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2. Overall Objectives

2.1. Overall Objectives
VEGAS is a research project of LORIA (Lorraine Research Laboratory in Computer Science and Applica-
tions), a laboratory shared by INRIA (National Institute for Research in Computer Science and Control),
CNRS (National Center for Scientific Research), Université Henri Poincaré Nancy 1, Université Nancy 2, and
INPL (National Engineering Institute of Lorraine).

The main scientific objective of the VEGAS research team is to contribute to the development of an effective
geometric computing dedicated to non-trivial geometric objects. Included among its main tasks are the study
and development of new algorithms for the manipulation of geometric objects, the experimentation of algo-
rithms, the production of high-quality software, and the application of such algorithms and implementations
to research domains that deal with a large amount of geometric data, notably solid modeling and computer
graphics.

Computational geometry has traditionally treated linear objects like line segments and polygons in the plane,
and point sets and polytopes in three-dimensional space, occasionally (and more recently) venturing into the
world of non-linear curves such as circles and ellipses. The methodological experience and the know-how
accumulated over the last thirty years have been enormous.

For many applications, particularly in the fields of computer graphics and solid modeling, it is necessary
to manipulate more general objects such as curves and surfaces given in either implicit or parametric form.
Typically such objects are handled by approximating them by simple objects such as triangles. This approach
is extremely important and it has been used in almost all of the usable software existing in industry today. It
does, however, have some disadvantages. Using a tessellated form in place of its exact geometry may introduce
spurious numerical errors (the famous gap between the wing and the body of the aircraft), not to mention
that thousands if not hundreds of thousands of triangles could be needed to adequately represent the object.
Moreover, the curved objects that we consider are not necessarily everyday three-dimensional objects, but also
abstract mathematical objects that are not linear, that may live in high-dimensional space, and whose geometry
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we do not control. For example, the set of lines in 3D (at the core of visibility issues) that are tangent to three
polyhedra span a piecewise ruled quadratic surface and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic hypersurfaces.

Effectiveness is a key word of our research project. By requiring our algorithms to be effective, we imply that
the algorithms should be robust, efficient, and versatile. By robust we mean algorithms that do not crash on
degenerate inputs and always output topologically consistent data. By efficient we mean algorithms that run
reasonably quickly on realistic data where performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of objects that are general enough to cover
realistic situations and that account for the exact geometry of the objects, in particular when they are curved.

3. Scientific Foundations

3.1. Theory and applications of three-dimensional visibility
The notion of 3D visibility plays a fundamental role in computer graphics. In this field, the determination
of objects visible from a given point, the extraction of shadows or of penumbra boundaries are examples
of visibility computations. In global illumination methods, (e.g. radiosity algorithms), it is necessary to
determine, in a very repetitive manner, if two points of a scene are mutually visible. The computations can
be excessively expensive. For instance, in radiosity, it is not unusual that 50 to 70% of the simulation time is
spent answering visibility queries.

Objects that are far apart may have very complicated and unintuitive visual interactions, and because of this,
visibility queries are intrinsically global. This partially explains that, until now, researchers have primarily
used ad hoc structures, of limited scope, to answer specific queries on-the-fly. Unfortunately, experience has
shown that these structures do not scale up. The lack of a well-defined mathematical foundation and the
non-exploitation of the intrinsic properties of 3D visibility result in structures that are not usable on models
consisting of many hundreds of thousands of primitives, both from the viewpoint of complexity and robustness
(geometric degeneracies, aligned surfaces, etc.).

We have chosen a different approach which consists of computing ahead of time (that is, off-line) a 3D global
visibility structure for which queries can be answered very efficiently on-the-fly (on line). The 3D visibility
complex – essentially a partition of ray space according to visibility – is such a structure, recently introduced
in computational geometry and graphics [58], [64]. We approach 3D global visibility problems from two
directions: we study, on the one hand, the theoretical foundations and, on the other hand, we work on the
practical aspects related to the development of efficient and robust visibility algorithms.

From a theoretical point of view, we study, for example, the problem of computing lines tangent to four
among k polytopes. We have shown much better bounds on the number of these tangents than were previously
known [3]. These results give a measure of the complexity of the vertices (cells of dimension 0) of the visibility
complex of faceted objects, in particular, for triangulated scenes.

From a practical point of view, we have, for example, studied the problem of the complexity for these 3D
global visibility structures, considered by many to be prohibitive. The size of these structures in the worst case
is O(n4), where n is the number of objects in the scene. But we have, in fact, shown that when the objects
are uniformly distributed, the complexity is linear in the size of the input [6]. This probabilistic result does not
prejudice the complexity observed in real scenes where the objects are not uniformly distributed. However,
initial empirical studies show that, even for real scenes, the observed complexity is largely inferior to the
theoretical worst-case complexity, as our probabilistic result appears to indicate.

We are currently working on translating these positive signs into efficient algorithms. We are studying new
algorithms for the construction of the visibility complex, putting the accent on the complexity and the
robustness.
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3.2. Reliable geometric computations on curves and surfaces
Simple algebraic surfaces cover a variety of forms sufficient for representing the majority of objects encoun-
tered in the fields of design, architecture and industrial manufacturing. For instance, it has been estimated that
95% of all mechanical pieces can be well modeled by quadric patches (degree 2 surfaces, including planes,
spheres, cylinders and cones) and torii [65]. It is important, then, to be able to process these surfaces in a
robust and efficient manner.

In comparison with polygonal representations, modeling and manipulating scenes made of curved objects pose
a large variety of new issues and require entirely different tools. It is for instance no longer realistic to assume
that simple operations like intersecting two primitives take constant time. The usual notion of complexity has
to be revised and needs to incorporate the arithmetic complexity of operations.

Geometric computing with curved objects is plagued with robustness issues. The numerical instability of
geometric algorithms is intimately linked to the double nature of geometric objects. Indeed, a geometric
object is two things: a combinatorial structure which encodes the incidence properties between the elements
constituting the object and numerical quantities (coordinates, equations) describing the embedding of the
object in space. Manipulating geometric data, without breaking the consistency constraints that govern the
relation between combinatorial and numerical quantities, is usually hard and has led to the unfolding of the
exact geometric computing paradigm.

The dependence of combinatorial decisions on numerical computations is encapsulated in the notion of
geometric predicates. When working with algebraic objects, evaluating a geometric predicate often means
determining the sign of a polynomial expression in the coefficients of the input. This sign encodes the answer to
simple geometric queries like “are three given points aligned?” or “is a given line tangent to a given surface?”.
The paradigm of exact geometric computing requires the predicates to be evaluated exactly, ensuring that the
branching of the algorithm are correct, that the software will not crash, loop indefinitely or output a wrong
answer, and thus that the topological structure of the output is correct.

In the context of exact geometric computing, we work on key problems involving curved objects, mainly
two-dimensional curves, and low-degree three-dimensional surfaces such as quadrics. For instance, we
study intersections of quadrics both from an algorithmic and an algebraic-geometric point of view. On the
algorithmic side, we work on finding simple and usable parameterizations of the intersection of two arbitrary
quadrics. On the algebraic side, we deal with finding simple (and ideally optimal) geometric predicates for
classifying the intersection pattern and the positional relationship of two quadrics.

We also work on computing arrangements of curved objects, i.e. the partitioning of space induced by the
objects, such as arrangements of curves on a surface, or arrangements of quadrics in 3D space. Note that
intersections of 2 and 3 quadrics are building blocks for the constructions of quadric arrangements. We work
on constructing simpler sub-arrangements, like the BRep (Boundary Representation) of a solid model (CSG).
Exact CSG-to-BRep conversion is a key and long-standing problem in CAGD, where many conventional
modelers work with volumes and rendering software based on the global illumination approach need surface
patches.

Finally, we deal with geometric problems where low-degree surfaces appear indirectly, not in the input but as
intermediate structures. A major problem in this category is the computation of the Voronoi diagram, or medial
axis, of polyhedra in 3D. In particular, we work on the simpler instance where only lines and line segments in
3D are considered, the bisectors of pairs of lines being quadric surfaces.

4. Application Domains
4.1. Computer graphics

Our main application domain is photorealistic rendering in computer graphics. We are especially interested in
the application of our work to virtual prototyping, which refers to the many steps required for the creation of
a realistic virtual representation from a CAD/CAM model.
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When designing an automobile, detailed physical mockups of the interior are built to study the design and
evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and
difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and
immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility,
and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work
on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the
scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the
simulations.

4.2. Solid modeling
Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed
somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms
and deal with many of the same issues. But while the computational geometry community has been mathe-
matically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer
ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the
middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are
of interest to us, let us mention: the description of geometric shapes, the representation of solids, the
conversion between different representations, data structures for graphical rendering of models and robustness
of geometric computations.

4.3. Fast prototyping
We work in collaboration with CIRTES on rapid prototyping. CIRTES, a company based in Saint-Dié-des-
Vosges, has designed a technique called Stratoconception©R where a prototype of a 3D computer model is
constructed by first decomposing the model into layers and then manufacturing separately each layer, typically
out of wood of standard thickness (e.g. 1 cm), with a three-axis CNC (Computer Numerical Controls) milling
machine. The layers are then assembled together to form the object. The Stratoconception©R technique is cheap
and allows fast prototyping of large models.

When the model is complex, for example an art sculpture, some parts of the models may be inaccessible to the
milling machine. These inaccessible regions are sanded out by hand in a post-processing phase. This phase
is very consuming in time and resources. We work on minimizing the amount of work to be done in this
last phase by improving the algorithmic techniques for decomposing the model into layers, that is, finding a
direction of slicing and a position of the first layer [62].

5. Software

5.1. QI: Quadrics Intersection
Participants: Laurent Dupont, Sylvain Lazard, Sylvain Petitjean.

QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of an
algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [10], [55], [56], [57]
and represents the first complete and robust solution to what is perhaps the most basic problem of solid
modeling by implicit curved surfaces.

http://www.cirtes.fr/
http://www.cirtes.fr/
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QI is written in C++ and builds upon the LiDIA computational number theory library [39] bundled with
the GMP multi-precision integer arithmetic [38]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [10] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under the free for non-commercial use INRIA
license and will be distributed under the QPL license in the next release. The implementation can also be
queried via a web interface [40].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.

5.2. Isotop: Topology and Geometry of Planar Algebraic Curves
Participants: Jinsan Cheng, Sylvain Lazard, Luis Peñaranda, Marc Pouget.

ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from INRIA Paris - Rocquencourt (SALSA). It is
based on the method described in [20] which incorporates several improvements over previous methods.
In particular, our approach does not require generic position (nor shearing) and avoids the computations of
sub-resultant sequences. Our preliminary implementation is competitive with other implementations (such
as ALCIX and INSULATE developed at MPII Saarbrücken, Germany and TOP developed at Santander Univ.,
Spain). It performs similarly for small-degree curves and performs significantly better for higher degrees, in
particular when the curves are not in generic position.

5.3. CGAL: Computational Geometry Algorithms Library
Participants: Sylvain Lazard, Luis Peñaranda, Marc Pouget.

Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

M. Pouget is co-author and maintainer, with F. Cazals from INRIA Sophia Antipolis - Méditerranée (ABS
team), of two packages released in the version (3.3) of the library. These packages belong to the geometry
processing part, they enable the Approximation of Ridges and Umbilics [45] and the Estimation of Local
Differential Properties [46] on triangulated surface meshes.

In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. we want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, S. Lazard and L. Peñaranda proposed an extension to the already existing Number
Types package. It consists in adding a multiple-precision floating-point arithmetic, and the corresponding
interval arithmetic; these number types are based on the libraries MPFR and MPFI. They also developed a
model of the Univariate Algebraic Kernel concept for algebraic computations. This package improves, for
instance, the efficiency of the computation of arrangements of polynomial functions in CGAL [28]. This

http://www.cgal.org
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implementation uses the RS library developed by F. Rouillier at INRIA Paris - Rocquencourt (SALSA) for
isolating real roots of polynomials. All these packages have been reviewed and accepted or tentatively accepted
by the editorial board of CGAL and should be released next year.

6. New Results

6.1. Effective 3D global visibility, theory and applications
Participants: Guillaume Batog, Hazel Everett, Xavier Goaoc, Sylvain Lazard, Sylvain Petitjean, Linqiao
Zhang.

In recent years, our activity in the area of 3D visibility focused on three main directions: (i) the computation
and complexity analysis of the 3D visibility complex, (ii) the computation and complexity analysis of the
boundary of shadows cast by area light sources, and (iii) the study of some fundamental questions in geometric
transversal theory.

The 3D visibility complex is a partition of the space of rays according to visibility. The questions we consider
are two-fold. On one hand, we study its size, both experimentally and theoretically. This size is reflected in the
number of unobstructed line segments tangent to four objects of the scene; while this number can be Θ(n4) in
unstructured scenes, its behavior for more realistic input is still not understood. On the other hand, we work
on the computation of the 3D Visibility skeleton, a substructure of the visibility complex. A few years ago
we presented a worst-case near-optimal sweep-plane algorithm for computing this structure in a restrictive
setting [3]. Over the last years, we have been working on an efficient and reliable implementation of that
algorithm, and on the development of an algorithm in a more general setting.

Shadows play a central role in human perception and a wide variety of approaches have been considered
for simulating and rendering them. Unfortunately, computing realistic shadows efficiently is a very difficult
problem, particularly in the case of non-point light sources, due to the complicated internal structure that such
shadows may have. The only current solution for that problem goes through a discretization of area light
sources by many point light sources; shadows cannot be certified with this approach and their structure is lost.
As a first approximation, one can compute the main shadow boundaries, that is the boundary between the
regions in full-light, penumbra, and umbra. Specifically, a point is in the umbra if it does not see any part of
any light source; it is in full light if it sees entirely all the light sources; otherwise, it is in the penumbra. These
boundaries are traced out by one-parameter families of segments that belong to the 3D Visibility skeleton. On
one hand, we try to estimate the complexity of these shadow boundaries, both in theory and in practice. On the
other hand, we work on applying our methods for computing the visibility skeleton to this particular problem.

The study of fundamental properties of sets of lines, that is, line geometry, underlies many algorithmic
questions including 3D visibility computations. A few years ago, we generalized Helly’s classical theorem
to sets of line transversals to disjoint unit balls in Rd [5]. This theorem builds on two types of results: a local
Helly-type theorem, also called a pinning theorem, and a bound on the topological complexity of the space of
line transversals, obtained by counting so-called geometric permutations. Our activity focuses on extending
both types of results.

6.1.1. Visibility complex and skeleton
This year, our PhD student Linqiao Zhang, co-supervised with S. Whitesides at McGill University, defended
her Ph.D. thesis entitled On the three-dimensional visibility skeleton: implementation and analysis [11]. She
developed a first implementation of our sweep-plane algorithm that computes robustly the vertices of the
visibility skeleton of a set of convex polyhedra in generic position. This implementation is a key element
of a prototype we developed for computing limits of umbra [24] (see below); it also allowed us to study
experimentally the size of the 3D visibility skeleton in a random setting and, in particular, to show that the
constant involved in the asymptotic complexity is small [11] [66]. Related to this work, we studied various
predicates, arising in three-dimensional visibility, concerning line transversals to lines and segments in 3D. In
particular, we computed the degrees of standard methods of evaluating these predicates. We showed that the
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degrees of some of these methods are surprisingly high (up to 168), which may explain why computing line
transversals with finite-precision floating-point arithmetic is prone to error [11]; this work also published this
year in the journal Computational Geometry, Theory and Applications [16].

We also obtained a new result on the complexity of the set free lines and free lines segments tangent to balls
in 3D. In particular, we proved that, in the presence of n disjoint unit balls, the set of free line segment, that
is the so-called visibility complex, has complexity Θ(n4). This result is very surprising because it was natural
to conjecture that the visibility complex of fat objects of similar size had a lower worst-case complexity than
that for thin triangles. Our result settles negatively this conjecture, and shows exactly the opposite, that is,
that fatness and similarity, alone, do not reduce the worst-case complexity of that structure. This result was
submitted to the Symposium on Computational Geometry in December 2009 [35].

In the context of the PhD thesis of Guillaume Batog, we are working on an invariant-based method for
designing efficient evaluation strategies for predicates. In a nutshell, the idea is to find a group action on
the input space of a predicate with two properties: it has few orbits, and any two inputs in the same orbit are
equivalent for the predicate. The invariants of that action are known, under certain conditions, to distinguish the
various orbits, and can then be used to decide the predicate. This year, we unfolded this approach for predicates
on line systems that arise in visibility computations, for instance deciding the number of lines intersecting four
given lines. A communication is in preparation.

6.1.2. Shadow computations
We published this year two results on the umbra and penumbra cast by non-trivial light sources.

First, we published the first non-trivial bounds on the size of the umbra region. These result show that the
umbra can be surprisingly complicated, even in the presence of disjoint fat obstacles; for instance, we proved
that the umbra cast on a plane by a segment light source in the presence of two fat polytopes of size n,
can have up to Θ(n) connected components in the worst case. These results were published in the journal
Computational Geometry, Theory and Applications [13].

We also developed, over the last years, a new method for the exact computation of shadow boundaries. The
associated prototype software is, up to our knowledge, the first implementation that computes exactly such
shadow boundaries of polygonal light sources in the presence of polyhedral obstacles for nontrivial scenes
(e.g., 50 polytopes with 1 500 vertices). Using this implementation, we observed experimentally a significant
gap between the size of the visibility skeleton and the, much smaller, complexity of the shadow boundaries.
We presented these results at the European Workshop on Computational Geometry [24].

6.1.3. Pinning and line transversals
In the last few years, we strived to understand the combinatorial properties of so-called isolated line
transversals, also called pinnings: these lines meet every member in a family of objects, but they lose this
property when subject to any arbitrarily small perturbation. We obtained a basis theorem when the objects are
disjoint balls in Rd in 2006 [5]: any pinning of a line by disjoint balls in Rd contains a pinning of size at most
2d− 1. We strengthened this result in three ways. First, we proved that this constant, 2d− 1, is best possible
for all dimension, a result obtained in 2008. In 2009, we presented this result at the Eurocomb conference [21]
and submitted a complete version for journal publication. Then, we extended this result to pinnings of a line by
possibly intersecting smooth convex sets [37]. Last, in 2008 we extended this result to pinnings by polyhedra
in R3. This year, we added to this extension a complete description of minimal pinning configurations; these
results were submitted to the Symposium on Computational Geometry in December 2009 [29].

An order in which a line can intersect a collection of geometric objects is called a geometric permutation of that
collection. When the objects are disjoint balls, the geometric permutations count the connected components of
the space of line transversals ; more generally, it gives a lower bound on its topological complexity. Substantial
effort has been devoted to understanding how the geometry of the objects constrains the number of geometric
permutations; the asymptotic behavior of the maximum number of geometric permutations of n disjoint convex
sets in R3 has remained an open problem for two decades. We have been working on a new approach to this
question. The idea is to analyze how the knowledge of a bound for constant-size problems (say, knowing that
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the maximum number of geometric permutations for 10 objects is at most 24) helps bounding the asymptotic
behavior for n objects. This year, we made a first step in this direction: we delineated the main growth rates
(constant, polynomial, exponential) through a generalization of Sauer’s Lemma for shatter functions of set
systems.

6.2. Certified geometric computing for curves and surfaces
Participants: Jinsan Cheng, Laurent Dupont, Hazel Everett, Sylvain Lazard, Luis Peñaranda, Maria
Pentcheva, Sylvain Petitjean, Marc Pouget, George Tzoumas.

6.2.1. Voronoi diagram of polyhedra in 3D
We are working on the problem of computing the medial axis or Voronoi diagram of polyhedra in 3D. These
structures are largely used in applications; the medial axis is, for instance, a way of representing a shape by
its topological skeleton. Such a diagram is a partition of space into cells, each of which consists of the points
closest to one particular object than to any other. Moreover, the set of points equidistant to two lines (or to a
line and a point) is a quadric and the set of points equidistant to three lines is the intersection of two quadrics.
While such structures are well-understood in the plane and for simple situations in higher dimensions (e.g. for
sets of points), a lot remains to be done; for example, there is no working solution for computing exactly the
medial axis of a polyhedron.

We started a few years ago by considering the Voronoi diagram of lines and we finally published this year, in
the journal Discrete and Computational Geometry, some very nice results characterizing the topology of the
Voronoi diagrams of three lines [15]. We proved, in particular, that the topology is invariant for lines in general
position and we obtained a monotonicity property on the arcs of the diagram which has important algorithmic
implications. The proof technique, which relies heavily upon modern tools of computer algebra, is also of
great interest in its own right.

We have worked during the last two years on the problem of extending these results to the case of three lines
in arbitrary positions providing the first complete characterization of the Voronoi diagram of any three lines.
Preliminary results were presented this year at the European Workshop on Computational Geometry [25].
These results also yielded a new algorithm, fundamental for handling robustness issues, for sorting points
along the arcs of Voronoi diagrams of lines (with rational coefficients) using only rational linear tests.

6.2.2. Adjacency graph of an arrangement of integer quadrics
We have presented, a couple years ago, a complete, exact and efficient algorithm and its implementation for
computing the adjacency graph of an arrangement of quadrics with integer coefficients [54]. This year, we
completed this work and submitted it to the Journal of Symbolic Computation [34]. This algorithm builds upon
our previous work on parameterization of intersections of quadrics. Intersecting a parameterized intersection
of two quadrics with a third quadric leads to finding the real zeros of polynomials of degree at most 8 with
possibly algebraic coefficients. Experiments show that our implementation outperforms past approaches when
dealing with generic situations, even in case of large bitsize and/or algebraic coefficients. This efficiency,
even over algebraic extensions and with large bit-size numbers, is due, during the computation of the roots
of univariate polynomials, to the use of the bitstream Descartes algorithm, which replaces each number by a
series of certified approximations. In non-generic situations, the current implementation is hampered by slow
gcd computations over algebraic extensions.

6.2.3. Algebraic tools for geometric computing
In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. Our goal is two-fold. First, we want to make
state-of-the-art algebraic software more accessible to the computational geometry community, in particular,
through the computational geometric library CGAL. Second, our goal is to demonstrate to which extent such
state-of-the-art certified algebraic root-finding systems can be used in geometric algorithms to obtain certified
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constructions involving curved objects without hindering performance. We have presented some results in
these two directions at the 8th International Symposium on Experimental Algorithms, SEA’09 [22], and we
submitted this year, to the CGAL editorial board, a package which is a model of the Univariate Algebraic
Kernel concept for algebraic computations (see section Software).

6.2.4. Topology and geometry of algebraic curves: Isotop
We worked over the last years on the problem of computing, in a certified way, the topology of algebraic
curves, that is, computing an arrangement of polylines isotopic to the input curve. The objective here is
to compute efficiently and in a certified way arrangements of algebraic curves. A necessary key step is
to compute the topology of any given curve. Moreover, geometric information, such as the position of
singular and critical points, is also mandatory for computing arrangements of several curves using a sweep-
line algorithm. A difficulty is to compute efficiently this information for the given coordinate system even
if the curve is not in generic position; previous practical approaches shear back and forth the coordinate
system, which is time consuming. In addition, costly computations with polynomials whose coefficients are
algebraic should be avoided. We have recently presented an algorithm that incorporates several improvements
over previous methods and overcome these difficulties. In particular, our approach does not require generic
position nor shearing. This work has been presented this year at the 25th annual Symposium on Computational
Geometry [20], and was submitted to the journal of Mathematics in Computer Science [31]. We have also
developed a Maple implementation of this algorithm which is very promising (see section Software).

6.2.5. Constant-complexity geometric problems and algebraic invariants
We have continued revisiting some key constant-complexity geometric problems with a view to better
understand their degenerate instances and the geometric predicates underlying their detection. For that, we
mostly rely on classical tools, in particular (classical) algebraic invariant century, which was perceived as a
bridge between geometry and algebra by the mathematicians of the 19th century (culminating with Klein’s
Erlangen Program, and the view of geometry as the study of the properties of a space invariant under the
action of a group of transformations). Last year, we studied the relative position of two plane projective conics
and showed that it can be characterized by predicates of bidegree at most (6, 6) in the coefficients of the input
conics [63], improving upon previous results. By relative position we mean the morphology of the intersection,
the rigid isotopy class and which conic is inside the other when applicable. Analyzing the algebraic invariant
theory of pencils of conics, we constructed a special conic – called a combinant – invariantly attached to a
given pencil and showed how the projective type of this combinant, encoded by its inertia, is characteristic of
the intersection type of the two conics in most cases. However, the problem was treated purely algebraically
and the results have no obvious geometric meaning: why such inertia is characteristic of such intersection
pattern is obscure. This year, we reproved essentially the same results, but using an entirely new approach
which has the benefit of making perfectly clear the geometric meaning of the inertia of the combinant conic
and overall bringing substantial geometric insight to the problem [23]. The key intermediate tool we use that
illuminates this interpretation is the Bezoutian. We are working on extending these results to other primitives.

6.2.6. Bounded-curvature path planning
We studied the problem of computing shortest paths of bounded curvature that visits a sequence of n points
in order. This problem, which has been open for about 15 years, is crucial for path planning of car-like
robots in the presence of polygonal obstacles. We proved that, under some conditions, this problem reduces to
optimizing a convex function over a convex n-dimensional domain. This result reveals a fundamental property
of curvature-constrained paths among polygonal obstacles, and it provides the first efficient solution for this
long-standing problem. This result has been submitted to the Symposium on Computational Geometry in
December 2009 [36].

6.2.7. Embedding geometric structures
This year, we started work on the problem of embedding geometric objects on a grid of R3. Essentially all
industrial applications take, as input, models defined with a fixed-precision floating-point arithmetic, typically
doubles. As a consequence, geometric objects constructed using exact arithmetic must be embedded on a
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fixed-precision grid before they can be used as input in other software. More precisely, the problem is, given
a geometric object, to find a similar object representable with fixed-precision floating-point arithmetic, where
similar means topologically equivalent, close according to some distance function, etc. We started working
on the problem of rounding polyhedral subdivisions on a grid of R3, where the only known method, due
to Fortune, induces a blow-up in the complexity that is inacceptable in practice. We worked so far on the
simpler problem of embedding convex polyhedra. We also showed negative results that, even in the plane,
convex polygons cannot be rounded while conserving both convexity and proximity of the rounded vertices.
This project is joint work with Mark de Berg (Eindhoven University), Dan Halperin (Tel Aviv University) and
Olivier Devillers (Geometrica, INRIA).

6.3. Other results
We initiated a collaboration with O. Devillers (INRIA, Sophia-Antipolis) and D. Attali (Gipsa, Grenoble) on
smoothed complexity analysis of geometric data structures. In many cases, the worst-case complexity analysis
poorly represents the practical performances of algorithms or data structures. The smoothed complexity, which
aims at supplementing this gap, is defined as the maximum over the inputs of the expected complexity
over small perturbations of that input. We obtained some preliminary results on the smoothed number of
extreme points of a convex point set subject to random noise; we submitted these results to the Symposium on
Computational Geometry in December [30], [26].

We completed some research on farthest-site Voronoi diagrams of polygonal sites of total complexity n. We
proved that the combinatorial complexity of such diagrams is O(n), and we presented an O(n log3 n) time
algorithm to compute it. These results were submitted to the journal Transactions on Algorithms [33].

One of our earlier results on computational topology was accepted this year in the journal Computational
Geometry, Theory and Applications [12]. We considered the Fréchet distance between two curves in the plane
is the minimum length of a leash that allows a dog and its owner to walk along their respective curves, from one
end to the other, without backtracking. We proposed a natural extension of Fréchet distance to more general
metric spaces, which requires the leash itself to move continuously over time. For example, for curves in the
punctured plane, the leash cannot pass through or jump over the obstacles.

Finally, two of our earlier results in graph drawing were also accepted or published this year in the journal of
Discrete and Computational Geometry [17], [18]. The first result shows, in particular, that any planar graph
with n vertices can be point-set embedded with at most one bend per edge on a given set of n points in the
plane. An implication of this result is that any number of planar graphs admit a simultaneous embedding
without mapping with at most one bend per edge.

6.4. International initiatives
6.4.1. Associated Teams and Other International Projects

• McGill-VEGAS associated team. This INRIA program is a joint project between our group and
the computational geometry laboratory of McGill University (Montréal), and in particular Sue
Whitesides. This associated team was started in 2002 under the name McGill-ISA before the creation
of VEGAS. The research theme is 3D visibility [1], [2], [3], [6], [9], [11], [13], [14], [16], [24],
[35], [41], [42], [44], [47], [51], [52], [53], [59], [60], [61], [66] and, more generally, computational
geometry. In this context, we organize regular international workshops (1st to 8th McGill - INRIA
Workshop on Computational Geometry in Computer Graphics, 2002 - 2009) which regroup, for one
week, 15 to 25 researchers from around the world. Many research projects were initiated during these
workshops on the theme of 3D visibility and line geometry [2], [3], [9], [13], [41], [43], [44], [48],
[49], [52], [53]. Note finally that our former Ph.D. student, L. Zhang, whom defended in August,
was co-supervised with S. Whitesides. Also, S. Whitesides has moved in August to the university of
Victoria (Canada).

In the context of this cooperation, INRIA supported VEGAS up to 5 Keuros, and the Canadian side
provided an equivalent support through S. Whitesides’ personal NSERC grant.

http://www.loria.fr/~everett/McGill-ISA/McGill-ISA.html
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• KAIST-INRIA associated team. This INRIA program is a joint project between VEGAS and the
Theory of Computation Laboratory of the KAIST University of Daejeon, in Korea, more particularly
the group of Otfried Cheong. It started in 2008, following a 2-years PHC grant. The research theme
is Discrete and Computational Geometry, in general, with a particular emphasis on questions where
both continuous and discrete aspects come into play and interact. We organized a kick-off workshop
in 2008, and continued the collaboration in 2009 through mutual visits, including a two-months
visit to LORIA by Hyo-Sil Kim a PhD student from KAIST. The projects on which we collaborate
include line geometry [21], [27], [32], [29], bounded curvature path planning [36] and geometric
data structures [33], [50].

In 2009, this cooperation was supported for 13 kE by INRIA and for 2.4 kE by our partners.

• Sylvain Petitjean started a collaboration with Pr. Gert Vegter of the University of Groningen on
“Certified Geometric Approximation”. This collaboration is funded by the Netherlands Organization
for Scientific Research (NWO) - 2008–2012. Fatma Senguler Ciftci started her PhD co-advised by
S. Petitjean and G. Vegter in June 2009.

6.5. Visiting scientists
International visitors:

• Hyo-Sil Kim, KAIST, May–June, 2 months;

• Mark de Berg, TU Eindhoven, Jul., 3 days;

• Dan Halperin, Tel Aviv University, Jul., 3 days;

• Esther Ezra, Tel-Aviv University, Dec., 1 week;

• Michael Hemmer, MPI, 1 week over the year.

Visitors from France:

• Cyril Nicaud, Univ. de Marne-la-Vallée, 3x2 days;

• Olivier Devillers, INRIA, Sophia, 2x2 days;

• Jean Ponce, ENS Paris, March, 2 days;

• Fabrice Rouillier, INRIA Rocquencourt, July, 1 week.

International visits:

• Xavier Goaoc, New York Univ., USA (2 weeks), Univ. Konstanz, Germany (1 week), KAIST, Korea
(1 week), Univ. Calgary, Canada (1 week);

• Sylvain Lazard, Univ. of Victoria, Canada (1 week), McGill Univ. Canada, (1 week);

• Hazel Everett, Univ. of Victoria, Canada (1 week), McGill Univ. Canada, (1 week);

• Sylvain Petitjean, Univ. of Sevilla, Spain (1 week);

• Guillaume Batog, i-MATH Winter School DocCourse Combinatorics and Geometry 2009: Discrete
and Computational Geometry, Universitat Autònoma de Barcelona (2 weeks).

7. Dissemination

7.1. Teaching
All of the teaching activities were carried out in Nancy. The research Masters program is a joint degree with
Univ. Nancy 1, Univ. Nancy 2 and the engineering school INPL. These three institutes are jointly known as
University of Nancy.
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Several members of the group, in particular the professors, assistant professors and Ph.D. students, actively
teach at Université Nancy 2, Université Henri Poincaré Nancy 1, and INPL. Members of the group also teach
in the Master of Computer Science of Nancy; namely H. Everett, contributed to the module “Modelisation of
geometric data”. X. Goaoc also intervenes in the Master’s program of the geology school at INPL with lectures
on the same topic.

7.2. Visibility
Program and Paper Committee:

• Hazel Everett: Program committee of the Canadian Conference on Computational Geometry,
(CCCG’09). Program committee of the ACM Symposium on Computational Geometry 2010
(SoCG’10).

• Sylvain Petitjean: Program committee of the Shape Modeling International Conference (SMI’09).
Paper committee of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09).

Editorial responsibilities:

• Hazel Everett: Editor of the Journal of Computational Geometry.

• Xavier Goaoc: Editor of the Journal of Computational Geometry.

• Sylvain Lazard: Guest editor (with L. Gonzalez-Vega, Santander Univ., Spain) of Mathematics in
Computer Science (special issue on Computational Geometry and CAGD). Guest editor of Compu-
tational Geometry: Theory and Applications (special issue on selected papers from EuroCG’08).

Workshop Organizations:

• Hazel Everett and Sylvain Lazard co-organized with S. Whitesides (McGill & Victoria Universities)
the 8th Workshop on Geometry Problems in Computer Graphics1 (Bellairs Research Institute of
McGill University) in Feb. (1 week).

Thesis and habilitation committee:

• Sylvain Petitjean: member of the habilitation committee of P. Alliez, Inria Sophia-Antipolis.

Participation to invitation-only workshops:

• Xavier Goaoc, Talk at the Canada-Japan Workshop on Discrete and Computational Geometry,
Tokyo, Japan. Talk at the workshop Transversal and Helly-Type Theorems in Geometry, Combi-
natorics and Topology, BIRS, Banff, Canada.

• Hazel Everett and Sylvain Lazard, Talks at the Dagstuhl Workshop on Computational Geometry,
Germany.

Other responsibilities:

• Hazel Everett: Director of the Mathematics and Computer Science Department of Université Nancy 2
(since 2006). Member of the Équipe de direction of LORIA (since 2007). President of the hiring
committee for computer science, Université Nancy 2 (since 2008). Member of the hiring com-
mittee of LORIA (comipers-enseignants). IAEM representative in the Research Council of Nancy-
Université (since 2007). LORIA representative in the Council of the Charles Hermite Research Fed-
eration. Coordinator of the CCD Section 27 (since 2008). Correspondent of University Nancy 2 for
the computer science Master UHP/Nancy 2 (since 2007).

• Sylvain Lazard: Head of the INRIA Nancy-Grand Est PhD and Post-doc hiring committee. Member
of the Bureau du Département Informatique de Formation Doctorale of the École Doctorale IAE+M.
Reviewer for the Natural Sciences and Engineering Research Council of Canada (NSERC) and the
Dutch National Science Foundation.

1Workshop on Geometry Problems in Computer Graphics

http://www.univ-nancy2.fr/
http://www.uhp-nancy.fr/
http://www.inpl-nancy.fr/
http://www.loria.fr/~everett/workshops.html
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• Laurent Dupont: Director of the departement Services et réseaux de communication of IUT Charle-
magne, University Nancy 2 (since 2008).

• Xavier Goaoc: Member of the hiring committee for computer science, University Paris 6. Corre-
spondent Europe of INRIA Nancy Grand-Est. Reviewer for the Israeli Science Foundation.

• Sylvain Petitjean: Scientific delegate of INRIA Nancy Grand-Est and chairman of its Project
Committee (since 2009). Member of the Équipes de direction of LORIA and INRIA Nancy Grand-
Est. Member of the AERES evaluation committee of LIENS, ENS Paris.

• Marc Pouget: Member of the CGAL Editorial Board (since 2008).
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