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2. Overall Objectives

2.1. Introduction
SEQUEL means “Sequential Learning”. As such, SEQUEL focuses on the task of learning in artificial systems
(either hardware, or software) that gather information along time. Such systems are named (learning) agents
in the following1. These data may be used to estimate some parameters of a model, which in turn, may be used
for selecting actions in order to perform some long-term optimization task.

For the purpose of model building, the agent needs to gather information collected so far in some compact
representation and combine it to newly available data.

The acquired data may result from an observation process of an agent in interaction with its environment (the
data thus represent a perception). This is the case when the agent makes decisions (in order to fulfill a certain
goal) that impact the environment thus the observation process itself.

Hence, in SEQUEL, the term sequential refers to two aspects:

• The sequential acquisition of data, from which a model is learned (supervised and non supervised
learning),

• the sequential decision making task, based on the learned model (reinforcement learning).

We exemplify these various problems:

Supervised learning tasks deal with the prediction of some response given a certain set of observations of
input variables and responses. New sample points keep on being observed.

Unsupervised learning tasks deal with clustering objects, these latter making a flow of objects. The
(unknown) number of clusters typically evolves during time, as new objects are observed.

Reinforcement learning tasks deal with the control (a policy) of some system which has to be optimized
(see [80]). We do not assume the availability of a model of the system to be controlled.

In all these cases, we assume that the process can be considered stationary for at least a certain amount of
time, and slowly evolving.

We wish to have any-time algorithms, that is, at any moment, a prediction may be required/an action may be
selected making full use, and hopefully, the best use, of the experience already gathered by the learning agent.

The perception of the environment by the learning agent (using its sensors) is generally neither the best one to
make a prediction, nor to take a decision (we deal with Partially Observable Markov Decision Problem). So,
the perception has to be mapped in some way to a better, and relevant, state (or input) space.

Finally, an important issue of prediction regards its evaluation: how wrong may we be when we perform a
prediction? For real systems to be controlled, this issue can not be simply left unanswered.

To sum-up, in SEQUEL, the main issues regard:

• the learning of a model: we focus on models than map some input space RP to R,

• the observation to state mapping,

• the choice of the action to perform (in the case of sequential decision problem),

• the bounding of the performance,

• the implementation of usable algorithms,

all that being understood in a sequential framework.

1we might also have called them “learning machines”, since that’s what these agents are here.
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2.2. Highlight of the year
In 2009, we would like to highlight the fact that we have obtained several contracts with private societies,
either directly or via a “Pôle de compétitivité”, as well as academic contracts (ANR, Europe). This is really a
strong increase of the contracted part of the activities of SEQUEL, and this increase corresponds to a desire to
investigate applications lying at the edge of our research activities, and also to help promote the machine
learning technology in solving real problems. Other contracts should be negotiated in 2010 with private
societies in particular.

3. Scientific Foundations

3.1. Introduction
SEQUEL is primarily grounded on two domains:

• the problem of decision under uncertainty,

• statistical learning which provides the general concepts and tools to solve this problem.

To help the reader who is unfamiliar with these questions, we briefly present key ideas below.

3.2. Decision under uncertainty
The phrase “Decision under uncertainty” refers to the problem of taking decisions when we do not have a full
knowledge neither of the situation, nor of the consequences of the decisions, as well as when the consequences
of decision are non deterministic.

We introduce two specific sub-domains, namely the Markov decision processes which models sequential
decision problems, and bandit problems.

3.2.1. Markov decision processes
Sequential decision processes occupy the heart of the SEQUEL project; a detailed presentation of this problem
may be found in Puterman’s book [74].

A Markov Decision Process (MDP) is defined as the tuple (X,A, P, r) where X is the state space, A is the
action space, P is the probabilistic transition kernel, and r : X×A× X → IR is the reward function. For the
sake of simplicity, we assume in this introduction that the state and action spaces are finite. If the current
state (at time t) is x ∈ X and the chosen action is a ∈ A, then the Markov assumption means that the transition
probability to a new state x′ ∈ X (at time t + 1) only depends on (x, a). We write p(x′|x, a) the corresponding
transition probability. During a transition (x, a) → x′, a reward r(x, a, x′) is incurred.

In the MDP (X,A, P, r), each initial state x0 and action sequence a0, a1, ... gives rise to a sequence of
states x1, x2, ..., satisfying P (xt+1 = x′|xt = x, at = a) = p(x′|x, a), and rewards2 r1, r2, ... defined by
rt = r(xt, at, xt+1).

The history of the process up to time t is defined to be Ht = (x0, a0, ..., xt−1, at−1, xt). A policy π is a
sequence of functions π0, π1, ..., where πt maps the space of possible histories at time t to the space of
probability distributions over the space of actions A. To follow a policy means that, in each time step, we
assume that the process history up to time t is x0, a0, ..., xt and the probability of selecting an action a is equal
to πt(x0, a0, ..., xt)(a). A policy is called stationary (or Markovian) if πt depends only on the last visited
state. In other words, a policy π = (π0, π1, ...) is called stationary if πt(x0, a0, ..., xt) = π0(xt) holds for all
t ≥ 0. A policy is called deterministic if the probability distribution prescribed by the policy for any history is
concentrated on a single action. Otherwise it is called a stochastic policy.

2Note that for simplicity, we considered the case of a deterministic reward function, but in many applications, the reward rt itself is a
random variable.
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We move from an MD process to an MD problem by formulating the goal of the agent, that is what the sought
policy π has to optimize? It is very often formulated as maximizing (or minimizing), in expectation, some
functional of the sequence of future rewards. For example, an usual functional is the infinite-time horizon sum
of discounted rewards. For a given (stationary) policy π, we define the value function V π(x) of that policy π
at a state x ∈ X as the expected sum of discounted future rewards given that we state from the initial state x
and follow the policy π:

V π(x) = E

[ ∞∑
t=0

γtrt|x0 = x, π

]
, (1)

where E is the expectation operator and γ ∈ (0, 1) is the discount factor. This value function V π gives an
evaluation of the performance of a given policy π. Other functionals of the sequence of future rewards may
be considered, such as the undiscounted reward (see the stochastic shortest path problems [64]) and average
reward settings. Note also that, here, we considered the problem of maximizing a reward functional, but a
formulation in terms of minimizing some cost or risk functional would be equivalent.

In order to maximize a given functional in a sequential framework, one usually applies Dynamic Programming
(DP) [62], which introduces the optimal value function V ∗(x), defined as the optimal expected sum of rewards
when the agent starts from a state x. We have V ∗(x) = supπ V π(x). Now, let us give two definitions about
policies:

• We say that a policy π is optimal, if it attains the optimal values V ∗(x) for any state x ∈ X, i.e.,
if V π(x) = V ∗(x) for all x ∈ X. Under mild conditions, deterministic stationary optimal policies
exist [63]. Such an optimal policy is written π∗.

• We say that a (deterministic stationary) policy π is greedy with respect to (w.r.t.) some function V
(defined on X) if, for all x ∈ X,

π(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV (x′)] .

where arg maxa∈A f(a) is the set of a ∈ A that maximizes f(a). For any function V , such a greedy
policy always exists because A is finite.

The goal of Reinforcement Learning (RL), as well as that of dynamic programming, is to design an optimal
policy (or a good approximation of it).

The well-known Dynamic Programming equation (also called the Bellman equation) provides a relation
between the optimal value function at a state x and the optimal value function at the successors states x′

when choosing an optimal action: for all x ∈ X,

V ∗(x) = max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (2)

The benefit of introducing this concept of optimal value function relies on the property that, from the optimal
value function V ∗, it is easy to derive an optimal behavior by choosing the actions according to a policy
greedy w.r.t. V ∗. Indeed, we have the property that a policy greedy w.r.t. the optimal value function is an
optimal policy:

π∗(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (3)
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In short, we would like to mention that most of the reinforcement learning methods developed so far are built
on one (or both) of the two following approaches ( [84]):

• Bellman’s dynamic programming approach, based on the introduction of the value function. It
consists in learning a “good” approximation of the optimal value function, and then using it to
derive a greedy policy w.r.t. this approximation. The hope (well justified in several cases) is that the
performance V π of the policy π greedy w.r.t. an approximation V of V ∗ will be close to optimality.
This approximation issue of the optimal value function is one of the major challenge inherent to
the reinforcement learning problem. Approximate dynamic programming addresses the problem
of estimating performance bounds (e.g. the loss in performance ||V ∗ − V π|| resulting from using
a policy π -greedy w.r.t. some approximation V - instead of an optimal policy) in terms of the
approximation error ||V ∗ − V || of the optimal value function V ∗ by V . Approximation theory and
Statistical Learning theory provide us with bounds in terms of the number of sample data used
to represent the functions, and the capacity and approximation power of the considered function
spaces.

• Pontryagin’s maximum principle approach, based on sensitivity analysis of the performance measure
w.r.t. some control parameters. This approach, also called direct policy search in the Reinforcement
Learning community aims at directly finding a good feedback control law in a parameterized policy
space without trying to approximate the value function. The method consists in estimating the so-
called policy gradient, i.e. the sensitivity of the performance measure (the value function) w.r.t.
some parameters of the current policy. The idea being that an optimal control problem is replaced
by a parametric optimization problem in the space of parameterized policies. As such, deriving a
policy gradient estimate would lead to performing a stochastic gradient method in order to search
for a local optimal parametric policy.

Finally, many extensions of the Markov decision processes exist, among which the Partially Observable MDPs
(POMDPs) is the case where the current state does not contain all the necessary information required to decide
for sure of the best action.

3.2.2. Bandits
Bandit problems illustrate the fundamental difficulty of decision making in the face of uncertainty: A decision
maker must choose between what seems to be the best choice (“exploit”), or to test (“explore”) some
alternative, hoping to discover a choice that beats the current best choice.

The classical example of a bandit problem is deciding what treatment to give each patient in a clinical trial
when the effectiveness of the treatments are initially unknown and the patients arrive sequentially. These
bandit problems became popular with the seminal paper [76], after which they have found applications in
diverse fields, such as control, economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is specified by K real-valued distributions. In each time step
a decision maker can select one of the distributions to obtain a sample from it. The samples obtained
are considered as rewards. The distributions are initially unknown to the decision maker, whose goal is to
maximize the sum of the rewards received, or equivalently, to minimize the regret which is defined as the loss
compared to the total payoff that can be achieved given full knowledge of the problem, i.e., when the arm
giving the highest expected reward is pulled all the time.

The name “bandit” comes from imagining a gambler playing with K slot machines. The gambler can pull the
arm of any of the machines, which produces a random payoff as a result: When arm k is pulled, the random
payoff is drawn from the distribution associated to k. Since the payoff distributions are initially unknown, the
gambler must use exploratory actions to learn the utility of the individual arms. However, exploration has to
be carefully controlled since excessive exploration may lead to unnecessary losses. Hence, to play well, the
gambler must carefully balance exploration and exploitation.

Recently, Auer et al. [60] introduced the algorithm UCB (Upper Confidence Bounds) that follows what is
now called the “optimism in the face of uncertainty principle”. Their algorithm works by computing upper
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confidence bounds for all the arms and then choosing the arm with the highest such bound. They proved that
the expected regret of their algorithm increases at most at a logarithmic rate with the number of trials, and
that the algorithm achieves the smallest possible regret up to some sub-logarithmic factor (for the considered
family of distributions).

3.3. Statistical learning
Before detailing some issues of statistical learning, let us remind the definition of a few terms.

Machine learning refers to a system capable of the autonomous acquisition and integration of
knowledge. This capacity to learn from experience, analytical observation, and other means,
results in a system that can continuously self-improve and thereby offer increased efficiency and
effectiveness. (source: AAAI website)

Statistical learning is an approach to machine intelligence which is based on statistical modeling of
data. With a statistical model in hand, one applies probability theory and decision theory to get
an algorithm. This is opposed to using training data merely to select among different algorithms
or using heuristics/“common sense” to design an algorithm. (source: http://www.cs.wisc.edu/
~hzhang/glossary.html)

Kernel method Generally speaking, a kernel function is a function that maps a couple of points
to a real value. Typically, this value is a measure of dissimilarity between the two points.
Assuming a few properties on it, the kernel function implicitly defines a dot product in some
function space. This very nice formal property as well as a bunch of others have ensured a
strong appeal for these methods in the last 10 years in the field of function approximation. Many
classical algorithms have been “kernelized”, that is, restated in a much more general way than
their original formulation. Kernels also implicitly induce the representation of data in a certain
“suitable” space where the problem to solve (classification, regression, ...) is expected to be
simpler (non-linearity turns to linearity).

The fundamental tools used in SEQUEL come from the field of statistical learning [68]. We briefly present
the most important for us to date, namely, kernel-based non parametric function approximation, and non
parametric Bayesian models.

3.3.1. Kernel methods for non parametric function approximation
In statistics in general, and applied mathematics, the approximation of a multi-dimensional real function
given some samples is a well-known problem (known as either regression, or interpolation, or function
approximation, ...). Regressing a function from data is a key ingredient of our research, or to the least, a
basic component of most of our algorithms. In the context of sequential learning, we have to regress a function
while data samples are being obtained one at a time, while keeping the constraint to be able to predict points
at any step along the acquisition process. In sequential decision problems, we typically have to learn a value
function, or a policy.

Many methods have been proposed for this purpose. We are looking for suitable ones to cope with the problems
we wish to solve. In reinforcement learning, the value function may have areas where the gradient is large;
these are areas where the approximation is difficult, while these are also the areas where the accuracy of the
approximation should be maximal to obtain a good policy (and where, otherwise, a bad choice of action may
imply catastrophic consequences).

We particularly favor non parametric methods since they make quite a few assumptions about the function
to learn. In particular, we have strong interests in l1-regularization, and the (kernelized-)LARS algorithm. l1-
regularization yields sparse solutions, and the LARS approach produces the whole regularization path very
efficiently, which helps solving the regularization parameter tuning problem.

http://www.aaai.org/AITopics/html/machine.html
http://www.cs.wisc.edu/~hzhang/glossary.html
http://www.cs.wisc.edu/~hzhang/glossary.html
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3.3.2. Non parametric Bayesian models
Numerous problems in signal processing may be solved efficiently by way of a Bayesian approach. The use
of Monte-Carlo methods lets us handle non linear, as well as non Gaussian problems. In their standard form,
they require the formulation of densities of probability in their parametric form. For instance, it is a common
usage to use Gaussian likelihood, because it is handy.

However, in some applications such as Bayesian filtering, or blind deconvolution, the choice of a parametric
form of the density of the noise is often arbitrary. If this choice is wrong, it may also have dramatic
consequences on the estimation.

To overcome this shortcoming, non parametric methods provide another approach to this problem. In particu-
lar, mixtures of Dirichlet processes [66] provide a very powerful formalism.

Mixtures of Dirichlet Processes are an extension of finite mixture models. Given a mixture density f(x|θ),
and G(dθ) =

∑∞
k=1 ωkδUk

(dθ), a Dirichlet process 3, then we define a mixture of Dirichlet processes as:

F(x) =
∫

Θ

f(x|θ)G(dθ) =
∞∑

k=1

ωkf(x|Uk) (4)

A mixture of Dirichlet processes is fully parameterized by the mixture density, as well as the parameters of G,
that is G0 and α.

The class of densities that may be written as a mixture of Dirichlet processes is very wide, so that these are
really fit to very large amount of applications.

Given a set of observations, the estimation of the parameters of a mixture of Dirichlet processes is performed
by way of a Monte Carlo Markov Chain (MCMC) algorithm.

4. Application Domains
4.1. Outline

SEQUEL aims at solving problems of prediction, as well as problems of optimal and adaptive control. As such,
the application domains are very numerous.

The application domains have been organized as follows:

• adaptive control,
• signal analysis and processing,
• functional prediction,
• neurosciences.

4.2. Adaptive control
Adaptive control is an important application of the research being done in SEQUEL. Reinforcement learning
precisely aims at controling the behavior of systems and may be used in situations with more or less
information available. Of course, the more information, the better, in which case methods of (approximate)
dynamic programming may be used [73]. But, reinforcement learning may also handle situations where the
dynamics of the system is unknown, situations where the system is partially observable, and non stationary
situations. Indeed, in these cases, the behavior is learned by interacting with the environment and thus naturally
adapts to the changes of the environment. Furthermore, the adaptive system may also take advantage of expert
knowledge when available.

3A Dirichlet process is a random distribution almost surely discrete, where the centroids Uk are distributed along a base distribution

G0(·), and where weights follow a certain stick breaking law with parameter α [79].
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Clearly, the spectrum of potential applications is very wide: as far as an agent (a human, a robot, a virtual
agent) has to take a decision, in particular in cases where he lacks some information to take the decision, this
enters the scope of our activities. To exemplify the potential applications, let us cite:

• game softwares: in the 1990’s, RL has been the basis of a very successful Backgammon program,
TD-Gammon [83] that learned to play at an expert level by basically playing a very large amount of
games against itself;

Today, various games are studied with RL techniques.

• many optimization problems that are closely related to operation research, but taking into account
the uncertainty, and the stochasticity of the environment: see the job-shop scheduling, or the cellular
phone frequency allocation problems, resource allocation in general [73]

• we can also foresee that some progress may be made by using RL to design adaptive conversational
agents, or system-level as well as application-level operating systems that adapt to their users habits.

More generally, these ideas fall into what adaptive control may bring to human beings, in making
their life simpler, by being embedded in an environment that is made to help them, an idea phrased
as “ambiant intelligence”.

• The sensor management problem consists in determining the best way to task several sensors when
each sensor has many modes and search patterns. In the detection/tracking applications, the tasks
assigned to a sensor management system are for instance:

– detect targets,

– track the targets in the case of a moving target and/or a smart target (a smart target can
change its behavior when it detects that it is under analysis),

– combine all the detections in order to track each moving target,

– dynamically allocate the sensors in order to achieve the previous three tasks in an optimal
way. The allocation of sensors, and their modes, thus defines the action space of the
underlying Markov decision problem.

In the more general situation, some sensors may be localized at the same place while others are
dispatched over a given volume. Tasking a sensor may include, at each moment, such choices as
where to point and/or what mode to use. Tasking a group of sensors includes the tasking of each
individual sensor but also the choice of collaborating sensors subgroups. Of course, the sensor
management problem is related to an objective. In general, sensors must balance complex trade-
offs between achieving mission goals such as detecting new targets, tracking existing targets, and
identifying existing targets. The word “target” is used here in its most general meaning, and the
potential applications are not restricted to military applications. Whatever the underlying application,
the sensor management problem consists in choosing at each time an action within the set of available
actions.

• sequential decision processes are also very well-known in economy. They may be used as a decision
aid tool, to help in the design of social helps, or the implementation of plants (see [78], [77] for such
applications).

4.3. Signal analysis and processing
Applications of sequential learning in the field of signal processing are also very numerous. A signal is
naturally sequential as it flows. It usually comes from the recording of the output of sensors but the recording
of any sequence of numbers may be considered as a signal like the stock-exchange rates evolution with respect
to time and/or place, the number of consumers at a mall entrance or the number of connections to a web site.
Signal processing has several objectives: predict , estimate, remove noise, characterize or classify. The signal is
often considered as sequential: we want to predict, estimate or classify a value (or a feature) at time t knowing
the past values of the parameter of interest or past values of data related to this parameter.
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Signals may be processed in several ways. One of the best way is the time-frequency analysis in which the
frequencies of each signal are analyzed with respect to time. This concept has been generalized to the time-
scale analysis obtained by a wavelet transform. Both analysis are based on the projection of the orignal signal
onto a well-chosen function basis. Signal processing is also closely related to the probability field as the
uncertainty inherent to many signals leads to consider them as stochastic processes: the Bayesian framework
is actually one of the main frameworks within which signals are processed for many purposes. However, there
exists alternatives like belief functions. Belief functions were introduced by Demspter few decades ago and
have been successfully used in the few past years in fields where probability had, during many years, no
alternatives like in classification. Belief functions can be viewed as a generalization of probabilities which can
capture both imprecision and uncertainty. Belief functions are also closely related to data fusion where once
more they can be considered as a serious alternative to probabilities.

4.4. Functional prediction
One of the current trends in machine learning aims at dealing with data that are functions, rather than points or
vectors. Generally speaking, functions represent a behavior (of a person, of an apparatus, or of an algorithm,
or a response of a system, ...).

One application of functional prediction which is particularly emphasized these days, is the understanding of
client behavior, either in material shops, or in virtual shops on the web. This understanding may then be used
for different ends, such as the management of stocks according to sales, the proposition of products according
to those already bought, the “instantaneous” management of some resource in the shop (advisors, cashiers,
instant promotions, personalized advertisement, ...).

4.5. Neurosciences
Machine learning methods may be used for at least two means in neurosciences:

1. as in any other (experimental) scientific domain, the machine learning methods relying heavily on
statistics, they may be used to analyse experimental data,

2. dealing with induction learning, that is the ability to generalize from facts which is an ability
that is considered to be one of the basic components of “intelligence”, machine learning may be
considered as a model of learning in living beings. In particular, the temporal difference methods
for reinforcement learning has strong ties with various concepts of psychology (Thorndike’s law of
effect, and the Rescorla-Wagner law to name the two most well-known).

5. Software

5.1. Software
5.1.1. Crazy Stone

Participant: Rémi Coulom [correspondent].

Crazy Stone, is a top-level Go-playing program that has been developped by Rémi Coulom since 2005. Crazy
Stone won several major international Go tournaments in the past. Because of the media impact of those
victories, some software companies showed interest in buying licences of Crazy Stone. So, in 2009, Crazy
Stone was registered with the APP (Agence pour la Protection des Programmes). No licence has been sold so
far. Crazy Stone is not available publicly.
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6. New Results
6.1. Introduction

New results are organized in the following sections:

1. decision under uncertainty,
2. foundations of machine learning,
3. supervised learning,
4. clustering,
5. signal processing.

6.2. Decision under uncertainty
Participants: Sébastien Bubeck, Alexandra Carpentier, Pierre-Arnaud Coquelin, Rémi Coulom, Victor
Gabillon, Mohammad Ghavamzadeh, Sertan Girgin, Jean-François Hren, Alessandro Lazaric, Manuel Loth,
Odalric-Ambrym Maillard, Rémi Munos, Philippe Preux, Daniil Ryabko.

6.2.1. Reinforcement learning and approximate dynamic programming
6.2.1.1. Approximate Policy Iteration without Value Function Representation

There is a recent interest on approximate policy iteration algorithms in which the action-value function is not
approximated over the entire state-action space [71], [67]. The main idea is to remove the policy evaluation
and cast the policy improvement as a classification problem. The training set of this classification problem is
generated by rollout estimates of the action-value function on a finite number of states. In [58], we present a
novel loss function by weighting the number of classification errors with the actual regret associated to each
error, i.e., the difference between the action-values of the greedy action and the action chosen by the rollout
policy, and provide convergence bounds for the resulting approximate policy iteration algorithm.

6.2.1.2. Natural actor-critic

In [13], [49], we present four new reinforcement learning algorithms based on actor–critic, function approxi-
mation, and natural gradient ideas, and we provide their convergence proofs. Actor–critic reinforcement learn-
ing methods [61], [81] are online approximations to policy iteration in which the value-function parameters are
estimated using temporal difference learning [82] and the policy parameters are updated by stochastic gradient
descent. Methods based on policy gradients in this way are of special interest because of their compatibility
with function approximation methods, which are needed to handle large or infinite state spaces. The use of
temporal difference learning in this way is of special interest because in many applications it dramatically
reduces the variance of the gradient estimates. The use of the natural gradient is of interest because it can
produce better conditioned parameterizations and has been shown to further reduce variance in some cases.
Our results extend prior two-timescale convergence results for actor–critic methods by [69] (also [70]) by us-
ing temporal difference learning in the actor and by incorporating natural gradients. Our results extend prior
empirical studies of natural actor–critic methods by [72] by providing the first convergence proofs and the first
fully incremental algorithms. We present empirical results verifying the convergence of our algorithms.

6.2.1.3. Bayesian Multi-Task Reinforcement Learning

In [54], we consider the problem of multi-task reinforcement learning, where a learner is provided with a set
of tasks, for which only a small number of samples can be generated for any given policy. As the number of
samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify
classes of tasks with similar structure and to learn them jointly. We consider the case where the tasks share
structure in their value functions, and model this by assuming that the value functions are all sampled from
a common prior. We adopt the Gaussian process temporal-difference [65] value function model and use a
hierarchical Bayesian approach to model the distribution over the value functions. In this paper, we study two
cases, where all the value functions belong to the same class and where they belong to an undefined number
of classes. For each case, we present a hierarchical Bayesian model, and derive inference algorithms for:
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1. joint learning of the value functions, and

2. efficient transfer of the information gained in (i) to assist learning the value function of a newly
observed task.

6.2.1.4. Regularized Fitted Q-iteration for Planning in Continuous-Space MDPs

Reinforcement learning with linear and non-linear function approximation has been studied extensively in
the last decade. However, as opposed to other fields of machine learning such as supervised learning, the
effect of finite sample has not been thoroughly addressed within the reinforcement learning framework.
In this work [27], we propose to use L2 regularization to control the complexity of the value function in
reinforcement learning and planning problems. We consider the regularized fitted Q-iteration algorithm and
provide generalization bounds that account for small sample sizes. We use a realistic visual-servoing problem
to illustrate the benefits of using the regularization procedure.

6.2.1.5. Function approximation and representation learning

As a follow-up to the 2008 work on the issue of the representation of states, we have worked further on feature
discovery in the context of sequential decision problems. Based on our 2008 work on feature discovery in the
context of reinforcement learning to discover a good (if not the best) representation of states, we have studied
the use of non parametric function approximation in the context of approximate dynamic programming. The
striking difference with the usual approach is that we use a non parametric function approximator to represent
the value function, instead of a parametric one. See [33], [59].

6.2.2. Sensitivity analysis in HMMs
We considered a sensitivity analysis in Hidden Markov Models with continuous state and observation spaces.
We proposed an Infinitesimal Perturbation Analysis (IPA) on the filtering distribution with respect to some
parameters of the model. We described a methodology for using any algorithm that estimates the filtering
density, such as Sequential Monte Carlo methods, to design an algorithm that estimates its gradient. The
resulting IPA estimator is proven to be asymptotically unbiased, consistent and has computational complexity
linear in the number of particles. We considered an application of this analysis to the problem of identifying
unknown parameters of the model given a sequence of observations. We derived an IPA estimator for
the gradient of the log-likelihood, which may be used in a gradient method for the purpose of likelihood
maximization. See [23].

6.2.3. Exploration vs. exploitation
6.2.3.1. Pure exploration in multi-armed bandits

We considered the framework of stochastic multi-armed bandit problems where a forecaster is assessed in
terms of its simple regret, a regret notion that captures the fact that exploration is only constrained by the
number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative
regret is considered and when exploitation needs to be performed at the same time. This performance criterion
is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards.
We discussed the links between the simple and the cumulative regret. Our main result is that the required
exploration–exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple
regret in terms of the cumulative regret. See [22].

6.2.3.2. Hybrid Stochastic-Adversarial On-line Learning

Most of the research in online learning focused either on the problem of adversarial classification (i.e., both
inputs and labels are arbitrarily chosen by an adversary) or on the traditional supervised learning problem in
which samples are independently generated from a fixed probability distribution. Nonetheless, in a number of
domains the relationship between inputs and labels may be adversarial, whereas input instances are generated
according to a constant distribution. We introduced a hybrid stochastic-adversarial classification problem, in
which inputs are stochastic, while labels are adversarial. We proposed an online learning algorithm for its
solution, and analyzed its performance. In particular, we showed that, given a hypothesis space H with finite
VC dimension, it is possible to incrementally build a suitable finite set of hypotheses that can be used as input
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for an exponentially weighted forecaster achieving a cumulative regret of order O(
√

nV C(H) log n) with
overwhelming probability. We also discussed extensions to multi-label classification, learning from experts
and bandit settings with stochastic side information, and application to games. See [29].

6.2.3.3. Minimax Policies for Adversarial and Stochastic Bandits

This work deals with four classical prediction games, namely full information, bandit and label efficient (full
information or bandit) games as well as three different notions of regret: pseudo-regret, expected regret and
tracking the best expert regret. We introduced a new forecaster, INF (Implicitly Normalized Forecaster), for
which we proposed a unified analysis of its pseudo-regret in the four games. With well-chosen parameters
INF defines a new forecaster, for which we were able to remove the extraneous logarithmic factor in the
pseudo-regret bounds for bandit games, and thus fill in a long open gap in the characterization of the minimax
rate for the pseudo-regret in the bandit game. We also consider the stochastic bandit game, and prove that an
appropriate modification of the upper confidence bound policy UCB achieves the distribution-free optimal rate
while still having a distribution-dependent rate logarithmic in the number of plays. See [21].

6.2.4. Applications
6.2.4.1. The games of Go and Havannah

After the 2006 major breakthrough in go realized by Rémi Coulom’s Crazy Stone program, the latter has
evolved further.

Rémi Coulom’s main research topic in 2009 was automatic parameter optimization from noisy observations,
applied to his Go-playing program Crazy Stone. The performance of most game-playing programs depends on
several parameters. In order to get optimal performance, it is necessary to tune these parameters carefully. This
is a very challenging problem, because the number of parameters is very high, and the effect of parameters
is measured with very noisy observations. Crazy Stone has thousands of parameters, and observations are
binary outcomes of games (win or loss). Early results of using local quadratic regression were presented at the
University of Electro-Communications (Japan) in January [53].

From June 15th to July 31st, Rémi Coulom supervised Victor Marsault, a first-year student from ENS Cachan.
The topic of this internship was the application of Monte-Carlo tree search to the game of Havannah. Like the
game of Go, the game of Havannah is a challenging application domain, where the strongest human players
still easily outperform the best computer algorithms. Although they did not manage to reach top human level,
they investigated original Monte-Carlo tree search ideas and produced a decent artificial player [57].

6.2.4.2. The Ubiquitous Virtual Seller

This 18 months project aims at studying the design, and implementation, of virtual agents on selling Internet
portals. The goal is that this agent will be able to recognize the visitors of the portal, either as regular visitors,
or new visitors, and help them, provide advices, develop a selling strategy, ...

Having begun in Sep. 2009, for the moment, the work has mostly been a research of relevant work in the
literature, as well as getting acquainted with the other members of the project, in particular the marketing
aspects of the project, as well as the private companies expectations.

See also the contract section (Sec. 8.1.1) of the report for specific details about the contract itself.

6.2.4.3. Ad selection on web portals

In 2009, we have begun a work on the selection of displayed ads on web pages, under contract with France
Telecom/Orange Labs.

Of course, this problem has already received a lot of attention by major actors of the Internet. However,
publicly available works on this problem have never tackled the real problem, with the specific real constraints.
In particular, the finiteness of resources (in time, and in the number of ads to display) is not tackled, and
asymptotically optimal algorithms are studied. But asymptotic results are not those that are sought, and the
performance of these asymptotically optimal algorithms used under finite constraints of time and resource are
typically bad. Indeed, our work has shown that handling this finiteness is necessary to obtain good strategies
of ad display. We have modeled the problem as the resolution of a linear program, in which some crucial
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quantities have to be learned from data. So, we end-up proposing an approach which mixes bandits to estimate
these data on which linear programming is applied. Furthermore, this process has to be iterated to handle
the fact that ad campaigns have a limited extent in time, new ad campaigns are created, and the discrepancy
between the actual visitors of the website, and those that were planned. This work has been accepted, and will
be published in 2010.

See also the contract section (Sec. 7.1.1) of the report for specific details about the contract itself.

6.2.4.4. Games that adapt to player skill

It has always been a challenge for computer scientists to try to defeat human experts at any game; among
many other games, draughts, Othello, chess, and currently Go have challenged the community. However, for
“standard” humans, some programs are desperately too strong; we have been arguing for years that methods of
adaptive control may be useful to design new games which, instead of aiming at defeating any human being,
at the cost of boredom, adapts to the strength of the human player.

We have had the opportunity to work concretely on this idea in collaboration with the InQuest company
located in Villeneuve d’Ascq. We tackled the problem of asking questions to people, according to their skill:
the difficulty of a question depends on people, on their age, their culture, ... Jérémie Mary designed a Bayesian
approach to assess the difficulty of questions related to a given human being, and ask his/her questions of
appropriate difficulty that he/she has a reasonable probability to answer correctly. We have also worked on the
inclusion of new, non rated, questions to the catalog of available questions (approx 104 different questions,
among which a dozen is asked to a given human being: so, the skill of a given player has to be assessed very
quickly with the first of these 12 questions).

See also the contract section (Sec. 7.1.2) of the report for specific details about the contract itself.

6.3. Foundations of machine learning
Participant: Daniil Ryabko.

6.3.1. Sequence prediction in the most general form.
The problem of sequence prediction consists in forecasting, on each step of time, the probabilities of the next
outcome of the observed sequence of data. In the most general formulation of the problem, we assume that the
data is generated by a stochastic process that belongs to a certain known class of processes C, and the problem
is to construct a predictor that works for any (a priory unknown) process coming from C.

This general formulation is motivated by the diversity of sequential prediction problems: they include analysis
of biological, financial, textual or web-generated data, to mention a few. Naturally, one has to have different
models for these problems, and therefore one is interested in finding a general procedure for constructing a
predictor, given only some weak probabilistic constraints on the data; this is formalized by saying that the
data-generating process comes from a known but arbitrary family C.

Our recent breakthrough [38] in solving this general problem is in showing that, when such a predictor can be
constructed, in can be constructed as a Bayesian predictor whose prior is concentrated on a countable subset
of C.

6.3.2. Statistical inference
We have developed a new theoretical framework that has allowed us to solve some classical problems of
mathematical statistics in a radically more general setting. Namely, the setting is that the data is generated by
a stationary ergodic process (or processes, depending on the problem), and no assumptions of independence,
mixing rates, etc., as well as no parametric assumptions, are made. The obtained results include a general
hypothesis testing procedure, a consistent change point estimator, and a consistent classification procedure
[17]. Previous results on these problems concerned only much more restricted settings (e.g. i.i.d. data). In
addition, we have shown [37] that consistent homogeneity testing is impossible in this setting, which means
that given two growing samples of data which are only known to be generated by stationary ergodic processes,
one cannot in general tell whether they are generated by the same or by different process distributions, even in
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the weakest asymptotic setting, and even if the processes are binary-valued. This is particularly remarkable in
view of our result that establishes a consistent change point estimator.

Our most recent results [39], [47] in this direction provide a complete characterization (necessary and sufficient
conditions) for the existence of a consistent test for membership to an arbitrary family H0 of stationary
ergodic discrete-valued processes, against H1 which is the complement of H0 to this class of processes. The
criterion is that H0 has to be closed in the topology of distributional distance, and closed under taking ergodic
decompositions of its elements.

In addition, the paper on rank tests that was mentioned in the previous report as accepted, has now been
published [18].

6.3.3. Steganography
The goal of steganography is to transfer hidden information in seemingly innocuous messages (called
“covertexts”), in the presence of an observer who is trying to find out whether hidden information is being
transmitted. The innocuous messages may be, for example, photographic images, or human-written notes.
They are assumed to be generated by an oracle, whose exact probabilistic characteristics are unknown to the
communicating parties. For the case when this probabilistic process is i.i.d. or has a finite memory (which is
a natural and a standard assumption) we have constructed [16] a universal (any distribution conforming to the
above assumption) perfectly secure (no detection is possible) asymptotically optimal (in terms of the amount
of transmitted secret information) and simple (in terms of computation) steganographic system. On the other
hand, we have shown [40] that there exist such complicated sources of covertexts, that any stegosystem that
meets the perfect security condition must itself have an exponential (in the size of the message) Kolmogorov
complexity.

6.4. Supervised learning
Participants: Emmanuel Duflos, Hachem Kadri, Manuel Loth, Odalric-Ambrym Maillard, Rémi Munos,
Philippe Preux.

6.4.1. Multi representation
This work considers the problem of semi-supervised multi-view classification, where each view corresponds
to a Reproducing Kernel Hilbert Space. We propose an algorithm based on co-regularization methods with
extra penalty terms reflecting smoothness and general agreement properties. We first provide explicit tight
control on the Rademacher (L1) complexity of the corresponding class of learners for arbitrary many views,
then give the asymptotic behavior of the bounds when the co-regularization term increases, making explicit the
relation between consistency of the views and reduction of the search space. Since many views involve many
parameters, we third provide a parameter selection procedure, based on the stability approach with clustering
and localization arguments. To this aim, we give an explicit bound on the variance (L2-diameter) of the class
of functions. See [32].

6.4.2. New algorithms to induce classifiers, and regressors
6.4.2.1. Compressed Least Squares Regression

We considered the problem of learning, from K input data, a regression function in a function space of high
dimension N using projections onto a random subspace of lower dimension M . From any linear approximation
algorithm using empirical risk minimization (possibly penalized), we provided bounds on the excess risk of the
estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate
built in the high-dimensional space (initial domain). We applied the analysis to the ordinary Least-Squares
regression and showed that by choosing M = O(

√
K), the estimation error (for the quadratic loss) of the

“Compressed Least Squares Regression” is O(1/
√

K) up to logarithmic factors. See [31]
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6.4.2.2. Non parametric function approximation: the Equi-Correlation Network algorithm

We have designed a new algorithm, named the Equi-Correlation Network (ECON), to perform supervised
classification, and regression. ECON is a kernelized LARS-like algorithm, by which we mean that ECON
uses an l1 regularization to produce sparse estimators. ECON efficiently rides the regularization path to obtain
the estimator associated to any value of the constant of regularization, and ECON represents the data by way of
features induced by a feature function. The originality of ECON is that it automatically tunes the parameters
of the features while riding the regularization path. So, ECON has the unique ability to produce optimally
tuned features for each value of the constant of regularization. Experimentally, we have obtained remarkable
performance of ECON on standard benchmark datasets in regression and supervised classification.

We have also used ECON to tackle the problem of representing photometric solids in computer graphics. See
the application section below, as well as [30], [55], [56].

6.4.3. Functional regression
Functional regression deals with the setting in which the attributes of data, as well as their associated label,
are functions. Traditionally, functional regression considers discretized attributes, and apply the classical
regression techniques (see [75] for instance).

We have tackled this problem considering functions as functions, whereas the traditional approach consists in
dealing with discretized functions, thus vectors. We have developed a RKHS approach for it, kernels being
now operators mapping a function to a function. We have demonstrated the basic theorems (basic properties
of such functional kernel, existence of such kernel, representer theorem) on which a sound functional RKHS
approach can be built. We have also exhibited a functional kernel, and provided preliminary experimental
results.

A preliminary version of this work is available as an INRIA research report [50], and a further worked version
is under submission for publication.

This work takes place under the ANR Kernsig project (see Sec. 8.2.3).

6.4.4. Applications
To create realistic images, photometric solids are used that represent how the energy of a wave of light of
a certain wavelength is reflected in any direction. This data is available for a huge amount of materials. This
whole data is traditionally represented in mere tables, which are thus huge, and interpolation is used to estimate
the reflected energy for directions which are not available.

In collaboration with a team working in computer graphics, we have studied the use of the machine learning
technology to represent these data in a much more compact way. Mere back propagated neural networks have
first been used, and then ECON has been used. The expected results have been obtained: having much more
compact representation of these photometric solids, while keeping the same quality of rendered images, which
is the ultimate goal in computer graphics. See [26], [48], [30].

This collaboration has shown us that the field of computer graphics is a rich field of applications of machine
learning technology, yet to be exploited. This collaboration is going on.

6.5. Unsupervised learning
Participant: Sébastien Bubeck.

6.5.1. Nearest Neighbor Clustering
Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions
of the data set, the best one according to some quality measure. However, in the statistical setting where we
assume that the finite data set has been sampled from some underlying space, the goal is not to find the best
partition of the given sample, but to approximate the true partition of the underlying space. We argue that
the discrete optimization approach usually does not achieve this goal, and instead can lead to inconsistency.
We construct examples which provably have this behavior. As in the case of supervised learning, the cure is
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to restrict the size of the function classes under consideration. For appropriate “small” function classes we
can prove very general consistency theorems for clustering optimization schemes. As one particular algorithm
for clustering with a restricted function space we introduce “nearest neighbor clustering”. Similar to the k-
nearest neighbor classifier in supervised learning, this algorithm can be seen as a general baseline algorithm to
minimize arbitrary clustering objective functions. We prove that it is statistically consistent for all commonly
used clustering objective functions. See [14].

6.6. Sensors Networks: Tracking, Localization and Communication
Participants: Emmanuel Delande, Emmanuel Duflos, Philippe Vanheeghe, Nicolas Viandier.

6.6.1. The sensor management problem
This class of applications took a new turn this year with the thesis of Emmanuel Delande, supervised by
Emmanuel Duflos and Philippe Vanheeghe, in collaboration with Thales Communication. The aim of this
work is to manage a set of sensors to track vehicles or groups of people in land applications. The dynamic of
each target is controlled by a velocity vector field defined over the area of interest. Such a modelling allows the
use of particle filters to track the targets. In real application, the high dimension state is however an obstacle to
an accurate estimation of the targets parameters since it is well known that the estimation error increase with
the number of targets. That is the reason why our work focuses today on random sets based estimation filter
and more precisely on the PHD filter. The sensors management modelling work is still under progresses. It is
clear today that such an optimization problem is very close to the reinforcement learning problem, and current
research focuses on how to model a sensor management problem as a reinforcement learning optimization
problem.

6.6.2. Sequential learning of sensors localization: application to civil engineering
This work is done in collaboration with Prof Carl Haas of the University of Waterloo (Canada). This
collaboration is related to a problem occurring in civil engineering: how can we automatically locate the
building materials on a construction site? This is a real problem because a lot of time (hence of money) is lost
to find these materials that have often been moved away. The ability to detect dislocations automatically for
tens of thousands of items can ultimately improve project performance significantly. The proposed solution is
to equip each piece with a RFID tag and each people working on the construction site with a RFID receiver,
a GPS for the localization, and a transmitter. We then learn sequentially the position of the pieces using
the incoming detection information sent automatically by the transmitter to a central processor when the
workforces walk near these pieces and detect them. RFID systems and localization systems as GPS allow to
treat such a problem in the more general context of randomly distributed communication nodes localization.
We have obtained a PICS (International Project for Scientific Cooperation) from the CNRS in 2008 for 3
years to work on the specific problems arising when huge amount of sensors are used in civil engineering
application. This activity deals with both sensor management and signal analysis. The work achived in 2009
[36], is a continuation of previous research, in which we tackled the location estimation problem by fusing the
data from a simulation model.

6.6.3. Accurate Localization using Satellites in Urban Canyons
Today, Global Navigation Satellite Systems (GNSS) have penetrated the transport field through applications
such as monitoring of containers. These applications do not necessarily request a high availability, integrity and
accuracy of the positioning system. For safety applications (as complete guidance of autonomous vehicles),
performances require to be more stringent. The American system GPS (Global Positioning System) is the only
fully operational solution for the moment. This monopole reduces the possibilities of measurement redundancy
and diversity, thus limits the reachable performances. Unfortunately most all these transport applications are
mainly used in dense urban environments, highly constraining for signal propagation. Sensors may deliver very
erroneous measurements because of such hard external conditions which reduce significantly the possibilities
to receive direct signals. The consequences of environmental obstructions are unavailability of the service and
reception of reflected signals that degrades in particular the accuracy of the positioning. Indeed, NLOS (Non
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Line Of Sight) signals, i.e. signals received after reflections on the surrounding obstacles, frequently occur
in dense environments and degrade localization accuracy because of the delays observed on the propagation
time measurement creating additional error on pseudorange estimation. The worst case of reception is the
alternate path. In this case the LOS signal from a satellite cannot reach the antenna and receiver tracks only
reflected signals. Such phenomena make the pseudorange error distribution becomes a non-white and non-
Gaussian distribution ([41]). As a consequence, the classical localization methods like Extended Kalman Filter
(EKF), assuming that state and observation noises are white and Gaussian, are not efficient anymore and make
positioning error more important. Thus, to enhance the localization accuracy in case of alternate path reception,
the filtering part of the receiver (after correlators) must be improved. Furthermore, in order to limit costs, we
have chosen to work only with GNSS signals. In a goal of enhanced position accuracy, we propose a new
statistical filtering method based on a better definition (and use) of the observation noise for each satellite
signal. Moreover, in a very constraint environment (like urban environment or canyon) where reflected signals
are frequent, the pseudorange noise density takes an unknown form. Consequently, to estimate such unknown
distribution form, a mixture model can be a suitable solution. In previous works, a first approach was studied
based on Jump Markov System (JMS) algorithm ([34], [35]). JMS switches between several observation noise
models according to the estimated reception state of each satellite. The law parameters which describe the
observation noise of each available pseudorange are next use in a particle filter to estimate the position. JMS
showed its performances in terms of accuracy and continuity of service. However some drawbacks of JMS
show that the density modeling can be improved. Indeed, the proposed JMS version is strongly related to the
study of the close propagation environment and consequently a punctual reflection cannot be detected by the
Markov Chain. This can create false detection and missed detection and consequently the chosen model by
the algorithm should be wrong. Moreover, we need to allocate T seconds for initialization. Another default
is that in the context of dynamic models, the assumption of stationary is wrong. And finally the number
of Gaussian components is limited in the Gaussian mixture and consequently the estimated model does not
represent the true distribution but an approximation of it. That is why we opted for the use of Dirichlet Process
Mixture (DPM). We have shown that the DPM, which is an infinite mixture model, is more efficient than a
finite mixture model to estimate sequentially an unknown distribution. The first step of this algorithm is the
sampling of hyperparameters which are a couple of parameters: the mean and the standard deviation of each
Gaussian law which composes the infinite mixture. This sampling is performed by a Gibbs sampler. Then the
hyperparameters are used as inputs of a Rao-Blackwellised particle filter (RBPF) to compute the position.
This approach outperforms standard models commonly used to represent observation noise distributions, i.e.
white and Gaussian noise. The efficiency of this approach has been demonstrated by applying a validation
step involving real GPS data. These data have been acquired in an urban environment and in a public transport
context.

6.6.4. Internet of Things
A new thesis, supervised by Emmanuel Duflos and Philippe Vanheeghe, has started in september within
the frame of the internet of things. The term “Internet of Things” has come to describe a number of
technologies and research disciplines that enable the Internet to reach out into the real world of physical
objects. Technologies like RFID, short-range wireless communications, real-time localization and sensor
networks are now becoming increasingly common, bringing the Internet of Things into commercial use. In
such applications the data sent by a thing to another may generate an impulse noise in the reception channel of
objects in the neighbourhood. The noise appearing in such applications can be considered as α-stable which
means that moment higher than 2 does not exist. New estimation algorithms must therefore be developped to
estimate sequentially the parameters of the probability density function which may vary according to time as
well as the data received by each node of the network.

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
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7.1.1. France Telecom/Orange Labs
We have had a 10 months externalized research contract (CRE) with France Telecom in 2009 on the problem
of selecting ads to display on web pages. During his internship in the EPI, V. Gabillon has made his master
thesis on this subject; J. Mary and Ph. Preux have dedicated a significant part of their time to work on this
contract. Based on the very interesting results that were obtained during this CRE, a new contract is under
negotiation for 2010 as a follow-up to this first work.

More technical details are available in section 6.2.4.3 of this document.

7.1.2. Inquest
We have had a collaboration with inQuest4, a society working on casual games, located in Villeneuve d’Ascq.

These new methods should be used in production very shortly and a contract is under negotiation. See sec.
7.1.2 for more about this contract.

7.1.3. ETO
A collaboration has been initiated with the private society ETO, located in Roubaix. ETO manages large
databases of customers, and fidelity programs, for a few dozens very well-known commercial brands (both
national, and international brands). ETO also proposes human support in order to follow and exploit these
data: identification of high value customers, building of ads campaigns, ...Their software is called X27 and
requires a lot of human intervention to tailor it to their new customers. ETO wishes to render automatic a
maximum of steps in order to reduce the costs and widespread their solution. That is the so-called A-27
project.

One of the problems is to cluster customers in a sequential framework. The sequence of data is the list of the
visits to a shop. In an ideal world we would model the behavior of any customer. This objective is impossible
to reach because we do not have enough data on each customer. So, we wish to classify the customers in
groups based on their habits. However, customers’ habits change over time (they are single, then in couple,
then have babies, ... they live in a flat, then in a house, ... they earn more and more, ...). One challenge here is
to study and detect the switch of customers from one cluster to an other along time.

An other goal is to evaluate by simulation the impact of a new ad campaign. It would be used to help marketing
to optimize its decisions.

Jérémie Mary conducted some preliminary work on their data, showing these objectives may be reached. This
led to the project Simul-Market between ETO, Vekia and INRIA (involving Jeremie Mary and Philippe Preux).
Then, this project has been proposed, assessed, and labelled by the PICOM and A-27 will be funded by the
Région Nord-Pas de Calais and the FEDER (basically, this will fund 2 years post-doc funding, and 1 year of
engineer, over 2010 and 2011).

7.1.4. Vekia Innovation
Vekia Innovation is the name of the spin-off two of us (P-A. Coquelin and M. Davy) created in 2007, originally
under the name “Predict & Control”.

We have done a work on the clustering of temporal series, with an application to the clustering of calls to call
centers. A software toolbox has been implemented to demonstrate various algorithms.

This collaboration was funded by OSEO.

8. Other Grants and Activities
8.1. Regional activities
8.1.1. Pôle de Compétitivité “Industries du commerce”

Participants: Sertan Girgin, Jérémie Mary, Philippe Preux.

4http://www.inquest.fr.

http://www.inquest.fr
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SEQUEL is taking part in a project named “Ubiquitous Virtual Seller” (VVU) of the Pôle de Compétitivité
“Industrie du Commerce” (PICOM). This project has begun on Sep. 1st, 2009 and will last 2 years. The
VVU project involves three computer science laboratories (Laboratoire d’Informatique Fondamentale de Lille,
INRIA Lille Nord Europe, and Mines de Douai), a marketing school (ESC-Lille), and private companies
(Becquet, Oxylane, France Telecom, Artificial Solutions, Nextstage). In this project, we are funded by the
Région-Nord Pas de Calais, and the FEDER; funding is mostly for a post-doc over a period of 18 months.
The work involves a close collaboration with other computer science teams at the Laboratoire d’Informatique
Fondamentale de Lille, and the Mines de Douai. See sec. 6.2.4.2 for more details about 2009 activities on this
contract.

8.2. National activities
8.2.1. DGA / Thalès

Participants: Emmanuel Duflos, Philippe Vanheeghe, Emmanuel Delande.

The work on sensor management went on this year, focusing on three main points:

• Modelling the dynamic of the moving object for land applications

• Modelling the tracking problem in the Random Finite Sets framework

• Modelling the optimization problem as it may usually be done in reinforcement learning

8.2.2. ANR EXPLORA
Participants: Sébastien Bubeck, Alexandra Carpentier, Emmanuel Delande, Victor Gabillon, Mohammad
Ghavamzadeh, Jean-François Hren, Alessandro Lazaric, Manuel Loth, Jérémie Mary, Odalric-Ambrym Mail-
lard, Rémi Munos, Philippe Preux, Daniil Ryabko.

Rémi Munos is the coordinator of the ANR EXPLO-RA5 (EXPLOration - EXPLOitation for efficient
Resource Allocation. Applications to optimization, control, learning, and games) 3 years project which started
in 2009. This is a collaboration between 2 INRIA team project (SEQUEL and TAO), HEC Paris (GREGHEC),
Les Ponts (CERTIS), Paris 5 (CRIP5), and the Université Paris Dauphine (LAMSADE).

This project deals with the question of how to make the best possible use of available resources in order to
optimize the performance of some decision-making task. In the case of simulated scenarios, the term resource
refers to a piece of computational effort (for example CPU time, memory) devoted to the realization of some
computation. Nonetheless, we will also consider the case of real-world scenarios where the term resource
denotes some effort (real-world experiment) that has a real, e.g. financial, cost. Making a good use of the
available resources means designing an exploration strategy that would allocate the resources in a clever way
such as to maximize (among the space of possible exploration strategies) the performance of the resulting task.
Potential applications are numerous and may be found in domains where a one-shot decision or a sequence of
decisions has to be made, such as in optimization, control, learning, and games.

For that purpose we will consider several ways of combining algorithms which perform a good job in
balancing resources between exploitation (making the best decision based on our current, but possibly
imperfect, knowledge) and exploration (decisions that may appear sub-optimal but which may yield additional
information about the unknown parameters, and, as a result, could improve the relevance of future decisions).
These exploration/exploitation algorithms, also called bandit algorithms, or regret-minimization algorithms,
will be the building blocks of our methods. They will be combined either in a hierarchical way, or as a
population, either in collaborative or adversary working mode.

5http://sites.google.com/site/anrexplora/.

http://sites.google.com/site/anrexplora/
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A motivating example concerns min-max tree search in large scale games. The goal here is to explore the tree
to find the best move for the next play, given a limited amount of simulation resources (e.g., CPU time). Here,
resource allocation means an exploration strategy that selects which branch one should explore deeper at each
time step; the aim being that at the end of the available resources, the collected information allows making the
best decision (or an almost optimal decision). Previous works in efficient tree exploration using hierarchical
bandits for the game of go have shown very promising results (such as the MoGo program [Gelly et al., 2006]
currently among the world best computer-go programs), which have motivated our research for extending both
the theoretical analysis of the underlying ideas and their scope to a wide range of applications.

We expect to develop new simulation techniques based on a clever use of available computational resources,
in order to solve large scale optimization and decision making problems previously considered unsolvable.
See sec. 6.2.3 for details about 2009 scientific activities.

8.2.3. ANR Kernsig
Participants: Emmanuel Duflos, Hachem Kadri, Philippe Preux.

The ANR Kernsig project began in 2007 and it is headed by Prof. S. Canu with the INSA-Rouen. It deals with
the study of kernel methods for signal processing.

See the section 6.4.3 for scientific details of 2009 activities.

8.2.4. ANR Lampada
Participants: Mohammad Ghavamzadeh, Jérémie Mary, Philippe Preux.

The ANR Lampada project has been submitted, and approved in 2009, and will officially begin in 2010.
Lampada means “Learning Algorithms, Models an sPArse representations for structured DAta”6. This project
involves approximately 30 people from Paris (LIP’6, P. Gallinari’s group), Marseille (LIF, F. Denis’ group),
Saint-Étienne (LHC, M. Sebban’s group), the Mostrare and SEQUEL EPIs. M. Tommasi from Mostrare is the
head of this ANR.

Lampada is a fundamental research project on machine learning and structured data. It focuses on scalling
learning algorithms to handle large sets of complex data. The main challenges are:

1. high dimension learning problems,

2. large sets of data and

3. dynamics of data.

Complex data we consider are evolving and composed of parts among which there are some relations.
Representations of these data embed both structure and content information and are typically large sequences,
trees and graphs. The main application domains are web2, social networks and biological data.

The project proposes to study formal representations of such data together with incremental or sequential
machine learning methods and similarity learning methods.

The representation research topic includes condensed data representation, sampling, prototype selection and
representation of streams of data. Machine learning methods include edit distance learning, reinforcement
learning and incremental methods, density estimation of structured data and learning on streams.

SEQUEL is particularly concerned with the learning of the representation of data in high dimensional spaces,
in particular the work on feature extraction, and non parametric supervised learning algorithms.

8.2.5. ANR Co-Adapt
Participant: Rémi Munos.

6project website: http://lampada.gforge.inria.fr/.

http://lampada.gforge.inria.fr/
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This ANR project has been submitted, and approved in 2009. Rémi Munos is the SEQUEL coordinator of
the ANR CO-ADAPT (Brain computer co-adaptation for better interfaces) project which starts in the end of
2009 (for 4 years). This is in collaboration with the INRIA Odyssee project (Maureen Clerc), the INSERM
U821 team (Olivier Bertrand), the Laboratory of Neurobiology of Cognition (CNRS) (Boris Burle) and the
laboratory of Analysis, topology and probabilities (CNRS and University of Provence) (Bruno Torresani).

8.2.5.1. Workshop “Localisation Précise pour les Transports Terrestres”

Emmanuel Duflos was the main organizer, in collaboration with the LEOST, Heudiasyc and LCPC french
laboratories, of a workshop on precised localization for land transportations. This workshop was held in Paris
on June, 16thth. There were more than 30 attendees. A CD-ROM has been edited (INRETS publisher) on
which papers are in english to ease the spreading of the presented works.

8.3. International activities
8.3.1. PASCAL2 Network of excellence

In 2009, SEQUEL has joined the Pascal-2 European network of excellence dedicated to machine learning.
SEQUEL has created a new node of this NoE in collaboration with the EPI Mostrare, and Stéphane Canu’s
group in Rouen. R. Munos is the head of this node.

8.3.2. PASCAL2 Pump-Priming Project
Pump-Priming is a program organized by the PASCAL2 network of excellence. The goal of this program is
to provide support for collaborative research on novel topics that are not yet sufficiently mature to attract
mainstream funding. Rémi Munos and Mohammad Ghavamzadeh, along with Shie Mannor, an associate
professor at the department of electrical engineering at Technion, Haifa, Israel, submitted a proposal on
“Sparse Reinforcement Learning in High Dimensions” to this program. Our proposal was accepted for funding
in September 2009. This is a 2 year project that starts in November 2009.

The main objective of this project is to find appropriate representations for value function approximation
in high-dimensional spaces, and to use them to develop efficient reinforcement learning algorithms. By
appropriate we mean representations that facilitate fast and robust learning, and by efficient we mean
algorithms whose sample and computational complexities do not grow too rapidly with the dimension of
the observations. We further intend to provide theoretical analysis for these algorithms as we believe that
such results will help us refine the performance of such algorithms. We intend to empirically evaluate the
performance of the developed algorithms in real-world applications such as a complex network management
domain and a dogfight flight simulator.

This is a fundamental research project that would also help us to establish a collaboration with a very strong
research group at Technion in Israel.

8.3.3. University of Alberta, Canada
We have continued our collaboration with the University of Alberta in Canada:

• with Prof. Csaba Szepesvári and Amir massoud Farahmand at the University of Alberta, Canada, on
the topic of regularities in sequential decision making problems. We have published two conference
papers [28], [27] and had two workshop papers accepted on this topic this year.

• with Prof. Richard Sutton from the University of Alberta, Canada, and Prof. Shalabh Bhatnagar from
the Indian Institute of Science, Bangalore, India, on the topic of actor-critic algorithms, on which
we have published a journal paper [13] and a technical report [49] this year.

8.3.4. Russia
D. Ryabko obtained an INRIA grant in the “collaboration avec la Russie” framework, for collaboration
on steganography and statistics with Institute of Computational Technologies Siberian Branch of Russian
Academy of Science, which funds two mutual visits. As a part of this funding scheme, D. Ryabko is also going
to make a visit to Laboratoire J-V. Poncelet, Moscow, and give a talk on sequence prediction and statistics of
processes there.
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8.3.5. MPI Tübinghen
Sébastien Bubeck collaborates with U. von Luxburg on clustering.

8.3.6. COLT workshop
A 1 day “On-line Learning with Limited Feedback” (PASCAL2 sponsored event) has been organized by
Alessandro Lazaric, Rémi Munos, Daniil Ryabko, Sébastien Bubeck, Odalric Maillard, Jean-Yves Audibert,
Peter Auer, and Csaba Szepesvári.

8.3.7. Special session at COGIS’2009
Along with François Caron (EPI Alea, Bordeaux), E. Duflos organized a session on multi-target tracking at
the conference COGIS’2009, held in Paris, Nov. 16-18th, 2009.

8.3.8. Programme Interdisciplinaire de Coopération Scientifique
A “Programme Interdisciplinaire de Coopération Scientifique” (PICS) is running over the period 2008–2010
which concerns Ph. Vanheeghe, and E. Duflos, in relation with the Centre for Pavement and Transportation
Technology (CPATT), headed by prof. Carl Haas at the University of Waterloo, Canada.

The optimal use of the data provided by the sensors must necessarily lie within a dynamic process suitable
to control the acquisition of information. This project proposes to define principles and methods for the
management of multisensor systems in the frame of civil engineering. This work, requires the development
of specific methodological tools. These tools will be tested on a real civil engineering application, the
characterization of new materials for highway pavement. Multisensor management being integrated in this
Canadian, very ambitious, civil engineering project. The Canadian team will carry out the instrumentation
and the validation, whereas the definition of the tools and method will be carried out in tight partnership and
controlled by the French team.

8.4. Visits and invitations
• E. Duflos and Ph. Vanheeghe visit Carl Haas, U. Waterloo, Ontario, Canada, to work further in the

frame of their joint PICS (November 28th to December 5th)

• Daniil Ryabko visits the J-V. Poncelet laboratory in Moscow.

• Daniil Ryabko visits Petri Myllymaki at the University of Helsinki, Finland.

• Rémi Munos and Rémi Coulom were invited to the Japanese-French conference, Tokyo, Jan. 2009

9. Dissemination

9.1. Scientific community animation
• A. Lazaric presented a tutorial on “Transfer Learning in Reinforcement Learning Domains” at both

conferences AAMAS’2009, and ECML’2009.

• participation to the program committees of international conferences:

– R. Coulom: “Advances in Computer Games 12”

– E. Duflos: workshop on the Theory of Belief Function (Brest, April 1-2, 2010), Fusion
2009, Gretsi 2009

– M. Ghavamzadeh: International Conference on Machine Learning (ICML 2009), Annual
Conference on Neural Information Processing Systems (NIPS 2009)

– R. Munos: NIPS 2009, ADPRL 2009, AISTATS 2009, ALT 2009, ICML 2009, JFPDA
2009
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– Ph. Preux: ECML 2009, IJCAI 2009, ADPRL 2009, EGC 2009 and 2010

– D. Ryabko: “Learning from non-IID data” ECML 2009 workshop

– E. Duflos: Fusion 2009

• international journal and conference reviewing activities (in addition to the conferences in which we
belong to the PC):

– E. Duflos: IEEE Transaction on Signal Processing, International Journal of Approximate
Reasonning, Information Fusion.

– M. Ghavamzadeh: Machine Learning Journal (MLJ), Journal of Artificial Intelligence
Research (JAIR), Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),

– J. Mary: Journal of Machine Learning Research (JMLR), EGC 2010

– R. Munos: Annals of Telecommunications, Machine Learning, Mathematics of Operations
Research, Revue d’Intelligence Artificielle,

– Ph. Preux: Machine Learning Journal, IEEE Trans. on SMC-C, Algorithms

– D. Ryabko: Uncertainty in Artificial Intelligence (UAI) 2009

• R. Munos and Ph. Preux have reviewed proposals in the ANR Blanc program (2009)

• R. Munos has reviewed proposals in the ANR Jeunes Chercheurs program (2009), and ANR
COSINUS program

• R. Munos has been a member of the following committees:

– INRIA Senior Researcher (DR 2) recruitment, 2009

– INRIA Junior Researcher (CR 2) recruitment in Nancy, 2009

– Scientific organizer of the INRIA evaluation seminar theme “Optimisation, apprentissage
et méthodes statistiques”, scheduled in March 2010.

– animation comity of the INRIA theme “Mathématiques appliquées, calcul et simulation”.

– INRIA Evaluation committee

• participation to PhD jurys:

– R. Munos was Rapporteur for PhD thesis of Matthieu Geist (Supélec Metz), and member
of the PhD defense jury of Lucian Busoniu (Delft University, Nederland), Emmanuel
Rachelson (University of Toulouse), Olivier Caelen (ULB, Belgium)

– Ph. Preux was Rapporteur for the PhD thesis of A. Machado (Lip 6). He also serves as
a member of the “Jury Gilles Kahn 2009” which aims at awarding the “best” computer
science PhD dissertation of the year.

• expertise:

– R. Munos was a referee in:

* ERC starting grants evaluation Panel PE6 (Computer Science and Informatics)

* Digiteo project in logiciel et systèmes complexes (Ile-de-France region)

* Review for a CRC book on Reinforcement Learning

• invited talks:

– R. Munos was invited speaker: seminars given at Delft University (Nederlands), Imperial
College of London, Université Libre de Bruxelles, Atelier PIRSTEC (Lyon).

– R. Coulom was invited speaker at the “Japanese-French Frontiers of Science Symposium
JFFoS’2009)”

– J. Mary was invited to give a Smile seminar at the “École des Mines de Paris”
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– J. Mary gives a lecture as the Montebello high-school in Lille in a program aiming at
drawing more students towards scientific studies.

9.2. Teaching
We list the classes that are related to the research activities in SEQUEL that happened in 2008.

• Rémi Munos teaches a class in reinforcement learning in the M2 “Mathematics-Vision-Learning”
(MVA) at the ENS-Cachan.

• Philippe Preux teaches:

– in the M2 MIASHS, 2 data mining classes

– in the M2 of computer science at the University of Lille a class on reinforcement learning.

• Jérémie Mary is head of the speciality “Informatique et Documents” of the Master MIASHS.

• Jérémie Mary and Rémi Coulom are teaching data mining in master MIASHS at the University of
Lille.

Otherwise, each of the 4 professors and assistant professors of the SEQUEL team teaches 192 hours per year.
Taught classes include machine learning, data mining, and signal processing classes.
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