definition 2 (Overlay Computer System)
An overlay computer system consists of overlay computer hardware and overlay computer software.

e Overlay Computer Hardware is the physical part of an overlay computer, including the digital
circuitry, as distinguished from overlay computer software that is executed within the hardware.
The hardware of an overlay computer changes frequently and it is distributed in space and in time.
Hardware is organized in a network of collaborative computing agents connected via IP or ad-hoc
networks; hardware must be negotiated before being used.

e Overlay Computer Software consists of three parts, namely: overlay system software, overlay
program software, and overlay application software.

— Overlay System Software helps run the overlay computer hardware and the overlay
computer system. Examples are network middleware playing as a distributed opera-
ting system (dOS), resource discovery protocols, virtual intermittent protocols, security
protocols, reputation protocols...

— Overlay Program Software usually provides tools to assist a programmer in writing
overlay computer programs and software using different overlay programming languages.
Examples are compilers, interpreters, linkers, debuggers for workflow-, coordination-, and

query-languages.

— Overlay Application Software allows end-users to accomplish one or more specific (non-
computer related) tasks, pertaining to fields such as industrial automation, business soft-
ware, educational software, medical software, databases, and computer games...These
classes of applications deal with computational power (Grid), file and storage retrieval
(P2P), web services (Web2.0), band-services (VoIP), computation migrations...

Therefore, LogNet’s objectives can be summarized as follows:

e to provide adequate notions and definitions of a generic overlay network computer; from a desktop
distributed calculator to a programmable distributed overlay computer;

e on the basis of these definitions, to propose a precise architecture of a generic overlay network
computer and implement it;

e on the basis of these definitions, to implement an overlay software factory suitable to help the logical
and software assembling of an overlay network computer.

3.2. General definitions

An overlay network is a computer network which is built on top of another network. Overlay networks can be
constructed in order to permit routing messages to destinations not specified by an IP address. In what follows,
we briefly describe the main entities underneath a virtual organization.

Agents. An agent in the overlay is the basic computational entity of the overlay: it is typically a device, like
a PDA, a laptop, a PC, or smaller devices, connected through IP or other ad hoc communication protocols in
different fashion (wired, wireless). Agents in the overlay can be thought of as being connected by virtual or
logical links, each of which corresponds to a path, through many physical links, in the underlying network.
For example, many peer-to-peer networks are overlay networks because they run on top of the Internet.
Colonies and colony leaders. Agents in the overlay are regrouped in Colonies. A colony is a simple virtual
organization consists of exactly one leader, offering some broker-like services, and some set of agents. The
leader, being also an agent, can be an agent of a colony different of the one he manages. Thus, agents are
simple computers (think of them as amoebas), or sub-colonies (think of them as protozoas). Every colony has
exactly one leader and at least one agent (the leader itself). Logically, an agent can be seen as a collapsed
colony, or a leader managing itself. The leader is the only one who knows all of the agents in its colony. One
of the tasks of the leader is to manage (un)subscriptions to its colony.

Team LogNet 5

Resource discovery. By adhering to a colony, an agent can expose resources he has and/or ask for resources
it requires. Another task of a leader is to manage the resources available in its colony. Thus, when an agent of
the overlay needs a specific resource, he makes a request to its leader. A leader is devoted to contacting and
negotiating with potential servers, to authenticating clients and servers, and to routing requests. The rationale
ensuring scalability is that every request is handled firstly inside its colony, and then forwarded through the
proper super-leader (thus applying an endogenous-first-exogenous-last strategy).

Orchestration. When an agent receives an acknowledgment of a service request from the direct leader, then
the agent is served directly by the server(s) agents, i.e. without further mediation of the leader, in a pure P2P
fashion. Thus, the “main” program will be run on the agent computer machine that launched the service request
and received the resources availability: it will orchestrate and coordinate data and program resources executed
on others agent computers.

3.3. Background: Arigatoni overlay network computer

As suggested by our previous definitions, we are mainly concerned by three topics: network organization,
resource discovery and orchestration. These topics are studied in a complementary way by Arigatoni (work
started by Luigi Liquori and Michel Cosnard). In this section we will describe the current status of Arigatoni.

The Arigatoni overlay network computer, [1], [3], [9], [8], [5], [6], [4] developed since 2006 in the Mascotte
Project Team by Luigi Liquori and Michel Cosnard, and then in the LogNet team, is a structured multi-layer
overlay network which provides resource discovery with variable guarantees in a virtual organization where
peers can appear, disappear, and self-organize themselves dynamically. Arigatoni is universal in the sense of
Turing machines, or generic as the von Neumann computer architecture is.

Every agent asks the broker to log into the colony by declaring the resources that it provides (with variable
guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively be
considered as evolved agents who can log into an outermost colony, which is governed by another super-leader.
Communications and routing intra-colonies go through a broker-2-broker PKI-based negotiation. Every broker
routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request
firstly inside its colony, and secondly outside, via the proper super-leader (thus applying an endogenous-first-
estrogen-last strategy).

Theoretically, queries are formul in first-order logic. When the client agent receives notification of all of (or
part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents,
without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes
an intermittent participation in the colony. Therefore, the routing process may lead to failures, because some
agents have quit, or are temporarily unavailable, or they were logged out by the broker due to their poor
performance or greediness.

Arigatoni features essentially two protocols: the resource discovery protocol dealing with the process of an
agent broker to find and negotiate resources to serve an agent request in its own colony, and the virtual
intermittent protocol dealing with (un)registrations of agents to colonies.

Dealing essentially with resource discovery and peers’ churn has one important advantage: the complete
generality and independence of any offered and requested resource. Arigatoni can fit with various scenarios
in the global computing arena, from classical P2P applications (file- or bandwidth-sharing), to new Web2.0
applications, to new V2V and V2I over MANET applications, to more sophisticated Grid applications, until
possible, futuristic migration computations, i.e. transfer of a non-completed local run to another agent, the
latter being useful in case of catastrophic scenarios, such as fire, a terrorist attack, an earthquake, etc.

3.3.1. Arigatoni units

In what follows, we briefly introduce the logic units underneath a generic overlay network.

6 Activity Report INRIA 2009

Peers’ participation in Arigatoni’s colonies is managed by the Virtual Intermittent Protocol (VIP); the protocol
deals with the dynamic topology of the overlay, by allowing agent computers to login/logout to/from a colony
(using the SREG message). Due to this high node churn, the routing process may lead to failures, because
some agents have logged out, or because they are temporarily unavailable, or because they have logged out
manu militari by the broker for their poor performance or greediness.

The total decoupling between peers in space (peers do not know other peers’ locations), time (peers do not
participate in the interaction at the same time), synchronization (peers can issue service requests and do
something else, or may be doing something else when being asked for services), and encapsulation (peers
do not know each other) are key features of Arigatoni’s scalability.

Agent computer (AC). This unit can be, e.g., a cheap computer device consisting of a small RAM-ROM-HD
memory capacity, a modest CPU, a < 40 keystrokes keyboard (or touchscreen), a tiny screen (< 4 inch), an
IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a USB port, and very few programs
installed inside, e.g. one simple editor, one or two compilers, a mail client, a mini browser... Our favorite
device actually is the Internet terminal Nokia N810. Of course, a AC can be a supercomputer, or an high
performance PC-cluster, a large database server, a high performance visualizer (e.g. connected to a virtual
reality center), or any particular resource provider, even a smart-dust. The operating system (if any) installed
within the AC is not important. The computer should be able to work in local mode for all of the tasks that it
could do locally, or in global mode, by first registering itself to one or many colonies of the overlay, and then
by asking and serving global requests via the colony leaders. In a nutshell, the tasks of an AC are:

e Discover the address of one or many agent brokers (ABs), playing as colony leaders, upon its arrival
in a “connected area”; this can be done using the underlay network and related technologies;

e Register on one or many ABSs, thus de facto entering the Arigatoni’s virtual organization;

e Ask and offer some services to others ACs, via the leaders’ ABs;

e Connect directly with other ACs in a P2P fashion, and offer/receive some services. Note that an AC
can also be a resource provider. This symmetry is one of the key features of Arigatoni. For security
reasons, we assume that all ACs come with their proper PKI certificate.

Agent Broker (AB). This unit can be, e.g., a computer device made up of a high speed CPU, an IP or ad hoc
connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a high speed hard-disk with a resource routing table
to route queries, and an efficient program to match and filter the routing table. The computer should be able
to work in global mode, by first registering itself in the overlay and then receiving, filtering and dispatching
global requests through the network. The tasks of a AB are:

e Discover the address of another super-AB, representing the super-leader of the super-colony, where
the AB colony is embedded. We assume that every AB comes with its proper PKI certificate. The
policy to accept or refuse the registration of an AC with a different PKI is left open to the level of
security requested by the colony;

e Register/unregister the proper colony with the leader AB which manages the super-colony;

e Register/unregister clients and servants AC in its colony, and update the internal resource routing
table accordingly;

e Receive the request for servicing of the client AC;

e Discover the resources that satisfy an AC request in its local base (local colony), according to its
resource routing table;

e Delegate the request to an AB leader of the direct super-colony in case the resource cannot be satisfied
in its proper colony; it must register itself (and by product its colony) with another super-colonys;

e Perform a combination of the last two actions mentioned above;
e Deal with all PKI intra- and inter-colony policies;

e Notify, after a fixed timeout period, or when all ACs failed to satisfy the delegated request, the AC
client of the denial of service requested by the AC client;

3.3.2.

3.3.3.

Team LogNet 7

e Send all the information necessary to make the AC client able to communicate with the AC servants.
This notification is encoded using the resource discovery protocol. (Finally, the AC client will
directly talk with the ACs servants).

Agent Router (AR). This unit implements all the low-level overlay network routines, those which really have
access to the IP or to the ad-hoc connections. In a nutshell, an AR is a shared library dynamically linked with
an AC or an AB. The AR is devoted to the following tasks:

e Upon the initial start-up of an AC (resp. AB) it helps to register the unit with one or many ABs that it
knows or discovers;

e Checks the well-formedness and forwards packets of the two Arigatoni’s protocols across the overlay
toward their destinations.

Virtual organizations

Agent computers communicate by first registering with the colony and then by asking and offering services.
The leader agent broker analyzes service requests/responses, coming from its own colony or arriving from a
surrounding colony, and routes requests/responses to other agents. Agent computers get in touch with each
other without any further intervention from the system, in a P2P fashion. Peers’ coordination is achieved by a
simple program written in an orchestration/business language a la BPEL, or JOpera.

Symmetrically, the leader of a colony can arbitrarily unregister an agent from its colony, e.g., because of its bad
performance when dealing with some requests or because of its high number of “embarrassing” requests for
the colony. This strategy, reminiscent of the Roman do ut des, is nowadays called, in Game Theory, Rapoport’s
tit-for-tat strategy [22] of cooperation based on reciprocity. Tit-for-tat is commonly used in economics, social
sciences, and it has been implemented by a computer program as a winning strategy in a chess-play challenge
against humans (see also the well known prisoner dilemma). In computer science, the tit-for-tat strategy is the
stability (i.e. balanced uploads and downloads) policy of the Bittorrent P2P protocol.

Once an agent computer has issued a request for some service, the system finds some agent computers (or,
recursively, some sub-colonies) that can offer the resources needed, and communicates their identities to the
(client) agent computer as soon as they are found.

The model also offers some mechanisms to dynamically adapt to dynamic topology changes of the overlay
network, by allowing an agent (computer or broker, representing a sub-colony) to login/logout to/from a
colony. This essentially means that the process of routing request/responses may lead to failure, because some
agents logged out or because they are temporarily unavailable (recall that agents are not slaves). This may
also lead to temporary denials of service or, more drastically, to the complete logout of an agent from a given
colony in the case where the former does not provide enough services to the latter.

Resource discovery protocol (RDP)

Kind of discovery. The are mostly two mechanisms of resource discovery, namely:

e The process of an AB to find and negotiate resources to serve an AC request in its own colony;

e The process of an AC (resp. AB) to discover an AB, upon physical/logical insertion in a colony.

The first discovery is processed by Arigatoni’s resource discovery protocol, while the second is processed
out of the Arigatoni overlay, using well-known network protocols, like DHCP, DNS, the service discovery
protocol SLP of BLUETOOTH, or Active/Passive Scanning in WIFI.

The current RDP protocol version allows the request for multiple services and service conjunctions. Adding
service conjunctions allows an AC to offer several services at the same time. Multiple service requests can be
also asked of an AB; each service is processed sequentially and independently of the others. As an example
of multiple instances, an AC may ask for three CPUs, or one chunk of /0GB of HD, or one gcc compiler. As
an example of a service conjunction, an AC may ask for another AC offering at the same time one CPUS, and
one chunk of /GB of RAM, and one chunk of /0GB of HD, and one gcc compiler. If a request succeeds, then,
using a simple orchestration language, the AC client will use all resources offered by the servers ACs.

3.3.4

8 Activity Report INRIA 2009

The RDP protocol proceeds as follows: suppose an AC X registers — using the intermittent protocol VIP
presented below — with an AB and declares its availability to offer a service S, while another AC Y, already
registered, issues a request for a service S’. Then, the AB looks in its routing table and filters S’ against S. If
there exists a solution to this filter equation, then X can provide a resource to Y. For example, the resource
S £ [CPU = Intel, Time < 10sec] filters against S’ = [CPU = Intel, Time > 5sec], with attribute values Intel
and Time between 5 and 10 seconds.

Routing tables in RDP. In Arigatoni, each AB maintains a routing table T locating the services that are
registered in its colony. The table is updated according to the dynamic registration and unregistration of ACs
in the overlay; thus, each AB maintains a partition of the data space. When an AC asks for a resource (service
request), then the query is filtered against the routing tables of the ABs where the query has arrived and the AC
is registered; in case of a filter-failure, the ABs forward the query to their direct super-ABs. Any answer of the
query must follow the reverse path.

Thus, resource lookup overhead reduces when a query is satisfied in the current colony. Most structured
overlays guarantee lookup operations that are logarithmic in the number of nodes. To improve routing
performance, caching and replication of data and search paths can be adopted. Replication also improves
load balancing, fault tolerance, and the durability of data items.

Virtual Intermittent Protocol (VIP)

There are essentially two ways in which an AC can register to an AB (sensible to its physical position in the
network topology), the latter not being enforced by the Arigatoni model (see [6]):

1. Registration of an AC to an AB belonging to the same current administrative domain;

2. Registration via tunneling of an AC to another AB belonging to a different administrative domain.

If both registrations apply, the AC is de facto working in local mode in the current administrative domain and
working in global mode in another administrative domain. Symmetrically, an AC can unregister according to
the following simple rules “d’étiquette”:

e Unregistration of an AC is allowed only when there are no pending services demanded of or requested
from the leader AB of the colony: agent computers must always wait for an answer of the AB or for
a direct connection of the AC requesting or offering the promised service, or wait for an internal
timeout (the time-frame must be negotiated with the AB);

e (As a corollary of the above) an AB cannot unregister from its own colony, i.e. it cannot discharge
itself. However, for fault tolerance purposes, an AB can be faulty. In that case, the ACs unregister
one after the other and the colony disappears;

e Once an AC has been disconnected from a colony belonging to any administrative domain, it can
physically migrate into another colony belonging to any other administrative domain;

e Selfish agents in P2P networks, called “free riders”, that only utilize other peers’ resources without
providing any contribution in return, can be fired by a leader; if the leader of a colony finds that the
agent’s ratio of fairness is too small (< € for a given ¢€), he can arbitrarily decide to fire that agent
without notice. Here, the VIP protocol also checks that the agent has no pending services to offer,
or that the timeout of some promised services has expired, the latter case meaning that the free rider
promised some services but finally did not provide any service at all (untrustworthiness).

Registration policies in VIP. VIP registration policies are usually not specified in the protocol itself; thus,
every agent broker is free to choose its acceptance policy. This induces different self-organization policies and
allows for reasoning on the colony’s load-balancing and kind of colonies. Possible politics and are:

e (mono-thematic) An agent broker accept an agent into its colony if the latter offers resources S that
the colony already has in quantity > e, for a given ¢;

o (multi-thematic) An agent broker accept an agent if the latter offers resources that the colony has in
quantity < e, for a given €;

Team LogNet 9

e (unbalanced) An agent broker accepts an agent always;
e (pay-per-service) An agent broker accepts only agents that accept to pay some services;

o (metropolis/village) An agent broker accepts an agent into its colony only if the number of citizens
is greater/lesser than [V;

e (custom) An agent broker accepts an agent following a mix of the above politics.

3.3.5. Two simple examples

To give an idea of the possible usage of the Arigatoni generic overlay network we present two examples; the
first one has a Grid-computing flavor while the second is a nice interweaving of the Arigatoni overlay seated
on the top of both /P and MANET underlay network. For more information, the interested reader can have a
look on [1], [7], [2].

Figure 4. Arigatoni Overlay Network for a Grid Seismic Monitoring Application

GRID: scenario for seismic monitoring. John, chief engineer of the SeismicDataCorp Company, Taiwan,
on board of the seismic data collector ship, has to decide on the next data collecting campaign. For this he
would like to process and analyze 100 TeraBytes of seismic data that have been recorded on the data mass
recorder located in the offshore data repository of the company. He has written the processing program for
modeling and visualizing the seismic cube using some parallel library like e.g. MPI or PVM: his program can
be distributed over different machines that will compute a chunk of the whole processing; however, the amount
of computation is so big that a supercomputer and a cluster of PCs have to be rented by the SeismicDataCorp
company. John will ask also for bandwidth in order to get rid of any bottlenecks related to the big amount of
data to be transferred. Then, the processed data should be analyzed using the Virtual Reality Center, (VRC)
based in Houston, U.S.A. by a specialist team and the resulting recommendations for the next data collect
campaign have to be sent to John. With this in mind:

1. John logs onto the Arigatoni Overlay Network in a given colony in Taiwan, and sends a quite
complicated service request in order for the data to be processed using his own code. Usually the AB
leader of the colony will receive and process the request;

2. If the Resource Discovery performed by the AB succeeds, i.e. a supercomputer and a cluster and an
ISP are found, then the data are transferred at a very high speed and the “Sinfonia” begins;

3. John will also ask (in the RDP request) to the AC containing the seismic data to dispatch suitable
chunks of data to the supercomputer and the cluster designated by the AB to perform some pieces of
computation;

10 Activity Report INRIA 2009

4. John will also ask (in the RDP request) to the supercomputer to perform the task of collecting
all intermediate results, so calculating the final result of the computation, like a “Maestro di
Orchestra”;

5. The processed data are then sent from the supercomputer, via the high speed ISP, to the Houston
center for being visualized and analyzed;

6. Finally, the specialist team’s recommendations will be sent to John’s laptop.

This scenario is pictorially presented in Figure 4 (we suppose a number of sub-colonies with related leaders
AB, all registered as agents to a super-AB;for example the John’s AB could be elected as the super-leader).
For simplify security issues, all AB’s are trusted using the same PKI, making all resources of their colonies
de facto common. An animation of the coordination program, written in the visual language JOpera can be
downloaded at http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv.

3.4. General research directions

Following our main three topics, network organization, resource discovery and orchestration, for middle and
long term research, we envisage the following studies.

3.4.1. On Virtual organizations

o Trees vs. graphs: a conflict without a cause. In the first versions of Arigatoni, the network topology
was tree- or forest-based. But since agents are not slaves, multiple registrations are in principle
possible and unavoidable. This weaves the network topology into a dynamic graph [20], where
nodes do not have a complete knowledge of the topology itself. As an immediate consequence,
our protocols must deal with multiple registrations of the same agent in different colonies, with the
natural consequence of resource overbooking, routing table update loops (when a service update
request comes back to the broker that generates the request itself), and resource discovery loops
(when a resource service request comes back to the agent that generates the request itself), see [9].

As an example of resource overbooking, suppose an agent computer registers to two colonies, by
declaring and offering the same resource S twice, i.e. once for each colony. This phenomenon
is well known in the telecommunications industry, as in the “frame-relay” world. For the record,
overbooking in telecommunications means that a telephone company has sold access to too many
customers who basically flood the telephone company lines, resulting in an inability for some
customers to use what they purchased. Other examples of overbooking can be found in the domain
of transportation (airlines) and hotel reservations.

Resource discovery is a non-trivial problem for large distributed systems featuring a discontinuous
amount of resources offered by agent computers and their intermittent participation in the overlay.
Peers’ intermittence lead also to the design of new routing algorithms and protocols stable to agent
churn; this scenario can be modeled using dynamic graph theory.

o Fault tolerance. The virtual organization model offers some mechanisms to dynamically adapt
to dynamic topology changes of the overlay network, by allowing an agent (computer or broker,
representing a sub-colony) to login/logout in/from a colony. This essentially means that the process
of routing requests and responses may lead to failure, because some agents logged out or because
they are temporarily unavailable (recall that agents are not slaves). This may also lead to temporary
denials of service or, more drastically, to the complete “delogging” of an agent from a given colony
in the case where the former does not provide enough services to the latter.

3.4.2. On Resource discovery

o Parametricity and universality. Dealing only with resource discovery has one important advan-
tage: the complete generality and independence of any offered and requested resource. Thus, Ariga-
toni can fit with various scenarios in the agent computing arena, from classical P2P applications, like
file- or band-sharing, to more sophisticated Grid applications, like remote and distributed big (and

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv

Team LogNet 11

small) computations, until possible, futuristic migration computations, i.e. transfer of a non com-
pleted local run in another agent computer, the latter being useful in case of catastrophic scenarios,
such as fire, a terrorist attack, an earthquake, etc., in the vein of agent programming languages a la
Obliq or Telescript. We could envisage at least the following scenarios to be a tight fit for our model:

— Request for computational power (i.e. the Grid);

— Request for memory space (i.e. distributed storage);

— Request for bandwidth (i.e. VoIP);

— Request for a distributed file retrieving (i.e. standard P2P applications);

— Request for a (possibly) distributed web service (i.e. query a la Google or any service
available via web-oriented protocols);

— Orchestration of a distributed execution of an algorithm (i.e. a kind of distributed von
Neumann machine);

— Request for a computation migration (i.e. transfer one partial run in another agent
computer, saving the partial results, as in a truly mobile ubiquitous computation);

— Request for a human computer interaction (the human playing the role of an agent)...

e Social model underneath an overlay network computer. The Arigatoni overlay network computer
defines mechanisms for devices to inter-operate, by offering services, in a way that is reminiscent to
Rapoport’s tit-for-tat strategy of co-operation based on reciprocity. This way to understand common
behavior of virtual organizations has some theoretical basis on Game Theory. Classical results from
game theory are based on the assumption that a shared amount of resources is available and then
users have an incentive to collaborate. The very first design of Arigatoni forced each AC to register
to only one AB. But, recent studies showed that the Arigatoni overlay can be smoothly scaled up to
a more general topology where each AC may simultaneously be registered to several AB, and where
a colony is just one possible social scheme [19].

This means that Arigatoni fits with motivations and cooperation behavior of different communities. It
tries to be policy neutral, leaving policy choices for each agent at the implementation or configuration
level, or at the community or organization level. Policy domains can overlap (one agent can define
himself as belonging “much” to the colony foo and “a little bit” to the colony bar). This denotes
a decentralized non-exclusive policy model. As such, one question can arise: who is Arigatoni
designed for? We believe the overlay is flexible enough to serve a mix of different “social structures”
and “end-users”:

— Independent end-user connecting through his ISP or migrating from hot-spot to hot-spot;
— Cooperative communities of disseminated agents;
— More regulated or hierarchical communities (maybe a better view of a corporate network);
— Cooperative or competitive resource providers and resource brokers.
e Quality metrics underneath an overlay network computer. The Arigatoni overlay network
computer is suitable to support various extended trust models. Moreover, the reputation score could
be expanded to a multi-dimensional value, for example, by adding a score for quality of the service

offered by an agent. However, Arigatoni encourages cooperation and enables gratuitous resource
offering. But it may also suit business extensions, e.g.:

— An agent computer can sell resource usage, creating a resource business;

— An agent broker can sell a resource discovery service, creating a brokering business (“/
point you to the best resources, more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of service extensions — among
others:

12 Activity Report INRIA 2009

— How to create and call third party services for on-line payment of services;
— How to exchange digital cash for payment of services;

— How to negotiate service conditions between client and servants, including the price and
quality of service.

The one-to-many nature of the RDP protocol service request (SREQ) are of particular interest in
this case. Another possible Arigatoni extension may define how to join a third party auction server.
Candidate servants for a SREQ would contact the auction server and make their bid. The trusted
auction server chooses the elected candidate and service conditions based on auction terms. The
agent would then contact the auction server and get this information. Those extensions may take
advantage of the RDP optional fields [1], for example to transmit location and parameter information
to call a third party system.

3.4.3. Execution model

e Programming an overlay network computer. Once resources (hardware, software...) have been
discovered, the agent computer that made the request may wish to use and manipulate it; to
do this, the agent computer has written a (distributed) program in a new language (a la BPEL,
LINDA, YAWL, JOpera...), let’s call it Ivonne, in honor to the great scientist John von Neumann.
Those languages are often called (terminology often overlaps), coordination- workflow- dataflow-
orchestration- composition- metaprogramming- languages. Ivonne will have ad hoc primitives to
express sequences, iterators, cycles, parallel split, joins, synchronization, exclusive/multi/deferred
choice, simple/multi/synchronizing merge, discriminators, pipelining, cancellation, implicit termi-
nation, exception handling... [24].

The “main” of an Ivonne program will be run on the agent computer machine that launched the
service request and received the resources availability: it will orchestrate and coordinate data and
program resources executed on others agent computers.

In case of failure of a remote service — due to a network problem or simply because of the
unreliability or untrustability of the agent that promised the resource — an exception handling
mechanism will send a resource discovery query on the fly to recover a faulty peer and the actual
state of the run represented, in semantic jargon, by the current continuation.

We also envisage to design a run-time distributed virtual machine, built on top of a virtual or
hardware machine, in order to scale-up from local to distributed computations and to fit with the
distributed nature of an overlay network computer. Communication between agent computers will
be performed through a logic bus, using Web technologies, like SOAP or AJAX protocols, or a
combination of Java-based JNI+RMI-protocols, or .NET, XPCOM, D-BUS, OLE bus protocols, or
even by enriching the Arigatoni protocol suite with an ad hoc control-flow and data-flow protocol,
and permitting to use it directly inside Ivonne.

The Ivonne language can be both interpreted and compiled. In the latter case we envisage the design
of an intermediate low-level distributed assembler language in which Ivonne could be compiled. The
intermediate machine code will recast the assembler pseudo code

move RO R1

a la Backus [18] in

move dataRO from ipRO:portRO to ipR1:portR1

where, of course, latency is an non-trivial issue, or the assembler pseudo code

op RO R1 R2in

op on ipRO with ipRO:portRO:dataRO and ipRl:portRl:dataRl and

stockin ipR2:portR2:dataR2.

Resuming, an overlay program will be a smooth combination of an overlay network connectivity
dealing with virtual organizations and discovery protocols, a computation of an algorithm resulting

Team LogNet 13

of the summa of all algorithms running on different computer agents, and the coordination of all
computer agents, made by an Ivonne program.

+ Trust and security. In order to work securely, the Arigatoni overlay network computer needs to be able to
offer the following guarantees to its components:

e The communication between two agents must be secured;

e Therole played by an agent (i.e. client AC, servant AC or AB) must be certified by a third party trusted
by the agents that communicate with this particular agent. A way to implement those constraints is to
use PKI certificates. A Certification Authority delivers certificates, and couples of private and public
keys for ACs and ABs which attest to their distinctive roles. The whole mechanisms involved by a
PKI are out of the scope of this research statement, but good use of PKIs and an implementation
compliant with RFC2743 can provide all the necessary security, namely the trustfulness on the
identity of the peers, and the trustfulness of all the transmitted data, i.e. secrecy, authenticity, and
integrity;

e In addition to PKIs, a more “liquid” trust model could be built, based on reputation mechanisms.
Reputation represents the amount of trust an agent in the overlay has in another agent based on its
partial view. In a nutshell:

— Each agent maintains a reputation score for each agent he knows;
— Each agent maintains a reputation score for each resource he serves;
— Exchanges between agents update each other’s scores dynamically;

— Conflicts between two or many agents are resolved by the broker leaders of the colonies to
which the agents belong;

— The computation of the reputation score (a trust metrics) and the way agents exchange
scores is left free to each single implementation.

A last word on implementation issues of the Arigatoni overlay network computer: it is well-known that two
technical barriers are commonly used to block transmission over /P network in overlays:

e Firewalls to drop UDP flows (usually considered as suspects);

e NAT techniques to mask to the outside world the real /P addresses of inside hosts; a NAT equipment
changes the IP source address when a packet goes to outside, and it changes the IP destination
address when a packet comes from outside.

The usage of these mechanisms is very frequent on the Internet and they are barriers that can prevent
connections between inside and outside agents in Arigatoni. The implementation of RFC3489 could be used
to overcome such obstacles.

4. Application Domains

4.1. Panorama

Because of its generality, our overlay network can target many applications. We would like to list a small list
of useful programmable overlay networks case studies that can be considered as “LogNet Grand Challenges”
to help potential readers understand the interest of our research program.

e New distributed models of computation
e Opverlay networks over mobile ad hoc networks

e Reduce the digital divide

14 Activity Report INRIA 2009

4.2. Potential applications

From large-scale computing machines to large-scale overlay network machines (John von Neumann
was right after all). This challenge is inspired by the seminal talk by John von Neumann, given in May 1946,
“Principles of Large-Scale Computing Machines”, typesetted and reprinted in [25]. At that time, “large-scale”
meant the ENIAC computer, i.e., 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors,
10,000 capacitors, 5 million joints, 30 short tons, 2.4m x 0.9m x 30m, stored in a 167 m? room, and 150 kW
to operate. Today, thanks to the Moore’s law and to the Internet, “large scale” means “worldwide scale”, i.e.
the computer hardware is distributed in space and in time and must be negotiated before being used. The main
inspirations of the programmable overlay network computer research’s vein are still contained in that article.

The term “von Neumann bottleneck” was coined by John Backus in his 1977 ACM Turing award lecture.
Bottleneck refers to the fact that, since data and program are stored on the same support (the memory),
the throughput (data transfer rate) between the CPU and the memory is very low. In current von Neumann
architecture, the bottleneck is alleviated by using big cache memories. Since in overlay network computers the
bus can be modeled by an Internet connection, the data transfer is still more critical than on a single processor
machine. As such, we should probably look at new computer architectures, such as the Harvard one.

12}

Needless to say that the “icing on the cake” will be to formalize this new distributed computational model
and architecture, together with a formal proof of its Turing completeness statement!

Developing a pedestrian/vehicular infrastructure based on an overlay network computer. We plan to
build an ad hoc vehicular network infrastructure using the Arigatoni overlay infrastructure. That network must
enable efficient and transparent access to the resources of on-board and roadside agents. In such a scenario,
commercial services and access to public information are available to vehicles transiting in specific areas
where such information is broadcast by roadside wireless gateways or by other vehicles. Data retrieved can
be stored on the on-board vehicle computer; then, they can be used and rebroadcast at a later time without the
need of persistent connectivity. These new features will offer innovative functions and services, such as:

e Distribution, from infrastructure to vehicle (/12V), and among vehicles (V2V), of safety and/or traffic-
related information;

e Collection, from vehicles to infrastructures (V21), of data useful to perform traffic management;

e Exchange of information between private vehicles and public transportation systems (buses, vehi-
cles, road side equipments...) to support and, thus, foster inter-modality in urban areas;

e Distribution of real-time, updated information to enable dynamic navigation services.

In this scenario, vehicles/pedestrians play the role of agent computers, while Bus-stop stations equipped with
IP network, routing tables and WIFI access point play the role of agent brokers; Buses play the role of mobile
agent brokers, a sort of proxy of a unique bus-stop agent broker. Proxy load balancing policies are left to the
bus headquarter (HQ). See, for more details, the Arigatoni’s sub-project Ariwheels.

Programming services for the new mesh overlay network in the Campus STIC of Sophia Antipolis.
The future Campus STIC, grouping EPU, UNSA, Eurecom, CNRS, and INRIA will be ready in one year.
It will be equipped with a WIFI network infrastructure implementing 802.11a/b/g protocols, with potential
evolution to 802.11n protocol. The main objectives of such an underlay network are to offer /P connection
to all of the Campus “citizens”: the network must guarantee the respect of French laws concerning public
network connections (décret 2006-358 sur I’offre de connexion au public loi 2006-64). To do this, it would
be suitable that all users get identified using, e.g., using the “pin” code of the student/employee-card. The
infrastructure mainly targets Internet access for all. The Campus STIC WIFT underlay network could be an
unique opportunity to have a real testbed into which we could put our programmable overlay to the test.
Arigatoni and Ariwheels could represent the overlay network infrastructure to offer much more than simply
an Internet connection: the LogNet vision can provide a list of interesting high-level semantic (on demand)
services, and a plausible way to implement it.

Team LogNet 15

Reducing the Digital Divide [Sources Wikipedia]. The digital divide is the troubling gap between those
who use computers and the Internet and those who do not. The term digital divide had a moving target: at
first, it meant the ownership of a computer. Later, it meant access to the Internet. Most recently it centers on
broadband access. In modern usage, the term also means more than just access to hardware, it also refers to
the imbalance that exists amongst groups of society regarding their ability to use information technology.

The digital divide tends to focus on access to hardware, access to the Internet. The writer Lisa J. Servon argued
in 2002 that the digital divide “is a symptom of a larger and more complex problem — the problem of persistent
poverty and inequality”. The four major components that contribute to the digital divide are “socioeconomic
status, with income, educational level, and race among other factors associated with technological attainment”.

One area of significant focus was school computer access; in the 1990s, rich schools were much more likely
to provide their students with regular computer access. In the late 1990s, rich schools were much more likely
to have Internet access. In the context of schools, which have constantly been involved in the discussion of the
divide, current formulations of the divide focus more on how (and whether) computers are used by students,
and less on whether there are computers or Internet connections.

The USA E-rate program (officially the Schools and Libraries Program of the Universal Service Fund),
authorized in 1996 and implemented in 1997, directly addressed the technology gap between rich and poor
schools by allocating money from telecommunications taxes to poor schools without technology resources.
Although the program faced criticism and controversy in its methods of disbursement, it did provide over
100,000 schools with additional computing resources and Internet connectivity.

Recently, discussions regarding the digital divide in school access have broadened to include technology-
related skills and training in addition to basic access to computers and Internet access. An interesting example
is that, in the North of Italy, the town of Pordenone, 50,000 inhabitants, will be equipped with public local
WIFI LAN (e.g. see the declaration of the Major, in Italian, http:/it.youtube.com/watch?v=zBTnkEnXTIc).
Our vision could contribute to reducing the digital divide in our society, and, more contextually, in the future
Campus STIC.

5. Software

5.1. Ariwheels

Participants: Luigi Liquori [contact for the Ariwheels simulator], Claudio Casetti [Politecnico di Torino,
Italy], Diego Borsetti [Politecnico di Torino, Italy], Carla-Fabiana Chiasserini [Politecnico di Torino, Italy],
Diego Malandrino [Politecnico di Torino, Italy, contact for the Ariwheels client].

Ariwheels is an infomobility solution for urban environments, with access points deployed at both bus stops
(forming thus a wired backbone) and inside the buses themselves. Such a network is meant to provide
connectivity and services to the users of the public transport system, allowing them to exchange services,
resources and information through their mobile devices. Ariwheels is both:

e aprotocol, based on Arigatoni and the publish/subscribe paradigm;
e aset of applications, implementing the protocol on the different types of nodes;

e asimulator, written in OMNET++ and recently ported to the ns2 simulator.

We implemented Ariwheels within the Omnet++ simulator, coding the overlay part and exploiting the existing
wireless underlay network modules. In the underlay, we used IEEE 802.11 at the MAC layer and the DYMO
routing protocol (an AODV-like reactive routing protocol). We tested the performance of Ariwheels in a
vehicular environment. We used a realistic mobility model generated by the simulator VanetMobiSim, whose
output (mobility traces) was fed to the Omnet++ simulator. Vehicles travel in a 1 km? city section over a set of
urban roads, which include several road intersections regulated by traffic lights or stop signs. In particular, we
adopted the IDM-IM microscopic car-following model [21], which allows us to reproduce real-world traffic
dynamics as queues of vehicles decelerating and/or coming to a full stop near crowded intersections.

http://it.youtube.com/watch?v=zBTnkEnXTlc

16 Activity Report INRIA 2009

Ariwheels is designed for the scenario of urban public transportation. In such a scenario, a significant number
of users equipped with mobile devices spends significant amounts of time at the bus stops or inside the bus
themselves. The basic idea of Ariwheels is to exploit this situation to let the users exchange data or services
- more generally: resources - through their mobile devices. Ariwheels is based on the 802.11 wireless LAN
protocols. Therefore, its infrastructure is mostly made of access points, deployed at bus stops, forming a
backbone; and on the buses themselves, thus with an intermittent connection to the backbone. Ariwheels have
four kinds of functional units, namely agents, brokers, mobile brokers, and proxies. The agent is a software
running on the user’s device. It will run in user space and unprivileged mode, in order to require no additional
configuration or permissions. Using appropriate sensing and probing mechanisms, the agent will look for a
Broker. Once found one, it performs the registration, which includes sending a list of the resources the agent
has to offer and the request of the resources the agent needs. The broker is a program, running on a mid- or
high-end device. There must be (at least) one broker in each L2 network belonging to the Ariwheels system.
The Broker performs four main duties: advertise its presence and the resources available through it; receive,
elaborate and acknowledge the registration requests coming from the Agents; receive and (try to) answer the
resource request coming from the Agents; manage feedback and reputation. Mobile brokers are brokers with
an intermittent connection to the rest of the network. A typical example is a bus equipped with a wireless
access point, connecting - when possible - to the infrastructure, deployed at some stops. Mobile brokers are
associated with a fixed broker. As soon as this broker becomes available (i.e. the mobile broker can hear its
Hello messages), the mobile broker sends it one or more Dump messages, containing its routing table. Proxies
are the way Ariwheels copes with the need to access information outside the colony. The following basic
principles hold: brokers only store information about their own colony; brokers are the only entity storing
information.

See the web page http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm and http://
arigtt.altervista.org.

5.2. Arigatoni simulator
Participants: Luigi Liquori [contact], Raphael Chand [Université de Geneva, Switzerland].

£ mascotte:~/ARIGATONI/CODE - Konsole
Session Edit View Bookmarks Setiings Help

"] _mglote:~/ARIGATONI/CODE | & mascotte:~/ARIGATONJCODE i

Figure 5. The Arigatoni simulator

We have implemented in C++ (~2.5K lines of code) the Resource Discovery Algorithm and the Virtual
Intermittent Protocol of the Arigatoni Overlay Network. The simulator was used to measure the load when
we issued n service requests at Global Computers chosen uniformly at random. Each request contained a
certain number of instances of one service, also chosen uniformly at random. Each service request was then
handled by the Resource Discovery mechanism of Arigatoni networks.

5.3. BabelChord simulator

Participant: Cédric Tedeschi [contact].

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://arigtt.altervista.org
http://arigtt.altervista.org

Team LogNet 17

We have conducted some simulations of the BabelChord protocol [14]. The simulator, written in Python,
works in two phases. First, a Babelchord topology is created, with the following properties: (i) a fixed network
size (the number of nodes) IV, (ii) a fixed number of floors denoted F, (iii) a fixed global connectivity, i.e., the
number of floors each node belongs to, denoted C'. As a consequence: (i) The nodes are uniformly dispatched
among the floors, i.e., each node belongs to C' floors uniformly chosen among the set of floors. (ii) Each
resource provided by nodes is present at C floors. (iii) The average lookup length within one given floor is
log((N x C)/F)/2.

The second time, the simulator computes the number of hops required to reach one of the nodes storing one
of the keys of a particular resource. Results are given for different values of N, F’, and C'. Simulations show
that only 5% of synapses made of 2 (resp. 3, 5, 10) floors connections in the whole node population is enough
to achieve more than 50% (resp. 60%, 80%, 95%) of exhaustive lookups in the Babelchord network.

5.4. Synapse simulator
Participant: Cédric Tedeschi [contact].

To better capture its relevance, we have conducted some intensive simulations of the Synapse approach [17].
The simulator, written in Python, follows a discrete time approach. First, an initial topology is created, with a
specified number of synapses, each having a specified different degree. Then, some discovery queries are
sent. At each discrete time step, a message sent at the previous step is received by its destination (next
routing step for the sought key). This simulator takes churn into account; at each time step, some events
affect the network: some new nodes join the network, some existing nodes leave it. This simulator has
been used to have a better and deep understanding of Synapse-like architectures, interconnecting structured
overlay networks in a simple ways: routing latency and communication overhead while changing the input
parameters (number of nodes, synapses, degree of synapses, level of churn), see see http://www-sop.inria.fr/
lognet/synapse/pysynapse/pysynapse.zip.

5.5. Synapse client

Participants: Laurent Vanni [contact], Luigi Liquori, Cédric Tedeschi, Vincenzo Ciancaglini.

In order to test our Synapse protocol [17] on real platforms, we have initially developed JSynapse, a Java
software prototype, which uses the Java RMI standard for communication between nodes, and whose purpose
is to capture the very essence of our Synapse protocol. It is a flexible and ready-to-be-plugged library which
can interconnect any type of overlay networks. In particular, JSynapse fully implements a Chord-based inter-
overlay network. It was designed to be a lightweight and easy-to-extend software. We also provided some
practical classes which help in automating the generation of the inter-overlay network and the testing of
specific scenarios. We have experimented with JSynapse on the Grid’5000 platform connecting more than
20 clusters on 9 different sites. Again, Chord was used as the intra-overlay protocol.

We used one cluster located at Sophia Antipolis, France. The Helios cluster consists of 56 quad-core AMD
Opteron 275 processors linked by a gigabit Ethernet connection. The created Synapse network was first
made up of up to 50 processors uniformly distributed among 3 Chord intra-overlays. Then, still on the same
cluster, as nodes are quad-core, we deployed up to 3 logical nodes by processor, thus creating a 150 nodes
overlay network, nodes being dispatched uniformly over 6 overlays. During the deployment, overlays were
progressively bridged by synapses (the degree of which was always 2).

We give a proof of concept and show the viability of the Synapse approach while confirming results obtained
by the simulation. We also focus on the metrics affecting the user (satisfaction ratio and time to get a response).
Once his request was sent, a user waits only for 1 second before closing the channels opened to receive
responses. If no response was received after 1 second, the query is considered as not satisfied, see http://www-
sop.inria.fr/lognet/synapse/jSynapse/index.html.

5.6. Open Synapse client

Participant: Bojan Marinkovic [contact].

http://www-sop.inria.fr/lognet/synapse/pysynapse/pysynapse.zip
http://www-sop.inria.fr/lognet/synapse/pysynapse/pysynapse.zip
http://www-sop.inria.fr/lognet/synapse/jSynapse/index.html
http://www-sop.inria.fr/lognet/synapse/jSynapse/index.html

18 Activity Report INRIA 2009

Opensynapse is an open source implementation of [17]. It is available for free under the GNU GPL. This
implemetation is based on Open Chord (v. 1.0.5) - an open source implementation of the Chord distributed
hash table implementation by Distributed and Mobile Systems Group Lehrstuhl fuer Praktische Informatik
Universitaet Bamberg. http://www-sop.inria.fr/lognet/synapse/open-synapse/index.html.

Opensynapse is implemented on top of an arbitrary number of overlay networks. Inter-networking can be
built on top of Synapse in a very efficient way. Synapse is based on co-located nodes playing a role that is
reminiscent of neural synapses. The current implementation of Opensynapse in this precise case interconnects
many Chord overlay networks. The features of Opensynapse are:

e Stores any serializable Java object within a set of distributed hash tables (dhts).
e Facilitates configurable replication of entries in the dht.
e Currently provides two (proprietary) protocols for communication:

— Local method calls: This protocol can be used to create a dht within one Java Virtual
Machine for testing and visualization purposes.

— Java Sockets: This protocol creates a dht distributed over different nodes (JVMs).

The new client currently can interconnect an arbitrary number of Chord networks. This implementation
follows the notation presented in [14], and so, each new Chord network is called a Floor. Regarding the
open-chord implementation, some new classes were implemented, such as Floor or MyFloor. The rest
of the code is changed only to be compatible with the new data structure, that References and Entries are
specific for a particular floor. Major changes were made in the main classes NodeImpl and ChordImpl, as
well in the communication part, in form of specific proxy classes: SocketProxy with RequestHandler and
ThreadProxy with ThreadEndpoint.

Following the idea that every node is potentially a neural synapse, the decision was made not to implement a
full object-oriented extension of the classes, but only to change the open-chord implementation, because the
new classes which should extend the old ones would have almost the same code as the old ones with the only
novelties being the calls to these altered structures. So, in this case we do not have a real full object-oriented
extension, we just deal with some sort of siblings classes.

5.7. Husky interpreter

Participants: Marthe Bonamy [contact], Luigi Liquori.

[-bash-3.2$./huskyl.5

Jgs
The First Ascii-Oriented Programming Language
Based on the Original Screenplay of the
Inperative Rewriting Calculus v 1.1

Kernel Certified by Cog
Powered by OCaml
Copyright INRIA 2009

NoEffect Theory Loaded
Version 1.lalpha
?. = Learn Husky

Jausxy <<

Figure 6. Launching the Husky interpreter

http://www-sop.inria.fr/lognet/synapse/open-synapse/index.html

Team LogNet 19

Husky is a variableless language based on lambda calculus and term rewriting systems. Husky is based on the
version 1.1 of Snake [10]. It was completely rewritten in CAML by Marthe Bonamy, ENSL (new parser, new
syntactic constructions, like, e.g., guards, anti-patterns, anti-expressions, exceptions and parametrized pattern
matching). In Husky all the keywords of the language are ASCII-symbols. It could be useful to teach basic
algorithms and pattern-matching to childrens.

5.8. myTransport Gui

Participants: Laurent Vanni [contact], Vincenzo Ciancaglini.

Figure 7. myTransport on the Nokia N8OO Internet tablet

myTransport is a GUI built on top of the Synapse protocol and network. Its purpose is to be a proof of concept
of the future service of infomobility to be available in the myMed social Network, see Figure 7. The GUI is
written in Java and it is fully functional in the Nokia N80O internet tablet devices.

5.9. “Perinet” site of the GIR Maralpin
Participants: Luc Marongiu [contact], Alexis Paoleschi.

We design completely, using the Content Management Systems JOOMLA, the “Perinet” site of the GIR
Maralpin Groupe Interdisciplinaire de Réflexion sur les traversées sud alpines et I’ aménagement du territoire
Maralpin. Hundreds of pages of this site are currently visited.

6. New Results

6.1. Babelchord, a DHT’s tower

Participants: Luigi Liquori, Cédric Tedeschi, Francesco Bongiovanni.

A significant part of today’s Internet traffic is generated by peer-to-peer (P2P) applications, used originally for
file sharing, and more recently for real-time multimedia communications and live media streaming.

20 Activity Report INRIA 2009

Distributed hash tables (DHTS) or “structured overlay networks” have gained momentum in the last few years
as the breaking technology to implement scalable, robust and efficient Internet applications. DHTs provide a
lookup service similar to a hash table: (key, value) pairs are stored in the DHT, and any participating node can
efficiently retrieve the value associated with a given key. The responsibility for maintaining the mapping from
names to values is distributed among the nodes, in such a way that a change in the set of participants causes a
minimal amount of disruption. This allows DHTs to scale to extremely large numbers of nodes and to handle
continual node arrivals, departures, and failures.

Chord [23] is one of the simplest protocols addressing key lookup in a distributed hash table: the only operation
that Chord supports is that given a key it route onto a node which is supposed to host the entry (key,value).
Chord adapts efficiently as nodes join and leave the system. Theoretical analysis and simulations showed that
the Chord protocol scales up logarithmically with the number of nodes. In Chord, every node can join and
leave the system without any peer negotiation, even though this feature can be implemented at the application
layer. Chord uses consistent hashing in order to map keys and nodes’ addresses, hosting the distributed table,
to the same logical address space. All the peers use a unique hash function, which is the only way to map
physical addresses and keys to a single logical address space. Peers can join the Chord just by sending a
message to any node belonging to the Chord overlay. No reputation mechanism is required to accept, reject, or
reward peers that are more reliable or more virtuous than others. Merging two Chord rings together is a costly
operation because of the induced message complexity and the substantial time the distributed finger tables
need to stabilize. Both of the rings need to know their relative hash functions and have to decide which ring
will absorb the other, the latter point being critical because of the politics and security reliance. We propose to
connect smaller Chord networks in an unstructured way via special nodes playing the role of neural synapses.

Schematically, the main features of Babelchord are:

Routing over SW/HW-Barriers. Namely, the ability to route queries through different, unrelated, DHTSs
(possibly separated by firewalls) by “crossing floors”. A peer “on the border” of a firewall can bridge two
overlays (having two different hash functions) that were not meant to communicate with each other unless
one wants to merge one floor into the other (operation with a complexity linear in the number of nodes). The
possibility to implement strong or weak security requirements makes Babelchord suitable for employment in
Internet applications where software or social barriers are an important issue to deal with.

Social-based. Every peer has data structures recording peers and floors which are more “attractive” than
others. A “hot” node is a node which is stable (alive) and which is responsible for managing a large number
of (keys-values) in all hosted DHTs. A “hot” floor is a floor responsible for a high number of successful
lookups. Following a personal “good deal” strategy, a peer can decide to invite a hot node on a given floor it
belongs to, or to join a hot floor, or even create from scratch a new floor (and then invite some hot nodes), or
accept/decline an invitation to join a hot floor. This social-behavior makes the Babelchord network topology to
change dynamically. As observed in other P2P protocols, like Bittorrent, peers with similar characteristics are
more willing to group together on a private floor and thus will eventually improve their overall communications
quality. Finally, the “good deal” strategy is geared up to be further enhanced with a reputation-system for nodes
and floors.

Neural-inspired. Since every floor has a proper hash function, a Babelchord network can be thought of as a
sort of meta overlay network or meta-DHT, where inter-floor connections take place via crossroad nodes, a sort
of neural synapses, without sharing a global knowledge of the hash functions and without a time consuming
floor merging. The more synapses you have, the higher the possibility of having successful routing is.

Because of the aforementioned original features, the following are examples of applications for which
Babelchord can provide good groundwork (in addition, of course, to all genuine Chord-based applications,
like cooperative mirroring, time-shared storage, distributed indexes and large-scale combinatorial search).
Anti Internet censorship applications. Internet censorship is the control or the suppression of the publishing
or accessing information on the Internet. Many applications and networks have been recently developed
in order to bypass the censorship: among the many we recall Psiphon (http://psiphon.ca), Tor (http://www.
torproject.org), and many others. Babelchord can support such applications by taking advantage of intra-floor
routing in order to bypass software barriers.

http://psiphon.ca
http://www.torproject.org
http://www.torproject.org

Team LogNet 21

Fully Distributed social-networks applications. Social-networks are emerging as one of the Web 2.0
applications. Famous social networks, such as Facebook or LinkedIn are based on a client-server architecture;
very often those sites are down for maintenance. Babelchord could represent a scalable and reliable alternative
to decentralize key search and data storage.

Large-scale brain model and simulations. (Via a distributed, neural-based, network.) As well explained by
R.D. DeGroot (Project founded by KNAW, Netherlands), supercomputers exist now with raw computational
powers exceeding that of a human brain. Technological and production advances will soon place such
computing power within the hands of cognitive and medical neuroscience research groups. For the first time it
will be possible to execute brain-scale simulations of cognitive and pharmacological processes over millions
and then billions of neurons - even at the biological model level. Babelchord could help modeling as a meta-
overlay network for the human brain.

6.2. Synapse, interconnecting heterogeneous overlay networks

Participants: Luigi Liquori, Cédric Tedeschi, Laurent Vanni, Francesco Bongiovanni, Vincenzo Ciancaglini,
Bojan Marinkovic.

We investigate Synapse [17], a scalable protocol for information retrieval over the inter-connection of
heterogeneous overlay networks. Applications of top of Synapse see those intra-overlay networks as a unique
inter-overlay network.

Scalability in Synapse is achieved via co-located nodes, i.e. nodes that are part of multiple overlay networks
at the same time. Co-located nodes, playing the role of neural synapses and connected to several overlay
networks, give a larger search area and provide alternative routing.

Synapse can either work with “open” overlays adapting their protocol to synapse interconnection requirements,
or with “closed” overlays that will not accept any change to their protocol. Built-in primitives to deal with
social networking give an incentive for nodes cooperation. Results from simulation and experiments show that
Synapse is scalable, with a communication and state overhead scaling similarly as the networks interconnected.
thanks to alternate routing paths, Synapse also gives a practical solution to network partitions. We precisely
capture the behavior of traditional metrics of overlay networks within Synapse and present results from
simulations as well as some actual experiments of a client prototype on the Grid’5000 platform. The prototype
developed implements the Synapse protocol in the particular case of the inter-connection of many Chord
overlay networks.

The inter-connection of overlay networks has been recently identified as a promising model to cope with
today’s Internet issues such as scalability, resource discovery, failure recovery or routing efficiency, in
particular in the context of information retrieval. Some recent researches have focused on the design of
mechanisms for building bridges between heterogeneous overlay networks for the purpose of improving
cooperation between networks that have different routing mechanisms, logical topologies and maintenance
policies. However, more comprehensive approaches of such inter-connections for information retrieval and
both quantitative and experimental studies of its key metrics, such as satisfaction rate or routing length, are
still missing.

Many disparate overlay networks may not only simultaneously co-exist in the Internet but also compete
for the same resources on shared nodes and underlying network links. One of the problems of the overlay
networking area is how heterogeneous overlay networks may interact and cooperate with each other. Overlay
networks are heterogeneous and basically unable to cooperate each other in an effortless way, without
merging, an operation which is very costly since it not scalable and not suitable in many cases for security
reasons. However, in many situations, distinct overlay networks could take advantage of cooperating for
many purposes: collective performance enhancement, larger shared information, better resistance to loss of
connectivity (network partitions), improved routing performance in terms of delay, throughput and packets
loss, by, for instance, cooperative forwarding of flows.

22 Activity Report INRIA 2009

As a basic example, let us consider two distant databases. One node of the first database stores one
(key, value) pair which is searched by a node of the second one. Without network cooperation those two
nodes will never communicate together. As another example, we have an overlay network where a number of
nodes got isolated by an overlay network failure, leading to a partition: if some or all of those nodes can be
reached via an alternative overlay network, than the partition “could” be recovered via an alternative routing.

In the context of large scale information retrieval, several overlays may want to offer an aggregation of
their information/data to their potential common users without losing control of it. Imagine two companies
wishing to share or aggregate information contained in their distributed databases, obviously while keeping
their proprietary routing and their exclusive right to update it. Finally, in terms of fault-tolerance, cooperation
can increase the availability of the system, if one overlay becomes unavailable the global network will only
undergo partial failure as other distinct resources will be usable.

We consider the tradeoff of having one vs. many overlays as a conflict without a cause: having a single global
overlay has many obvious advantages and is the de facto most natural solution, but it appears unrealistic in
the actual setting. In some optimistic case, different overlays are suitable for collaboration by opening their
proprietary protocols in order to build an open standard; in many other pessimistic cases, this opening is simply
unrealistic for many different reasons (backward compatibility, security, commercial, practical, etc.). As such,
studying protocols to interconnect collaborative (or competitive) overlay networks is an interesting research
vein.

The main contribution of thisresearch vein is to introduce, simulate and experiment with Synapse, a scalable
protocol for information retrieval over the inter-connection of heterogeneous overlay networks. The protocol
is based on co-located nodes, also called synapses, serving as low-cost natural candidates for inter-overlay
bridges. In the simplest case (where overlays to be interconnected are ready to adapt their protocols to the
requirements of interconnection), every message received by a co-located node can be forwarded to other
overlays the node belongs to. In other words, upon receipt of a search query, in addition to its forwarding to
the next hop in the current overlay (according to their routing policy), the node can possibly start a new search,
according to some given strategy, in some or all other overlay networks it belongs to. This obviously implies
to providing a Time-To-Live value and detection of already processed queries, to avoid infinite loop in the
network, as in unstructured peer-to-peer systems.

We also study interconnection policies as the explicit possibility to rely on social based strategies to build
these bridges between distinct overlays; nodes can invite or can be invited.

In case of concurrent overlay networks, inter-overlay routing becomes harder, as intra-overlays are provided as
some black boxes: a control overlay-network made of co-located nodes maps one hashed key from one overlay
into the original key that, in turn, will be hashed and routed in other overlays in which the co-located node
belongs to. This extra structure is unavoidable to route queries along closed overlays and to prevent routing
loops.

Our experiments and simulations show that a small number of well-connected synapses is sufficient in order
to achieve almost exhaustive searches in a “synapsed” network of structured overlay networks. We believe that
Synapse can give an answer to circumventing network partitions; the key points being that: (i) several logical
links for one node leads to as many alternative physical routes through these overlay, and (i¢) a synapse can
retrieve keys from overlays that it doesn’t even know simply by forwarding their query to another synapse
that, in turn, is better connected. Those features are achieved in Synapse at the cost of some additional data
structures and in an orthogonal way to ordinary techniques of caching and replication. Moreover, being a
synapse can allow for the retrieval of extra information from many other overlays even if we are not connected
with.

6.3. DHT formal specification

Participants: Bernard Serpette, Cédric Tedeschi.

Team LogNet 23

We have begun a formal specification associated to a PiNet implementation, of a DHT (Distributed Hash
Table) oriented network. The specification is done via a relation on network states (small step semantics). A
network state is the set of all individuals network nodes states. A node state consists of a, possibly sorted, set
of neighbors, i.e. the nodes known by a specific node, a local memory and a queue of messages received by the
node to be executed. The semantics describe the behavior of incoming messages in each nodes. The specificity
of the formalized DHT are:

(4) as in Chord, the path found between any two nodes of the network has a length which is in O(Log(n)),
where n is the number of nodes of the network; (i¢) the graph induced by the neighbors is symmetric, i.e.
if a node a can communicate with a node b, then b can communicate with a. This fact is generally ensured
by the transport layer (TCP, UDP...) and thus the associated improvement (path lengths are divided by two)
comes at a low price; (i4¢) the dynamic nature of such network, i.e. the fact that nodes can join and leave the
network, requires to readjust the neighbors of some nodes. This readjustment is called stabilization. In contrast
to Chord, where stabilization is done via a periodic background process which is hard to tune, our stabilization
is done during the routing of messages and thus 1) does not make any administrative charge when the network
is sleeping 2) uses only few words in already existing packets and so has a very limited impact to the average
network latency.

Following a formal general specification of such networks, we have developed a java simulator, coupled to a
real implementation intended to catch the exact precise behavior of several topologies used in P2P systems.

6.4. Resource discovery and Self-stabilizing in Tree-bases P2P systems

Participants: Cédric Tedeschi, Eddy Caron [EPI GRAAL INRIA], Frédéric Desprez [EPI GRAAL INRIA],
Franck Petit [EPI GRAAL INRIA].

The Distributed Lexicographic Placement (DLP)-Table is a P2P approach for the service discovery within
large scale grids. It relies on a prefix tree structured overlay network. It provides load balancing, efficient
mapping of nodes of the tree onto processors of the network and fault-tolerance mechanisms, formally proved
to be self-stabilizing, i.e. converging to a correct topology in a finite time starting from an arbitrary topology
and memory state. It has been initially developed within the INRIA GRAAL project team.

In collaboration with Eddy Caron, Frédéric Desprez and Franck Petit of GRAAL, we have written a chapter
to appear in the future book entitled “Handbook of Research on P2P and Grid Systems for Service-Oriented
Computing: Models, Methodologies and Applications” and published by IGI Global [15]. This chapter gives
a more popularizing view of the system and its features.

A journal paper about the stabilizing part of this architecture has been accepted for publication in Parallel
Processing Letters [13].

6.5. Intersection and Union Types a la Church
Participants: Luigi Liquori, Dan Dougherty.

We studied an explicitly typed lambda calculus “a la Church” based on the union and intersection types
discipline; this system is the counterpart of the standard type assignment calculus “a la Curry.” Our typed
calculus enjoys Subject Reduction and confluence, and typed terms are strongly normalizing when the
universal type is omitted. Moreover, both type checking and type reconstruction are decidable. In contrast to
other typed calculi, a system with union types will fail to be “coherent” in the sense of Tannen, Coquand,
Gunter, and Scedrov: different proofs of the same typing judgement will not necessarily have the same
meaning. In response, we introduce a decidable notion of equality on type-assignment derivations inspired
by the equational theory of bicartesian-closed categories [16].

24 Activity Report INRIA 2009

We address the problem of designing a A-calculus a la Church corresponding to Curry-style type assignment
to an untyped A-calculus with intersection and union types. In particular, we define a typed language such
that its relationship with the intersection-union type assignment system fulfills the following desiderata: (i)
typed and type assignment derivations are isomorphic, i.e., the application of an erasing function on all typed
terms and contexts (in a typed derivation judgment) produces a derivable type assignment derivation with the
same structure, and every type assignment derivation is obtained from a typed one with the same structure by
applying the same erasure; (ii) type checking and type reconstruction are decidable; (iii) reduction on typed
terms has the same fundamental nice properties of reduction on terms receiving a type in the type-assignment
system, namely confluence, preservation of typing under reduction, and strong normalization of terms typable
without the universal type w.

6.6. Dealing with uncertain knowledge in Logical Frameworks

Participants: Petar Maksimovic, Luigi Liquori.

The main goal of this research vein is the design and prototype implementation of logical frameworks in which
it would be possible to smoothly encode various probabilistic logics, and other logics considered in general
to be exotic, such as Modal, Program, Linear or Relevance logics. It may also involve the formalization and
possible creation of a certified SAT checker for one or more probabilistic logics within the proof assistant Coq.

The theoretical background behind this involves:

e typed lambda calculi, namely the cube of Barendregt,
e the Edinburgh Logical Framework, and

e the proof assistant Coq.

At this point, formalization of one of the probabilistic logics, namely LP P, in the proof assistant Coq, is
well under way. In this probabilistic logic, one can make statements of the form "the probability of A is at
least s", where A is a classical formula, and s is a rational number from the interval [0, 1], but with formulas
themselves still remaining either true or false. The syntax, the semantics, and a complete axiomatization with
appropriate inference rules have been encoded in Coq, and the soundness of the system (the validity of axioms
with respect to the semantics and the preservation of validity by the inference rules) has been proven formally.
The formal proof of completeness and an analysis of possible formalization of a SAT checker for this logic
are in progress, and we expect sufficient progress for appropriate publication in the first half of 2010.

7. Other Grants and Activities

7.1. European Initiatives

7.1.1.

7.1.2.

Interreg Alcotra: myMed, 2010-2012

Participants: Luigi Liquori, Laurent Vanni, Vincenzo Ciancaglini, Claudio Casetti, Carla-Fabiana Chi-
asserini.

The Interreg Alcotra office has founded the three-year project myMed : un réseau informatique transfrontalier
pour léchange de contenus dans un environnement fixe et mobile. LogNet will head the project; other partners
are Vulog PME, GIR Maralpin, Politecnico di Torino, Uni. Torino, Uni. Piemonte Orientale. The total budget
1380Keur (796Keur for 'INRIA) - the external founding is 932Keur (526Keur for I'INRIA). The founders are
UE, PACA, CG06, PREF06, and INRIA, see http://www-sop.inria.fr/mymed.

FP6 FET Global Computing: IST AEOLUS, 2005-2009

Participants: Luigi Liquori, Laurent Vanni.

http://www-sop.inria.fr/mymed

Team LogNet 25

AEOLUS, Algorithmic principles for building efficient overlay computers, in collaboration with 21 European
universities and coordinated by University of Patras, Greece. LogNet participates in package 2 (Resource
management) and in package 5 (Extending global computing to wireless users). See also LogNet highlights.

7.1.3. FP6 TEMPUS DEUKS, 2007-2009

Participants: Luigi Liquori, Petar Maksimovic, Bojan Marinkovic [Math. Institute of Belgrade, Serbia].

DEUKS, Doctoral School Towards European Knowledge Society. The main aim of this Project, in collabora-
tion with 6 European universities, is to promote the current European landscape of doctoral programmes in
Serbia. Particularly, the Project will develop and implement a pilot Doctoral Programme according to the Eu-
ropean innovative recommendations with comprehensive approach to information technologies, where foun-
dational theories are fully integrated in a pragmatic engineering approach. LogNet is the head of the French
chapter.

8. Dissemination

8.1. Participation in committees and referees

e Luigi Liquori is member of the Commission de Spécialistes du jury CR2 INRIA Sophia Antipolis.

e Luigi Liquori is PC member of the Sixth International Workshop on Hot Topics in Peer-to-Peer
Systems HotP2P, 2010.

e Luigi Liquori is PC member of the SEMELS Workshop on Semantic Extensions to Middleware:
Enabling Large Scale Knowledge Applications.

o Luigi Liquori is PC member of the 20th Tyrrhenian Workshop on Digital Communications "The
Internet of Things".

e Luigi Liquori is PC member of 3rd Conference on Algebra and Coalgebra in Computer Science,
CALCO 2009.

e (Cédric Tedeschi is PC member of the Eleventh International Symposium on Stabilization, Safety,
and Security of Distributed Systems, SSS 2009.

e (Cédric Tedeschi is PC member of the International Conference on Computational Science, ICCS
20009.

e (Cédric Tedeschi is PC member of the the International Conference on Computational Science, ICCS
2010.

Moreover Luigi Liquori was a referee for the IEEE Symposium on Computers and Communications, the
Journal of Logic and Computations, and the International Conference on Computational Science, ICCS 2009.

8.2. Teaching and Meeting organizations

e Luigi Liquori gave a course on Overlay and P2P networks at the DEUKS TEMPUS, Foundations of
Information Technologies summer school June 14-27, 2009, Novi Sad, Serbia.
e Luigi Liquori gave a 9 TD course on Peer to peer, Master Ubinet UNSA.

e Luigi Liquori organized the DEUKS TEMPUS third training meeting in Sophia Antipolis.

8.3. Spare presentations

e Luigi Liquori presented the LogNet team to the ENS Lyon’s students.
e Luigi Liquori presented the LogNet team to the Marseille Master’s students.

26 Activity Report INRIA 2009

e Bojan Marinkovic presented the Babelchord work at the DEUKS third training meeting in Sophia

Antipolis.
e (Cédric presented the BabelChord approach during a seminar on P2P systems at INRIA Sophia
Antipolis.
8.4. Visitors

IN

e Giuseppe Persiano, full professor, U. Salerno, 1 month

e Alberto Trombetta, assistant professor, U. Insubria, 7 dd

ouT

Luigi Liquori visited the following sites:

e Politecnico di Torino, multiple visits,

e Universita ti Torino, multiple visits

e University of Novi Sad, Serbia, 15dd

e Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 1dd
e Scientific Computing Laboratory, Institute of Physics Belgrade, 1dd

e INRIA Lille Europe, 1dd

Cédric Tedeschi visited the following sites:

o INRIA Grenoble Rhone-Alpes, MOAIS Project, 1dd
o INRIA Rennes Bretagne Atlantique, PARIS Project, 1dd
e LIFC (Besancon), CARTOON Project, 1dd

9. Bibliography
Major publications by the team in recent years

[1] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, in "JVA, John Vincent Atanasoff International Symposium on Modern Computing", IEEE, 2006,
p- 82-91.

[2] D. BORSETTI, C. CASETTI, C.-F. CHIASSERINI, L. LIQUORI. Content Discovery in Heterogeneous Mobile
Networks, in "Heterogeneous Wireless Access Networks: Architectures and Protocols”, E. HOSSAIN (editor),
Springer-Verlag, 2008, p. 419-441.

[3] R. CHAND, M. COSNARD, L. LIQUORI. Resource Discovery in the Arigatoni Overlay Network, in "12CS,
International Workshop on Innovative Internet Community Systems", Lecture Notes in Computer Science,
Springer-Verlag, 2006.

[4] R. CHAND, M. COSNARD, L. LIQUORI. Powerful resource discovery for Arigatoni overlay network, in "Future
Generation Computer Systems", vol. 1, n° 21, 2008, p. 31-38.

[5] R. CHAND, L. LIQUORI, M. COSNARD. Improving Resource Discovery in the Arigatoni Overlay Network,
in "ARCS, International Conference on Architecture of Computing Systems", Lecture Notes in Computer
Science, vol. 4415, Springer-Verlag, 2007, p. 98-111.

Team LogNet 27

[6] M. COSNARD, L. LIQUORI, R. CHAND. Virtual Organizations in Arigatoni, in "DCM, International Workshop
on Developpment in Computational Models. Electr. Notes Theor. Comput. Sci.", vol. 171, n® 3, 2007.

[7] L. LiQUORI, D. BORSETTI, C. CASETTI, C.-F. CHIASSERINI. An Overlay Architecture for Vehicular
Networks, in "IFIP Networking, International Conference on Networking", Lecture Notes in Computer
Science, vol. 4982, Springer-Verlag, 2008, p. 60-71.

[8] L. L1IQUORI, M. COSNARD. Logical Networks: Towards Foundations for Programmable Overlay Networks and

Overlay Computing Systems, in "TGC, Trustworthy Global Computing", Lecture Notes in Computer Science,
vol. 4912, Springer-Verlag, 2007, p. 90-107.

[9] L. LIQUORI, M. COSNARD. Weaving Arigatoni with a Graph Topology, in "ADVCOMP, International
Conference on Advanced Engineering Computing and Applications in Sciences", IEEE Computer Society
Press, 2007.

[10] L. LIQUORI, B. P. SERPETTE. iRho: An Imperative Rewriting-calculus, in "MSCS, Mathematical Structures
in Computer Science", vol. 18, n° 3, 2008, p. 467-500.

[11] L. LIQUORI, A. SPIWACK. Extending FeatherTrait Java with Interfaces, in "TCS, Theoretical Computer
Science", vol. 398, n® 1-3, 2008, p. 243-260, Calculi, types and applications: Essays in honour of M. Coppo,
M. Dezani-Ciancaglini and S. Ronchi Della Rocca.

[12] L. LIQUORI, A. SPIWACK. FeatherTrait: A Modest Extension of Featherweight Java, in "TOPLAS, ACM
Transaction on Programming Languages and Systems", vol. 30, n® 2, 2008.

Year Publications
Articles in International Peer-Reviewed Journal
[13] E. CARON, F. DESPREZ, F. PETIT, C. TEDESCHI. Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems, in
"Parallel Processing Letters", jan 2009, To appear.
International Peer-Reviewed Conference/Proceedings
[14] L. L1QUORI, C. TEDESCHI, F. BONGIOVANNI. Babelchord: a social tower of DHT-based overlay networks,
in "[EEE, ISCC", 2009, p. 307-312.
Scientific Books (or Scientific Book chapters)
[15] E. CARON, F. DESPREZ, F. PETIT, C. TEDESCHI. DLPT: A P2P tool for Service Discovery in Grid
Computing, in "Handbook of Research on P2P and Grid Systems for Service-Oriented Computing: Models,

Methodologies and Applications", N. ANTONOPOULOS, G. EXARCHAKOS, M. LI, A. LIOTTA (editors), IGI
Global, 2009.

Other Publications

[16] D. DOUGHERTY, L. LIQUORI. Logic and computation in a lambda calculus with intersection and union types,
2009, submitted.

28 Activity Report INRIA 2009

[17] L. L1QUORI, C. TEDESCHI, L. VANNI, F. BONGIOVANNI, V. CITANCAGLINI, B. MARINKOVIC. Synapse: A
Scalable Protocol for Interconnecting Heterogeneous Overlay Networks, 2009, submitted.

References in notes

[18] J. W. BACKUS. The IBM 701 Speedcoding System, in "J. ACM", vol. 1, n® 1, 1954, http://doi.acm.org/10.
1145/320764.320766.

[19] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, n® 5805, INRIA, 2006, Technical report.

[20] D. EPPSTEIN, Z. GALIL, G. ITALIANO. Dynamic graph algorithms, in "Handbook of Algorithms and Theory
of Computation", chap. 22, CRC Press, 1998.

[21] M. FIORE, J. HARRI, F. FILALI, C. BONNET. Vehicular Mobility Simulation for VANETs, in "Annual
Simulation Symposium", 2007, p. 301-309.

[22] A. RAPOPORT. Mathematical models of social interaction, vol. I, John Wiley and Sons, 1963, p. 493-579.

[23] 1. STOICA, R. MORRIS, D. KARGER, M. KAASHOEK, H. BALAKRISHNAN. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications., in "ACM SIGCOMM", 2001, p. 149-160.

[24] W. M. P. VAN DER AALST, A. H. M. TER HOFSTEDE. YAWL: yet another workflow language, in "Information
System", vol. 30, n° 4, 2005, p. 245-275.

[25] J. VON NEUMANN. The Principles of Large-Scale Computing Machines, in "IEEE Ann. Hist. Comput.", vol.
10, n° 4, 1988, p. 243-256.

http://doi.acm.org/10.1145/320764.320766
http://doi.acm.org/10.1145/320764.320766

