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2. Overall Objectives

2.1. Overall Objectives
The TROPICS team studies Automatic Differentiation (AD) of algorithms and programs. It is at the junction
of two research domains:

• AD theory: On the one hand, we study software engineering techniques, to analyze and transform
programs semi-automatically. Our application is Automatic Differentiation (AD). AD transforms a
program P that computes a function F , into a program P’ that computes some derivatives of F ,
analytically. We put a particular emphasis on the reverse mode of AD (sometimes called adjoint
mode), which yields gradients for optimization at a remarkably low cost. The reverse mode of AD
requires carefully crafted algorithms.

• AD application to Scientific Computing: On the other hand, we study the application of AD, and
particularly of the adjoint method, to e.g. Computational Fluid Dynamics. This involves adapting
of the strategies used in Scientific Computing, in order to take full advantage of AD. This work is
applied to several real-size applications.

The second aspect of our work is thus at the same time the motivation and the application domain of the
first aspect. Our objective is to automatically produce AD code that can compete with the hand-written
sensitivity and adjoint programs which exist in the industry. We implement our ideas and algorithms into
the tool TAPENADE, which is developed and maintained by the team, and which has become one of the most
popular AD tools. TAPENADE is available as a web service, and alternatively a version can be downloaded
from our web server. Practical details can be found in section 5.1.

Our research directions are :

• Modern numerical methods for finite elements or finite differences: multigrid methods, mesh
adaptation.

• Optimal shape design or optimal control in the context of fluid dynamics: This involves optimization
of nonsteady processes and computation of higher-order derivatives e.g. for robust optimization.
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• Automatic Differentiation : improve the AD models and implement the program static analysis that
they require. Devise specific AD strategies for frequent numerical algorithms. Reduce runtime and
memory consumption of the reverse mode, study storage/recomputation strategies for very large
codes.

• Common tools for program analysis and transformation: adequate internal representation, Call
Graphs, Flow Graphs, Data-Dependence Graphs.

3. Scientific Foundations

3.1. Automatic Differentiation
Participants: Laurent Hascoët, Valérie Pascual.

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the Partial Derivative Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a
source computer program P that, given a vector argument X ∈ IRn, computes some vector function
Y = F (X) ∈ IRm. The AD tool generates a new source program that, given the argument X , computes
some derivatives of F . In short, AD first assumes that P represents all its possible run-time sequences of in-
structions, and it will in fact differentiate these sequences. Therefore, the control of P is put aside temporarily,
and AD will simply reproduce this control into the differentiated program. In other words, P is differentiated
only piecewise. Experience shows that this is reasonable in most cases, and going further is still an open re-
search problem. Then, any sequence of instructions is identified with a composition of vector functions. Thus,
for a given control:

P is {I1; I2; · · · Ip; },
F = fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. Finally, AD simply applies the chain
rule to obtain derivatives of F . Let us call Xk the values of all variables after each instruction Ik, i.e. X0 = X
and Xk = fk(Xk−1). The chain rule gives the Jacobian F ′ of F

F ′(X) = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically translated back into a sequence of instructions I ′k, and these sequences inserted
back into the control of P , yielding program P ′. This can be generalized to higher level derivatives, Taylor
series, etc.

In practice, the above Jacobian F ′(X) is often far too expensive to compute and store. Notice for instance that
equation (2) repeatedly multiplies matrices, whose size is of the order of m × n. Moreover, most problems
are solved using only some projections of F ′(X). For example, one may need only sensitivities, which are
F ′(X).Ẋ for a given direction Ẋ in the input space. Using equation (2), sensitivity is
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F ′(X).Ẋ = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) . Ẋ, (3)

which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of the tangent mode of AD, which is the most straightforward, of course available in TAPENADE.

However in optimization, data assimilation [34], adjoint problems [29], or inverse problems, the appropriate
derivative is the gradient F ′∗(X).Y . Using equation (2), the gradient is

F ′∗(X).Y = f ′∗1 (X0).f ′∗2 (X1). · · · .f ′∗p−1(Xp−2).f ′∗p (Xp−1).Y , (4)

which is most efficiently computed from right to left, because matrix×vector products are so much cheaper
than matrix×matrix products. This is the principle of the reverse mode of AD.

This turns out to make a very efficient program, at least theoretically [31]. The computation time required for
the gradient is only a small multiple of the run-time of P . It is independent from the number of parameters n.
In contrast, notice that computing the same gradient with the tangent mode would require running the tangent
differentiated program n times.

However, we observe that the Xk are required in the inverse of their computation order. If the original program
overwrites a part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). This is the
main problem of the reverse mode. There are two strategies for addressing it:

• Recompute All (RA): the Xk is recomputed when needed, restarting P on input X0 until instruction
Ik. The TAF [27] tool uses this strategy. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructions p.

• Store All (SA): the Xk are restored from a stack when needed. This stack is filled during a
preliminary run of P , that additionally stores variables on the stack just before they are overwritten.
The ADIFOR [22] and TAPENADE tools use this strategy. Brute-force SA strategy has a linear
memory cost with respect to p.

Figure 1. The “Store-All” tactic

Both RA and SA strategies need a special storage/recomputation trade-off in order to be really profitable,
and this makes them become very similar. This trade-off is called checkpointing. Since TAPENADE uses the
SA strategy, let us describe checkpointing in this context. The plain SA strategy applied to instructions I1 to
Ip builds the differentiated program sketched on figure 1, where an initial “forward sweep” runs the original
program and stores intermediate values (black dots), and is followed by a “backward sweep” that computes the
derivatives in the reverse order, using the stored values when necessary (white dots). Checkpointing a fragment
Ckp of the program is illustrated on figure 2. During the forward sweep, no value is stored while in Ckp. Later,
when the backward sweep needs values from Ckp, the fragment is run again, this time with storage. One can
see that the maximum storage space is grossly divided by 2. This also requires some extra memorization (a
“snapshot”), to restore the initial context of Ckp. This snapshot is shown on figure 2 by slightly bigger black
and white dots.
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Figure 2. Checkpointing Ckp with the “Store-All” tactic

Checkpoints can be nested. In that case, a clever choice of checkpoints can make both the memory size and
the extra recomputations grow only like the logarithm of the size of the program.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution, in
which all branches of control switches are taken simultaneously, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as a data
dependence graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analysis [20]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. In particular, it is desirable that the optimization and code generation phases be independent
from the particular input programming language. This can generally be achieved through separate front-ends,
that produce an internal language-independent representation of the program, generally an abstract syntax tree.
For example, compilers like gcc for C and g77 for FORTRAN77 have separate front-ends but share most of
their back-end.
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One can go further. As abstraction goes on, the internal representation becomes more language independent,
and semantic constructs such as declarations, assignments, calls, IO operations, can be unified. Analysis
can then concentrate on the semantics of a small set of constructs. We advocate an internal representation
composed of three levels.

• At the top level is the call graph, whose nodes are the procedures. There is an arrow from node A
to node B iff A possibly calls B. Recursion leads to cycles. The call graph captures the notions of
visibility scope between procedures, that come from modules or classes.

• At the middle level is the control flow graph. There is one flow graph per procedure, i.e. per node in
the call graph. The flow graph captures the control flow between atomic instructions. Flow control
instructions are represented uniformly inside the control flow graph.

• At the lowest level are abstract syntax trees for the individual atomic instructions. Certain semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each basic block is associated a symbol table that gives access to properties of variables, constants, function
names, type names, and so on. Symbol tables must be nested to implement lexical scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [23], [32], [21]. But many analyses are
more complex, and are thus better defined on graphs than on trees. This is the case for data-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [24], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [25] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. The classical
solution is to choose a hierarchical model. In this model, information, or at least a computationally expensive
part of it, is synthesized. Specifically, it is computed bottom up, starting on the lowest (and smallest) levels
of the program representation and then recursively combined at the upper (and larger) levels. Consequently,
this synthesized information must be made independent of the context (i.e., the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top down and context dependent,
that propagates information from the “extremities” of the program (its beginning or end) to each particular
subroutine, basic block, or instruction.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of actual
run-time values. Most of them are undecidable; that is, there always exists a particular program for which the
result of the analysis is uncertain. This is a stronglimitation, however very theoretical. More concretely, there
are always cases where one cannot decide statically that, for example, two variables are equal. This is even
more frequent with two pointers or two array accesses. Therefore, in order to obtain safe results, conservative
over-approximations of the computed information are generated. For instance, such approximations are made
when analyzing the activity or the TBR (“To Be Restored”) status of some individual element of an array.
Static and dynamic array region analyses [39], [26] provide very good approximations. Otherwise, we make
a coarse approximation such as considering all array cells equivalent.

When studying program transformations, one often wants to move instructions around without changing the
results of the program. The fundamental tool for this is the data dependence graph. This graph defines an
order between run-time instructions such that if this order is preserved by instructions rescheduling, then the
output of the program is not altered. Data dependence graph is the basis for automatic parallelization. It is also
useful in AD. Data dependence analysis is the static data-flow analysis that builds the data dependence graph.

3.3. Automatic Differentiation and Computational Fluid Dynamics
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus.
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linearization The mathematical equations of Fluid Dynamics are Partial Derivative Equations, that
are discretized and then solved by a computer program. Linearization of these equations, or
alternatively linearization of the computer program, gives a modelization of the behavior of the
flow when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Computational Fluid Dynamics is now able to make reliable simulations of very complex systems. For example
it is now possible to simulate completely the 3D air flow around a plane that captures the physical phenomena
of shocks and turbulence. The next step in CFD appears to be optimization. Optimization is one degree higher
in complexity, because it repeatedly simulates, evaluates directions of optimization and applies optimization
steps, until an optimum is reached.

We restrict here to gradient descent methods. One risk is obviously to fall into local minima before reaching
the global minimum. We do not address this question, although we believe that more robust approaches, such
as evolutionary approaches, could benefit from a coupling with gradient descent approaches. Another well-
known risk is the presence of discontinuities in the optimized function. We investigate two kinds of methods
to cope with discontinuities: we can devise AD algorithms that detect the presence of discontinuities, and we
can design optimization algorithms that solve some of these discontinuities.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

• One can write an adjoint system, then discretize it and program it by hand. The adjoint system is a
new system, deduced from the original equations, and whose solution, the adjoint state, leads to the
gradient. A hand-written adjoint is very sound mathematically, because the process starts back from
the original equations. This process implies a new separate implementation phase to solve the adjoint
system. During this manual phase, mathematical knowledge of the problem can be translated into
many hand-coded refinements. But this may take an enormous engineering time. Except for special
strategies (see [29]), this approach does not produce an exact gradient of the discrete functional, and
this can be a problem if using optimization methods based on descent directions.

• A program that computes the gradient can be built by pure Automatic Differentiation in the reverse
mode (cf 3.1). It is in fact the adjoint of the discrete functional computed by the software, which
is piecewise differentiable. It produces exact derivatives almost everywhere. Theoretical results
[28] guarantee convergence of these derivatives when the functional converges. This strategy gives
reliable descent directions to the optimization kernel, although the descent step may be tiny, due to
discontinuities. Most importantly, AD adjoint is generated by a tool. This saves a lot of development
and debug time. But this systematic approach leads to massive use of storage, requiring code
transformation by hand to reduce memory usage. Mohammadi’s work [33] [36] illustrates the
advantages and drawbacks of this approach.

The drawback of AD is the amount of storage required. If the model is steady, can we use this important
property to reduce this amount of storage needed? Actually this is possible, as shown in [30], where
computation of the adjoint state uses the iterated states in the direct order. Alternatively, most researchers [33]
use only the fully converged state to compute the adjoint. This is usually implemented by a hand modification
of the code generated by AD. But this is delicate and error-prone. The TROPICS team investigate hybrid
methods that combine these two extreme approaches.

4. Application Domains
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4.1. Panorama
Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications:

• optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography),

• first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

• mesh adaptation and mesh optimization with gradients or adjoints,

• equation solving with the Newton method,

• sensitivity analysis, propagation of truncation errors.

We will detail some of them in the next sections. These applications require an AD tool that differentiates
programs written in classical imperative languages, FORTRAN77, FORTRAN95, C, or C++. We also consider
our AD tool TAPENADE as a platform to implement other program analyses and transformations. TAPENADE
does the tedious job of building the internal representation of the program and running static data-flow analysis,
and then provides an API to build new tools on top of this representation.

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [34] in weather forecasting or in oceanography.
The initial state of the simulation conditions the quality of the prediction. But this initial state is largely
unknown. Only some measures at arbitrary places and times are available. The initial state is found by solving
a least squares problem between the measures and a guessed initial state which itself must verify the equations
of meteorology. This rapidly boils down to solving an adjoint problem, which can be done though AD [38].
Figure 3 shows an example of a data assimilation exercise using the oceanography code OPA [35] and its AD
adjoint code produced by TAPENADE.

The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is time,
as available measures are distributed over a given assimilation period. Therefore the least squares mechanism
must be applied to a simulation over time that follows the time evolution model. This process gives a much
better estimation of the initial state, because both position and time of measurements are taken into account.
On the other hand, the adjoint problem involved grows in complexity, because it must run (backwards) over
many time steps. This demanding application of AD justifies our efforts in reducing the runtime and memory
costs of AD adjoint codes.
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Figure 3. Twin experiment using the adjoint of OPA. We add random noise to a simulation of the ocean state
around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model
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4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This is
sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameters. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called a reduced model.

4.5. Mesh adaptation
It has been noticed that some approximation errors can be expressed by an adjoint state. Mesh adaptation can
benefit from this. The classical optimization step can give an optimization direction not only for the control
parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal
is to obtain optimal control parameters up to a precision prescribed in advance.

5. Software

5.1. Tapenade
Participants: Laurent Hascoët [correspondant], Valérie Pascual.

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team. TAPENADE progressively
implements the results of our research about models and static analyses for AD. From this standpoint,
TAPENADE is a research tool. Our objective is also to promote the use of AD in the scientific computation
world, including the industry. Therefore the team constantly maintains TAPENADE to meet the demands of our
industrial users. TAPENADE can be simply used as a web server, available at the URL
http://tapenade.inria.fr:8080/tapenade/index.jsp
It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics/tapenade/README.html
Documentation is available on our web page
http://www-sop.inria.fr/tropics/
and as an INRIA technical report (RT-0300)
http://hal.inria.fr/inria-00069880

TAPENADE differentiates computer programs according to the model described in section 3.1. It supports three
modes of differentiation:

• the tangent mode that computes a directional derivative F ′(X).Ẋ ,

• the vector tangent mode that computes F ′(X).Ẋn for many directions Xn simultaneously, and can
therefore compute Jacobians, and

• the reverse mode that computes the gradient F ′∗(X).Y .

The vector reverse mode is not implemented, although this could be done if the need arises. Many other
modes exist in the other AD tools in the world, that compute for example higher degree derivatives or Taylor
expansions. For the time being, we restrict ourselves to first-order derivatives and we put our efforts on the
reverse mode. Notice however that higher-order derivatives can be obtained through repeated application of
tangent AD on tangent and/or reverse AD.

http://tapenade.inria.fr:8080/tapenade/index.jsp
ftp://ftp-sop.inria.fr/tropics/tapenade/README.html
http://www-sop.inria.fr/tropics/
http://hal.inria.fr/inria-00069880
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In addition to classical Type-Checking and Read-Write analysis, TAPENADE performs the following sophisti-
cated static analyses in order to produce an efficient output :

• Pointer (or Alias) analysis: For any static program transformation, and in particular differentiation,
it is essential to have an accurate knowledge of the possible destinations of each pointer at each
code line. Otherwise one must make conservative assumptions that will lead to less efficient code.
Our static pointer analysis finds precise information about pointer destinations, taking into account
memory allocation and deallocation.

• Activity: The end-user has the opportunity to specify which of the output variables must be
differentiated (called the dependent variables), and with respect to which of the input variables
(called the independent variables). Activity analysis propagates the dependent, backward through
the program, to detect all intermediate variables that possibly influence them. Conversely, activity
analysis also propagates the independent, forward through the program, to find all intermediate
variables that possibly depend on them. Only the intermediate variables that both depend on the
independent and influence the dependent are called active, and will receive an associated derivative
variable. Activity analysis makes the differentiated program smaller and faster.

• Adjoint Liveness and Adjoint Read-Write: Programs produced by the reverse mode of AD show a
very particular structure, due to the derivative calculations performed in reverse order. This has deep
consequences on the liveness and Read-Write status of variables, that we can exploit to take away
unnecessary instructions and memory usage from the reverse differentiated program. This makes the
adjoint program smaller and faster by factors that can go up to 40%.

• TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate variables
just before they are overwritten. However this is often unnecessary, because derivatives of some
expressions (e.g. linear expressions) only use the derivatives of their arguments and not the original
arguments themselves. In other words, the local Jacobian matrix of an instruction may not need
all the intermediate variables needed by the original instruction. The To Be Restored (TBR) analysis
finds which intermediate variables need not be stored during the forward sweep, and therefore makes
the differentiated program smaller in memory.

Several other strategies are implemented in TAPENADE to improve the differentiated code. For example, a data-
dependence analysis allows TAPENADE to move instructions around safely, gathering instructions to reduce
cache misses. Also, long expressions are split in a specific way, to minimize duplicate sub-expressions in the
derivative expressions.

The input languages of TAPENADE are FORTRAN77, FORTRAN95, and C. The extension for C has been
released in 2008, and is still more experimental than for FORTRAN. Thanks to the language-independent
internal representation of programs, as shown on figure 4, this still makes a single and only tool, and every
further development benefits to differentiation of each input language.

There are in fact three user interfaces for TAPENADE. One is a simple command that can be called from a
shell or from a Makefile. It is recommended for an intensive usage. The second is interactive and graphic,
using JAVA SWING components and HTML pages. This second interface allows one to use TAPENADE from
WINDOWS as well as LINUX. The third user interface is similar to the second, but runs as a web server.
The graphic output interface, shown on figure 5, displays the differentiated programs, with HTML links that
implement source-code correspondence, as well as correspondence between error messages and locations in
the source.

TAPENADE is now available for LINUX, SUN, MAC-OS, and WINDOWS-XP platforms. TAPENADE is imple-
mented mostly in JAVA, apart from the front-ends which are separated and can be written in their own lan-
guages. Several industrial companies have purchased an industrial license for TAPENADE, the software has
been downloaded several hundred times, and the web tool served several thousands of true connections (not
robots).
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Figure 4. Overall Architecture of TAPENADE

6. New Results

6.1. Automatic Differentiation and parallel codes
Participants: Laurent Hascoët, Jean Utke [Argonne National Lab. (Illinois, USA)], Uwe Naumann [RWTH
Aachen University (Germany)].

This study is an ongoing joint work between three teams working on AD. We study differentiation in reverse
mode of programs that contain MPI communication calls. Instead of the commonly used approach that
encapsulates the MPI calls into black-box subroutines that will be differentiated by hand, we are looking
for a native differentiation of the MPI calls by the AD tool.

One issue is to reduce the large variability of the available MPI calls and parameters to a smaller number
of elementary concepts. We then address the basic question of sends and recvs, that may be blocking or
nonblocking, individual or collective, and so on. Essentially the adjoint of a send is a recv, and vice-versa,
but the possibility of nonblocking isend’s and irecv’s requires more subtlety.

A static analysis that detects corresponding isend’s, irecv’s, and wait’s is a challenge. It is bound to make
conservative assumptions that will degrade the result. Moreover, experiments show that few codes provide
clear static information about matching communication routines. MPI tags are often not enough. Therefore we
explore a dynamic approach, with a special MPI library enhanced for the reverse mode of AD. The extended
MPI communication primitives store at run-time sufficient information for an exact matching of isend’s,
irecv’s, and wait’s and their differentiated counterparts. The approach applies equally to AD tools based on
program transformation or on operator overloading.

We presented our results [14] at the PDSEC’09 conference this spring, including an experiment on the adjoint
of the MIT General Circulation Model. For the record, we also mention an article [37] (forgotten in last year’s
report) about a proof of correctness of the reverse differentiation scheme for MPI communications.

6.2. TAPENADE for C
Participants: Laurent Hascoët, Valérie Pascual.
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Figure 5. TAPENADE output interface, with source-code-error correspondence
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The team continued to put considerable effort into Automatic Differentiation of C with TAPENADE. Among
other improvements, we underline the following:

• A correct reverse differentiation of arguments that are passed by value instead of by reference.
• An extension of the internal representation of pointers to capture C-style array declarations and

indexing.
• An improved treatment of the C for loops that are actually equivalent to FORTRAN do loops.

6.3. Interface with ADOL-C
Participants: Karim Hossen, Laurent Hascoët.

AD tools come in two main categories.

• Source transformation tools (e.g. TAPENADE), similar to compilers, produce a new differentiated
source code from the original. They can perform sophisticated global source analysis and transfor-
mation, producing e.g. an efficient, standalone reverse differentiated source program. This remark-
able power comes at the cost of a huge tool development effort.

• Overloading-based tools (e.g. ADOL-C) do not change the original source code. They rely on
manual modifications of the source code by the user, mostly in the declarations part, that trigger
overloading of arithmetic computations with their derivatives. These tools are well suited to local
differentiation, like the tangent mode, and all its variants for higher derivatives, Taylor expansions,
or interval computations. On the other hand, they are not well suited to the reverse mode.

This year, we developed a prototype interface between the two categories. Namely, we want to use TAPENADE
as a front-end for ADOL-C. Overloading-based tools can’t perform activity analysis, and therefore cannot tell
the user which variables are active and therefore should be turned into the new overloaded type. Thus the user
has to do this manually, at the risk of errors. As a front-end for ADOL-C, TAPENADE runs its activity analysis
and then automatically changes the declararations of active variables. The new source is then ready to use by
ADOL-C without user intervention. TAPENADE can also benefit from this work, as this gives a solution to
TAPENADE users who want higher-order derivatives or Taylor series that the team has no time to implement.

Karim Hossen has implemented a new differentiation mode in TAPENADE that just redeclares active variables
from real or double to the ADOL-C defined adouble type. Difficulties remain, mainly at the procedure call
level, or at places where the activity status changes. The activity status in TAPENADE is dynamic, changing
as the program runs. On the other hand, declared types cannot change dynamically, and therefore copies and
conversions are sometimes needed for ADOL-C.

Karim Hossen presented his preliminary results to Andrea Walther and her team at the University of Paderborn
(Germany), who are now the center of development on ADOL-C.

6.4. Combined Storage and Recomputation for Data-Flow reversal
Participant: Laurent Hascoët.

As explained so many times, the main drawback of the reverse mode of AD is the need to make the temporary
variables of the original program available to the derivatives computation, in reverse order. This Data-Flow
reversal is bound to have a cost in memory space or in duplicate computations. Book chapter [15] provides an
in-depth description of the problem.

In the past, we tried to look for a framework to represent both storage and recomputation options, in order to
look for optimal combinations. These efforts have not been successful yet.

Despite this lack of a general framework, this year we started to develop a practical strategy to replace some
Storage with cheap Recomputation. This strategy only picks some “low-hanging fruit”, as it considers only
recomputation that obeys some simple data-flow properties. The strategy is implemented as an extension of the
TBR static data-flow analysis. Experiments with Tapenade show measurable improvements for the Push/Pop
memory traffic, and thus for run time.
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In the future, we plan to lift more limitations of this strategy. One goal is to encompass the extreme
“Recompute-All” strategy that is implemented in the TAF tool, with its optimizations (“Efficient Recomputa-
tion Algorithm”). Another goal is to use this implemented strategy as a guideline to again look for a general
framework and for the optimum.

6.5. Resolution of linearised systems
Participants: Hubert Alcin, Olivier Allain [Lemma], Anca Belme, Marianna Braza [IMF-Toulouse], Alain
Dervieux, Bruno Koobus [Université Montpellier 2], Stephen Wornom [Lemma].

The interaction between the sophisticated solution algorithm inside a program and the Automatic Differentia-
tion of the program is a non-trivial issue. An iterative algorithm generally does not store the successive updates
of the iterated solution vector. Furthermore, a modern iterative solution algorithm involves several nonlinear
processes, like in:

• the evaluation of an optimal step, which results at least from a homographic function of the
unknown,

• the orthonormalisation of the updates (Gram-Schmidt method, Hessenberg method).

Applying reverse AD to the iterative solution algorithm produces a linearised iterative algorithm which is
transposed and therefore follows a reverse order, with exactly the same number of iterations needing exactly
each of the iterated solution vector.

In the ECINADS ANR project (starting end of 2009), we plan to design more efficient solution algorithms and
to examine the questions risen by their reverse differentiation. The efficiency will be evaluated through the
practical scalability on a large number of processors. Scalable efficiency of the reverse differentiated algorithm
will be studied. ECINADS associates the university of Montpellier 2, the Institut de Mécanique des fluides de
Toulouse and Lemma company.

6.6. Second Derivatives
Participants: Massimiliano Martinelli [UniversitÃ Politecnica delle Marche, Ancona], Alain Dervieux,
Laurent Hascoët, Régis Duvigneau [OPALE team].

In the context of the European project NODESIM-CFD, the contribution of Tropics involved the production
of second derivative code through repeated application of Automatic Differentiation. Three strategies can be
applied to obtain (elements of) the Hessian matrix, named Tangent-on-Tangent (ToT), Tangent-on-Reverse
(ToR), and Reverse-on-Tangent (RoT).

We compared the costs of ToT and ToR in the classical context where the state equation is implicit. ToR wins
over ToT only when the number n of input parameters is large enough, An earlier result [40] claims that ToT
is better for any n. We showed that this earlier result comes from an oversimplification in the evaluation of the
algorithm cost. Thanks to the second derivation of CFD kernels, a 3-term Taylor formula gives a second-order
reduced order model. The total computational cost of the new reduced model has been compared to other meta
models such as Kriging and Radial Basis functions. These results have been presented in a special session on
uncertainty management in [11]. As a contribution to NODESIM-CFD, a “Guide for Uncertainty Management
in CFD” has been written in collaboration with NUMECA and Vrije Universiteit Brussels [16].

6.7. Correction of approximation errors
Participants: Anca Belme, Alain Dervieux, Massimiliano Martinelli [UniversitÃ Politecnica delle Marche,
Ancona].

This subject is becoming an important application of TAPENADE. We investigate the two types of correctors,
by direct linearisation and Defect Correction, or by the adjoint-based functional correction. The purpose is to
apply these methods to large unsteady flow simulations. These studies contribute to the approximation error
section of project NODESIM-CFD. New results have been presented in two NODESIM-CFD seminars in a
special session on Uncertainty management [11] and in [13].



Project-Team tropics 15

6.8. Control of approximation errors
Participants: Frédéric Alauzet [GAMMA team, INRIA-Rocquencourt], Olivier Allain [Lemma], Anca
Belme, Alain Dervieux, Damien Guegan [Lemma], Bruno Koobus, Adrien Loseille [GAMMA team, INRIA-
Rocquencourt].

This is a joint research between INRIA teams GAMMA (Rocquencourt), TROPICS, and PUMAS. Roughly
speaking, GAMMA brings mesh and approximation expertise, TROPICS contributes to adjoint methods, and
CFD applications are developed by PUMAS.

The resolution of the optimum problem using the innovative approach of an AD-generated adjoint can be used
in a slightly different context than optimal shape design namely, mesh adaptation. This will be possible if
we can map the mesh adaptation problem into a differentiable optimal control problem. To this end, we have
introduced a new methodology that consists in stating the mesh adaptation problem in a purely functional
form: the mesh is reduced to a continuous property of the computational domain: the continuous metric. We
minimize a continuous model of the error resulting from that metric. Thus the problem of searching an adapted
mesh is transformed into the search of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a close formula and gives access
to a complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation. In the case of adaptation for Partial Differential Equations such as the Euler model, we need
an adjoint state that we obtain with TAPENADE. We end up with a minimisation problem for the metric which
in turn is solved analytically [12].

Together with project-team GAMMA and PUMAS, TROPICS contributes this research on mesh adaptation
methods in aeronautics to the HISAC IP European project.

7. Dissemination
7.1. Links with Industry, Contracts

• Several industrial companies have purchased an industrial license for TAPENADE. Rolls-Royce UK
had a licence that expired in 2009, and renewed it for 5 years. TAPENADE is also used by many
academic institutions for education and research. Many users cannot be identified, because the log
files of our web and ftp servers give little information. However, we are aware of TAPENADE regular
use by researchers in Argonne National Lab. (Illinois, USA), the Federal Reserve (Washington
DC, USA), CSIRO Hobart (Australia), NAL Bangalore (India), Cranfield university (UK), Oxford
university (UK), Queen Mary university London (UK), RWTH Aachen (Germany), Humboldt
university Berlin (Germany), German Aerospace Center (Germany), DLR (Germany), General
Electric Deutschland (Germany), University of Bergen (Norway), ISMAR-CNR Venezzia (Italy),
Alenia (Italy), Dassault Aviation (France), INSA Toulouse (France), Université Montpellier 2
(France), CMAP Ecole Polytechnique (France) ...

Here are some recent statistics on the use of TAPENADE: There are roughly 2 releases per year. The
latest release has been downloaded 123 times from our ftp server, between July 2008 and January
2009 from 23 different countries including Germany (29), France (23), USA (11), Italy (6). The
TAPENADE web server has been used more than 5000 times since its creation in 2002 (Actual uses
only, not robots). The current rate is 800 uses (sessions) per year. These uses come from about
260 different geographical locations, from 42 different countries including France (48), Germany
(33), USA (21), UK (17). More than 100 users gave us their name and application when using the
Tapenade web server, and 74 have registered in the “tapenade-users” mailing list.

• TROPICS participates in the European IP project HISAC, ending in 2009, driven by Dassault
Aviation and involving 31 partners. TAPENADE has been made available to partners. TROPICS,
GAMMA, and SMASH designed mesh adaptation methods for evaluating the sonic boom and a
combined mesh-adaptative/shape optimisation method for reducing the sonic boom.
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• TROPICS participates in the project EVA-Flo: “Evaluation et Validation Automatique pour le calcul
FLOttant”, which is an ANR project accepted in 2007, and whose main contractor in ENS Lyon
(Nathalie Revol).

• TROPICS participates in the project LEFE, “Les Enveloppes Fluides et l’Environnement”, which is
a CNRS API project accepted in 2007. Our contribution is to provide the automatic production of
the adjoint of OPA [35] (ORCA-2 configuration), with the help of TAPENADE.

• TROPICS participates in the European STREP project NODESIM (Non-Deterministic Simulation
for CFD-based design methodologies), driven by Numeca (Belgium). TROPICS and OPALE con-
tribute to application of AD to build reduced models using first and second derivatives. We design
robust optimization strategies, and correctors for approximation errors.

• TROPICS is coordinator of the ANR project ECINADS, with PUMAS team, university Montpellier
2, Institut de mécanique des Fluides de Toulouse and the Lemma company in Sophia-Antipolis.
ECINADS concentrates on solution algorithms for state and adjoint systems in CFD.

7.2. Conferences and workshops
• TROPICS successfully went through the complete INRIA team evaluation process. Evaluation

meeting took place on march 17-18.

• Alain Dervieux presented the team’s results on AD for uncertainties and error correction at the 44th

AAAF congress in Nantes, march 23-25, and at the MAMERN conference in Pau, june 8-11.

• Anca Belme gives lectures to 3rd year students at tthe university of Nice.
• Anca Belme represented TROPICS at the 5th NODESIM-CFD meeting in Trieste, may 25-26.
• Anca Belme presented new results on "Correction d’erreurs numériques par linéarisés et adjoints"

as a poster at SMAI 2009, la Colle sur Loup, may 25-29.
• Laurent Hascoët presented the team’s results on reverse AD of MPI-parallel codes at the PDSEC’09

conference in Rome, Italy, may 25-29.
• Laurent Hascoët, Jean Utke, and Uwe Naumann met in Aachen Germany for 10 days, and on this

occasion presentations were organized for students.

• Laurent Hascoët presented Karim Hossen’s results at the 8th European AD Workshop hosted by
NAG in Oxford, UK, july 13-14.

• Laurent Hascoët attended the Eva-Flo meeting in Lyon, september 22-23.
• Anca Belme and Alain Dervieux presented the contribution of TROPICS to the 6th NODESIM-CFD

meeting in Brussels, october 29-30.
• Laurent Hascoët presented TAPENADE and organized a hands-on session at the ERCOFTAC school

on optimization at Humboldt University Berlin, november 11-13.
• Laurent Hascoët is on the organizing commitee of the European Workshops on Automatic Differen-

tiation. The team organized the 9th edition at INRIA Sophia-Antipolis, november 26-27.
• Laurent Hascoët is on the program committee for the 1st workshop on Automated Program Genera-

tion for Computational Science at ICCS 2010, Amsterdam, May 31 - June 2, 2010.
• Laurent Hascoët was on the PhD jury for Thomas Migliore (university of Nice).
• Alain Dervieux was on the PhD jury for Yogesh Parte (university of Toulouse) and Hilde Ouvrard

(university Montpellier 2). university of Nice.
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