
c t i v i t y

te p o r

2009

Theme : Embedded and Real Time Systems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VerTeCs

Verification models and techniques applied
to the Testing and Control of reactive

Systems

Rennes - Bretagne-Atlantique

http://www.inria.fr
http://www.inria.fr/recherche/equipes/vertecs.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. Introduction 1
2.2. Highlights of the year 2

3. Scientific Foundations .2
3.1. Underlying Models. 2
3.2. Verification 3

3.2.1. Abstract interpretation and Data Handling 4
3.2.2. Theorem Proving 4
3.2.3. Model-checking of infinite state and probabilistic systems 5
3.2.4. Analysis of infinite state systems defined by graph grammars 5

3.3. Automatic Test Generation 5
3.4. Controller Synthesis 7

4. Application Domains .8
4.1. Panorama 8
4.2. Telecommunication Systems 8
4.3. Software Embedded Systems 8
4.4. Smart-card Applications 8
4.5. Control-command Systems 8

5. Software . 9
5.1. TGV 9
5.2. STG 9
5.3. SIGALI 9

6. New Results . 10
6.1. Verification and Abstract Interpretation 10

6.1.1. Analysis of probabilistic systems 10
6.1.1.1. Probabilistic Acceptors for Languages over Infinite Words 10
6.1.1.2. Probabilistic graph grammars 10

6.1.2. Analysis of Timed systems 10
6.1.2.1. Modal Specifications for Timed Systems 10
6.1.2.2. When are timed automata determinizable? 11

6.1.3. Characterization and Analysis of infinite systems 11
6.1.3.1. On external presentations of infinite graphs 11
6.1.3.2. Opacity and Abstraction 11

6.1.4. Equational Approximations for Tree Automata Completion 11
6.1.5. Verifying Invariants of Rewriting Specifications 12

6.2. Active and passive testing 12
6.2.1. Diagnosis of Pushdown Systems 12
6.2.2. Monitoring Confidentiality by Diagnosis Techniques 12
6.2.3. Testing security properties 12

6.3. Controller Synthesis and Game Theory 13
6.3.1. Stochastic games with partial information 13
6.3.2. Control of Infinite Symbolic Transitions Systems under Partial Observation 13
6.3.3. Discrete controller synthesis for modular reactive systems 13
6.3.4. Opacity Enforcing Control Synthesis 13

7. Other Grants and Activities . 14
7.1. National Grants & Contracts 14

7.1.1. RNTL TesTec: Test of Real-time and critical embedded System 14

2 Activity Report INRIA 2009

7.1.2. RNRT POLITESS: Security Policies for Network Information Systems: Modeling,
Deployment, Testing and Supervision 14

7.2. European and International Grants 15
7.2.1. Artist Design Network of Excellence 15
7.2.2. Combest. European Strep Project 15
7.2.3. PHC Procope PIPS: Partial Information Probabilistic Systems 15
7.2.4. DGRST-INRIA grant 15
7.2.5. Associated team (Equipe Associée) TReaTiES 16

7.3. Collaborations 16
7.3.1. Collaborations with other INRIA Project-teams 16
7.3.2. Collaborations with French Research Groups outside INRIA 16
7.3.3. International Collaborations 16

8. Dissemination . 16
8.1. University courses 16
8.2. PhD Thesis and Trainees 16
8.3. Scientific animation 17

9. Bibliography .17

1. Team
Research Scientist

Thierry Jéron [Team Leader, Research Director (DR),INRIA, HdR]
Nathalie Bertrand [Research Associate (CR) INRIA]
Hervé Marchand [Research Associate (CR) INRIA]
Vlad Rusu [Research Associate (CR) INRIA, partly in DART EPI since Otober 2008, HdR]

Technical Staff
Florimond Ployette [Technical staff, IR (50% with ASCII) until September 2009]

PhD Student
Jérémy Dubreil [INRIA, since March 2006, until September 2009]
Sébastien Chédor [ENS CACHAN, since September 2009]

Post-Doctoral Fellow
Ylies Falcone [INRIA, since December 2009]

Visiting Scientist
Christophe Morvan [Assistant Professor, Univ. de Marne-la-Vallée]

Administrative Assistant
Lydie Mabil [TR INRIA, (80%)]

2. Overall Objectives

2.1. Introduction
The VerTeCs team is focused on the use of formal methods to assess the reliability, safety and security of
reactive software systems. By reactive software system we mean a system controlled by software which
reacts with its environment (human or other reactive software). Among these, critical systems are of primary
importance, as errors occurring during their execution may have dramatic economical or human consequences.
Thus, it is essential to establish their correctness before they are deployed in a real environment, or at least
detect incorrectness during execution and take appropriate action. For this aim, the VerTeCs team promotes the
use of formal methods, i.e. formal specification of software and their required properties and mathematically
founded validation methods. Our research covers several validation methods, all oriented towards a better
reliability of software systems:

• Verification, which is used during the analysis and design phases, and whose aim is to establish the
correctness of specifications with respect to requirements, properties or higher level specifications.

• Control synthesis, which consists in “forcing” (specifications of) systems to stay within desired
behaviours by coupling them with a supervisor.

• Conformance testing, which is used to check the correctness of a real system with respect to its
specification. In this context, we are interested in model-based testing, and in particular automatic
test generation of test cases from specifications.

• Diagnosis and monitoring, which are used during execution to detect erroneous behaviour.

• Combinations of these techniques, both at the methodological level (combining several techniques
within formal validation methodologies) and at the technical level (as the same set of formal
verification techniques - model checking, theorem proving and abstract interpretation - are required
for control synthesis, test generation and diagnosis).

2 Activity Report INRIA 2009

Our research is thus concerned with the development of formal models for the description of software systems,
the formalization of relations between software artifacts (e.g. satisfaction, conformance between properties,
specifications, implementations), the interaction between these artifacts (modelling of execution, composition,
etc). We develop methods and algorithms for verification, controller synthesis, test generation and diagnosis
that ensure desirable properties (e.g. correctness, completeness, optimality, etc). We try to be as generic as
possible in terms of models and techniques in order to cope with a wide range of application domains and
specification languages. Our research has been applied to telecommunication systems, embedded systems,
smart-cards application, and control-command systems. We implement prototype tools for distribution in the
academic world, or for transfer to the industry.

Our research is based on formal models and our basic tools are verification techniques such as model checking,
theorem proving, abstract interpretation, the control theory of discrete event systems, and their underlying
models and logics. The close connection between testing, control and verification produces a synergy between
these research topics and allows us to share theories, models, algorithms and tools.

2.2. Highlights of the year
• Jérémy Dubreil defended his PhD thesis in November 2009 on Monitoring and Supervisory Control

for Opacity Properties. It is the first thesis defended in the team on the subject of security analysis.

• The team obtained three international collaboration grants starting in 2009: a PHC Procope grant
with Germany, a DGRST-INRIA grant with Tunisia, and an INRIA Associated Team with Brazil.

3. Scientific Foundations

3.1. Underlying Models.
The formal models we use are mainly automata-like structures such as labelled transition systems (LTS) and
some of their extensions: an LTS is a tuple M = (Q,Λ,→, qo) where Q is a non-empty set of states; qo ∈ Q is
the initial state; A is the alphabet of actions,→⊆ Q×Λ×Q is the transition relation. These models are adapted
to testing and controller synthesis.

To model reactive systems in the testing context, we use Input/Output labeled transition systems (IOLTS for
short). In this setting, the interactions between the system and its environment (where the tester lies) must be
partitioned into inputs (controlled by the environment), outputs (observed by the environment), and internal
(non observable) events modeling the internal behavior of the system. The alphabet Λ is then partitioned into
Λ! ∪ Λ? ∪ T where Λ! is the alphabet of outputs, Λ? the alphabet of inputs, and T the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between controllable and uncontrollable events
(Λ = Λc ∪ Λuc), observable and unobservable events (Λ = ΛO ∪ T).

In the context of verification, we also use Timed Automata. A timed automaton is a tuple A = (L,X, E, I)
where L is a set of locations, X is a set of clocks whose valuations are positive real numbers,
E ⊆ L× G(X)×2X × L is a finite set of edges composed of a source and a target state, a guard given
by a finite conjunction of expressions of the form x ∼ c where x is a clock, c is a natural number and
∼∈ {<,≤,=,≥, >}, a set of resetting clocks, and I : L → G(X) assigns an invariant to each location [37].
The semantics of a timed automaton is given by a (infinite states) labelled transition system whose states are
composed of a location and a valuation of clocks.

Also, for verification purposes, we use graph grammars that are a general tool to define families of graphs.
Such grammars are formed by a set of rules, left-hand sides being simply hyperedges and right-hand sides
hypergraphs. For finite degree, these graph grammars characterise transition graphs of pushdown automata
(each graph generated by such a grammar correspond to the transition graph of a pushdown automaton). They
provide a simple yet powerfull setting to define and study infinite state systems.

Project-TeamVerTeCs 3

In order to cope with more realistic models, closer to real specification languages, we also need higher level
models that consider both control and data aspects. We defined (input-output) symbolic transition systems
((IO)STS), which are extensions of (IO)LTS that operate on data (i.e., program variables, communication
parameters, symbolic constants) through message passing, guards, and assignments. Formally, an IOSTS
is a tuple (V,Θ,Σ, T), where V is a set of variables (including a counter variable encoding the control
structure), Θ is the initial condition defined by a predicate on V , Σ is the finite alphabet of actions, where
each action has a signature (just like in IOLTS, Σ can be partitioned as e.g. Σ? ∪ Σ! ∪ Στ), T is a finite set of
symbolic transitions of the form t = (a, p, G,A) where a is an action (possibly with a polarity reflecting its
input/output/internal nature), p is a tuple of communication parameters, G is a guard defined by a predicate on
p and V , and A is an assignment of variables. The semantics of IOSTS is defined in terms of (IO)LTS where
states are vectors of values of variables, and transitions between them are labelled with instantiated actions
(action with valued communication parameter). This (IO)LTS semantics allows us to perform syntactical
transformations at the (IO)STS level while ensuring semantical properties at the (IO)LTS level. We also
consider extensions of these models with added features such as recursion, fifo channels, etc. An alternative
to IOSTS to specify systems with data variables is the model of synchronous dataflow equations.
Our research is based on well established theories: conformance testing, supervisory control, abstract inter-
pretation, and theorem proving. Most of the algorithms that we employ take their origins in these theories:

• graph traversal algorithms (breadth first, depth first, strongly connected components, ...). We use
these algorithms for verification as well as test generation and control synthesis.

• BDDs (Binary Decision Diagrams) algorithms, for manipulating Boolean formula, and their MTB-
DDs (Multi-Terminal Decision Diagrams) extension for manipulating more general functions. We
use these algorithms for verification and test generation.

• abstract interpretation algorithms, specifically in the abstract domain of convex polyhedra (for
example, Chernikova’s algorithm for the computation of dual forms). Such algorithms are used in
verification and test generation.

• logical decision algorithms, such as satisfiability of formulas in Presburger arithmetics. We use these
algorithms during generation and execution of symbolic test cases.

3.2. Verification
Verification in its full generality consists in checking that a system, which is specified by a formal model,
satisfies a required property. Verification takes place in our research in two ways: on the one hand, a large
part of our work, and in particular controller synthesis and conformance testing, relies on the ability to solve
some verification problems. Many of these problems reduce to reachability and coreachability questions on a
formal model (a state s is reachable from an initial state si if an execution starting from si can lead to s; s is
coreachable from a final state sf if an execution starting from s can lead to sf). These are important cases of
verification problems, as they correspond to the verification of safety properties.

On the other hand we investigate verification on its own in the context of complex systems. For expressivity
purposes, it is necessary to be able to describe faithfully and to deal with complex systems. Some particular
aspects require the use of infinite state models. For example asynchronous communications with unknown
transfer delay (and thus arbitrary large number of messages in transit) are correctly modeled by unbounded
FIFO queues, and real time systems require the use of continuous variables which evolve with time. Apart from
these aspects requiring infinite state data structure, systems often include uncertain or random behaviours (such
as failures, actions from the environment), which it make sense to model through probabilities. To encompass
these aspects, we are interested in the verification of systems equipped with infinite data structures and/or
probabilistic features.

4 Activity Report INRIA 2009

When the state space of the system is infinite, or when we try to evaluate performances, standard model-
checking techniques (essentially graph algorithms) are not sufficient. For large or infinite state spaces,
symbolic model-checking or approximation techniques are used. Symbolic verification is based on efficient
representations of set of states and permits exact model-checking of some well-formed infinite-state systems.
However, for feasibility reasons, it is often mandatory to make the use of approximate computations, either
by computing a finite abstraction and resort to graph algorithms, or preferably by using more sophisticated
abstract interpretation techniques. Another way to cope with large or infinite state systems is deductive
verification, which, either alone or in combination with compositional and abstraction techniques, can deal
with complex systems that are beyond the scope of fully automatic methods. For systems with stochastic
aspects, a quantitative analysis has to be performed, in order to evaluate the performances. Here again, either
symbolic techniques (e.g. by grouping states with similar behaviour) or approximation techniques should be
used.

We detail below four verification topics we are interested in: abstract interpretation, theorem proving, model-
checking of infinite state and probabilistic systems and analysis of systems defined by graph grammars.

3.2.1. Abstract interpretation and Data Handling
Most problems in test generation or controller synthesis reduce to state reachability and state coreachability
problems which can be solved by fixpoint computations of the form x = F (x), x ∈ C where C is a lattice. In
the case of reachability analysis, if we denote by S the state space of the considered program, C is the lattice
℘(S) of sets of states, ordered by inclusion, and F is roughly the “successor states” function defined by the
program.

The big change induced by taking into account the data and not only the (finite) control of the systems
under study is that the fixpoints become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract Interpretation [39]. The fundamental principles
of Abstract Interpretation are:

1. to substitute to the concrete domain C a simpler abstract domain A (static approximation) and
to transpose the fixpoint equation into the abstract domain, so that one has to solve an equation
y = G(y), y ∈ A;

2. to use a widening operator (dynamic approximation) to make the iterative computation of the least
fixpoint of G converge after a finite number of steps to some upper-approximation (more precisely,
a post-fixpoint).

Approximations are conservative so that the obtained result is an upper-approximation of the exact result. In
simple cases the state space that should be abstracted has a simple structure, but this may be more complicated
when variables belong to different data types (Booleans, numerics, arrays) and when it is necessary to establish
relations between the values of different types.

3.2.2. Theorem Proving
For verification we also use theorem proving and more particularly the PVS [43] and COQ [44] proof
assistants. These are two general-purpose systems based on two different versions of higher-order logic. A
verification task in such a proof assistant consists in encoding the system under verification and its properties
into the logic of the proof assistant, together with verification rules that allow to prove the properties. Using the
rules usually requires input from the user; for example, proving that a state predicate holds in every reachable
state of the system (i.e., it is an invariant) typically requires to provide a stronger, inductive invariant, which
is preserved by every execution step of the system. Another type of verification problem is proving simulation
between a concrete and an abstract semantics of a system. This can also be done by induction in a systematic
manner, by showing that, in each reachable state of the system, each step of the concrete system is simulated
by a corresponding step at the abstract level.

Project-TeamVerTeCs 5

3.2.3. Model-checking of infinite state and probabilistic systems
Model-checking techniques for finite state probabilistic systems are now quite developed. Given a finite state
Markov chain, for example, one can check whether some property holds almost surely (i.e. the set of executions
violating the property is negligible), and one can even compute (or at leat approximate as close as wanted)
the probability that some property holds. In general, these techniques cannot be adapted to infinite state
probabilistic systems, just as model-checking algorithms for finite state systems do not carry over to infinite
state systems. For systems exhibiting complex data structures (such as unbounded queues, continuous clocks)
and uncertainty modeled by probabilities, it can thus be hard to design model-checking algorithms. However,
in some cases, especially when considering qualitative verification, symbolic methods can lead to exact results.
Qualitative questions do not aim at computing neither approximating a probability, but are only concerned with
almost-sure or non negligible behaviours (that is events either of probability one, or non zero). In some cases,
qualitative model-checking can be derived from a combination of techniques for infinite state systems (such as
abstractions) with methods for finite state probabilistic systems. However, when one is interested in computing
(or rather approximating) precise probability values (neither 0 nor 1), exact methods are scarce. To deal with
these questions, we either try to restrict to classes of systems where exact computations can be made, or look
for approximation algorithms.

3.2.4. Analysis of infinite state systems defined by graph grammars
Currently, many techniques (reachability, model checking, ...) from finite state systems have been generalised
to pushdown systems, that can be modeled by graph grammars. Several such extensions heavily depend on
the actual definition of the pushdown automata, for example, how many top stack symbols may be read, or
whether the existence of ε-transitions (silent transitions) is allowed. Many of these restrictions do not affect
the actual structure of the graph, and interesting properties like reachability or satisfiability (of a formula) only
depend on the structure of a graph.

Deterministic graph grammars enable to focus on structural properties of systems. The connexion with finite
graph algorithms is often straightforward: for example reachability is simply the finite graph algorithm iterated
on the right hand sides. On the other hand, extending these grammars with time or probabilities is not
straightforward: qualitative values associated to each copy (in the graph) of the same vertex (in the grammar)
is different, introducing more complex equations. Furthermore, the fact that the left-hand sides are single
hyperarcs is a very strong restriction. But removing this restriction leads to non-recursive graphs. Identifying
decidable families of graphs defined by contextual graph grammars is also very challenging.

3.3. Automatic Test Generation
We are mainly interested in conformance testing which consists in checking whether a black box implemen-
tation under test (the real system that is only known by its interface) behaves correctly with respect to its
specification (the reference which specifies the intended behavior of the system). In the line of model-based
testing, we use formal specifications and their underlying models to unambiguously define the intended behav-
ior of the system, to formally define conformance and to design test case generation algorithms. The difficult
problems are to generate test cases that correctly identify faults (the oracle problem) and, as exhaustiveness
is impossible to reach in practice, to select an adequate subset of test cases that are likely to detect faults.
Hereafter we detail some elements of the models, theories and algorithms we use.
We use IOLTS (or IOSTS) as formal models for specifications, implementations, test purposes, and test
cases. We adapt a well established theory of conformance testing [47], which formally defines conformance
as a relation between formal models of specifications and implementations. This conformance relation,
called ioco compares the visible behaviors (called suspension traces) of the implementation I (denoted by
STraces(I)) with those of the specification S (STraces(S)). Suspension traces are sequence of inputs,
outputs or quiescence (absence of action denoted by δ), thus abstract away internal behaviors that cannot
be observed by testers. Intuitively, I ioco S if after a suspension trace of the specification, the implementation
I can only show outputs and quiescences of the specification S. We re-formulated ioco as a partial inclusion
of visible behaviors as follows:

6 Activity Report INRIA 2009

I ioco S ⇔ STraces(I) ∩ [STraces(S).Λδ
! r STraces(S)] = ∅.

In other words, suspension traces of I which are suspension traces of S prolongated by an output or quiescence,
should still be suspension traces of S.

Interestingly, this characterization presents conformance with respect to S as a safety property of suspension
traces of I . The negation of this property is charaterized by a canonical tester Can(S) which recognizes
exactly [STraces(S).Λδ

! r STraces(S)], the set of non-conformant suspension traces. This canonical tester
also serves as a basis for test selection.

Test cases are processes executed against implementations in order to detect non-conformance. They are also
formalized by IOLTS (or IOSTS) with special states indicating verdicts. The execution of test cases against
implementations is formalized by a parallel composition with synchronization on common actions. A Fail
verdict means that the IUT is rejected and should correspond to non-conformance, a Pass verdict means
that the IUT exhibited a correct behavior and some specific targeted behaviour has been observed, while
an Inconclusive verdict is given to a correct behavior that is not targeted.

Test suites (sets of test cases) are required to exhibit some properties relating the verdict they produce to the
conformance relation. Soundness means that only non conformant implementations should be rejected by a
test suite and exhaustiveness means that every non conformant implementation may be rejected by the test
suite. Soundness is not difficult to obtain, but exhaustiveness is not possible in practice and one has to select
test cases.
Test selection is often based on the coverage of some criteria (state coverage, transition coverage, etc). But
test cases are often associated with test purposes describing some abstract behaviors targeted by a test case. In
our framework, test purposes are specified as IOLTS (or IOSTS) associated with marked states or dedicated
variables, giving them the status of automata or observers accepting runs (or sequences of actions or suspension
traces). Selection of test cases amounts to selecting traces of the canonical tester accepted by the test purpose.
The resulting test case is then both an observer of the negation of a safety property (non-conformance wrt.
S), and an observer of a reachability property (acceptance by the test purpose). Selection can be reduced
to a model-checking problem where one wants to identify states (and transitions between them) which are
both reachable from the initial state and co-reachable from the accepting states. We have proved that these
algorithms ensure soundness. Moreover the (infinite) set of all possibly generated test cases is also exhaustive.
Apart from these theoretical results, our algorithms are designed to be as efficient as possible in order to be
able to scale up to real applications.

Our first test generation algorithms are based on enumerative techniques, thus adapted to IOLTS models, and
optimized to fight the state-space explosion problem. On-the-fly algorithms where designed and implemented
in the TGV tool (see 5.1), which consist in computing co-reachable states from a target state during a lazy
exploration of the set of reachable states in a product of the specification and the test purpose [4]. However,
this enumerative technique suffers from some limitations when specification models contain data.

More recently, we have explored symbolic test generation techniques for IOSTS specifications [46]. The ob-
jective is to avoid the state space explosion problem induced by the enumeration of values of variables and
communication parameters. The idea consists in computing a test case under the form of an IOSTS, i.e., a
reactive program in which the operations on data are kept in a symbolic form. Test selection is still based on
test purposes (also described as IOSTS) and involves syntactical transformations of IOSTS models that should
ensure properties of their IOLTS semantics. However, most of the operations involved in test generation (de-
terminisation, reachability, and coreachability) become undecidable. For determinisation we employ heuristics
that allow us to solve the so-called bounded observable non-determinism (i.e., the result of an internal choice
can be detected after finitely many observable actions). The product is defined syntactically. Finally test selec-
tion is performed as a syntactical transformation of transitions which is based on a semantical reachability and
co-reachability analysis. As both problems are undecidable for IOSTS, syntactical transformations are guided
by over-approximations using abstract interpretation techniques. Nevertheless, these over-approximations still

Project-TeamVerTeCs 7

ensure soundness of test cases [5]. These techniques are implemented in the STG tool (see 5.2), with an
interface with NBAC used for abstract interpretation.

3.4. Controller Synthesis
The Supervisory Control Problem is concerned with ensuring (not only checking) that a computer-operated
system works correctly. More precisely, given a specification model and a required property, the problem is
to control the specification’s behavior, by coupling it to a supervisor, such that the controlled specification
satisfies the property [45]. The models used are LTSs and the associated languages, which make a distinction
between controllable and non-controllable actions and between observable and non-observable actions.
Typically, the controlled system is constrained by the supervisor, which acts on the system’s controllable
actions and forces it to behave as specified by the property. The control synthesis problem can be seen as a
constructive verification problem: building a supervisor that prevents the system from violating a property.
Several kinds of properties can be ensured such as reachability, invariance (i.e. safety), attractivity, etc.
Techniques adapted from model checking are then used to compute the supervisor w.r.t. the objectives.
Optimality must be taken into account as one often wants to obtain a supervisor that constrains the system
as few as possible.
The Supervisory Control Theory overview. Supervisory control theory deals with control of Discrete Event
Systems. In this theory, the behavior of the system S is assumed not to be fully satisfactory. Hence, it has to
be reduced by means of a feedback control (named Supervisor or Controller) in order to achieve a given set of
requirements [45]. Namely, if S denotes the specification of the system and Φ is a safety property that has to
be ensured on S (i.e. S¬|=Φ), the problem consists in computing a supervisor C, such that

S‖C |= Φ (1)

where ‖ is the classical parallel composition between two LTSs. Given S, some events of S are said to be
uncontrollable (Σuc), i.e. the occurrence of these events cannot be prevented by a supervisor, while the others
are controllable (Σc). It means that all the supervisors satisfying (1) are not good candidates. In fact, the
behavior of the controlled system must respect an additional condition that happens to be similar to the ioco
conformance relation that we previously defined in 3.3. This condition is called the controllability condition
and is defined as follows.

L(S‖C)Σuc ∩ L(S) ⊆ L(S‖C) (2)

Namely, when acting on S, a supervisor is not allowed to disable uncontrollable events. Given a safety property
Φ, that can be modeled by an LTS AΦ, there actually exist many different supervisors satisyfing both (1) and
(2). Among all the valid supervisors, we are interested in computing the supremal one, ie the one that restricts
the system as few as possible. It has been shown in [45] that such a supervisor always exists and is unique.
It gives access to a behavior of the controlled system that is called the supremal controllable sub-language
of AΦ w.r.t. S and Σuc. In some situations, it may also be interesting to force the controlled system to be
non-blocking (See [45] for details).

The underlying techniques are similar to the ones used for Automatic Test Generation. It consists in computing
a product between the specification and AΦ and to remove the states of the obtained LTS that may lead to states
that violate the property by triggering only uncontrollable events.

8 Activity Report INRIA 2009

4. Application Domains
4.1. Panorama

The methods and tools developed by the VERTECS project-team for test generation and control synthesis of
reactive systems are intended to be as generic as possible. This allows us to apply them in many application
domains where the presence of software is predominant and its correctness is essential. In particular, we apply
our research in the context of telecommunication systems, for embedded systems, for smart-cards application,
and control-command systems.

4.2. Telecommunication Systems
Our research on test generation was initially proposed for conformance testing of telecommunication proto-
cols. In this domain, testing is a normalized process [42], and formal specification languages are widely used
(SDL in particular). Our test generation techniques have already proved useful in this context, going up to
industrial transfer. New standardized component-based design methodologies such as UML and OMG’s MDE
increase the need for formal techniques in order to ensure the compositionality of components, by verification
and testing. Our techniques, by their genericity and adaptativity, have also proved useful at different levels
of these methodologies, from component testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services must be validated. We are involved with
France Telecom R & D in a project on the validation of vocal services. Very recently, we also started to study
the impact of our test generation techniques in the domain of network security. More specifically, we believe
that testing that a network or information system meets its security policy is a major concern, and complements
other design and verification techniques.

4.3. Software Embedded Systems
In the context of transport, software embedded systems are increasingly predominant. This is particularly
important in automotive systems, where software replaces electronics for power train, chassis (e.g. engine
control, steering, brakes) and cabin (e.g. wiper, windows, air conditioning) or new services to passengers are
increasing (e.g. telematics, entertainment). Car manufacturers have to integrate software components provided
by many different suppliers, according to specifications. One of the problems is that testing is done late in
the life cycle, when the complete system is available. Faced with these problems, but also complexity of
systems, compositionality of components, distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also develop virtual platforms which allow for
testing components before the system is complete. It is clear that software quality and trust are one of the
problems that have to be tackled in this context. This is why we believe that our techniques (testing and
control) can be useful in such a context.

4.4. Smart-card Applications
We have also applied our test generation techniques in the context of smart-card applications. Such applications
are typically reactive as they describe interactions between a user, a terminal and a card. The number and
complexity of such applications is increasing, with more and more services offered to users. The security of
such applications is of primary interest for both users and providers and testing is one of the means to improve
it.

4.5. Control-command Systems
The main application domain for controller synthesis is control-command systems. In general, such systems
control costly machines (see e.g. robotic systems, flexible manufacturing systems), that are connected to an
environment (e.g. a human operator). Such systems are often critical systems and errors occurring during
their execution may have dramatic economical or human consequences. In this field, the controller synthesis
methodology (CSM) is useful to ensure by construction the interaction between 1) the different components,
and 2) the environment and the system itself. For the first point, the CSM is often used as a safe scheduler,
whereas for the second one, the supervisor can be interpreted as a safe discrete tele-operation system.

Project-TeamVerTeCs 9

5. Software

5.1. TGV
Participant: Thierry Jéron [contact].

TGV (Test Generation with Verification technology) is a tool for test generation of conformance test suites
from specifications of reactive systems [4]. It is based on the IOLTS model, a well defined theory of testing,
and on-the-fly test generation algorithms coming from verification technology. Originally, TGV allows test
generation focused on well defined behaviors formalized by test purposes. The main operations of TGV are
(1) a synchronous product which identifies sequences of the specification accepted by a test purpose, (2)
abstraction and determinisation for the computation of next visible actions, (3) selection of test cases by the
computation of reachable states from the initial states and co-reachable states from accepting states. TGV has
been developed in collaboration with Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG
and VASY). TGV can be seen as a library that can be linked to different simulation tools through well defined
APIs. An academic version of TGV is distributed in the CADP toolbox and allows test generation from
Lotos specifications by a connection to its simulator API. The same API is used for a connection with the
UMLAUT validation framework of UML models. This version has been transferred in the SDL ObjectGéode
toolset as part of the TestComposer tool. A new version of TGV has been adapted to a new API of the IF
simulator (VERIMAG) allowing test generation from IF and UML models (via a compilation from UML
to IF). This new version TGV-IF extends the previous one with new functionalities for coverage based test
generation combined with test purposes based test generation. This year some CADP libraries used in TGV-IF
have been replaced with STL libraries in order to gain some independency with respect to CADP and allow
easier porting. The first version of TGV is protected by APP (Agence de Protection des Programmes) Number
IDDN.FR.001.310012.00.R.P.1997.000.2090. TGV-IF is currently being deposited at APP.

5.2. STG
Participants: Vlad Rusu [contact], Florimond Ployette, Thierry Jéron.

STG (Symbolic Test Generation) is a prototype tool for the generation and execution of test cases using sym-
bolic techniques. It takes as input a specification and a test purpose described as IOSTS, and generates a test
case program also in the form of IOSTS. Test generation in STG is based on a syntactic product of the speci-
fication and test purpose IOSTS, an extraction of the subgraph corresponding to the test purpose, elimination
of internal actions, determinisation, and simplification. The simplification phase now relies on NBAC, which
approximates reachable and coreachable states using abstract interpretation. It is used to eliminate unreachable
states, and to strengthen the guards of system inputs in order to eliminate some Inconclusive verdicts. After a
translation into C++ or Java, test cases can be executed on an implementation in the corresponding language.
Constraints on system input parameters are solved on-the-fly (i.e. during execution) using a constraint solver.
The first version of STG was developed in C++, using Omega as constraint solver during execution. This
version has been deposit at APP (IDDN.FR.001.510006.000.S.P.2004.000.10600).

A new version in OCaml has been developed in the last two years. This version is more generic and will
serve as a library for symbolic operations on IOSTS. Most functionalities of the C++ version have been re-
implemented. Also a new translation of abstract test cases into Java executable tests has been developed, in
which the constraint solver is LUCKYDRAW (VERIMAG). This version has also been deposit at APP and is
available for download on the web as well as its documentation and some examples.

Finally, in collaboration with ULB, we implemented a prototype SMACS, derived from STG, that is devoted
to the control of infinite system modeled by STS.

5.3. SIGALI
Participant: Hervé Marchand [contact].

10 Activity Report INRIA 2009

SIGALI is a model-checking tool that operates on ILTS (Implicit Labeled Transition Systems, an equational
representation of an automaton), an intermediate model for discrete event systems. It offers functionalities for
verification of reactive systems and discrete controller synthesis. It is developed jointly by the ESPRESSO
and VERTECS teams. The techniques used consist in manipulating the system of equations instead of the set
of solutions, which avoids the enumeration of the state space. Each set of states is uniquely characterized by
a predicate and the operations on sets can be equivalently performed on the associated predicates. Therefore,
a wide spectrum of properties, such as liveness, invariance, reachability and attractivity, can be checked.
Algorithms for the computation of predicates on states are also available [6], [38]. SIGALI is connected with
the Polychrony environment (ESPRESSO project-team) as well as the Matou environment (VERIMAG),
thus allowing the modeling of reactive systems by means of Signal Specification or Mode Automata and the
visualization of the synthesized controller by an interactive simulation of the controlled system. SIGALI is
protected by APP (Agence de Protection des Programmes).

6. New Results
6.1. Verification and Abstract Interpretation
6.1.1. Analysis of probabilistic systems
6.1.1.1. Probabilistic Acceptors for Languages over Infinite Words

Participant: Nathalie Bertrand.

Probabilistic omega-automata are variants of nondeterministic automata for infinite words where all choices
are resolved by probabilistic distributions. Acceptance of an infinite input word requires that the probability
for the accepting runs is positive. In [14] and [34], we provide a summary of the fundamental properties of
probabilistic omega-automata concerning expressiveness, efficiency, compositionality and decision problems.

6.1.1.2. Probabilistic graph grammars
Participants: Nathalie Bertrand, Christophe Morvan.

We currently study a probabilistic extension of regular graphs (i.e. graphs generated by deterministic graph
grammars). These graphs form a structural extension of configuration graphs of pushdown systems whose
probabilistic version has already been studied by Esparza et al [41]. We propose an algorithm to perform on
probabilistic regular graphs the approximate verification of quantitative formulae expressed in the probabilistic
logic PCTL. Moreover, we prove that the exact model-checking problem for PCTL on probabilistic regular
graphs is undecidable, unless if we restrict to qualitative properties. Our results generalise [41] using similar
methods combined with techniques of graph grammars.

6.1.2. Analysis of Timed systems
Participant: Nathalie Bertrand.

6.1.2.1. Modal Specifications for Timed Systems

On the one hand, modal specifications are classic, convenient, and expressive mathematical objects to represent
interfaces of component-based systems. On the other hand, time is a crucial aspect of systems for practical
applications, e.g. in the area of embedded systems. And yet, only few results exist on the design of timed
component-based systems. In [17], we remedy this lack and define timed modal specifications, an automata-
based formalism combining modal and timed aspects, as a stepping stone to compositional approaches of
timed systems. We define the notions of refinement and consistency, and establish their decidability. This
work, in collaboration with S. Pinchinat (S4 EPI) and J-B. Raclet (Pop-Art EPI) has been continued in [16]
together with A. Legay (S4 EPI).

Based on the previous paper [17], we propose a timed extension of modal specifications, together with
fundamental operations (conjunction, product, and quotient) that enable to reason in a compositional way
about timed system. The specifications are given as modal event-clock automata, where clock resets are easy
to handle. We develop an entire theory that promotes efficient incremental design techniques.

Project-TeamVerTeCs 11

6.1.2.2. When are timed automata determinizable?

In [13], we propose an abstract procedure which, given a timed automaton, produces a language-equivalent
deterministic infinite timed tree. We prove that under a certain boundedness condition, the infinite timed tree
can be reduced into a classical deterministic timed automaton. The boundedness condition is satisfied by
several subclasses of timed automata, some of them were known to be determinizable (event-clock timed
automata, automata with integer resets), but some others were not. We prove for instance that strongly non-
Zeno timed automata can be determinized. As a corollary of those constructions, we get for those classes the
decidability of the universality and of the inclusion problems, and compute their complexities (the inclusion
problem is for instance EXPSPACE-complete for strongly non-Zeno timed automata). This work was done in
collaboration with C. Baier (Universität Dresden), P. Bouyer (LSV) and Th. Brihaye (Université de Mons).

6.1.3. Characterization and Analysis of infinite systems
6.1.3.1. On external presentations of infinite graphs

Participant: Christophe Morvan.

The vertices of a finite state system are usually a subset of the natural numbers. Most algorithms relative to
these systems only use this fact to select vertices.

For infinite state systems, however, the situation is different: in particular, for such systems having a finite
description, each state of the system is a configuration of some machine. Then most algorithmic approaches
rely on the structure of these configurations. Such characterisations are said internal. In order to apply
algorithms detecting a structural property (like identifying connected components) one may have first to
transform the system in order to fit the description needed for the algorithm. The problem of internal
characterisation is that it hides structural properties, and each solution becomes ad hoc relatively to the
form of the configurations. On the contrary, external characterisations avoid explicit naming of the vertices.
Such characterisation are mostly defined via graph transformations. In [24], we present two kind of external
characterisations: deterministic graph rewriting, which in turn characterise regular graphs, deterministic
context-free languages, and rational graphs. Inverse substitution from a generator (like the complete binary
tree) provides characterisation for prefix-recognizable graphs, the Caucal Hierarchy and rational graphs. We
illustrate how these characterisation provide an efficient tool for the representation of infinite state systems.

Finally, deterministic graph grammars generate a family of infinite graphs which characterize context-free
(word) languages. In [33], we presents a context-sensitive extension of these grammars. We achieve a char-
acterization of context-sensitive (word) languages. It is shown that this characterization is not straightforward
and that unless having some rigorous restrictions, contextual graph grammars generate non-recursive graphs.

6.1.3.2. Opacity and Abstraction
Participant: Jérémy Dubreil.

The opacity property characterizes the absence of confidential information flow towards inquisitive attackers.
Verifying opacity is well established for finite automata but is known to be not decidable for more expressive
models like Turing machines or Petri nets. As a consequence, for a system dealing with confidential
information, certifying its confidentiality may be impossible, but attackers can infer confidential information
by approximating systems’ behaviours. Taking such attackers into account, we investigate the verification of
opacity using abstraction techniques to compute executable counterexamples (attack scenarios). Considering
a system and a predicate over its executions, attackers are modeled as semi-conservative decision process
determining from observed traces the truth of that predicate. Moreover, we show that the most precise
the abstraction is, the most accurate (and then dangerous) the corresponding class of attackers will be.
Consequently, when no attack scenario is detected on an approximate analysis, we know that this system
is safe against all “less precise” attackers. This can therefore be used to provide a level of certification relative
to the precision of abstractions.

6.1.4. Equational Approximations for Tree Automata Completion
Participant: Vlad Rusu.

12 Activity Report INRIA 2009

In [11], we deal with the verification of safety properties of infinite-state systems modeled by term-rewriting
systems. An over-approximation of the set of reachable terms of a term-rewriting system R is obtained by
automatically constructing a finite tree automaton. The construction is parameterized by a set E of equations
on terms, and we also show that the approximating automata recognize at most the set of R/E-reachable terms.
Finally, we perform some experiments carried out with the implementation of our algorithm. In particular, we
show how some approximations from the literature can be defined using equational approximations. This work
was done in collaboration with Th. Genest (Celtique EPI).

6.1.5. Verifying Invariants of Rewriting Specifications
Participant: Vlad Rusu.

In [29],[26], we present an approach based on inductive theorem proving for verifying invariants of dynamic
systems specified in rewriting logic, a formal specification language implemented in the Maude system. An
invariant is a property that holds on all the states that are reachable from a given class of initial states. Our
approach consists in encoding the semantic aspects that are relevant for our task (namely, verifying invariance
properties of the specified systems) in membership equational logic, a sublogic of rewriting logic. The
invariance properties are then formalized over the encoded rewrite theories and are proved using an inductive
theorem prover for membership equational logic also implemented in the Maude system using its reflective
capabilities. We illustrate our approach by verifying mutual exclusion in an n-process Bakery algorithm. This
work was done in collaboration with M. Clavel (University of Madrid).

6.2. Active and passive testing
6.2.1. Diagnosis of Pushdown Systems

Participant: Christophe Morvan.

Diagnosis problems of discrete-event systems consist in detecting unobservable defects during system exe-
cution. For finite-state systems, the theory is well understood and a number of effective solutions have been
developed. For infinite-state systems, however, there are only few results, mostly identifying classes where
the problem is undecidable. In [25], [36], we consider higher-order pushdown systems and investigate two
basic variants of diagno- sis problems: the diagnosability, which consists in deciding whether defects can be
detected within a finite delay, and the bounded-latency problem, which consists in determining a bound for the
delay of detecting defects. This work was done in collaboration with S. Pinchinat (S4 EPI).

6.2.2. Monitoring Confidentiality by Diagnosis Techniques
Participants: Jérémy Dubreil, Thierry Jéron, Hervé Marchand.

In [20], we have been interested in constructing monitors for the detection of confidential information flow
in the context of partially observable discrete event systems. We first characterize the set of observations
allowing an attacker to infer the secret information. Further, based on the diagnosis of discrete event systems,
we provide necessary and sufficient conditions under which detection and prediction of secret information
flow can be ensured, and construct a monitor allowing an administrator to detect it.

6.2.3. Testing security properties
Participants: Jérémy Dubreil, Thierry Jéron, Hervé Marchand.

In [23][28], we investigate the combination of controller synthesis and test generation techniques for the testing
of open, partially observable systems with respect to security policies. We consider two kinds of properties:
integrity properties and confidentiality properties. We assume that the behavior of the system is modeled by a
labeled transition system and assume the existence of a black-box implementation. We first outline a method
allowing to automatically compute an ideal access control ensuring these two kinds of properties. Then, we
show how to derive testers that test the conformance of the implementation with respect to its specification,
the correctness of the real access control that has been composed with the implementation in order to ensure a
security property, and the security property itself.

Project-TeamVerTeCs 13

6.3. Controller Synthesis and Game Theory
6.3.1. Stochastic games with partial information

Participant: Nathalie Bertrand.

In [15], we consider the standard model of finite two-person zero-sum stochastic games with signals. We
are interested in the existence of almost-surely winning or positively winning strategies, under reachability,
safety, Büchi or co-Büchi winning objectives. We prove two qualitative determinacy results. First, in a
reachability game either player 1 can achieve almost-surely the reachability objective, or player 2 can
ensure surely the complementary safety objective, or both players have positively winning strategies. Second,
in a Büchi game if player 1 cannot achieve almost-surely the Büchi objective, then player 2 can ensure
positively the complementary co-Büchi objective. We prove that players only need strategies with finite-
memory, whose sizes range from no memory at all to doubly-exponential number of states, with matching
lower bounds. Together with the qualitative determinacy results, we also provide fix-point algorithms for
deciding which player has an almost-surely winning or a positively winning strategy and for computing the
finite memory strategy. Complexity ranges from EXPTIME to 2-EXPTIME with matching lower bounds, and
better complexity can be achieved for some special cases where one of the players is better informed than her
opponent. This work was done in collaboration with B. Genest (Distribcom EPI) and H. Gimbert (Labri).

6.3.2. Control of Infinite Symbolic Transitions Systems under Partial Observation
Participant: Hervé Marchand.

We provide models of safe controllers both for potentially blocking and non blocking controlled systems. To
obtain algorithms for these problems, we make the use of abstract interpretation techniques which provide
over-approximations of the transitions set to be disabled. To our knowledge, with the hypotheses taken,
the improved version of our algorithm provides a better solution than what was previously proposed in the
literature. Our tool SMACS allowed us to make an empirical validation of our methods to show their feasibility
and usability [22]. This work has been extended to the case of decentralized control in [27]. Finally, on the
same model, but assuming that the system is finite, we have studied the computational complexity of several
decision and optimization control problems arising in partially observed discrete event systems [21]. This
work has been done in cooperation with T. Massart, G. Kalyon and T. Le Gall (Université libre de Bruxelles).

6.3.3. Discrete controller synthesis for modular reactive systems
Participant: Hervé Marchand.

Following preliminaries results [12], we have been interested in the extension of a reactive programming
language with a behavioral contract construct [31]. It is particularly dedicated to the programming of reactive
control of applications in embedded systems, and involves principles of the supervisory control of discrete
event systems. Our contribution is in a language approach where modular discrete controller synthesis (DCS)
is integrated, and it is concretized in the encapsulation of DCS into a compilation process. From transition
system specifications of possible behaviors, DCS automatically produces controllers that make the controlled
system satisfy the property given as objective. Our language features and compiling technique hence provide
correctness-by-construction in that sense, and enhance reliability and verifiability. An application domain
particularly targeted at is that of adaptive and reconfigurable systems: closed-loop adaptation mechanisms
enable flexible execution of functionalities w.r.t. changing resource and environment conditions. This language
can serve programming such adaption controllers. This work has been done in cooperation with E. Rutten and
G. Delaval (INRIA Grenoble).

6.3.4. Opacity Enforcing Control Synthesis
Participants: Jérémy Dubreil, Hervé Marchand.

14 Activity Report INRIA 2009

In the field of computer security, a problem that received little attention so far is the enforcement of
confidentiality properties by supervisory control. Given a critical system G that may leak confidential
information (a secret), the problem consists in designing a controller C, possibly disabling occurrences of
a fixed subset of events of G, so that the closed-loop system G/C does not leak confidential information. We
consider this problem in the case where G is a finite transition system with set of events Σ and an inquisitive
user, called the adversary, observes a subset Σa of Σ. When the secret can be disclosed. We present an effective
algorithm for computing the most permissive controller C such that S is opaque w.r.t. G/C and Σa. This
algorithm subsumes two earlier algorithms presented in [40] working under the strong assumption that the
alphabet Σa of the adversary and the set of events that the controller can disable are comparable. This work
publised as a research report ([32]) has been accepted for publication in 2010 in IEEE Transaction Automatic
and Control [9]. This work has been done in cooperation with Ph. Darondeau (S4 EPI).

In [18], we followed a different approach. We introduced the notion dynamic partial observability where the
set of events the user can observe changes over time. We have shown how to check that a system is opaque
w.r.t. to a dynamic observer and also addressed the corresponding synthesis problem: given a system G and
secret states S, compute the set of dynamic observers under which S is opaque. It turned out that this problem
can be reduced to a two-players safety game and that the set of such observers can be finitely represented and
can be computed in EXPTIME. This work has been done in cooperation with F. Cassez (IRCCyN).

7. Other Grants and Activities

7.1. National Grants & Contracts
7.1.1. RNTL TesTec: Test of Real-time and critical embedded System

Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

The TESTEC project is a three years [2008-2010] industrial research project that gathers two companies:
an end-user (EDF R&D) and one software editor for embedded real-time systems and automation systems
(Geensys), and four laboratories from automation engineering and computer science (I3S, INRIA Rennes,
LaBRI, LURPA). This project focuses on automatic generation and execution of tests for the class of embedded
real-time systems. They are highly critical. Such systems can be found in many industrial domains, such as
energy, transport systems. More precisely the project TESTEC will address two crucial technological issues:

• optimisation of tests generation techniques for large size systems, in particular by an explicit
modelling of time and by simultaneous management of continuous and discrete variables in hybrid
applications;

• reduction of the size of the tests derived from specification models by using the results of formal
verification of implementation models.

The overall aim of this project is to propose a software tool for generation and execution of tests; this tool will
be based on an existing environment for embedded systems design and will implement the scientific results of
the project.

7.1.2. RNRT POLITESS: Security Policies for Network Information Systems: Modeling,
Deployment, Testing and Supervision
Participants: Jérémy Dubreil, Thierry Jéron, Hervé Marchand, Vlad Rusu.

Project-TeamVerTeCs 15

The POLITESS project (http://www.rnrt-politess.info/) [2006-2008] involves GET (INT Evry and ENST
Rennes), INPG-IMAG (LSR and VERIMAG laboratories), France Telecom R&D Caen, Leyrios Technolo-
gies, SAP Research, AQL Silicomp Rennes and Irisa. In a sense, this project is an extension of the Potestat
project. The objective of the project is to study and provide methodological guidelines and software solutions
for a formal approach to security of networks. This encompasses the specification of high level security poli-
cies with clear semantics, their deployment on the network in terms of security artifacts and the analysis of
this deployment, testing and monitoring of security based on models of security policies and abstract models
of networks. Our team is involved in several activities, in particular in modelling (defining adequate models
for both the system and security policies), testing (modelling security testing, test generation/selection), super-
vision (intrusion detection, diagnosis) and case studies. The final review of POLITESS took place in February
2009.

7.2. European and International Grants
7.2.1. Artist Design Network of Excellence

Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand, Vlad Rusu.

The central objective for ArtistDesign http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html
is to build on existing structures and links forged in Artist2, to become a virtual Center of Excellence in
Embedded Systems Design. This will be mainly achieved through tight integration between the central players
of the European research community. Also, the consortium is smaller, and integrates several new partners.
These teams have already established a long-term vision for embedded systems in Europe, which advances
the emergence of Embedded Systems as a mature discipline.

The research effort aims at integrating topics, teams, and competencies, grouped into 4 Thematic Clusters:
“Modelling and Validation”, “Software Synthesis, Code Generation, and Timing Analysis”, “Operating Sys-
tems and Networks”, “Platforms and MPSoC”. “Transversal Integration” covering both industrial applications
and design issues aims for integration between clusters.

The Vertecs EPI is a partner of the “Validation” activity of the “Modeling and Validation” cluster. The objective
is to address the growth in complexity of future embedded products while reducing time and cost to market.
This requires methods allowing for early exploration and assessment of alternative design solutions as well
as efficient methods for verifying final implementations. This calls for a range of model-based validation
techniques ranging from simulation, testing, model-checking, compositional techniques, refinement as well
as abstract interpretation. The challenge will be in designing scalable techniques allowing for efficient and
accurate analysis of performance and dependability issues with respect to the various types of (quantitative)
models considered. The activity brings together the leading teams in Europe in the area of model-based
validation.

7.2.2. Combest. European Strep Project
Participant: Nathalie Bertrand.

We are partners of the Combest European Strep Project http://www.combest.eu/home/. The aim of this project
is to provide a theoretical framework as well as implemented methods and tools for the component-based
design of embedded systems. Our role in Combest is to work on timed components, and more precisely
develop a theory around timed modal specifications.

7.2.3. PHC Procope PIPS: Partial Information Probabilistic Systems
Participant: Nathalie Bertrand.

The objective of this bilateral collaboration [2009-2010] with the group of Prof. Christel Baier in TU Dresden
(Germany) is to study partially observable probabilistic systems. M. Groesser visited us during one week and
N. Bertrand visited Dresden for three weeks.

7.2.4. DGRST-INRIA grant
Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

http://www.rnrt-politess.info/
http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html
http://www.combest.eu/home/

16 Activity Report INRIA 2009

This two years collaboration [2009-2010] with ENIS Sfax Tunisia (Maher Ben Jemaa and Moez Krichen)
is targetted on testing embedded systems and adaptability (with the Paris project team). It is funded by an
DGRST - INRIA grant which involves visits on both sides and scholarships for Tunisian students. M. Krichen
visited Vertecs during one week and T. Jéron and H. Marchand visited ENIS Sfax during one week.

7.2.5. Associated team (Equipe Associée) TReaTiES
Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

This associated team with the Federal University of Campina Grande (Prof. Patrícia D. L. Machado) and
University Pernambuco (Prof. Augusto Sampaio) in Brazil started in 2009. The objective is to work on test
case generation, selection and abstraction for embedded real-time systems. In 2009 we had the visit of Sidney
Nogueira and N. Bertrand, T. Jéron and H. Marchand visited the Brazilian team.

7.3. Collaborations
7.3.1. Collaborations with other INRIA Project-teams

We collaborate with several Inria project-teams. We collaborate with the ESPRESSO EPI for the development
of the SIGALI tool inside the Polychrony environment. With the POP ART EPI on the use of the controller
synthesis methodology for the control of control-command systems (e.g. robotic systems). With DISTRIBCOM
on security testing in the context of the Politess grant and on stochastic games with partial observation. With
the S4 EPI on the use of control, game theory and diagnosis for test generation as well as on the study of timed
modal specifications, in the context of the Combest grant. With the VASY EPI on the use of CADP libraries
in TGV and the distribution of TGV in the CADP toolbox.

7.3.2. Collaborations with French Research Groups outside INRIA
We collaborate with LIG (Vasco teams and Verimag) in Grenoble in the context of the RNRT Politess grant.
We also work in collaboration with the LSV Cachan on topological and probabilistic semantics for timed
automata. With LURPA Cachan, LaBRI Bordeaux and I3S Nice we collaborate on testing control-command
systems in the context of the RNTL TesTec grant.

7.3.3. International Collaborations

Université Mons-Hainaut (Prof. Thomas Brihaye) on verification of timed systems.
Université Libre Bruxelles in Belgium (Prof. Thierry Massart) on testing and control of symbolic transi-

tions systems. Gabriel Kalyon visited us for 1 week in september.
University of Madrid (Prof. Manuel Clavel) on theorem proving for rewriting logic.
ETH Zurich (Marina Egea) on formal semantics conformance in model-driven engineering
University of Michigan in USA (Prof. Stéphane Lafortune) on control and diagnosis of discrete event

systems.

8. Dissemination
8.1. University courses

Thierry Jéron is teaching in Model-based Testing in Research Master of Computer Science at the
University of Rennes 1.

Nathalie Bertrand taught modelisation in computer science to students of ENS Ker Lann in March 2009
and gave a lecture on Timed Automata in Master 2 Research at the University of Rennes 1 in October
2009.

Christophe Morvan is teaching at the University of Marne La Vallée (192h/year).

8.2. PhD Thesis and Trainees
PhD. thesis defended in 2009:

Jérémy Dubreil : “Monitoring and Supervisory Control for Opacity Properties”, November 2009.

Project-TeamVerTeCs 17

Current PhD. thesis:

Sébastien Chédor: “Verification and Test of systems modeled by regular graphs”, first year.

Trainees 2008-2009:

Sébastien Chédor: “Infinite discrete event systems and partial information”

8.3. Scientific animation
Nathalie Bertrand was PC member of QAPL’09 workshop, and QEST’09 international conference. She

was invited to give seminars on "When are timed automata determinizable?" at LaBRI Bordeaux
and LIF Marseille (may and october 2009 respectively). She visited TU Dresden twice 2 weeks in
february and november 2009.

Thierry Jéron was PC member of Testcom/Fates’09 and ICFEM’09 and SC member of Movep 2010. He
gave an invited talk at MSR’09, and a tutorial at the ETR’09 summer school (Ecole d’été Temps réel)
on “Automatic test generation of Reactive and timed systems”. He was reviewer of the PhD defense
of Eduardo Almeida (Université de Nantes, February 2009), of Yliès Falcone (Université Joseph
Fourier, Grenoble, November 2009) and of the HDR defense of Hélène Collavizza (Université de
Nice, December 2009). He is member of the IFIP Working Group 10.2 on Embedded Systems.

Hervé Marchand is Associate Editor of the IEEE Transactions on Automatic Control journal since
October 2009. He is member of the IFAC Technical Committees (TC 1.3 on Discrete Event and
Hybrid Systems) since 2005. He was PC member of the ICINCO’09 and MSR’09 Conferences. He
was invited to give a seminar at INRIA Grenoble on “optimal control of discrete event systems”
in december 2009. He visited ULB (Bruxelles) for one week in June 2008 during which he gave a
seminar on “security analysis of information systems”.

Christophe Morvan was invited to give a seminar “Regular graphs : a perfect model for infinite state
systems?” at LSV, Cachan (Februar 2009). He gave a talk: "Diagnosability of pushdown systems" at
the conference AutomathA 2009 (for the AutomathA European project).

Vlad Rusu organized the EJCP (Ecole Jeunes Chercheurs en Programmation) in June 2009.

9. Bibliography
Major publications by the team in recent years

[1] C. BAIER, N. BERTRAND, PH. SCHNOEBELEN. Verifying nondeterministic probabilistic channel systems
against ω-regular linear-time properties, in "ACM Transactions on Computational Logic", vol. 9, no 1, 2007.

[2] C. CONSTANT, T. JÉRON, H. MARCHAND, V. RUSU. Integrating formal verification and conformance testing
for reactive systems, in "IEEE Transactions on Software Engineering", vol. 33, no 8, August 2007, p. 558-574.

[3] B. GAUDIN, H. MARCHAND. An Efficient Modular Method for the Control of Concurrent Discrete Event
Systems: A Language-Based Approach, in "Discrete Event Dynamic System", vol. 17, no 2, 2007, p. 179-
209.

[4] C. JARD, T. JÉRON. TGV: theory, principles and algorithms, A tool for the automatic synthesis of conformance
test cases for non-deterministic reactive systems, in "Software Tools for Technology Transfer (STTT)", vol. 6,
October 2004.

18 Activity Report INRIA 2009

[5] B. JEANNET, T. JÉRON, V. RUSU, E. ZINOVIEVA. Symbolic Test Selection based on Approximate Analysis, in
"11th Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05),
Volume 3440 of LNCS, Edinburgh (Scottland)", April 2005, p. 349-364, http://www.irisa.fr/vertecs/Publis/Ps/
tacas05.pdf.

[6] H. MARCHAND, P. BOURNAI, M. LE BORGNE, P. LE GUERNIC. Synthesis of Discrete-Event Controllers
based on the Signal Environment, in "Discrete Event Dynamic System : Theory and Applications", vol. 10, no

4, Octobre 2000, p. 347-368, http://www.irisa.fr/vertecs/Publis/Ps/2000-J-DEDS.pdf.

[7] V. RUSU. Verifying an ATM Protocol Using a Combination of Formal Techniques, in "Computer Journal", vol.
49, no 6, November 2006, p. 710–730.

Year Publications
Doctoral Dissertations and Habilitation Theses

[8] J. DUBREIL. Monitoring and Supervisory Control for Opacity Properties, Université de Rennes 1, November
2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[9] J. DUBREIL, P. DARONDEAU, H. MARCHAND. Supervisory Control for Opacity, in "IEEE Transactions on
Automatic Control", 2010, to appear.

[10] M. EGEA, V. RUSU. Formal executable semantics for conformance in the MDE framework, in "Innovations
in Systems and Software Engineering", 2009.

[11] T. GENEST, V. RUSU. Equational Approximations for Tree Automata Completion, in "Journal of Symbolic
Computation", 2010, to appear.

[12] E. RUTTEN, H. MARCHAND. Automatic generation of safe handlers for multi-task systems, in "Journal of
Embedded Computing", vol. 3, no 4, 2009, to appear.

International Peer-Reviewed Conference/Proceedings

[13] C. BAIER, N. BERTRAND, P. BOUYER, T. BRIHAYE. When are timed automata determinizable?, in "36th
International Colloquium on Automata, Languages and Programming (ICALP’09), Rhodes, Greece", LNCS,
vol. 5556, July 2009, p. 43-54 DE BE .

[14] C. BAIER, N. BERTRAND, M. GRÖSSER. Probabilistic Acceptors for Languages over Infinite Words, in "35th
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM’09), Spindleruv Mlyn,
Czech", LNCS, vol. 5404, Springer, 2009, p. 19-33 DE .

[15] N. BERTRAND, B. GENEST, H. GIMBERT. Qualitative Determinacy and Decidability of Stochastic Games
with Signals, in "24th Annual IEEE Symposium on Logic in Computer Science (LICS’09), Los Angeles, CA,
USA", IEEE Computer Society Press, August 2009, p. 319-328.

[16] N. BERTRAND, A. LEGAY, S. PINCHINAT, J.-B. RACLET. A Compositional Approach on Modal Specifica-
tions for Timed Systems, in "Proceedings of the 11th International Conference on Formal Engineering Methods
(ICFEM’09)", Lecture Notes in Computer Science, vol. 5885, Springer, 2009, p. 679-697.

http://www.irisa.fr/vertecs/Publis/Ps/tacas05.pdf
http://www.irisa.fr/vertecs/Publis/Ps/tacas05.pdf
http://www.irisa.fr/vertecs/Publis/Ps/2000-J-DEDS.pdf

Project-TeamVerTeCs 19

[17] N. BERTRAND, S. PINCHINAT, J.-B. RACLET. Refinement and Consistency of Timed Modal Specifications,
in "Proceedings of the 3rd International Conference on Language and Automata Theory and Applications
(LATA’09), Tarragona, Spain", LNCS, vol. 5457, April 2009, p. 152-163.

[18] F. CASSEZ, J. DUBREIL, H. MARCHAND. Dynamic Observers for the Synthesis of Opaque Systems, in "7th
International Symposium on Automated Technology for Verification and Analysis (ATVA’09), Macao SAR,
China", Z. LIU, A. RAVN (editors), LNCS, vol. 5799, Springer-Verlag, October 2009, p. 352-367.

[19] J. DUBREIL. Opacity and Abstraction, in "Proceedings of the First International Workshop on Abstractions
for Petri Nets and Other Models of Concurrency (APNOC’09), Paris, France", June 2009.

[20] J. DUBREIL, T. JÉRON, H. MARCHAND. Monitoring Confidentiality by Diagnosis Techniques, in "European
Control Conference, Budapest, Hungary", August 2009, p. 2584-2590.

[21] G. KALYON, T. LE GALL, H. MARCHAND, T. MASSART. Computational Complexity for State-Feedback
Controllers with Partial Observation, in "7th International Conference on Control and Automation, ICCA’09,
Christchurch, New Zealand", December 2009 BE .

[22] G. KALYON, T. LE GALL, H. MARCHAND, T. MASSART. Control of Infinite Symbolic Transition Systems
under Partial Observation, in "European Control Conference, Budapest, Hungary", August 2009, p. 1456-
1462 BE .

[23] H. MARCHAND, J. DUBREIL, T. JÉRON. Automatic Testing of Access Control for Security Properties, in
"TestCom’09/FATES’09", LNCS, vol. 5826, November 2009, p. 113-128.

[24] C. MORVAN. On external presentations of infinite graphs, in "11th International Workshop on Verification of
Infinite-State Systems, INFINITY’09, Bologna, Italy", no 10, August 2009, p. 23-35.

[25] C. MORVAN, S. PINCHINAT. Diagnosability of pushdown systems, in "HVC2009, Haifa Verification Confer-
ence, Haifa, Israel", October 2009, to appear in LNCS.

[26] V. RUSU. Formal Executable Semantics for Conformance in the MDE Framework, in "UML and FM
workshop", 2009.

National Peer-Reviewed Conference/Proceedings

[27] G. KALYON, T. LE GALL, H. MARCHAND, T. MASSART. Contrôle décentralisé de systèmes symboliques
infinis sous observation partielle, in "7ème Colloque Francophone sur la Modélisation des Systèmes Réactifs",
November 2009, p. 805-820 BE .

[28] H. MARCHAND, J. DUBREIL, T. JÉRON. Génération automatique de tests pour des propriétés de sécurité,
in "4ème Conférence sur la Sécurité des Architectures Réseaux et des Systèmes d’Information", June 2009, p.
157-174.

[29] V. RUSU, M. CLAVEL. Vérification d’invariants pour des systèmes spécifiés en logique de réécriture, in
"Vingtièmes Journées Francophones des Langages Applicatifs, JFLA 2009, Saint Quentin sur Isère, France",
A. SCHMITT (editor), Studia Informatica Universalis, vol. 7.2, February 2009, p. 317-350 ES .

20 Activity Report INRIA 2009

Research Reports

[30] F. CASSEZ, J. DUBREIL, H. MARCHAND. Dynamic Observers for the Synthesis of Opaque Systems, no 1930,
IRISA, May 2009, Technical report.

[31] G. DELAVAL, H. MARCHAND, E. RUTTEN. BZR Contracts for Modular Discrete Controller Synthesis, no

7111, INRIA, November 2009, Research Report.

[32] J. DUBREIL, P. DARONDEAU, H. MARCHAND. Supervisory Control for Opacity, no 1921, IRISA, February
2009, Technical report.

[33] C. MORVAN. Contextual graph grammars characterizing context-sensitive languages, no 1926, IRISA, March
2009, Technical report.

Other Publications

[34] C. BAIER, N. BERTRAND, M. GRÖSSER. The Effect of Tossing Coins in Omega-Automata, in "Proceedings
of the 20th International Conference on Concurrency Theory (CONCUR’09)", Lecture Notes in Computer
Science, vol. 5710, Springer, 2009, Invited talk (C. Bayer).

[35] T. JÉRON. Génération de tests pour les systèmes réactifs et temporisés, in "Ecole d’Eté Temps-Réel, Télécom
ParisTech, Paris", September 2009, Invited talk.

[36] C. MORVAN, S. PINCHINAT. Diagnosability of pushdown systems, in "AutomathA, Liège, Belgique", June
2009.

References in notes

[37] R. ALUR, D. L. DILL. A Theory of Timed Automata, in "Theor. Comput. Sci.", vol. 126, no 2, 1994, p.
183-235.

[38] L. BESNARD, H. MARCHAND, E. RUTTEN. The Sigali Tool Box Environment, in "Workshop on Discrete
Event Systems, WODES’06 (Tool Paper), Ann-Arbor (MI, USA)", July 2006, p. 465-466.

[39] P. COUSOT, R. COUSOT. Abstract intrepretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in "Conference Record of the 4th ACM Symposium on Principles
of Programming Languages, Los Angeles (CA, USA)", January 1977, p. 238-252.

[40] J. DUBREIL, P. DARONDEAU, H. MARCHAND. Opacity Enforcing Control Synthesis, in "Workshop on
Discrete Event Systems, WODES’08, Gothenburg, Sweden", March 2008, p. 28–35.

[41] J. ESPARZA, A. KUCERA, R. MAYR. Model Checking Probabilistic Pushdown Automata, in "Logical
Methods in Computer Science", vol. 2, no 1, 2006.

[42] ISO/IEC 9646. Information Technology - Open Systems Interconnection Conformance Testing Methodology
and Framework - Part 1 : General Concept - Part 2 : Abstract Test Suite Specification - Part 3 : The Tree and
Tabular Combined Notation (TTCN), in "International Standard ISO/IEC 9646-1/2/3", 1992.

Project-TeamVerTeCs 21

[43] S. OWRE, J. RUSHBY, N. SHANKAR, F. VON HENKE. Formal Verification for Fault-Tolerant Architectures:
Prolegomena to the Design of PVS, in "IEEE Transactions on Software Engineering", vol. 21, no 2, feb 1995,
p. 107-125.

[44] C. PAULIN-MOHRING. Le système Coq (Habilitation Thesis, in French), ENS Lyon, 1997, Technical report.

[45] P. J. RAMADGE, W. M. WONHAM. The Control of Discrete Event Systems, in "Proceedings of the IEEE;
Special issue on Dynamics of Discrete Event Systems", vol. 77, no 1, 1989, p. 81-98.

[46] V. RUSU, L. DU BOUSQUET, T. JÉRON. An approach to symbolic test generation, in "International Conference
on Integrating Formal Methods (IFM’00), Volume 1945 of LNCS", LNCS, no 1945, Springer Verlag, 2000,
p. 338-357.

[47] J. TRETMANS. Test Generation with Inputs, Outputs and Repetitive Quiescence., in "Software - Concepts and
Tools", vol. 17, no 3, 1996, p. 103-120.

