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The objective of Compsys is to adapt and extend optimization techniques, primarily designed for high
performance computing, to the special case of embedded computing systems. The team exists since January
2002 as part of Laboratoire de l’Informatique du Parallélisme (Lip, UMR CNRS ENS-LYON UCB-LYON Inria
5668), located at ENS-LYON, and as an Inria pre-project. It became a full Inria project in January 2004. It
has been evaluated by Inria in Spring 2007 and will continue 4 more years. It has been evaluated by AERES
in December 2010 and received the mark A+.
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2. Overall Objectives

2.1. Introduction
Keywords: compilation, automatic generation of VLSI chips, code optimization, scheduling, parallelism,
memory optimization, FPGA platforms, VLIW processors, DSP, regular computations, linear programming,
tools for polyhedra and lattices.

The objective of Compsys is to adapt and to extend code optimization techniques primarily designed
in compilers/parallelizers for high performance computing to the special case of embedded computing
systems. In particular, Compsys works on back-end optimizations for specialized processors and on high-level
program transformations for the synthesis of hardware accelerators. The main characteristic of Compsys is
its focus on combinatorial problems (graph algorithms, linear programming, polyhedra) coming from code
optimizations (register allocation, cache and memory optimizations, scheduling, optimizations for power,
automatic generation of software/hardware interfaces, etc.) and the validation of techniques developed in
compilation tools.

Compsys started as an Inria project in 2004, after 2 years of maturation, and was positively evaluated in
Spring 2007 after its first 4 years period (2004-2007). It was again evaluated by AERES in 2009, as part
of the general evaluation of LIP, and got the best possible mark, A+. It will continue with updated research
directions. Section 2.2 defines the general context of the team’s activities. Section 2.3 presents the research
objectives targeted during the first 4 years, the main achievements over this period, and the new research
directions that Compsys will follow in the coming years. The last section highlights new results that have not
been covered by previous reports.
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2.2. General presentation
Classically, an embedded computer is a digital system that is part of a larger system and that is not directly
accessible to the user. Examples are appliances like phones, TV sets, washing machines, game platforms, or
even larger systems like radars and sonars. In particular, this computer is not programmable in the usual
way. Its program, if it exists, is supplied as part of the manufacturing process and is seldom (or never)
modified thereafter. As the embedded systems market grows and evolves, this view of embedded systems is
becoming obsolete and tends to be too restrictive. Many aspects of general-purpose computers apply to modern
embedded platforms. Nevertheless, embedded systems remain characterized by a set of specialized application
domains, rigid constraints (cost, power, efficiency, heterogeneity), and its market structure. The term embedded
system has been used for naming a wide variety of objects. More precisely, there are two categories of so-
called embedded systems: a) control-oriented and hard real-time embedded systems (automotive, plant control,
airplanes, etc.); b) compute-intensive embedded systems (signal processing, multi-media, stream processing)
processing large data sets with parallel and/or pipelined execution. Compsys is primarily concerned with this
second type of embedded systems, now referred to as embedded computing systems.

Today, the industry sells many more embedded processors than general-purpose processors; the field of
embedded systems is one of the few segments of the computer market where the European industry still has a
substantial share, hence the importance of embedded system research in the European research initiatives.
Our priority towards embedded software is motivated by the following observations: a) the embedded
system market is expanding, among many factors, one can quote pervasive digitalization, low-cost products,
appliances, etc.; b) research on software for embedded systems is poorly developed in France, especially if
one considers the importance of actors like Alcatel, STMicroelectronics, Matra, Thales, etc.; c) since embedded
systems increase in complexity, new problems are emerging: computer-aided design, shorter time-to-market,
better reliability, modular design, and component reuse.

A specific aspect of embedded computing systems is the use of various kinds of processors, with many par-
ticularities (instruction sets, registers, data and instruction caches) and constraints (code size, performance,
storage). The development of compilers is crucial for this industry, as selling a platform without its program-
ming environment and compiler would not be acceptable. To cope with such a range of different processors, the
development of robust, generic (retargetable), though efficient compilers is mandatory. Unlike standard com-
pilers for general-purpose processors, compilers for embedded processors can be more aggressive (i.e., take
more time to optimize) for optimizing some important parts of applications. This opens a new range of opti-
mizations. Another interesting aspect is the introduction of platform-independent intermediate languages, such
as Java bytecode, that is compiled dynamically at runtime (aka just-in-time). Extreme lightweight compilation
mechanisms that run faster and consume less memory have to be developed. Our objective is to revisit existing
compilation techniques in the context of embedded computing systems, to deconstruct these techniques, to
improve them, and to develop new techniques taking constraints of embedded processors into account.

As for high-level synthesis (HLS), several compilers/systems have appeared, after some first unsuccessful
industrial attempts in the past. These tools are mostly based on C or C++ as for example SystemC, VCC,
CatapultC, Altera C2H, PICO Express. Academic projects also exist such as Flex and Raw at MIT, Piperench
at Carnegie-Mellon University, Compaan at the University of Leiden, Ugh/Disydent at LIP6 (Paris), Gaut at
Lester (Bretagne), MMAlpha (Insa-Lyon), and others. In general, the support for parallelism in HLS tools
is minimal, especially in industrial tools. Also, the basic problem that these projects have to face is that the
definition of performance is more complex than in classical systems. In fact, it is a multi-criteria optimization
problem and one has to take into account the execution time, the size of the program, the size of the data
structures, the power consumption, the manufacturing cost, etc. The impact of the compiler on these costs is
difficult to assess and control. Success will be the consequence of a detailed knowledge of all steps of the
design process, from a high-level specification to the chip layout. A strong cooperation of the compilation and
chip design communities is needed. The main expertise in Compsys for this aspect is in the parallelization and
optimization of regular computations. Hence, we will target applications with a large potential parallelism,
but we will attempt to integrate our solutions into the big picture of CAD environments.
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More generally, the aims of Compsys are to develop new compilation and optimization techniques for the
field of embedded computing system design. This field is large, and Compsys does not intend to cover it
in its entirety. As previously mentioned, we are mostly interested in the automatic design of accelerators,
for example designing a VLSI or FPGA circuit for a digital filter, and in the development of new back-end
compilation strategies for embedded processors. We study code transformations that optimize features such
as execution time, power consumption, code and die size, memory constraints, and compiler reliability. These
features are related to embedded systems but some are not specific to them. The code transformations we
develop are both at source level and at assembly level. A specificity of Compsys is to mix a solid theoretical
basis for all code optimizations we introduce with algorithmic/software developments. Within Inria, our
project is related to the “architecture and compilation” theme, more precisely code optimization, as some
of the research in Alchemy and Alf (previously known as Caps), and to high-level architectural synthesis, as
some of the research in Cairn.

Most french researchers working on high-performance computing (automatic parallelization, languages, op-
erating systems, networks) moved to grid computing at the end of the 90s. We thought that applications,
industrial needs, and research problems were more interesting in the design of embedded platforms. Further-
more, we were convinced that our expertise on high-level code transformations could be more useful in this
field. This is the reason why Tanguy Risset came to Lyon in 2002 to create the Compsys team with Anne
Mignotte and Alain Darte, before Paul Feautrier, Antoine Fraboulet, Fabrice Rastello, and finally Christophe
Alias joined the group. Then, Tanguy Risset left Compsys to become a professor at INSA Lyon, and Antoine
Fraboulet and Anne Mignotte moved to other fields of research. As for Laure Gonnord, after a post-doc in
Compsys, she obtained an assistant professor position in Lille but remains external collaborator of the team.

All present and past members of Compsys have a background in automatic parallelization and high-level
program transformations. Paul Feautrier was the initiator of the polytope model for program transformations
around 1990 and, before coming to Lyon, started to be more interested in programming models and opti-
mizations for embedded applications, in particular through collaborations with Philips. Alain Darte worked on
mathematical tools and algorithmic issues for parallelism extraction in programs. He became interested in the
automatic generation of hardware accelerators, thanks to his stay at HP Labs in the Pico project in Spring 2001.
Antoine Fraboulet did a PhD with Anne Mignotte – who was working on high-level synthesis (HLS) – on code
and memory optimizations for embedded applications. Fabrice Rastello did a PhD on tiling transformations
for parallel machines, then was hired by STMicroelectronics where he worked on assembly code optimizations
for embedded processors. Tanguy Risset worked for a long time on the synthesis of systolic arrays, being the
main architect of the HLS tool MMAlpha. Christophe Alias did a PhD on algorithm recognition for program
optimizations and parallelization. He first spent a year in Compsys working on array contraction, where he
started to develop his tool Bee, then a year at Ohio State University with Prof. P. Sadayappan on memory
optimizations. He finally joined Compsys as an Inria researcher.

It may be worth to quote Bob Rau and his colleagues (IEEE Computer, sept. 2002):

"Engineering disciplines tend to go through fairly predictable phases: ad hoc, formal and rigorous, and au-
tomation. When the discipline is in its infancy and designers do not yet fully understand its potential problems
and solutions, a rich diversity of poorly understood design techniques tends to flourish. As understanding
grows, designers sacrifice the flexibility of wild and woolly design for more stylized and restrictive method-
ologies that have underpinnings in formalism and rigorous theory. Once the formalism and theory mature, the
designers can automate the design process. This life cycle has played itself out in disciplines as diverse as PC
board and chip layout and routing, machine language parsing, and logic synthesis.

We believe that the computer architecture discipline is ready to enter the automation phase. Although the
gratification of inventing brave new architectures will always tempt us, for the most part the focus will shift to
the automatic and speedy design of highly customized computer systems using well-understood architecture
and compiler technologies.”

We share this view of the future of architecture and compilation. Without targeting too ambitious objectives,
we were convinced of two complementary facts: a) the mathematical tools developed in the past for manip-
ulating programs in automatic parallelization were lacking in high-level synthesis and embedded computing
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optimizations and, even more, they started to be rediscovered frequently in less mature forms, b) before being
able to really use these techniques in HLS and embedded program optimizations, we needed to learn a lot from
the application side, from the electrical engineering side, and from the embedded architecture side. Our pri-
mary goal was thus twofold: to increase our knowledge of embedded computing systems and to adapt/extend
code optimization techniques, primarily designed for high performance computing, to the special case of em-
bedded computing systems. In the initial Compsys proposal, we proposed four research directions, centered
on compilation methods for embedded applications, both for software and accelerators design:

• Code optimization for specific processors (mainly DSP and VLIW processors);
• Platform-independent loop transformations (including memory optimization);
• Silicon compilation and hardware/software codesign;
• Development of polyhedral (but not only) optimization tools.

These research activities were primarily supported by a marked investment in polyhedra manipulation tools
and, more generally, solid mathematical and algorithmic studies, with the aim of constructing operational
software tools, not just theoretical results. Hence the fourth research theme was centered on the development
of these tools.

2.3. Highlights of the first 4-years period
The Compsys team has been evaluated by Inria in April 2007. The evaluation, conducted by Erik Hagersted
(Uppsala University), Vinod Kathail (Synfora, inc), J. (Ram) Ramanujam (Baton Rouge University) was
positive. Compsys will thus continue for 4 years as an Inria project-team but in a new configuration as Tanguy
Risset and Antoine Fraboulet left the project to follow research directions closer to their host laboratory at
Insa-Lyon. The main achievements of Compsys, for this period, were the following:

• The development of a strong collaboration with the compilation group at STMicroelectronics, with
important results in aggressive optimizations for instruction cache and register allocation.

• New results on the foundation of high-level program transformations, including scheduling tech-
niques for process networks and a general technique for array contraction (memory reuse) based on
the theory of lattices.

• Many original contributions with partners closer to hardware constraints, including CEA, related to
SoC simulation, hardware/software interfaces, power models, and simulators.

Due to the size reduction of Compsys (from 5 permanent researchers to 3 in 2008, then 4 again in 2009), the
team now focuses on two research directions only:

• Code generation for embedded processors, on the two opposite, though connected, aspects: aggres-
sive compilation and just-in-time compilation.

• High-level program analysis and transformations for high-level synthesis tools.

2.4. Highlights of 2010
Compsys has continued its activities on static single assignment (SSA) and register allocation, in collaboration
with STMicroelectronics, but working more deeply on just-in-time compilation (in particular on the develop-
ments of code optimizations algorithms that take into account speed and memory footprint) and more specific
constraints such as register aliasing. This work has led to four new developments in 2010:

• A debunking work on static single information (SSI), which is an extension of SSA: in particular it
provides a correct ordering of basic blocks for which live-ranges of variables form intervals.

• A new algorithm for liveness analysis under SSA and a comparison with existing methods, depend-
ing on the data structures used.

• An analysis, based on an integer linear programming formulation, of what “optimal spilling” means
and on the impact of SSA on this problem.

• A tree-scan register allocator that takes into account more complex aliasing register constraints.
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The Sceptre Minalogic project was finished and (very) positively evaluated at the end of 2009. The collab-
oration with STMicroelectronics continues, since September 2009, through the Mediacom project, a 3-years
project funded by Nano2012 (governmental help for R&D). One PhD thesis was defended on this topic in
September 2010 by Benoit Boissinot. Another one started in January 2010 (Quentin Colombet) and a post-
doctoral researcher was hired in December 2009 (Florian Brandner). It is also worth mentioning the departure
of Fabrice Rastello for a sabbatical year since July 2010.

The research on high-level synthesis (HLS) is mainly funded by a 4-years Nano2012 project in collaboration
with the Cairn Inria project and STMicroelectronics, on source-to-source transformations for high-level
synthesis (S2S4HLS). On the topic of HLS, three aspects have been pushed in 2010:

• In the context of the industrial HLS tool Altera C2H, an automatic method and a software
tool (Chuba) have been developed to optimize communications and overlap communica-
tions/computations, entirely at source level, without requiring any additional VHDL glue. This
technique is the heart of the PhD of Alexandru Plesco who defended his thesis in September 2010.
It uses sophisticated polyhedral program analysis, array contraction, and code rewriting techniques.

• The previous effort opened a collaboration with the Arenaire LIP team (“computer arithmetic”) for
exploiting floating-point pipelined operators in a HLS flow. A prototype has been developed.

• Our work on program termination and worst-case computational complexity has been acknowledged
by the community through a publication at SAS’10 and the visit of Amir Ben Amram (University
of Tel-Aviv), in connection with the PLUME LIP team (“proofs and languages”). The initial
motivation of this research was to be able to analyze/transform codes with while loops so that
they can be accepted by HLS tools. Finally, the most important result is that our technique bridges
the gap between several communities: program termination, parallelism detection, and analysis of
recurrence equations. Furthermore, we can reuse all polyhedral tools developed in high-performance
computing: our multi-dimensional scheduling techniques as well as the mathematical tools for
manipulating polyhedra and counting integer points within polyhedra.

3. Scientific Foundations

3.1. Introduction
The embedded system design community is facing two challenges:

• The complexity of embedded applications is increasing at a rapid rate.

• The needed increase in processing power is no longer obtained by increases in the clock frequency,
but by increased parallelism.

While, in the past, each type of embedded application was implemented in a separate appliance, the present
tendency is toward a universal hand-held object, which must serve as a cell-phone, as a personal digital
assistant, as a game console, as a camera, as a Web access point, and much more. One may say that embedded
applications are of the same level of complexity as those running on a PC, but they must use a more constrained
platform in term of processing power, memory size, and energy consumption. Furthermore, most of them
depend on international standards (e.g., in the field of radio digital communication), which are evolving
rapidly. Lastly, since ease of use is at a premium for portable devices, these applications must be integrated
seamlessly to a degree that is unheard of in standard computers.

All of this dictates that modern embedded systems retain some form of programmability. For increased
designer productivity and reduced time-to-market, programming must be done in some high-level language,
with appropriate tools for compilation, run-time support, and debugging. This does not mean that all embedded
systems (or all of an embedded system) must be processor based. Another solution is the use of field
programmable gate arrays (FPGA), which may be programmed at a much finer grain than a processor, although
the process of FPGA “programming” is less well understood than software generation. Processors are better
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than application-specific circuits at handling complicated control and unexpected events. On the other hand,
FPGAs may be tailored to just meet the needs of their application, resulting in better energy and silicon
area usage. It is expected that most embedded systems will use a combination of general-purpose processors,
specific processors like DSPs, and FPGA accelerators. Such a combination is already present in recent versions
of the Atom Intel processor.

Solid state technology has changed pace around the turn of the century. Moore’s “law”, which dictated a
twofold increases of the number of gates per chip every eighteen months, is now taking nearer three years for
each new technology node. As the number of insulating atoms in a transistor gate and the number of electrons
that make a one bit in memory are getting closer to one, it is to be expected that this slowdown will continue
until progress stops. At the same time, while miniaturization of silicon features continues, albeit at a slower
pace, it has not been possible to reduce the size of metallic interconnects, especially those that carry the clock
signal of synchronous designs. The clock “tree” now accounts for 30 % of the energy budget of a typical chip.
Further increases of the clock frequency would raise this number beyond the competence of portable cooling
systems. The problem is still more acute for embedded systems, which usually run on battery power. As a
consequence, the clock frequency of general-purpose chips is limited to less than 3Ghz. Pending a revolution in
solid state technology – one not so remote possibility would be to move into asynchronous, clock-less designs –
the extra processing power needed to support modern embedded applications must be found elsewhere, namely
in increased parallelism. Traditionally, most state-of-the-art processors have parallelism, but this parallelism
is hidden to the programmer, which is presented with a sequential execution model. However, this approach is
showing diminishing returns, hence the advent of EPIC and multi- or many-core processors.

As a consequence, parallel programming, which has long been confined to the high-performance community,
must become the commonplace rather than the exception. In the same way that sequential programming
moved from assembly code to high-level languages at the price of a slight loss in performance, parallel
programming must move from low-level tools, like OpenMP or even MPI, to higher-level programming
environments. While fully-automatic parallelization is a Holy Grail that will probably never be reached in
our lifetimes, it will remain as a component in a comprehensive environment, including general-purpose
parallel programming languages, domain-specific parallelizers, parallel libraries and run-time systems, back-
end compilation, dynamic parallelization. The landscape of embedded systems is indeed very diverse and
many design flows and code optimization techniques must be considered. For example, embedded processors
(micro-controllers, DSP, VLIW) require powerful back-end optimizations that can take into account hardware
specificities, such as special instructions and particular organizations of registers and memories. FPGA and
hardware accelerators, to be used as small components in a larger embedded platform, require “hardware
compilation”, i.e., design flows and code generation mechanisms to generate non-programmable circuits. For
the design of a complete system-on-chip platform, architecture models, simulators, debuggers are required.
The same is true for multi-cores of any kind, GPGPU (“general-purpose” graphical processing units), CGRA
(coarse-grain reconfigurable architectures), which require specific methodologies and optimizations, although
all these techniques converge or have connections. In other words, embedded systems need all usual aspects of
the process that transforms some specification down to an executable, software or hardware. In this wide range
of topics, Compsys concentrates on the code optimizations aspects in this transformation chain, restricting
to compilation (transforming a program to a program) for embedded processors and to high-level synthesis
(transforming a program into a circuit description) for FPGAs.

Actually, it is not a surprise to see compilation and high-level synthesis getting closer. Now that high-level
synthesis has grown up sufficiently to be able to rely on placing & routing tools, or even to synthesize C-like
languages, standard techniques for back-end code generation (register allocation, instruction selection, instruc-
tion scheduling, software pipelining) are used in HLS tools. At the higher-level, programming languages for
programmable parallel platforms share many aspects with high-level specification languages for HLS, for ex-
ample, the description and manipulations of nested loops, or the model of computation/communication (e.g.,
Kahn process networks). In all aspects, the frontier between software and hardware is vanishing. For example,
in terms of architecture, customized processors (with processor extension as proposed by Tensilica) share fea-
tures with both general-purpose processors and hardware accelerators. FPGAs are both hardware and software
as they are fed with “programs” representing their hardware configurations. In other words, this convergence in
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code optimizations explains why Compsys studies both program compilation and high-level synthesis. Beside,
Compsys has a tradition of building free software tools for linear programming and optimization in general,
and will continue it, as needed for our current research.

3.2. Back-end code optimizations for embedded processors
Participants: Benoit Boissinot, Florian Brandner, Quentin Colombet, Alain Darte, Fabrice Rastello.

Compilation is an old activity, in particular back-end code optimizations. We first give some elements that
explain why the development of embedded systems makes compilation come back as a research topic. We
then detail the code optimizations that we are interested in, both for aggressive and just-in-time compilation.

3.2.1. Embedded systems and the revival of compilation & code optimizations
Applications for embedded computing systems generate complex programs and need more and more pro-
cessing power. This evolution is driven, among others, by the increasing impact of digital television, the first
instances of UMTS networks, and the increasing size of digital supports, like recordable DVD, and even In-
ternet applications. Furthermore, standards are evolving very rapidly (see for instance the successive versions
of MPEG). As a consequence, the industry has rediscovered the interest of programmable structures, whose
flexibility more than compensates for their larger size and power consumption. The appliance provider has
a choice between hard-wired structures (Asic), special-purpose processors (Asip), or (quasi) general-purpose
processors (DSP for multimedia applications). Our cooperation with STMicroelectronics leads us to investigate
the last solution, as implemented in the ST100 (DSP processor) and the ST200 (VLIW DSP processor) family
for example. Compilation and, in particular, back-end code optimizations find a second life in the context of
such embedded computing systems.

At the heart of this progress is the concept of virtualization, which is the key for more portability, more
simplicity, more reliability, and of course more security. This concept, implemented through binary translation,
just-in-time compilation, etc., consists in hiding the architecture-dependent features as far as possible during
the compilation process. It has been used for quite a long time for servers such as HotSpot, a bit more recently
for workstations, and it is quite recent for embedded computing for reasons we now explain.

As previously mentioned, the definition of “embedded systems” is rather imprecise. However, one can at least
agree on the following features:

• even for processors that are programmable (as opposed to hardware accelerators), processors have
some architectural specificities, and are very diverse;

• many processors (but not all of them) have some limited resources, in particular in terms of memory;

• for some processors, power consumption is an issue;

• in some cases, aggressive compilation (through cross-compilation) is possible, and even highly
desirable for important functions.

This diversity is one of the reason why virtualization, which starts to be more mature, is becoming more and
more common in programmable embedded systems, in particular through CIL (a standardization of MSIL).
This implies a late compilation of programs, through just-in-time (JIT), including dynamic compilation. Some
people even think that dynamic compilation, which can have more information because performed at run-time,
can outperform the performances of “ahead-of-time” compilation.

Performing code generation (and some higher-level optimizations) in a late phase is potentially advantageous,
as it can exploit architectural specificities and run-time program information such as constants and aliasing,
but it is more constrained in terms of time and available resources. Indeed, the processor that performs the
late compilation phase is, a priori, less powerful (in terms of memory for example) than a processor used
for cross-compilation. The challenge is thus to spread the compilation process in time by deferring some
optimizations (“deferred compilation”) and by propagating some information for those whose computation is
expensive (“split compilation”). Classically, a compiler has to deal with different intermediate representations
(IR) where high-level information (i.e., more target-independent) co-exist with low-level information. The split



8 Activity Report INRIA 2010

compilation has to solve a similar problem where, this time, the compactness of the information representation,
and thus its pertinence, is also an important criterion. Indeed, the IR is evolving not only from a target-
independent description to a target-dependent one, but also from a situation where the compilation time is
almost unlimited (cross-compilation) to one where any type of resource is limited. This is also a reason why
static single assignment (SSA) is becoming specific to embedded compilation, even if it was first used for
workstations. Indeed, SSA is a sparse (i.e., compact) representation of liveness information. In other words,
if time constraints are common to all JIT compilers (not only for embedded computing), the benefit of using
SSA is also in terms of its good ratio pertinence/storage of information. It also enables to simplify algorithms,
which is also important for increasing the reliability of the compiler.

In addition, this continuum of compilation strategies should integrate the need for exploiting the parallel
computing resources that all recent (and future) architectures provide. A solution is to develop domain-specific
languages (DSL), which adds yet another dimension to the problem of designing intermediate representation.

We now give more details on the code optimizations we want to consider and on the methodology we want to
follow.

3.2.2. Aggressive and just-in-time optimizations of assembly-level code
Compilation for embedded processors is difficult because the architecture and the operations are specially
tailored to the task at hand, and because the amount of resources is strictly limited. For instance, the potential
for instruction level parallelism (SIMD, MMX), the limited number of registers and the small size of the
memory, the use of direct-mapped instruction caches, of predication, but also the special form of applications
[22] generate many open problems. Our goal is to contribute to their understanding and their solutions.

As previously explained, compilation for embedded processors include both aggressive and just in time (JIT)
optimizations. Aggressive compilation consists in allowing more time to implement costly solutions (so,
looking for complete, even expensive, studies is mandatory): the compiled program is loaded in permanent
memory (ROM, flash, etc.) and its compilation time is not significant; also, for embedded systems, code size
and energy consumption usually have a critical impact on the cost and the quality of the final product. Hence,
the application is cross-compiled, in other words, compiled on a powerful platform distinct from the target
processor. Just-in-time compilation corresponds to compiling applets on demand on the target processor. For
compatibility and compactness, the source languages are CIL or Java. The code can be uploaded or sold
separately on a flash memory. Compilation is performed at load time and even dynamically during execution.
Used heuristics, constrained by time and limited resources, are far from being aggressive. They must be fast
but smart enough.

Our aim is, in particular, to find exact or heuristic solutions to combinatorial problems that arise in compilation
for VLIW and DSP processors, and to integrate these methods into industrial compilers for DSP processors
(mainly ST100, ST200, Strong ARM). Such combinatorial problems can be found for example in register
allocation, in opcode selection, or in code placement for optimization of the instruction cache. Another
example is the problem of removing the multiplexer functions (known as φ functions) that are inserted when
converting into SSA form. These optimizations are usually done in the last phases of the compiler, using an
assembly-level intermediate representation. In industrial compilers, they are handled in independent phases
using heuristics, in order to limit the compilation time. We want to develop a more global understanding of
these optimization problems to derive both aggressive heuristics and JIT techniques, the main tool being the
SSA representation.

In particular, we want to investigate the interaction of register allocation, coalescing, and spilling, with
the different code representations, such as SSA. One of the challenging features of today’s processors is
predication [27], which interferes with all optimization phases, as the SSA form does. Many classical
algorithms become inefficient for predicated code. This is especially surprising, since, besides giving a better
trade-off between the number of conditional branches and the length of the critical path, converting control
dependences into data dependences increases the size of basic blocks and hence creates new opportunities for
local optimization algorithms. One has first to adapt classical algorithms to predicated code [28], but also to
study the impact of predicated code on the whole compilation process.
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As mentioned in Section 2.3, a lot of progress has already been done in this direction in our past collaborations
with STMicroelectronics. In particular, the goal of the Sceptre project was to revisit, in the light of SSA, some
code optimizations in an aggressive context, i.e., by looking for the best performances without limiting, a
priori, the compilation time and the memory usage. One of the major results of this collaboration was to show
that it is possible to exploit SSA to design a register allocator in two phases, with one spilling phase relatively
target-independent, then the allocator itself, which takes into account architectural constraints and optimizes
other aspects (in particular, coalescing). This new way of considering register allocation has shown its interest
for aggressive static compilation. But it offers three other perspectives:

• A simplification of the allocator, which again goes toward a more reliable compiler design, based on
static single assignment.

• The possibility to handle the hardest part, the spilling phase, as a preliminary phase, thus a good
candidate for split compilation.

• The possibility of a fast allocator, with a much higher quality than usual JIT approaches such as
“linear scan”, thus suitable for virtualization and JIT compilation.

These additional possibilities have not been fully studied or developed yet. The objective of our new contract
with STMicroelectronics, called Mediacom, is to address them. More generally, we want to continue to develop
our activity on code optimizations, exploiting SSA properties, following our two-phases strategy:

• First, revisit code optimizations in an aggressive context to develop better strategies, without
eliminating too quickly solutions that may have been considered as too expensive in the past.

• Then, exploit the new concepts introduced in the aggressive context to design better algorithms in a
JIT context, focusing on the speed of algorithms and their memory footprint, without compromising
too much on the quality of the generated code.

We want to consider more code optimizations and more architectural features, such as registers with aliasing,
predication, and, possibly in a longer term, vectorization/parallelization again.

3.3. Program analysis and transformations for high-level synthesis
Participants: Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord, Alexandru Plesco.

3.3.1. High-Level Synthesis Context
High-level synthesis has become a necessity, mainly because the exponential increase in the number of
gates per chip far outstrips the productivity of human designers. Besides, applications that need hardware
accelerators usually belong to domains, like telecommunications and game platforms, where fast turn-around
and time-to-market minimization are paramount. We believe that our expertise in compilation and automatic
parallelization can contribute to the development of the needed tools.

Today, synthesis tools for FPGAs or ASICs come in many shapes. At the lowest level, there are proprietary
Boolean, layout, and place and route tools, whose input is a VHDL or Verilog specification at the structural or
register-transfer level (RTL). Direct use of these tools is difficult, for several reasons:

• A structural description is completely different from an usual algorithmic language description, as it
is written in term of interconnected basic operators. One may say that it has a spatial orientation, in
place of the familiar temporal orientation of algorithmic languages.

• The basic operators are extracted from a library, which poses problems of selection, similar to the
instruction selection problem in ordinary compilation.

• Since there is no accepted standard for VHDL synthesis, each tool has its own idiosyncrasies, and
report its results in a different format. This makes it difficult to build portable HLS tools.

• HLS tools have trouble handling loops. This is particularly true for logic synthesis systems,
where loops are systematically unrolled (or considered as sequential) before synthesis. An efficient
treatment of loops needs the polyhedral model. This is where past results from the automatic
parallelization community are useful.
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• More generally, a VHDL specification is too low level to allow the designer to perform, easily,
higher-level code optimizations, especially on multi-dimensional loops and arrays, which are of
paramount importance to exploit parallelism, pipelining, and perform memory optimizations.

Some intermediate tools exist that generate VHDL from a specification in restricted C, both in academia
(such as SPARK, Gaut, UGH, CloogVHDL, and in industry (such as C2H), CatapultC, PICO Express. All
these tools use only the most elementary form of parallelization, equivalent to instruction-level parallelism
in ordinary compilers, with some limited form of block pipelining. Targeting one of these tools for low-level
code generation, while we concentrate on exploiting loop parallelism, might be a more fruitful approach than
directly generating VHDL. However, it may be that the restrictions they impose preclude efficient use of the
underlying hardware.

Our first experiments with these HLS tools reveal two important issues. First, they are, of course, limited to
certain types of input programs so as to make their design flows successful. It is a painful and tricky task for
the user to transform the program so that it fits these constraints and to tune it to get good results. Automatic
or semi-automatic program transformations can help the user achieve this task. Second, users, even expert
users, have only a very limited understanding of what back-end compilers do and why they do not lead to the
expected results. An effort must be done to analyze the different design flows of HLS tools, to explain what
to expect from them, and how to use them to get a good quality of results. Our first goal is thus to develop
high-level techniques that, used in front of existing HLS tools, improve their utilization. This should also give
us directions on how to modify them.

More generally, we want to consider HLS as a more global parallelization process. So far, no HLS tools
is capable of generating designs with communicating parallel accelerators, even if, in theory, at least for
the scheduling part, a tool such as PICO Express could have such capabilities. The reason is that it is, for
example, very hard to automatically design parallel memories and to decide the distribution of array elements
in memory banks to get the desired performances with parallel accesses. Also, how to express communicating
processes at the language level? How to express constraints, pipeline behavior, communication media, etc.?
To better exploit parallelism, a first solution is to extend the source language with parallel constructs, as in
all derivations of the Kahn process networks model, including communicating regular processes (CRP, see
later). The other solution is a form of automatic parallelization. However, classical methods, which are mostly
based on scheduling, are not directly applicable, firstly because they pay poor attention to locality, which is
of paramount importance in hardware. Beside, their aim is to extract all the parallelism in the source code;
they rely on the runtime system to tailor the parallelism degree to the available resources. Obviously, there
is no runtime system in hardware. The real challenge is thus to invent new scheduling algorithms that take
both resource and locality into account, and then to infer the necessary hardware from the schedule. This is
probably possible only for programs that fit into the polytope model.

In summary, as for our activity on back-end code optimizations, which is decomposed into two complementary
activities, aggressive and just-in-time compilation, we focus our activity on high-level synthesis on two
aspects:

• Developing high-level transformations, especially for loops and memory/communication optimiza-
tions, that can be used in front of HLS tools so as to improve their use.

• Developing concepts and techniques in a more global view of high-level synthesis, starting from
specification languages down to hardware implementation.

We now give more details on the program optimizations and transformations we want to consider and on our
methodology.

3.3.2. Specifications, Transformations, Code Generation for High-Level Synthesis
Before contributing to high-level synthesis, one has to decide which execution model is targeted and where to
intervene in the design flow. Then one has to solve scheduling, placement, and memory management problems.
These three aspects should be handled as a whole, but present state of the art dictates that they be treated
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separately. One of our aims will be to find more comprehensive solutions. The last task is code generation,
both for the processing elements and the interfaces between FPGAs and the host processor.

There are basically two execution models for embedded systems: one is the classical accelerator model, in
which data is deposited in the memory of the accelerator, which then does its job, and returns the results. In
the streaming model, computations are done on the fly, as data flow from an input channel to the output. Here,
data is never stored in (addressable) memory. Other models are special cases, or sometime compositions of the
basic models. For instance, a systolic array follows the streaming model, and sometime extends it to higher
dimensions. Software radio modems follow the streaming model in the large, and the accelerator model in
detail. The use of first-in first-out queues (FIFO) in hardware design is an application of the streaming model.
Experience shows that designs based on the streaming model are more efficient that those based on memory.
One of the point to be investigated is whether it is general enough to handle arbitrary (regular) programs.
The answer is probably negative. One possible implementation of the streaming model is as a network of
communicating processes either as Kahn process networks (FIFO based) or as our more recent model of
communicating regular processes (CRP, memory based). It is an interesting fact that several researchers have
investigated translation from process networks [23] and to process networks [29], [30].

Kahn process networks (KPN) were introduced 30 years ago as a notation for representing parallel programs.
Such a network is built from processes that communicate via perfect FIFO channels. Because the channel
histories are deterministic, one can define a semantics and talk meaningfully about the equivalence of two
implementations. As a bonus, the dataflow diagrams used by signal processing specialists can be translated
on-the-fly into process networks. The problem with KPNs is that they rely on an asynchronous execution
model, while VLIW processors and FPGAs are synchronous or partially synchronous. Thus, there is a need for
a tool for synchronizing KPNs. This is best done by computing a schedule that has to satisfy data dependences
within each process, a causality condition for each channel (a message cannot be received before it is sent),
and real-time constraints. However, there is a difficulty in writing the channel constraints because one has to
count messages in order to establish the send/receive correspondence and, in multi-dimensional loop nests,
the counting functions may not be affine. In order to bypass this difficulty, one can define another model,
communicating regular processes (CRP), in which channels are represented as write-once/read-many arrays.
One can then dispense with counting functions. One can prove that the determinacy property still holds. As
an added benefit, a communication system in which the receive operation is not destructive is closer to the
expectations of system designers.

The main difficulty with this approach is that ordinary programs are usually not constructed as process net-
works. One needs automatic or semi-automatic tools for converting sequential programs into process networks.
One possibility is to start from array dataflow analysis [24]. Each statement (or group of statements) may be
considered a process, and the source computation indicates where to implement communication channels.
Another approach attempts to construct threads, i.e. pieces of sequential code with the smallest possible inter-
actions. In favorable cases, one may even find outermost parallelism, i.e. threads with no interactions what-
soever. Here, communications are associated to so-called uncut dependences, i.e. dependences which cross
thread boundaries. In both approaches, the main question is whether the communications can be implemented
as FIFOs, or need a reordering memory. One of our research directions will be to try to take advantage of the
reordering allowed by dependences to force a FIFO implementation.

Whatever the chosen solution (FIFO or addressable memory) for communicating between two accelerators or
between the host processor and an accelerator, the problems of optimizing communication between processes
and of optimizing buffers have to be addressed. Many local memory optimization problems have already
been solved theoretically. Some examples are loop fusion and loop alignment for array contraction and
for minimizing the length of the reuse vector [26], techniques for data allocation in scratch-pad memory,
or techniques for folding multi-dimensional arrays [21]. Nevertheless, the problem is still largely open.
Some questions are: how to schedule a loop sequence (or even a process network) for minimal scratch-pad
memory size? How is the problem modified when one introduces unlimited and/or bounded parallelism? How
does one take into account latency or throughput constraints, or bandwidth constraints for input and output
channels? All loop transformations are useful in this context, in particular loop tiling, and may be applied
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either as source-to-source transformations (when used in front of HLS tools) or as transformations to generate
directly VHDL codes. One should keep in mind that theory will not be sufficient to solve these problems.
Experiments are required to check the relevance of the various models (computation model, memory model,
power consumption model) and to select the most important factors according to the architecture. Besides,
optimizations do interact: for instance reducing memory size and increasing parallelism are often antagonistic.
Experiments will be needed to find a global compromise between local optimizations.

Finally, there remains the problem of code generation for accelerators. It is a well-known fact that mod-
ern methods for program optimization and parallelization do not generate a new program, but just deliver
blueprints for program generation, in the form, e.g., of schedules, placement functions, or new array subscript-
ing functions. A separate code generation phase must be crafted with care, as a too naïve implementation may
destroy the benefits of high-level optimization. There are two possibilities here as suggested before; one may
target another high-level synthesis tool, or one may target directly VHDL. Each approach has its advantages
and drawbacks. However, in both situations, all such tools, including VHDL but not only, require that the input
program respects some strong constraints on the code shape, array accesses, memory accesses, communication
protocols, etc. Furthermore, to get the tool do what the user wants requires a lot of program tuning, i.e., of
program rewriting. What can be automated in this rewriting process? Semi-automated? Our partnership with
STMicroelectronics (synthesis) should help us answer such a question, considering both industrial applications
and industrial HLS tools. Also, in the hope of extending the tools Gaut and Ugh beyond this stage, an infor-
mal working group (Coach), with members from Lab-STICC (Lorient), Asim (UPMC), Cairn (IRISA), Tima
(IMAG), and Compsys has started meeting regularly, with the goal of submitting a revised ANR proposal at
the next opportunity.

4. Application Domains

4.1. Application Domains
Keywords: embedded computing systems, compilation, high-level synthesis, compilation, program optimiza-
tions.

The previous sections describe our main activities in terms of research directions, but also places Compsys
within the embedded computing systems domain, especially in Europe. We will therefore not come back here
to the importance, for industry, of compilation and embedded computing systems design.

In terms of application domain, the embedded computing systems we consider are mostly used for multimedia:
phones, TV sets, game platforms, etc. But, more than the final applications developed as programs, our
main application is the computer itself: how the system is organized (architecture) and designed, how it is
programmed (software), how programs are mapped to it (compilation and high-level synthesis).

The industry that can be impacted by our research is thus all the companies that develop embedded systems
and processors, and those (the same plus other) than need software tools to map applications to these platforms,
i.e., that need to use or even develop programming languages, program optimization techniques, compilers,
operating systems. Compsys do not focus on all these critical parts, but our activities are connected to them.

5. Software

5.1. Introduction
This section lists and briefly describes the software developments conducted within Compsys. Most are tools
that we extend and maintain over the years. They now concern two activities only: a) the development of tools
linked to polyhedra and loop/array transformations, b) the development of algorithms within the back-end
compiler of STMicroelectronics.
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The previous annual reports contain descriptions of Pip, a tool for parametric integer linear programming, of
the Polylib tool, a C library of polyhedral operations, and of MMAlpha a circuit synthesis tool for systolic
arrays. These tools, developed by members or past members of Compsys, are not maintained anymore in
Compsys, but are extended by other groups. They have been important tools in the development of the
“polytope model”, which is now widely accepted: it is used by Inria projects-teams Cairn and Alchemy, PIPS
at École des Mines de Paris, Suif from Stanford University, Compaan at Berkeley and Leiden, PiCo from the
HP Labs (continued as PicoExpress by Synfora), the DTSE methodology at Imec, Sadayappan’s group at Ohio
State University, Rajopadhye’s group at Colorado State’s University, etc. These groups are research projects,
but the increased involvement of industry (Hewlett Packard, Philips, Synfora, Reservoir Labs) is a favorable
factor. Polyhedra are also used in test and certification projects (Verimag, Lande, Vertecs). More recently,
several compiler groups have shown their interest in polyhedral methods: the GCC group and Reservoir Labs
in the USA, which develops a compiler fully-based on the polytope model and on the techniques we introduced
for loop and array transformations. Now that these techniques are well-established and disseminated by other
groups (in particular Alchemy), we prefer to focus on the development of new techniques and tools, which are
described here.

The other activity concerns the developments within the compiler of STMicroelectronics. These are not
stand-alone tools, which could be used externally, but algorithms and data structures implemented inside the
LAO back-end compiler, year after year, with the help of STMicroelectronics colleagues. As these are also
important developments, it is worth mentioning them in this section. They are also completed by important
efforts for integration and evaluation within the complete STMicroelectronics toolchain. They concern exact
methods (ILP-based), algorithms for aggressive optimizations, techniques for just-in-time compilation, and
for improving the design of the compiler.

5.2. Pip
Participants: Cédric Bastoul [MCF, IUT d’Orsay], Paul Feautrier.

Paul Feautrier is the main developer of Pip (Parametric Integer Programming) since its inception in 1988.
Basically, Pip is an “all integer” implementation of the Simplex, augmented for solving integer programming
problems (the Gomory cuts method), which also accepts parameters in the non-homogeneous term. Pip is
freely available under the GPL at http://www.piplib.org. Pip is widely used in the automatic parallelization
community for testing dependences, scheduling, several kind of optimizations, code generation, and others.
Beside being used in several parallelizing compilers, Pip has found applications in some unconnected domains,
as for instance in the search for optimal polynomial approximations of elementary functions (see the Inria
project Arénaire).

5.3. Syntol
Participants: Hadda Cherroun [Former PhD student in Compsys], Paul Feautrier.

Syntol is a modular process network scheduler. The source language is C augmented with specific constructs
for representing communicating regular process (CRP) systems. The present version features a syntax
analyzer, a semantic analyzer to identify DO loops in C code, a dependence computer, a modular scheduler,
and interfaces for CLooG (loop generator developed by C. Bastoul) and Cl@k (see Sections 5.4 and 5.5).
The dependence computer now handles casts, records (structures), and the modulo operator in subscripts
and conditional expressions. The latest developments are, firstly, a new code generator, and secondly, several
experimental tools for the construction of bounded parallelism programs.

• The new code generator, based on the ideas of Boulet and Feautrier [20], generates a counter
automaton that can be presented as a C program, as a rudimentary VHDL program at the RTL
level, as an automaton in the Aspic input format, or as a drawing specification for the DOT tool.

• Hardware synthesis can only be applied to bounded parallelism programs. Our present aim is to
construct threads with the objective of minimizing communications and simplifying synchronization.
The distribution of operations among threads is specified using a placement function, which is found
using techniques of linear algebra and combinatorial optimization.

http://www.piplib.org
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5.4. Cl@k
Participants: Christophe Alias, Fabrice Baray [Mentor, Former post-doc in Compsys], Alain Darte.

A few years ago, we identified new mathematical tools useful for the automatic derivation of array mappings
that enable memory reuse, in particular the notions of admissible lattice and of modular allocation (linear
mapping plus modulo operations). Fabrice Baray, former post-doc Inria under Alain Darte’s supervision,
developed a stand-alone optimization software tool in 2005-2006, called Cl@k (for Critical LAttice Kernel),
that computes or approximates the critical lattice for a given 0-symmetric polytope. (An admissible lattice is
a lattice whose intersection with the polytope is reduced to 0; a critical lattice is an admissible lattice with
minimal determinant.) The array contraction technique itself has been implemented by Christophe Alias in a
tool called Bee. Bee uses Rose, as a parser, analyzes the lifetime of elements of the arrays to be compressed,
and builds the necessary input for Cl@k, i.e., the 0-symmetric polytope of conflicting differences. Then, Bee
computes the array contraction mapping from the lattice provided by Cl@k and generates the final program
with contracted arrays. See previous reports for more details on the underlying theory. Cl@k can be viewed
as a complement to the Polylib suite, enabling yet another kind of optimizations on polyhedra. Bee is the
complement of Cl@k in terms of its application to memory reuse. Bee is now a stand-alone tool that contain
more and more features for program analysis and loop transformations.

5.5. Bee
Participants: Christophe Alias, Alain Darte.

Historically, BEE was a source-to-source translator performing array contraction. Meanwhile, many program
analyses and features have been added to BEE, which is now a source-to-source compiler. BEE provides many
facilities to quickly prototype polyhedral program analyses as described hereafter.

• C front-end. Based on EDG (via Rose), an industrial C/C++ parser from Edison group used in Intel
compilers.

• XML front-end. Optional feature to avoid license problems with Rose and EDG. This feature has
been used to connect the array contraction module of BEE to GECOS, a source-to-source compiler
developed in the CAIRN Inria team.

• Polyhedral intermediate representation. Automatic extraction of polyhedral domains and affine
access functions.

• Symbolic layer on the libraries POLYLIB (set operations on polyhedra) and PIPLIB (parameterized
ILP). These two last features simplify drastically the developer task.

• C back-end. With both the method of Quilleré and Rajopadhye (via Cloog http://www.cloog.org),
and the method of Boulet and Feautrier [20].

• VHDL back-end. With the Boulet-Feautrier method.

• Instance-wise dataflow analysis. Data dependence analysis, array dataflow analysis (ADA), array
lifetime analysis (ALA), array region analysis. The ADA of BEE has been used, improved, and
extended to form the stand-alone library FADALIB (http://www.prism.uvsq.fr/~bem/fadalib/).

• Instance-wise program analysis. Program termination, symbolic complexity estimation, array
contraction.

BEE is – to our knowledge – the only source-to-source compiler with a complete array contraction method.
BEE rewrites a kernel written in C to reduce the size of arrays, bridging the gap between the theoretical
framework described in [21] and implemented in Cl@k, and effective program transformations for array
contraction. For that, a precise lifetime analysis for arrays has been designed and implemented. After being
determined by Cl@k, the allocations are then translated back from the critical integer lattices into real code: the
arrays are remapped thanks to a linear (modular) allocation function (a[

−→
i ] 7→ a′[A

−→
i mod

−→
b ]) that collapses

array cells that do not live at the same time.

http://www.cloog.org
http://www.prism.uvsq.fr/~bem/fadalib/
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BEE also provides a language of pragmas to specify the kernel to be analyzed, the arrays to be contracted,
and (optionally) the affine schedule of the kernel. The latter feature enlarges the application field of array
contraction to parallel programs. For instance, it is possible to mark a loop to be software-pipelined (with an
affine schedule), and to let BEE find an optimized array contraction. But the most important application is
the ability to optimize communicating regular processes (CRP). Given a schedule for every process, BEE can
compute an optimal size for the channels, together with their access functions (the corresponding allocations).
We currently use this feature in source-to-source transformations for high-level synthesis (see Section 3.3).

BEE has been fully implemented by Christophe Alias and represents more than 7000 lines of code. Christophe
Alias is responsible for the maintenance of BEE.

5.6. Chuba
Participants: Christophe Alias, Alain Darte, Alexandru Plesco.

Chuba is a source-to-source tool implementing the algorithms described in the PhD thesis of Alexandru
Plesco. Chuba is a source-level optimizer for the high-level synthesis compiler C2H. It takes as input the
source C code of the kernel to optimize and generates a C2H-compliant C code describing a system of
multiple communicating accelerators. The data transfers from the external DDR memory are optimized: they
are performed by blocks of computations, obtained thanks to tiling techniques, and, in each block, data are
fetched by block to reduce the penalty due to line changes in the DDR accesses. Four accelerators achieve
data transfers (two from the DDR, two to the DDR) in a macro-pipeline fashion, so that data transfers and
computations (performed by a fifth accelerator) are overlapped. It is interesting to mention that the program
analysis and optimizations implemented in Chuba address a problem that is also very relevant in the context
of GPGPUs.

So far, the backend of Chuba can only generate code for C2H but we intend to adapt it so that it can be used
by other HLS tools such as CatapultC. The backend exploits the semantics of the C2H synthesis of C and
generates multiple functions for each accelerator. The functions contain multiple software-pipelined loops,
iterating over the tiles and inside the tiles. To not pay, at each iteration of the outer loops, the latency of the
inner software pipelined loops, all loops iterating over tiles and all loop iterating inside tiles are linearized
using the Boulet-Feautrier method [20].

Chuba has been fully implemented by Christophe Alias, using the compiler infrastructure BEE. It represents
more than 1800 lines of C++. The reduced size of Chuba is mainly due to the high-level abstractions provided
by BEE.

5.7. RanK
Participants: Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord.

RanK is a software tool that can prove the termination of a program (in some cases) by computing a ranking
function, i.e., a mapping from the operations of the program to a well-founded set that decreases as the
computation advances. In case of success, RanK can also provide an upper bound of the worst-case time
complexity of the program as a symbolic affine expression involving the input variables of the program
(parameters), when it exists. In case of failure, RanK tries to prove the non-termination of the program and then
to exhibit a counter-example input. This last feature is of great help for program understanding and debugging,
and has already been experimented.

The input of RanK is an integer automaton, computed by C2fsm (see hereafter), representing the control
structure of the program to check. RanK uses the Aspic tool, developed by Laure Gonnord during her PhD
thesis, to compute automaton invariants. RanK has been used to discover successfully the worst-case time
complexity of many benchmarks programs of the community. It uses the libraries Piplib and Polylib.

RanK has been fully implemented by Christophe Alias, using the compiler infrastructure BEE and represents
more than 3000 lines of C++. RanK uses several high-level symbolic features developped in BEE.
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5.8. C2fsm
Participant: Paul Feautrier.

C2fsm is a general tool that converts an arbitrary C program into a counter automaton. This tool reuses the
parser and pre-processor of Syntol, which has been greatly extended to handle while and do while loops,
goto, break, and continue statements. C2fsm reuses also part of the code generator of Syntol and has
several output formats, including FAST (the input format of Aspic), a rudimentary VHDL generator, and a
DOT generator which draws the output automaton. C2fsm is also able to do elementary transformations on
the automaton, such as eliminating useless states, transitions and variables, simplifying guards, or selecting
cut-points, i.e., program points on loops that can be used by RanK to prove program termination.

5.9. LAO developments in aggressive compilation
Participants: Benoit Boissinot, Florent Bouchez, Florian Brandner, Quentin Colombet, Alain Darte, Benoit
Dupont-de-Dinechin [Kalray], Christophe Guillon [STMicroelectronics], Sebastian Hack [Former post-doc in
Compsys], Fabrice Rastello, Cédric Vincent [Former student in Compsys].

Our aggressive optimization techniques are all implemented in stand-alone experimental tools (as for example
for register coalescing algorithms) or within LAO, the back-end compiler of STMicroelectronics, or both. They
concern SSA construction and destruction, instruction-cache optimizations, register allocation. Here, we report
only our more recent activities, which concern register allocation.

Our developments on register allocation with the STMicroelectronics compiler started when Cédric Vincent
(bachelor degree, under Alain Darte supervision) developed a complete register allocator in LAO, the
assembly-code optimizer of STMicroelectronics. This was the first time a complete implementation was
done with success, outside the MCDT (now CEC) team, in their optimizer. Since then, new developments are
constantly done, in particular by Florent Bouchez, advised by Alain Darte and Fabrice Rastello, as part of his
master internship and PhD thesis. In 2009, Quentin Colombet started to develop and integrate into the main
trunk of LAO a full implementation of a two-phases register allocation. This implementation now includes two
different decoupled spilling phases, the first one as described in Sebastian Hack’s PhD thesis and a new ILP-
based solution (see Section 6.5). It also includes an up-to-date graph-based register coalescing. Finally, since
all these optimizations take place under SSA form, it includes also a mechanism for going out of colored-SSA
(register-allocated SSA) form that can handle critical edges and does further optimizations (see Section 6.3).

5.10. LAO developments in JIT compilation
Participants: Benoit Boissinot, Florian Brandner, Alain Darte, Benoit Dupont-de-Dinechin [Kalray],
Christophe Guillon [STMicroelectronics], Fabrice Rastello.

The other side of our work in the STMicroelectronics compiler LAO has been to adapt the compiler to make it
more suitable for JIT compilation. This means lowering the time and space complexity of several algorithms.
In particular we implemented our translation out-of-SSA method, and we programmed and tested various ways
to compute the liveness information as described in Section 6.6. Recent efforts (see Section 6.8) also focused
on developing a tree-scan register allocator for the JIT part of the compiler, in particular a JIT conservative
coalescing. The technique is to bias the tree-scan coalescing, taking into account register constraints, with the
result of a JIT aggressive coalescing.

6. New Results

6.1. Introduction
This section presents the results obtained by Compsys in 2010. For clarity, some earlier work is also recalled,
when results were continued or extended in 2010.
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6.2. Split register allocation: linear complexity without performance penalty
Participants: Albert Cohen [Inria, Alchemy], Boubacar Diouf [Université Paris Sud, Alchemy], Fabrice
Rastello.

Just-in-time compilers are catching up with ahead-of-time frameworks, stirring the design of more efficient
algorithms and more elaborate intermediate representations. They rely on continuous, feedback-directed (re-
)compilation frameworks to adaptively select a limited set of hot functions for aggressive optimization.
Leaving the hottest functions aside, (quasi-)linear complexity remains the driving force structuring the design
of just-in-time optimizers.

We addressed the (spill-everywhere) register allocation problem, showing that linear complexity does not
imply lower code quality. We presented a split compiler design, where a more expensive ahead-of-time
analysis guides lightweight just-in-time optimizations. A split register allocator can be very aggressive in
its offline stage (even optimal), producing a semantically equivalent digest through bytecode annotations that
can be processed by a lightweight online stage. The algorithmic challenges are threefold: (sub-)linear-size
annotation, linear-time online stage, minimal loss of code quality. In most cases, portability of the annotation
is an important fourth challenge.

We proposed a split register allocator meeting these four challenges, where a compact annotation derived from
an optimal integer linear program drives a linear-time algorithm near optimality. We studied the robustness of
this algorithm to variations in the number of physical registers and to variations in the target instruction set. Our
method has been implemented in JikesRVM and evaluated on standard benchmarks. The split register allocator
achieves wall-clock improvements reaching 4.2% over the baseline allocator, with annotations spanning a
fraction of the bytecode size.

This work is part of a collaboration with the Alchemy Inria project-team. It has been presented at the
HiPEAC’10 conference [10].

6.3. Parallel copy motion and critical edge splitting
Participants: Florent Bouchez, Quentin Colombet, Alain Darte, Christophe Guillon [STMicroelectronics],
Fabrice Rastello.

Recent results on the SSA form led to the design of heuristics based on tree scans with two decoupled phases,
one for spilling, one for splitting/coloring/coalescing. Another class of register allocators, well-suited for JIT
compilation, are those based on linear scans. Most of them perform coalescing poorly but also do live-range
splitting (mostly on control-flow edges) to avoid spilling. This leads to a large amount of register-to-register
copies inside basic blocks but also, implicitly, on critical edges, i.e., edges that flow from a block with several
successors to a block with several predecessors.

We proposed a new back-end optimization that we call parallel copy motion. The technique is to move copy
instructions in a register-allocated code from a program point, possibly an edge, to another. In contrast with a
classical scheduler that must preserve data dependences, our copy motion also permutes register assignments
so that a copy can “traverse” all instructions of a basic block, except those with conflicting register constraints.
Thus, parallel copies can be placed either where the scheduling has some empty slots (for multiple-issues
architectures), or where fewer copies are necessary because some variables are dead at this point. Moreover,
to the cost of some code compensations (namely, the reverse of the copy), a copy can also be moved out
from a critical edge. This provides a simple solution to avoid critical-edge splitting, especially useful when the
compiler cannot split it, as it is the case for the so-called abnormal edges. This compensation technique also
enables the scheduling/motion of the copy in the successor or predecessor basic block.

Experiments with the SPECint benchmarks suite and our own benchmark suite show that we can now apply
broadly an SSA-based register allocator: all procedures, even with abnormal edges, can be treated. Simple
strategies for moving copies from edges and locally inside basic blocks show significant average improvements
(4% for SPECint and 3% for our suite), with no degradation. It let us believe that the approach is promising, and
not only for improving coalescing in fast register allocators. This work has been presented at the SCOPES’10
conference [7].
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6.4. Static single information form: debunking
Participants: Benoit Boissinot, Philip Brisk [EPFL, Lausanne], Alain Darte, Fabrice Rastello.

The static single information (SSI) form, proposed by Ananian, then in a more general form by Singer, is
an extension of the static single assignment (SSA) form. The fact that interference graphs for procedures
represented in SSA form are chordal is a nice property that initiated our work on register allocation under SSA
form. Several interesting results have also been shown for SSI concerning liveness analysis and representation
of live-ranges of variables, which could make SSI appealing for just-in-time compilation. In particular, the
chordal property for SSA has motivated Brisk and Sarrafzadeh is 2007 to prove a similar result concerning
SSI: the interference graph is an interval graph. Unfortunately, previous literature on SSI is sparse, appears to
be partly incorrect, including the proof on interval graphs, and based on several inaccurate claims and theories
(in particular the program structure tree of Johnson et al.).

We corrected some of the mistakes that have been made on SSI. Our main result is a complete proof that, even
for the most general definition of SSI, it is possible to define a total order on basic blocks, and thus on program
points, so that live-ranges of variables correspond to intervals. The proof is based on the notion of loop nesting
forest, as formulated by Ramalingam. This study, which is the result of an informal collaboration with Philip
Brisk from the University of Lausanne (EPFL), has led to a journal publication in ACM TECS [3]. It is also
one of the main results of the PhD thesis of Benoit Boissinot [1].

6.5. “Optimal” formulation of register spilling
Participants: Florian Brandner, Quentin Colombet, Alain Darte, Fabrice Rastello.

The motivation of this work was to develop an optimal spilling algorithm, based on integer linear programming
(ILP), to be used to evaluate heuristics and to better understand the traps in which they can fall.

Optimizing the placement of LOAD and STORE instructions (spill) is the key to get good performances
in compute-intensive codes and to avoid memory transfers, which impact time and power consumption.
Performing register allocation in two decoupled phases enables the design of faster and better spilling
heuristics. We developed an ILP formulation for “optimal” spilling optimization under SSA, which models the
problem in a finer way than previous approaches. In particular, we can model the fact that a given variable can
reside in more than one storage location (different registers and in memory). This formulation has been fully
implemented in the LAO back-end compiler. Several difficulties have been revealed, which were expected but
never precisely identified: they are due to the MOVE instructions that propagate values between registers and
to interactions with post optimization phases, such as some peephole optimizations and post-pass scheduling.
More work has to be done to improve our formulation even further and to derive, from a study of benchmarks,
some good criteria to drive spilling heuristics.

This work is still in progress.

6.6. Fast computation of liveness sets
Participants: Benoit Boissinot, Florian Brandner, Alain Darte, Benoit Dupont-de-Dinechin [Kalray], Fabrice
Rastello.

We revisited the problem of computing liveness sets (live-in and live-out sets of basic blocks) for all variables
of strict SSA-form programs. In strict SSA, the definition of a variable dominates all its uses, so the backward
data-flow analysis for computing liveness sets can be simplified. Our first contribution was the design of a fast
non-iterative data-flow algorithm, which exploits the SSA properties so that only two passes (backward, then
forward) are necessary to compute liveness sets. Our solution relies on the use of a loop nesting forest (as
defined by Ramalingam) and, unlike structure-based liveness algorithms, can handle any control-flow graph,
even non-reducible. A second – maybe more natural – approach is to identify, one path at a time, all paths
from a use of a variable to its (unique) definition. Such a strategy is used in the LLVM compiler and in Appel’s
“Tiger book”. Our second contribution is to show how to extend and optimize these algorithms for computing
liveness sets, one variable at a time using adequate data structures.
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Finally, we demonstrated and compared the efficiency of our solutions using different implementations of
liveness sets based on bitsets and ordered pointer sets. The algorithms were implemented in the LAO back-
end of the STMicroelectronics compiler and subsequently evaluated using the SPECINT 2000 benchmark
suite. The experiments show that our new approach outperforms the standard data-flow liveness analysis, as
we could expect. In comparison to the variable-by-variable algorithm, we see a more differentiated picture.
While processing each variable individually is clearly faster on non-optimized programs, the results for
optimized programs highly depend on the liveness-set implementation. Ordered sets clearly favor the per-
variable approach due to the reduced cost of set-insertion. Bitsets on the other hand perform best with the
forest-based algorithm, due to improved locality and faster operations on complete sets. Overall, our new
forest algorithm using bitsets performs best. Another interesting result is the fact that the variable-by-variable
algorithm can easily be extended to compute liveness sets for regular (non-SSA-form) programs. The resulting
algorithm is still faster than standard iterative data-flow liveness analysis.

6.7. Decoupled graph-coloring register allocation with hierarchical aliasing
Participants: Mariza Bigonha [UFMG, Brazil], Quentin Colombet, Christophe Guillon [STMicroelectronics],
Fernando Pereira [UFMG, Brazil], Fabrice Rastello, Andre Tavares [UFMG, Brazil].

Decoupling spilling from register assignment, as mentioned in previous sections, has two main advantages:
first, it simplifies register allocation algorithms, second, it might keep more variables in registers, instead of
sending them to memory. In spite of these advantages, the decoupled model, in its basic formulation, does not
handle register aliasing, a phenomenon present in architectures such as x86, ARM, and Sparc. An important
obstacle is the fact that existing decoupled algorithms have to perform extensive live range splitting to deal with
aliasing, increasing the input interference graphs by a quadratic factor. Such allocators would be inefficient in
terms of memory consumption, compilation time, and the quality of the code they produce.

To address these issues, we introduced a number of techniques that circumvent this obstacle. We described a
spill test that deals with aliasing better than Kempe’s traditional simplification test. We developed heuristics
to merge – or rather to avoid splitting – live ranges whenever possible, and we adapted well-known coalescing
tests to the world of aliased registers. We validated our results empirically by showing how our techniques
improve two well-known allocated, based on graph-coloring, that deal with aliased registers: Smith et al.’s
extension of the Appel-George iterated register coalescing (IRC), and Bouchez et al.’s brute force method.
Running our techniques on SPEC CPU 2000, we were able to reduce, by a factor of 4, the size of the
interference graphs that the allocators would require, and we improved the quality of the IRC, in terms of
proportion of copies left in the assembly program, from 1.5% to 0.54%.

6.8. Graph-coloring and tree-scan register allocation using repairing
Participants: Benoit Boissinot, Philip Brisk [University of California, United States], Quentin Colombet,
Sebastian Hack [Saarland University, Germany], Fabrice Rastello.

We introduced repairing, a new technique to deal with register constraints during register allocation that avoids
early (i.e., pre-pass) live-range splitting in register allocation. Early live range splitting increases the program
size and thus increases the compile time significantly. Repairing ignores register constraints during allocation
and repairs potential violations afterwards.

We showed how to integrate repairing into the iterated register coalescing (IRC) graph-coloring allocator
without changing its architecture and implementation significantly. Furthermore, we showed how to do
repairing in SSA-based decoupled tree-scan register allocators. To completely avoid the compile-time intensive
coalescing phase in this case, we presented several techniques to bias the register assignment.

Our experimental evaluation focused on just-in-time (JIT) compilation where the runtime of the compiler and
the code size of its data structures are of greater importance than the quality of the code that is produced. Our
modification of the IRC reduces the number of vertices in the interference graph by 26% (33% for the edges)
without compromising the quality of the generated code. The tree-scan algorithm is 7 times faster than the
IRC while providing comparable results for the quality of the generated code.
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6.9. Program analysis and communication optimizations for HLS
Participants: Christophe Alias, Alain Darte, Alexandru Plesco.

High-level synthesis (HLS) tools are now getting more mature for generating hardware accelerators with
an optimized internal structure, thanks to efficient scheduling techniques, resource sharing, and finite-state
machines generation. However, interfacing them with the outside world, i.e., integrating the automatically-
generated hardware accelerators within the complete design, with optimized communications, so that they
achieve the best throughput, remains a very hard task, reserved to expert designers. The goal of our research
on HLS is to study and to develop source-to-source strategies to improve the design of these interfaces, trying
to consider the HLS tool as a back-end for more advanced front-end transformations.

In a previous study, we used the Wrapit loop transformation tool (Alchemy team) on top of the Spark HLS
tool to demonstrate both the importance of loop transformations as a pre-processing step to HLS tools and
the difficulty to use them depending on the HLS tool features to express external communications. In 2009-
2010, using the C2H HLS tool from Altera, which can synthesize hardware accelerators communicating to
an external DDR-SDRAM memory, we showed that it is possible to automatically restructure the application
code, to generate adequate communication processes in C, and to compile them all with C2H, so that the
resulting application is highly-optimized, with full usage of the memory bandwidth.

These transformations and optimizations, which combine techniques such as double buffering, array con-
traction, loop tiling, software pipelining, among others, were incorporated in an automatic source-to-source
transformation tool, called CHUBA, based on the polyhedral model representation. Our study shows that HLS
tools can indeed be used as back-end optimizers for front-end optimizations, as it is the case for standard
compilation with high-level transformations developed on top of assembly-code optimizers. We believe this
is the way to go for making HLS tools viable. The first part of our study, which analyzes the C2H Altera
synthesis tool and shows how communications can be optimized by hand, but in an automatizable fashion, has
been published at the ASAP’10 conference [6]. The second part of our study, a complete automatization of the
process, which included program analysis, program transformations, and code generation, is still unpublished,
except in the PhD thesis of Alexandru Plesco [2].

6.10. Loop transformations for pipelined floating-point arithmetic operators
Participants: Christophe Alias, Bogdan Pasca [PhD student, ARENAIRE Inria Team], Alexandru Plesco.

FLOPOCO [31] is an open-source FPGA-specific generator of pipelined floating-point arithmetic operators
developped in the ARENAIRE Inria team. These operators, though efficient, still need to be incorporated by
hand in the final design. We studied how to compile a C program to a circuit using such pipelined arithmetic
operators efficiently, that is (i) how to select properly the operators to generate, (ii) how to schedule the
program to use them efficiently, and (iii) how to generate the final VHDL code for the control unit to be linked
with the pipelined operators. In a way, this work can be viewed as a very fancy hardware-level instruction
selection.

We proposed a preliminary solution (see [14]) for affine programs with perfectly-nested loops with uniform
dependences. The pipelined operator computes the right hand-side expression of the unique assignment nested
in the loops. Under these restrictions, it is possible to schedule the program so that the pipelined operator is kept
busy: each result is available exactly at the time it is needed by the operator, avoiding the use of a temporary
buffer. This is possible thanks to uniform dependences, which correspond to a constant reuse distance. Also,
we proposed a method to generate the VHDL code for the control unit, according to the chosen schedule. Then,
the connection with the pipelined operator is done by hand. The first experimental results on DSP kernels give
promising results with a minimum of 94% efficient utilization of the pipelined operators for a complex kernel.

This is still a work in progress and many issues need to be addressed, such as how to use several operators in
parallel or how to extend the program model to general nested loops with more general dependences. These
extensions will require to handle properly the communications between the operators and temporary buffers.
We believe that the array contraction technique developed in Compsys can be helpful in this context too.
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6.11. Program termination and worst-case computational complexity
Participants: Christophe Alias, Laure Gonnord, Paul Feautrier, Alain Darte.

Our current work on program termination arose when trying to transform WHILE loops into DO loops (i.e.,
loops with a bounded number of iterations) so that HLS tools can accept them. Some HLS tools indeed
need this information either for unrolling loops, for pipelining them, or for scheduling, at a higher-level,
several pipelined designs including loops. Determining the maximal number of iterations of a WHILE loop is a
particular case of determining the worst-case computational complexity (WCCC) of a function or subroutine,
which is, briefly speaking, an upper-bound on the number of elementary computations that it performs. It is an
abstract and architecture-independent view of the well-known worst-case execution time (WCET). Knowledge
of WCET is a key information for embedded systems, as it allows the construction of a schedule and the
verification that real-time constraints are met. The WCCC and WCET problems are obviously connected to
the termination problem: a piece of code that does not terminate has no WCCC and no WCET.

The standard method for proving the termination of a flowchart program is to exhibit a ranking function, i.e.,
a function from the program states to a well-founded set, which strictly decreases at each program step. Such
a function can be automatically generated by computing invariants (approximation of all possible values of
program variables) for each program point and by searching for a ranking in a restricted class of functions that
can be handled with linear programming techniques. Previous algorithms based on affine rankings either are
applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in
the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. We
proposed an efficient algorithm to compute ranking functions, reinvesting most of the techniques from [25] to
schedule static loops. It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores
is larger, and our method, although greedy, is provably complete. In addition to the termination proof, we
showed how to use the ranking functions we generate to get upper bounds for the computational complexity
(number of transitions) of the source program, again for flowcharts of arbitrary structure. This estimate is a
polynomial, which means that we can handle programs with more than linear complexity. This work has been
presented at the SAS’10 conference [5]. As a complement, the survey paper published at MEMOCODE’10 [4]
recalls the connection between algorithms for parallelism detection in loops and multi-dimensional scheduling
of recurrence equations, and this additional connection with ranking functions for program termination.

We have built a complete software suite, which first uses the C2fsm tool to convert the C source into a counter
automaton. The Aspic tool is then responsible for computing invariants as polyhedral approximations. Finally,
they are given to RanK, which builds a ranking (if any) using Pip. RanK also computes the WCCC using
the Ehrhart polynomial module of the Polylib. The first two stages of this toolchain (C2fsm and Aspic) have
been presented at the workshop TAPAS’10 [11]. Thanks to this toolchain, our method is able to handle every
program whose control can be translated into a counter automaton. This roughly covers programs whose
control depends on integer variables exclusively, using conditionals, DO loops and WHILE loops whose tests
are affine expressions on variables. Furthermore, it is easy to approximate programs which are outside this class
by familiar techniques, like ignoring non-affine tests or variables with too complex a behavior. Termination of
the approximate program entails termination of the original program, but the converse is not true.

This method can be extended in several interesting directions:

• In some cases, when termination cannot be proved, it is possible to construct a certificate of non-
termination in the form of a looping scenario, which should be an invaluable help for debugging.

• The class of ranking functions should be extended to parametric and piecewise affine functions.

6.12. Completeness of instruction selectors
Participant: Florian Brandner.
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The use of tree pattern matching for instruction selection has proven very successful in modern compilers.
This can be attributed to the declarative nature of tree grammar specifications, which greatly simplifies the
development of fast high-quality code generators. The approach has also been adopted widely by generator
tools that aim to automatically extract the instruction selector, as well as other compiler components, for
application-specific instruction processors from generic processor models. A major advantage of tree pattern
matching is that it is suitable for static analysis and allows to verify properties of a given specification.
Completeness is an important example of such a property, in particular for automatically generated compilers.
Tree automata can be used to prove that a given instruction selector specification is complete, i.e., can actually
generate machine code for all possible input programs. Traditional approaches for completeness tests cannot
represent dynamic checks that may disable certain matching rules during code generation. However, these
dynamic checks occur very frequently in modern compilers and thus need to be modeled in order for a
completeness test to be of practical use.

The dynamic checks arise from hidden properties that are not captured by the terminal symbols of the
tree grammar notation. We apply terminal splitting to the instruction selector specifications to make these
properties explicit. The transformed specification is then verified using a traditional completeness test. If the
test fails, counter examples are presented that indicate on which programs the compiler will fail to generate
code. We have developed a formal notation of dynamic checks and showed how to perform terminal splitting
on an extended form of tree grammars with conditions. The algorithms were implemented in the automatic
compiler generator of the xADL processor description language and evaluated using three processor models
(MIPS, SPEAR a time-predictable processor developed at VUT, and CHILI a configurable VLIW processor for
multimedia processing). Even though terminal splitting increases the problem size for the final completeness
test, our experiments show that our method is suited for practical use even in production settings. The test
merely required 36 seconds for the huge instruction selector specification of the CHILI processor that consists
of more than 1000 translation rules, while the test completes in less than 1.4 second for the other models. An
investigation of the use of dynamic checks in existing open source compilers, such as OpenJDK and Quick C -
, revealed furthermore that almost all of those could easily be modeled using our approach. This work was
presented at the ASAP’10 conference [8].

6.13. Execution models for processors and instructions
Participants: Florian Brandner, Andreas Krall [VUT, Austria], Viktor Pavlu [VUT, Austria].

Modeling the execution of a processor and its instructions is a challenging problem, in particular in the pres-
ence of long pipelines, parallelism, and out-of-order execution. A naive approach based on finite state automata
inevitably leads to an explosion in the number of states and is thus only applicable to simple minimalistic
processors. During their execution, instructions may only proceed forward through the processor’s datapath
towards the end of the pipeline. The state of later pipeline stages is thus independent of potential hazards in
preceding stages. This also applies for data hazards, i. e., we may observe data by-passing from a later stage
to an earlier one, but not in the other direction.

Based on this observation, we explored the use of a series of parallel finite automata (PFA) to model the
execution states of the processor’s resources individually. The automaton model captures state updates of
the individual resources along with the movement of instructions through the pipeline. A highly-flexible
synchronization scheme built into the automata enables an elegant modeling of parallel computations,
pipelining, and even out-of-order execution. An interesting property of our approach is the ability to model
a subset of a given processor using a sub-automaton of the full execution model. The PFA-based processor
models are suited for a rich set of applications ranging from accurate representation of processor constraints
in compilers, precise timing models for worst-case execution time analysis, verification and validation of
processor designs and programs, the synthesis of hardware models, and processor simulation. For example, in
cooperation with Viktor Pavlu and Andreas Krall from the Vienna University of Technology work on a tracing-
based processor simulation framework using PFA models has been started. First results were published at the
NORCHIP’10 conference [9].
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7. Contracts and Grants with Industry

7.1. Nano2012 MEDIACOM project with stmicroelectronics on SSA, register
allocation, and JIT compilation
Participants: Benoit Boissinot, Florian Brandner, Quentin Colombet, Alain Darte, Fabrice Rastello.

This contract has started in September 2009 as part of the funding mechanism Nano2012. This is the
continuation of the successful previous project Sceptre with STMicroelectronics, which ended in December
2009. This new project concerns both aggressive optimizations and the application of the previously-developed
techniques to JIT compilation. Related activities are described in Sections 6.3 to 6.8.

7.2. Nano2012 S2S4HLS project with stmicroelectronics on source-to-source
transformations for high-level synthesis
Participants: Christophe Alias, Alain Darte, Paul Feautrier, Alexandru Plesco.

This contract has started in January 2009 as part of the funding mechanism Nano2012. This is a joint project
with the Cairn Inria project-team and STMicroelectronics, whose goal is the study and development of source-
to-source program transformations, in particular loop transformations, that are worth applying on top of
HLS tools. This includes restructuring transformations, program analysis, memory optimizations and array
reshaping, etc. The work presented in Section 6.9 is part of this project.

8. Other Grants and Activities

8.1. National initiatives
• So far, the french compiler community had no official national meetings. In 2010, Fabrice Rastello

has decided to push the different actors in compilation to meet regularly. He contacted all groups
whose activities are related to compilation and he organized the first “compilation day” in September
2010 in Lyon. The second session took place in Aussois during 3 days in December 2010. The effort
of Fabrice Rastello seems to be a success: the community is now well identified and such an event
will occur at least once a year.

• Paul Feautrier and Christophe Alias meet regularly with different actors of the high-level synthesis
french community. This working group is intended to lead to an ANR proposal in the future. They
been involved in the preparation of a proposal on HLS to be submitted to the ANR Arpege initiative.
The partners come from academia (TIMA, IRISA, LasTIC, ASIM) and from industry (Thales, Bull).
A first version of the proposal was submitted in 2010, but was rejected mostly on the ground that
the project leader should have been from industry rather than academia. A revised version, under the
leadership of the Magillem company, is in preparation and will be submitted in March 2011.

8.2. European initiatives
• Compsys has obtained a PROCOPE (France-Germany) funding to collaborate in 2010-2011 with

Sebastian Hack’s team (Sarrebrücken) on register allocation and aliasing problems. This project led
to several 3-days visits. Also, a ENS-LYON student (Amaury Pouly) spent several months in Sebastian
Hack’s group for his Master 1 training period.

• Paul Feautrier is in regular contact with prof. Christian Lengauer of the University of Passau
(Germany), where he spent the month of April 2010 on a grant from BFHZ-CCUFB. Among the
outcomes of this stay was the joint writing of an Encyclopedia entry on the Polyhedral Model.
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8.3. International initiatives
• Fabrice Rastello has obtained a FRAPEMIG-INRIA (Brazil-France) funding to collaborate with

Mariza A. S. Bigonha, Fernando M. Q. Pereira, and Roberto S. Bigonha from the Fereral University
of Mina Gerais (UFMG) in Brazil. A student from this group, Andre Tavares, was hosted by
Compsys in Spring/Summer 2010.

• Since July 2010, Fabrice Rastello has started a sabbatical year at Colorado State University within
the group of Sanjay Rajopadhye, and in connection with the PathScale compiler company.

8.4. Informal cooperations
• Fabrice Rastello and Alain Darte have regular contacts with Jens Palsberg at UCLA (Los Angeles,

USA), Sebastian Hack at Saarland University (Saarbrücken, Germany), Philip Brisk at University of
California Riverside (Riverside, USA), and Benoit Dupont-de-Dinechin (Kalray, Grenoble).

• Christophe Alias is in regular contact with P. Sadayappan at Ohio State University (USA) and J.
(Ram) Ramanujam at Lousiana State University (USA).

• Compsys is in regular contact with Christine Eisenbeis, Albert Cohen and Sid-Ahmed Touati (Inria
project Alchemy, Paris), with Steven Derrien and Patrice Quinton (Inria project Cairn, Rennes), with
Alain Greiner (Asim, LIP6, Paris), and Frédéric Pétrot (TIMA, Grenoble).

• Compsys, as some other Inria projects, is involved in the network of excellence HiPEAC (High-
Performance Embedded Architecture and Compilation, http://www.hipeac.net/). Compsys is also
partner of the network of excellence Artist2 to keep an eye on the developments of MPSoC and to
disseminate past work on automatic parallelization.

• Florian Brandner is collaborating with the group of Andreas Krall at the Vienna University of Tech-
nology on topics related to the processor description language xADL and on compilation for explic-
itly parallel processors (EPICOpt, http://www.complang.tuwien.ac.at/epicopt/). He is additionally
working with Martin Schöberl from the Technical University of Denmark (DTU) on topics evolving
around time-predictable computing.

• Alain Darte is in contact with Yann Orlarey from the Grame team (Lyon, “Centre National de
Création Musicale”) for a possible collaboration on the development of Faust, a compiled language
for real-time audio signal processing.

• In Fall 2010, Compsys hosted Amir Ben Amram (from Tel-Aviv University) for 2 weeks, in a joint
organization with the PLUME LIP team (“proofs and languages”), to work on different aspects of
program termination and worst-case complexity.

9. Dissemination

9.1. Conferences, journals, and book chapters
• Fabrice Rastello is the local chair of the CGO’11 conference (ACM/IEEE International Conference

on Code Generation and Optimization) that will be held on April 2011 in Chamonix, France.
Christophe Alias is the program chair and the main organizer of the first international workshop
on polyhedral compilation techniques (IMPACT’11) that will be held in conjunction with CGO’11.

• In collaboration with participants of the SSA’09 workshop, Fabrice Rastello is preparing a book
on SSA (Static Single Assignment) and its application in compilation, optimization, and program
analysis. In a joint work with Diego Novillo (Google), Florian Brandner contributed a chapter on
sparse dataflow analysis to this book.

http://www.hipeac.net/
http://www.complang.tuwien.ac.at/epicopt/
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• Alain Darte was member of the program committees of Scopes’10 (International Workshop on
Software and Compilers for Embedded Systems), CC’11 (Compiler Construction), and DATE’11
(Design and Test in Europe). He is member of the steering committee of the workshop series CPC
(Compilers for Parallel Computing). He is member of the editorial board of the international journal
ACM Transactions on Embedded Computing Systems (ACM TECS).

• Paul Feautrier is associate editor of Parallel Computing and the International Journal of Parallel
Computing. He is a member of the scientific committee for the Encyclopedia of Parallel Program-
ming, to be published soon by Springer under the direction of prof. David Padua from the University
of Illinois. He has contributed four entries [19], [17], [18], [16] and reviewed more than ten entries
on related subjects. Alain Darte has contributed one entry [15].

9.2. Teaching and thesis advising
• In 2010, Christophe Alias gave a Master 1 course on “Compilation” at ENS-Lyon, and a L3 course on

“Introduction to compilation” at ENSI Bourges. Alain Darte gave a Master 2 course on “Advanced
Program Optimizations” at ENS-Lyon. Alexandru Plesco gave TDs and TPs (lab work courses) on
“Operating System Design” and “Algorithms” as an ATER (teaching assistant) at INSA-Lyon.

• Christophe Alias, Fabrice Rastello and Florent Dupont de Dinechin were co-organizers of the Winter
School “Beyond the PC. Application specific systems: design and implementation” that took place
in February 2010 at ENS-Lyon, as part of the Master of ENS-Lyon.

• Fabrice Rastello was thesis advisor of Benoit Boissinot who defended his PhD in September
2010 [1]. Christophe Alias and Alain Darte were thesis co-advisors (also with Tanguy Risset) of
Alexandru Plesco who defended his PhD in September 2010 [2]. Alain Darte and Fabrice Rastello
are currently co-advisors of the PhD thesis of Quentin Colombet who started in January 2010. Florian
Brandner is co-advising the Master thesis of Robert Stefan on extending the type system of the xADL
processor description language. Robert is located in Vienna and is also supervised by Viktor Pavlu
and Andreas Krall.

• Alain Darte was the vice-president of the 2010 admission exam to ENS-LYON, responsible for the
“Computer Science” part.

• Christophe Alias belongs to the teaching council of the Computer Science Department of ENS-LYON.

9.3. PhD defense committees and hiring committees
• Alain Darte was member of the hiring committee of Inria for junior researchers (at Lille) and for an

assistant professor position at Ensimag (Verimag laboratory).
• Paul Feautrier was a rewiever for the PhD of Louis-Noël Pouchet (defended January 18, 2010, Paris-

Sud) and Alexandre Becoulet (defended September 28, 2010, UPMC). Alain Darte was reviewer for
the PhD of Benoit Robillard (defended November 30, 2010, CNAM). He was also member of the
“Habilitation thesis” defense of Sid-Ahmed Touati (defended June 30, 2010, UVSQ).

9.4. Workshops, seminars, and invited talks
(For conferences with published proceedings, see the bibliography.)

• Alain Darte gave a talk [13] at CPC’10 (international workshop on Compilers for Parallel Comput-
ing) and an invited tutorial [4] at MEMOCODE’10 (ACM/IEEE International Conference on Formal
Methods and Models for Codesign).

• Quentin Colombet also gave a talk at CPC’10 [12].
• During research visits to the Technical University of Denmark in Copenhagen and at IRISA

(Rennes), Florian Brandner gave presentations of his past and ongoing research activities. He also
gave a talk at the second workshop of the french compilation community in Aussois.

• Alexandru Plesco gave a talk at the first and second meetings of the french compilation community,
in Lyon and Aussois.
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