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2. Overall Objectives
2.1. Presentation

Dracula is a joint research team between INRIA, University of Lyon 1 (UCBL) and CNRS (ICJ, UMR 5208
and CGMC UMR 5534). It was created in January 2010.

The Dracula project is devoted to multi-scale modelling in biology with application to normal and pathological
hematopoiesis (blood cell production). Multi-scale modelling implies simultaneous modelling of intra-cellular
networks (molecular level), of cell behaviour (cellular level), of the dynamics of cell populations (organ or
tissue) with the control by other organs (organism). Such modelling represents one of the major challenges
in modern science due to its importance and because of the complexity of biological phenomena and of the
presence of very different scales.

Hematopoiesis is a complex process that begins with primitive hematopoietic stem cells (HSC) and results
in formation of mature cells: red blood cells, white blood cells and platelets. Blood cells are produced in the
bone marrow, from where mature cells are released into the blood stream. Hematopoiesis is based on a balance
between cell proliferation (including self-renewal), differentiation and apoptosis. The choice between these
three possibilities is determined by intra-cellular regulatory networks and by numerous control mechanisms in
the bone marrow or carried out by other organs. Intra-cellular regulatory networks are complex biochemical
reactions involving proteins, enzymes and signalling molecules. Thus, hematopoiesis is a complex process
which has a vital importance for the organism. Its malfunctioning can result in numerous blood diseases
including leukemia.
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2.2. Objectives
Our aim in this project is the development of modern tools of multi-scale modelling of biological phenomena
(and in particular, for hematopoiesis). More precisely:

• Multi-scale modelling will be carried out on the basis of coupled DPD-PDE-ODE models, where
dissipative particle dynamics (DPD) will be used in order to describe individual cells and relatively
small cell populations, partial differential equations (PDE) will be used to describe concentrations
of bio-chemical substances in the extra-cellular matrix, and ordinary differential equations (ODE,
deterministic or stochastic) for intra-cellular regulatory networks.

• A new software "Cell dynamics" will be created in order to study these models numerically.
• Partial differential equations (PDE) will also be used to describe cell populations considered

as continuous medium. We will study reaction-diffusion-convection equations with or without
hydrodynamics, transport equations (hyperbolic PDEs) in which the structure can be age, size,
maturity, protein concentration, etc. In some particular cases, transport equations will be reduced
to delay differential equations (DDE) which are less difficult to investigate analytically.

• Numerical simulations will be compared with analytical studies of simplified test cases and model
examples.

• Numerical simulations will also be compared to the "Cell dynamics" approach.
• Multi-scale models of hematopoiesis will be used to study normal situation or homeostasis where

different cell types are in equilibrium with each other. This equilibrium is determined by intra-
cellular regulatory networks and by numerous feedbacks by cell populations and other organs.

• Development and dynamics of blood diseases will be modeled taking into account disequilibrium of
regulatory networks or feedbacks. On the other hand, we will model various approaches to treatment
of these diseases (chemotherapy, chronotherapy). We will compare then the results with available
biological and clinical information.

2.3. Highlights of the year
The year 2010 was marked by the following events:

• The recruitment of Thomas Lepoutre as junior researcher (CR2 INRIA).
• The edition of 5 volumes of the journal MMNP (Mathematical Modelling of Natural Phenomena) on

the following topics: ecology, reaction-diffusion waves, spectral problems, mathematical modeling
in the medical sciences, mathematics and neuroscience, and cell migration.

• The co-organization of the Lyon’s International Multidisciplinary Meeting on Post-Genomics
(IPG’10), Lyon, 25-26 November.

• The co-organization of the second congress of the SM2A (Moroccan Society of Applied Mathemat-
ics), Rabat, Morocco, 28-30 June 2010.

3. Scientific Foundations

3.1. Cell dynamics
We model dynamics of cell populations with two approaches, dissipative particle dynamics (DPD) and
partial differential equations (PDE) of continuum mechanics. DPD is a relatively new method developed
from molecular dynamics approach largely used in statistical physics. Particles in DPD do not necessarily
correspond to atoms or molecules as in molecular dynamics. These can be mesoscopic particles. Thus, we
describe in this approach a system of particles. In the simplest case where each particle is a sphere, they are
characterized by their positions and velocities. The motion of particles is determined by Newton’s second law
(see Figure 1).
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Figure 1. Schema of multi-scale models of cell dynamics: DPD-PDE-ODE models.
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In our case, particles correspond to biological cells. The specific feature of this case in comparison with
the conventional DPD is that cells can divide (proliferation), change their type (differentiation) and die by
apoptosis or necrosis. Moreover, they interact with each other and with the extra-cellular matrix not only
mechanically but also chemically. They can exchange signals, they can be influenced by various substances
(growth factors, hormones, nutrients) coming from the extra-cellular matrix and, eventually, from other organs.

Distribution of the concentrations of bio-chemical substances in the extra-cellular matrix will be described by
the diffusion equation with or without convective terms and with source and/or sink terms describing their
production or consumption by cells. Thus we arrive to a coupled DPD-PDE model.

Cell behaviour (proliferation, differentiation, apoptosis) is determined by intra-cellular regulatory networks,
which can be influenced by external signals. Intra-cellular regulatory networks (proteins controlling the cell
cycle) can be described by systems of ordinary differential equations (ODE). Hence we obtain DPD-PDE-
ODE models describing different levels of cell dynamics (see Figure 1). It is important to emphasize that the
ODE systems are associated to each cell and they can depend on the cell environment (extra-cellular matrix
and surrounding cells).

3.2. From particle dynamics to continuum mechanics
DPD is well adapted to describe biological cells. However, it is a very time consuming method which becomes
difficult to use if the number of particles exceeds the order of 105-106 (unless distributed computing is used).
On the other hand, PDEs of continuum mechanics are essentially more efficient for numerical simulations.
Moreover, they can be studied by analytical methods which have a crucial importance for the understanding
of relatively simple test cases. Thus we need to address the question about the relation between DPD and
PDE. The difficulty follows already from the fact that molecular dynamics with the Lennard-Jones potential
can describe very different media, including fluids (compressible, incompressible, non-Newtonian, and so on)
and solids (elastic, elasto-plastic, and so on). Introduction of dissipative terms in the DPD models can help to
justify the transition to a continuous medium because each medium has a specific to it law of dissipation. Our
first results [26] show the correspondence between a DPD model and Darcy’s law describing fluid motion in
a porous medium. However, we cannot expect a rigorous justification in the general case and we will have to
carry out numerical comparison of the two approaches.

An interesting approach is related to hybrid models where PDEs of continuum mechanics are considered in
the most part of the domain, where we do not need a microscopical description, while DPD in some particular
regions are required to consider individual cells.

3.3. PDE models
If we consider cell populations as a continuous medium, then cell concentrations can be described by reaction-
diffusion systems of equations with convective terms. The diffusion terms correspond to a random cell motion
and the reaction terms to cell proliferation, differentiation and death. These are more traditional models [28]
with properties that depend on the particular problem under consideration and with many open questions, both
from the point of view of their mathematical properties and for applications. In particular we are interested
in the spreading of cell populations which describes the development of leukemia in the bone marrow
and many other biological phenomena (solid tumors, morphogenesis, atherosclerosis, and so on). From the
mathematical point of view, these are reaction-diffusion waves, intensively studied in relation with various
biological problems. We will continue our studies of wave speed, stability, nonlinear dynamics and pattern
formation. From the mathematical point of view, these are elliptic and parabolic problems in bounded or
unbounded domains, and integro-differential equations. We will investigate the properties of the corresponding
linear and nonlinear operators (Fredholm property, solvability conditions, spectrum, and so on). Theoretical
investigations of reaction-diffusion-convection models will be accompanied by numerical simulations and will
be applied to study hematopoiesis.
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Hyperbolic problems are also of importance when describing cell population dynamics ( [33], [35]), and
they proved effective in hematopoiesis modelling ( [22], [23], [27]). They are structured transport partial
differential equations, in which the structure is a characteristic of the considered population, for instance
age, size, maturity, protein concentration, etc. The transport, or movement in the structure space, simulates the
progression of the structure variable, growth, maturation, protein synthesis, etc. Several questions are still open
in the study of transport PDE, yet we will continue our analysis of these equations by focusing in particular
on the asymptotic behaviour of the system (stability, bifurcation, oscillations) and numerical simulations of
nonlocal transport PDE.

The use of age structure often leads to a reduction (by integration over the age variable) to nonlocal problems
[35]. The nonlocality can be either in the structure variable or in the time variable [22]. In particular, when
coefficients of an age-structured PDE are not supposed to depend on the age variable, this reduction leads to
delay differential equations.

3.4. Delay differential Equations
Delay differential equations (DDEs) are particularly useful for situations where the processes are controlled
through feedback loops acting after a certain time. For example, in the evolution of cell populations the
transmission of control signals can be related to some processes as division, differentiation, maturation,
apoptosis, etc. Because these processes can take a certain time, the system depends on an essential way of
its past state, and can be modelled by DDEs.

We explain hereafter how delays can appear in hematopoietic models. Based on biological aspects, we can
divide hematopoietic cell populations into many compartments. We basically consider two different cell
populations, one composed with immature cells, and the other one made of mature cells. Immature cells
are separated in many stages (primitive stem cells, progenitors and precursors, for example) and each stage
is composed with two sub-populations, resting (G0) and proliferating cells. On the opposite, mature cells
are known to proliferate without going into the resting compartment. Usually, to describe the dynamic of
these multi-compartment cell populations, transport equations (hyperbolic PDEs) are used. Structure variables
are age and discrete maturity. In each proliferating compartment, cell count is controlled by apoptosis
(programmed cell death), and in the other compartments, cells can be eliminated only by necrosis (accidental
cell death). Transitions between the compartments are modelled through boundary conditions. In order to
reduce the complexity of the system and due to some lack of information, no dependence of the coefficients
on cell age is assumed. Hence, the system can be integrated over the age variable and thus, by using the method
of characteristics and the boundary conditions, the model reduces to a system of DDEs, with several delays.

Leaving all continuous structures, DDEs appear well adapted to us to describe the dynamics of cell popula-
tions. They offer good tools to study the behaviour of the systems. The main investigation of DDEs are the
effect of perturbations of the parameters, as cell cycle duration, apoptosis, differentiation, self-renewal, and
re-introduction from quiescent to proliferating phase, on the behaviour of the system, in relation for instance
with some hematological disorders [29].

3.5. Stochastic Equations
How identical cells perform different tasks may depend on deterministic factors, like external signals or pre-
programming, or on stochastic factors. Intra-cellular processes are inherently noisy due to low numbers of
molecules, complex interactions, limited number of DNA binding sites, the dynamical nature of molecular
interactions, etc. Yet at the population level, deterministic and stochastic systems can behave the same way
because of averaging over the entire population. This is why it is important to understand the causes and the
roles of stochasticity in intra-cellular processes. In its simplest form, stochastic modelling of gene regulation
networks considers the evolution of a low number of molecules (integer number) as they are synthesized,
bound to other molecules, or degraded. The number n(t) of molecules at time t is a stochastic process whose
probability transition to n+1 or n-1 is governed by a specific law. In some cases, master equations can yield
analytical solutions for the probability distribution of n, P(n(t)). Numerically, efficient algorithms have been
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developed (Gillespie algorithms and variants) to handle statistically exact solutions of biochemical reactions.
Recently, these algorithms have been adapted to take into account time delays. This allows a stochastic
description of delayed regulatory feedback loops, both at the intra-cellular and the population levels. Another
approach with stochastic differential equation, using Langevin equations is relevant to study extrinsic sources
of noise on a system. A thesis (R. Yvinec) supervised by L. Pujo-Menjouet and M.C. Mackey devoted to
"stochastic differential equations", started in Lyon on October 2009.

4. Application Domains

4.1. Normal hematopoiesis
4.1.1. Introduction

Modelling normal hematopoiesis will allow us to explore the dynamical appearance of the various cell types,
originating from the stem cell compartment, through the bone marrow development up to the blood stream.
The differentiated cell types will both fulfill physiological functions, and play a key role on the feedback
control on homeostasis (balance of the system) in their own lineages. We will describe the hematopoiesis from
three different points of view:

• The initial cell type, the hematopoietic stem cell (HSC);

• The lineage choice question;

• Three differentiated lineages that are responsible for specific function, namely oxygen transport,
immune response and coagulation.

The basic mechanisms of our modelling approach are as follows:

• Any cell type can have two possibilities at each time step: to divide or to die.

• At any division step, the cell can either give rise to two daughter cells which are identical to the
mother cell (self-renewal) or that are more advanced in their differentiation.

All these processes will be first modelled at the cellular level. In parallel, we will develop models of intra-
cellular molecular networks (as some proteins controlling the cell cycle) influencing this decision making
process, so as to be able to describe both micro-to-macro effects (molecules influencing the global cell
behaviour) as well as macro-to-micro effects (like the global state of the cell population influencing the
molecular behaviour).

4.1.2. Hematopoietic stem cells (HSC)
Although widely studied by biologists, HSC are still poorly understood and many questions remain open: How
fast and how frequently do they divide? How many of them are in the bone marrow and where? How is their
behaviour modified under stress conditions such as blood loss or transfusion?

Our modelling approach will be based on two methods: deterministic and stochastic differential equations with
delays (discrete and distributed), on one hand, and the DPD method using the individual based modelling on
the other hand. The differential equation models based on the work initiated by Mackey [30] will describe the
HSC compartment in normal conditions and the behaviour of these cells under some stress. The DPD method,
as a complementary approach, will emphasize the spatial regulation of stem cell behaviour, and we will focus
our attention to give a possible answer regarding their location in the bone marrow and the roles of the niche,
their number in the system, their possible role under stress (that is their reaction under the different feedback
controls).
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4.1.3. Lineage choice
Positive and negative feedbacks in intra-cellular regulatory networks create a bistable or multistable situation
where different cell populations can co-exist. This allows the production of different blood cells beginning
from stem cells. It is an important property of hematopoietic cell populations, which is not yet completely
understood. We will focus on the erythroid/myelomonocytic choice, which is governed by a balance of
lineage-affiliated transcription factors, such as GATA1 and PU.1. How the ratios of lineage-determining
transcription factors stabilize progenitor cells and resolve their indeterminacy to commit them to discrete,
mutually exclusive fates remains unexplained.

We will analyze the dynamics of a binary fate decision governed by a gene-circuit containing auto-stimulation
and cross-inhibition, as embodied by the GATA1-PU.1 paradigm. We will use mathematical models based on
ordinary and partial differential equations and individually based modelling to study fundamental properties
of hematopoiesis and its quantitative characteristics. We will also explore the fate decision process from a
stochastic point of view.

4.1.4. Blood cell functions
(i) O2 transport: red lineage
O2 transport is provided by red blood cells (RBC) also called erythrocytes. Many different stages of maturity
(including progenitors, precursors, reticulocytes and erythrocytes) are necessary to achieve the complete
formation of RBC. These latter are then released in the blood stream where they transport oxygen. The whole
process is tightly dependent on a robust well-balanced equilibrium called homeostasis.

It has been shown in the 1990’s that apoptosis is regulated by EPO, a growth factor released by the kidneys
under hypoxia. But also, under severe stress (like an important blood loss) some other molecules known as
glucocorticoids can be released leading to an increase of the self-renewing rate for each generation. This led
to the formulation of a first model, demonstrating the role of self-renewal.

The study of the red blood cell lineage will involve different scale levels, from the molecular one, with the
effects of the hormones on the surface and internal parts of the cell, the cell contacts in each stage of RBC
formation, and the red branch population in its whole with all the interactions taken into account (see Figure
2) in normal and stress conditions.

Figure 2. Scheme of Erythropoiesis Modelling. Without considering explicitly growth factor mediated regulation,
all controls (proliferation, self-renewal, differentiation, apoptosis) are mediated by cell populations (dashed
arrows). Mature cells can either regulate immature (HSC, progenitors) or almost mature (precursors) cells,

precursors may act on progenitor dynamics, etc..
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Figure 3. A schematic description of the intra-cellular molecular events that are relevant for decision making in an
erythroid progenitor. The non active form of the protein is labeled i, the active form a. Blue lines indicate

transcriptional regulation, red lines indicate biochemical regulation.

In order to couple the cellular behaviour to explicit molecular events, we will describe the events through a
molecular network that is based upon the work of [34]. A first version of this model is shown in Figure 3.

(ii) Immune response
We will focus on the production of T-cells during an immune response. This represents an important activity of
the lymphoid branch, part of leucopoiesis (white blood cell production). Several models of the myeloid branch
of leucopoiesis have been investigated in the frame of specific diseases (for instance cyclical neutropenia ( [29],
[25]), chronic myelogenous leukemia [31]).

Time evolution of T-cell counts during an infection is well known: following the antigen presentation, the
number of cells quickly increases (expansion), then decreases more slowly (contraction) and stabilizes around
a value higher than the initial value. Memory cells have been produced, and will allow a faster response when
encountering the antigen for a second time. Mechanisms that regulate this behaviour are however not well
known.

A recent collaboration just started with immunologists (J. Marvel, Ch. Arpin) from the INSERM U851 in
Lyon, who provide experimental data that are essential to assess the significance of models, based on strongly
nonlinear ordinary differential equations, that can be proposed for T-cell production (Figure 4). By considering
molecular events leading to cell activation when encountering a virus, we will propose a multi-scale model of
the immune response.

(iii) Coagulation: platelet lineage
Thrombopoiesis, the process of production and regulation of platelets, is similar to erythropoiesis although
important differences are observed. These two processes have an immature progenitor (MEP) in common.
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Figure 4. Model of the immune response resulting in the generation of CD8 memory T cells. The response starts
with a viral infection resulting in the presentation of viral antigens through antigen presenting cells (APC) to naïve

T-cells. These latter, once activated, differentiate into activated cells which, under specific feedback loops will
either die, differentiate into effector cells or self-renew. Differentiation of effector cells (killer cells) will result in

the production of memory cells.
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Platelets are involved in blood coagulation, and can be the source of blood diseases (thrombopenia, thrombo-
cytosis). Their production is mainly regulated by thrombopoietin (TPO), a growth factor similar to EPO.

It is important to mention that very few experimental data exist in the literature, and mathematical modelling
of thrombopoiesis did not attract so much attention in the past 20 years. However, collaboration with some
leading hematologists in this domain will allow us to get updated and new data regarding this process.

Deterministic models, in the form of structured transport partial differential equations, will be proposed to
describe platelet dynamics, through the description of HSC, megakaryocytic progenitor and megacaryocyte
(platelet precursor) compartments. Circulating TPO, regulated by platelets, will induce feedback loops in
thrombopoiesis, and we will investigate the dynamics of platelet production and emergence of platelet-related
diseases.

4.2. Pathological hematopoiesis
The knowledge of hematopoiesis and related diseases has evolved to become a great deal in the past years,
and Mackey’s previous models (ref. [24]) do not allow us to correctly answer current questions that are clearly
oriented toward the investigation of cell signalling pathways. These models nevertheless bring relevant ideas
about the essential features of such modelling. It is also noteworthy that even though models of hematopoiesis
have existed for quite a long time, their application to questions of explanation and prediction of hematopoiesis
dynamics that are encountered in the clinic is still not sufficiently frequent, even though much progress has
been achieved in the cooperation between hematologists and mathematicians [32]. This is in the optic of
testable experimental predictions that the multi-scale model for pathological hematopoiesis will be developed.
For instance, we will concentrate on myeloid leukemias (CML and AML) and their treatment.

4.2.1. Leukemia Modelling
(i) Chronic Myeloid Leukemia
The strong tyrosine kinase activity of the BCR-ABL protein is the basis for the main cell effects that are
observed in CML: significant proliferation, anti-apoptotic effect, disruption of stroma adhesion properties,
genomic instability. This explains the presence in CML blood of a very important number of cells belonging
to the myeloid lineage, at all stages of maturation.

We will consider models based on ordinary differential equations for the action of the main intra- and extra-
cellular proteins involved in CML (as BCR-ABL protein), and of transport equations (with or without delay,
physiologically structured or not to represent healthy and leukemic cell populations, take into account many
interactions between proteins (especially BCR-ABL), cells (anti-apoptotic effect, etc.), and their environment
(disruption of stroma adhesion properties, for example). Transport pertains thus to cells from one compartment
(or a group of compartments) to another compartment, with a determined speed of aging or maturation. These
compartments may be detailed or not: the less mature are stem cells, then progenitor cells, etc.

(ii) Acute Myeloid Leukemia
The natural history of CML leads to its transformation ("blast crisis") in acute myeloid leukemia (AML),
following supplementary genetic alterations that produce a maturation arrest (myeloid in 3/4 of cases,
lymphoid in 1/4 of cases, confirming the insult to pluripotent stem cells), leading to an accumulation of
immature cells in the bone marrow and in the general circulation, resulting in deep medullary impairment and
fast fatal outcome, in spite of chemotherapy. This phenomenon is the same as the one observed in de novo
AML, i.e., AML without a previous chronic phase.

The different modelling methods of AML will be similar to the ones described for CML, with some exceptions:
the appearance of BCR-ABL mutations, which are not relevant in the case of AML, the appearance of a gene
(spi-1) involved in the differentiation arrest, and constitutive activation of EPO receptor or Kit activating
mutations promote proliferation and survival. This explains the accumulation of immature cells in the bone
marrow and in the blood stream.
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4.2.2. Treatment
As far as treatment of pathological hematopoiesis is concerned, two main strategies currently exist that aim
at slowing down or eliminating damaged cell proliferation. The first of these strategies consists in launching
the apoptotic process during the cell division cycle. This process is activated, for example when the cell is
unable to repair damages, e.g., after exposure to cytostatic drugs. A typical example is apoptosis induced by
chemotherapy-induced DNA damage: The damage is recognised by the cell, which then activates the sentinel
protein p53 ("guardian of the genome") that arrests the cell cycle to allow, if possible, damage repair. If the
latter is unrecoverable, then p53 activates the endogenous apoptotic processes.

The second strategy aims at pushing damaged cells toward the differentiation that has been stopped in the
course of their genetic mutation. Since a few years back, a new approach has been developed around the
strategy of differentiation therapy. This therapy relies on molecules (growth factors and specific cytokines)
that are able to re-initialise the cell differentiation programs that have been modified during malignant
transformation. The cancer that is most concerned by the development of this differentiation therapy is
AML whose malignant cells present highly undifferentiated features and the ones that present a translocation
responsible for the differentiation (PML/RAR of the promyelocytic form, AML1/ETO and CBFbeta/MyH11,
involving Core Binding Factors alpha and beta).

Mathematical models based on ordinary differential equations will be developed to describe the action of
drugs (in the two cases mentioned above). They will take into account interactions between drugs and their
environment. Our goal will be the optimization of possible synergies between drugs acting on distinct cellular
targets, and the control of resistances to these treatments as well as their toxicities.

Curative and palliative strategies must take into account the dynamics of healthy and leukemic hematopoietic
cells at multiple scales. In time, from optimal scheduling of combination therapy (hours) to avoiding the
development of resistances and relapse (months to years). In space, from the stem cell niche to circulating
blood. In organization, from gene and signalling networks (JAK/STAT, BCR-ABL) to cell populations and
cytokine regulation (EPO, CSFs). Several recent qualitative models have provided insight in the complex
dynamics of the disease and the response to treatments. Many of these models focus on the control or regulation
processes that promote homeostasis or oscillatory behavior in cell number. However, as A. Morley points out,
"once the control-systems features of hematopoiesis are accepted, the ability to construct a model that shows
oscillatory behavior, even if the model incorporates the latest advances in hematopoietic cell biology, really
adds little new knowledge. Rather, the challenge to modellers would seem to be to provide detailed predictions
for the input-output characteristics of the different parts of the various control systems so that these predictions
can be tested by experimental hematologists and a truly quantitative description of hematopoiesis can emerge".

We propose for instance, to use models in the form of structured transport partial differential equations (with
or without delay, physiologically structured or not) to represent the competition between target, resistant and
healthy cell populations. The resulting models to describe the dynamic of these cell populations under the
action of drugs are multi-scale systems of the form (Hyperbolic PDE)-ODE or DDE-ODE. For instance, we
will develop mathematical models of chronotherapy and pharmacotherapy for CML and AML.

5. Software

5.1. Elastic cell model
Modelling in the framework of this project implies intensive numerical simulations. Cell dynamics modelling
is one of the main approaches of this project. It corresponds to a multi-scale modelling which includes
individual based modelling coupled with partial and ordinary differential equations. This modelling will be
accompanied by the development of user friendly interfaces. They will allow the participants of the project
as well as other possible users to apply the original software which will be developed. An example of such
interfaces, which we already use for cell dynamics modelling, is shown in Figure 5.
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Figure 5. User interface for the software "Cell dynamics", the version "elastic cell model".

The interface includes the main window with the menu at the top of the screen and several other windows
which can be open using the menu. These windows allow the user to specify the geometry of the domain and
the properties of cells (1 in Figure 5), the values of parameters (3 and 4), the numerical and graphical output (2
and 5). Several versions of the software are now available. They include the "soft sphere model” and "elastic
cell model". We discuss the possibility of the development of the 3D versions of the software.

6. New Results
6.1. Mathematical models of erythropoiesis
6.1.1. Mathematical study of feedback control roles and relevance in stress erythropoiesis

Participants: Fabien Crauste, Olivier Gandrillon, Vitaly Volpert.

In collaboration with Ivan Demin (PhD student, now modeler at Novartis Pharma in Basel, Switzerland).

We proposed in [10] a new multi-scale model of erythropoiesis. This model describes erythroid progenitor
dynamics and intracellular regulatory network that determines erythroid cell fate (self-renewal, differentiation,
death by apoptosis). All erythroid progenitors are divided into several sub-populations according to their
maturity. Two intracellular proteins, Erk and Fas, are supposed to be determinant for the regulation of self-
renewal, differentiation and apoptosis. Two growth factors, erythropoietin and glucocorticoids, are also taken
into account in the modelling, as well as a membrane protein, Fas-ligand, playing an active role in erythroid
progenitor death. The model consists of a nonlinear system of ordinary differential equations, with several
feedback controls. We studied existence of biologically relevant steady states and their stability. We carried
out computer simulations of anaemia and compared the obtained results with available experimental data on
induced anaemia in mice. The main objective of this work was to evaluate the roles of the feedback controls in
order to provide more insights into the regulation of erythropoiesis. Feedback by Epo on apoptosis was shown
to be determinant in the early stages of the response to anaemia, whereas regulation through intracellular
regulatory network, based on Erk and Fas, appeared to operate on a long-term scale.
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Keywords: anaemia, intracellular regulatory network, growth factor, bistability.

6.1.2. Multi-scale model of erythropoiesis
Participants: Fabien Crauste, Olivier Gandrillon, Vitaly Volpert.

In collaboration with Ivan Demin (Novartis Pharma in Basel, Switzerland).

We investigated in [11] a multi-scale mathematical model of erythropoiesis. Erythroid progenitors were
supposed to be able to self-renew. Three cellular processes were supposed to control erythropoiesis: self-
renewal, differentiation and apoptosis. We described these processes and regulatory networks that govern
them. Two proteins (ERK and Fas) were considered as the basic proteins participating in this regulation. All
erythroid progenitors were divided into several sub-populations depending on their maturity level. Feedback
regulations by erythropoietin, glucocorticoids and Fas ligand (FasL) were introduced in the model. The model
consisted of a system of ordinary differential equations describing intracellular protein concentration evolution
and cell population dynamics. We studied steady states and their stability. We carried out computer simulations
of an anaemia situation and analysed the results.

Keywords: erythropoiesis, multi-scale model, self-renewal, differentiation, bistability.

6.1.3. Spacial distribution of cell populations in the processes of erythropoiesis
Participant: Vitaly Volpert.

In collaboration with I. Demin (Novartis Pharma in Basel, Switzerland), A. Ducrot (University of Bordeaux).

We studied in [16] spatial cell distribution in the bone marrow taking into account cell self-renewal, dif-
ferentiation and apoptosis as well as cell motion resulting from cell proliferation. The model consisted of
reaction-diffusion equations in a porous medium. The existence of stationary solutions corresponding to nor-
mal erythropoiesis was proved. In the leukemic case, this stationary solution becomes unstable. Malignant
cells propagate as a travelling wave filling the marrow. We studied this phenomenon numerically in the 2D
case. An analytical approximation for the wave speed was compared with the numerical solution of the full
problem.

Keywords: cell population, reaction-diffusion equations, porous medium, traveling waves.

6.1.4. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside
Participants: Samuel Bernard, Fabien Crauste, Polina Kurbatova, Vitaly Volpert.

In collaboration with N. Bessonov (St. Petersburg, Russia), I. Demin (Novartis Pharma in Basel, Switzerland),
Ch. Dumontet (Hospital E. Herriot, University of Lyon 1) and S. Fischer (University of Lyon 1).

A hybrid model of cell population dynamics, where cells are discrete elements whose dynamics depend
on continuous intracellular and extracellular processes, was developed in [21] to simulate the evolution of
immature red blood cells in the bone marrow. Cell differentiation, self-renewal or apoptosis were determined
by an intracellular network, based on two proteins Erk and Fas and described by ordinary differential equations,
and by local extracellular regulation performed by Fas-ligand, a protein produced by mature cells whose
concentration evolution was represented by a partial differential equation. The model was used to study
normal and leukemic red blood cell production (erythropoiesis), and treatment of leukemia. Normal cells
were supposed to have a circadian rhythm, that influences their cell cycle durations, whereas leukemic cells,
appart from being characterized by excessive proliferation and insufficient differentiation and apoptosis, were
supposed to escape circadian rhythms. We considered a treatment based on periodic administration of Ara-C,
an anti-cancer agent targeting cells in DNA synthesis. A pharmacodynamic/pharmacokinetic model of Ara-C
was then proposed, and used to simulate the treatment. Influences of the period of the treatment and the day
delivery time on the outcome of the treatment were investigated and stressed the relevance of considering
chronotherapeutic treatments to cure leukemia.

Keywords: hybrid model, leukemia treatment, chronotherapy, regulatory networks, cell cycle.
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6.2. Mathematical models of hematopoietic stem cell dynamics
6.2.1. Asymptotic behavior and stability switch for a mature-immature model of cell

differentiation
Participants: Mostafa Adimy, Fabien Crauste.

In collaboration with C. Marquet (University of Pau).

We investigated in [3] the stability of a delay differential model describing hematopoietic cell dynamics. The
framework we considered was a nonlinear age-structured model describing the dynamics of a cell population
divided into mature and immature cells. Immature cells, that can be either proliferating or non-proliferating,
differentiate in mature cells, that in turn control the immature cell population through a negative feedback. The
initial system was reduced to two delay differential equations, and we investigated the asymptotic stability of
the trivial and the positive steady states. By constructing a Lyapunov function, the trivial steady state was
proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic
stability of the positive steady state is related to a delay-dependent characteristic equation. Existence of a
Hopf bifurcation and stability switch for the positive steady state was established. We illustrated the stability
with numerical simulations.

Keywords: mature and immature cells, hematopoiesis, asymptotic stability, lyapunov function, delay-
dependent characteristic equation, stability switch, Hopf bifurcation.

6.2.2. Stability and Hopf bifurcation for a cell population model with state-dependent delay
Participants: Mostafa Adimy, Fabien Crauste.

In collaboration with H. Hbid (University of Marrakech), R. Qesmi (University of Toronto, Canada).

We proposed in [2] a mathematical model describing the dynamics of a hematopoietic stem cell population.
The method of characteristics reduced the age-structured model to a system of differential equations with
a state-dependent delay. A detailed stability analysis was performed. A sufficient condition for the global
asymptotic stability of the trivial steady state was obtained using a Lyapunov-Razumikhin function. A unique
positive steady state was shown to appear through a transcritical bifurcation of the trivial steady state. The
analysis of the positive steady state behavior, through the study of a first order exponential polynomial
characteristic equation, concluded the existence of a Hopf bifurcation and gave criteria for stability switches.
A numerical analysis confirmed the results and stressed the role of each parameter involved in the system on
the stability of the positive steady state.

Keywords: hematopoietic stem cells, functional differential equation, state-dependent delay, Lyapunov-
Razumikhin function, Hopf bifurcation.

6.2.3. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell
dynamics
Participants: Mostafa Adimy, Fabien Crauste.

In collaboration with A. El Abdllaoui (University of Pau).

We investigated in [1] a system of nonlinear differential equations with distributed delays, arising from a model
of hematopoietic stem cell dynamics. We stated uniqueness of a global solution under a classical Lipschitz
condition. Sufficient conditions for the global stability of the population were obtained, through the analysis
of the asymptotic behavior of the trivial steady state and using a Lyapunov function. Finally, we gave sufficient
conditions for the unbounded proliferation of a given cell generation.

Keywords: hematopoiesis, time-delay systems, Lyapunov function.

6.3. Cell turnover in slowly renewing tissues in humans
Participant: Samuel Bernard.
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In collaboration with Karolinska Institutet, Stockholm, Sweden.

The year 2010 was also marked by a consolidation of long-running projects, with three offshoot papers from
the collaborations of S. Bernard in Stockholm. The first is a study of metabolic risk based on fat tissue
morphology [5]. The second is a study rebutting recent controversial claims that cardiac muscle cells renew
at a high rate throughout life [6], and the third one is a methodology paper for estimating turnover rates in
biological systems [8].

Keywords: cardiomyocyte renewal, ploidy, pericentriolar material 1, cardiac Troponin, Iododeoxyuridine,
14C, bomb pulse, cell turnover, Tissue maintenance, fat mass, adipocyte.

6.4. Circadian rhythm and cell population growth
Participant: Thomas Lepoutre.

In collaboration with J. Clairambault and S. Gaubert, BANG (INRIA Rocquencourt).

We proved in [20] a convexity property of the Floquet eigenvalue. It extends the classical Kingman’s inequality
for positive matrices. On a modelling point of view, it gives a generic argument for chronotherapy, since at the
toxicity level, this implies that periodic treatment are in general (that is on average) less toxic than constant
treatment.

6.5. Nonlinear dynamics of travelling waves for reaction-diffusion equations
6.5.1. Existence of waves for a nonlocal reaction-diffusion equation

Participant: Vitaly Volpert.

In collaboration with I. Demin (Novartis Pharma in Basel, Switzerland).

We studied in [17] a nonlocal reaction-diffusion equation arising in population dynamics. The integral term
in the nonlinearity describes nonlocal stimulation of reproduction. We proved existence of travelling wave
solutions by the Leray-Schauder method using topological degree for Fredholm and proper operators and
special a priori estimates of solutions in weighted Hölder spaces.

Keywords: integro-differential equation, travelling waves, Leray-Schauder method.

6.5.2. Linear stability analysis of reaction fronts propagation in liquids with vibrations
Participant: Vitaly Volpert.

In collaboration with K. Allali, F. Bikany and A. Taik (University of Mohammedia, Morocco).

Influence of vibrations on the onset of convective instability of reaction fronts in a liquid medium was studied
in [14]. The model consisted of a reaction-diffusion system coupled with the Navier-Stokes equations under the
Boussinesq approximation. Linear stability analysis of the problem was fulfilled, and the convective instability
boundary was found.

Keywords: convective instability, reaction front propagation, vibrations.

6.6. Qualitative properties of elliptic problems in unbounded domains
Participant: Vitaly Volpert.

In collaboration with V. Vougalter (University of Notre Dame, Indiana, USA).

We obtained in [18] solvability conditions for some elliptic equations involving non Fredholm operators, which
are sums of second order differential operators with the methods of spectral theory and scattering theory for
Schrödinger type operators.

Keywords: solvability conditions, non Fredholm operators, elliptic problems.
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6.7. Differential and partial differential equations with delay
6.7.1. Stability and Hopf bifurcation for a first-order linear delay differential equation with

distributed delay
Participant: Fabien Crauste.

F. Crauste published in Complex-Time Delay Systems (Ed F. Atay, Springer), a chapter on the stability and
the existence of a Hopf bifurcation for delay differential equations with distributed delay [19]. This class
of equations is widely used in many research fields such as automatic, economic, and, for our purpose, in
biological modelling because it can be associated with problems in which it is important to take into account
some history of the state variable (e.g., gestation period, cell cycle durations or incubation time). When few
data are available, this history is usually assumed to be discrete (so one gets a discrete delay equation, well
studied in the literature). Yet, in most cases very few is known about it, and how it can be distributed, so very
abstract assumptions lead to equations with distributed delay. The paper focused on stability properties of such
equations, that is under which conditions on the parameters do all solutions converge toward zero? And, as a
consequence, how is it possible to destabilize the equation? Can oscillating or periodic solutions appear? All
these questions arise from needs to understand how many systems can be destabilized, or how can they stay
stable for a long time.

In this chapter, F. Crauste presented a state of the art on the topic and the most recent advances in the stability
analysis of differential equations with distributed delay. It is noticeable that only partial results have been
proved up to now. Mainly, only sufficient conditions for the stability - which is sometimes enough - have been
obtained.

Keywords: time-delay systems, asymptotic stability, delay-dependent characteristic equation, stability switch,
Hopf bifurcation.

6.7.2. Extrapolation spaces and partial neutral functional Differential Equations with infinite
delay
Participant: Mostafa Adimy.

In collaboration with M. Alia and K. Ezzinbi (University of Marrakech, Morocco).

We studied in [4] the existence regularity and stability of solutions for some nonlinear partial functional
differential equations with infinite delay. We supposed that the linear term was a Hille-Yosida operator on
a Banach space and the nonlinear function took its values on some spaces larger than the initial Banach
space, namely the extrapolated Favard class corresponding to the semigroup generated by the linear part. Our
approach was based on the theory of the extrapolation. We gave also a linearized stability principle to study
the behavior of solutions near the equilibriums of the model.

Keywords: partial functional differential equations, infinite delay, extrapolation spaces, semigroup, linearized
stability.

7. Other Grants and Activities

7.1. Regional Initiatives
Participants: Fabien Crauste [Coordinator], Olivier Gandrillon, Emmanuelle Terry.

Financial support from FINOVI (Fondation Innovations en Infectiologie) for project entitled "Multi-scale
modelling of CD8 T-cell response"



Team dracula 17

7.2. National Initiatives
• ANR (jeunes chercheurs) MADCOW "Modelling amyloid dynamics and computation output work:

applications to Prion and Alzheimer’s disease", 2008-2011.
Participants: Samuel Bernard, Fabien Crauste, Erwan Hingant, Laurent Pujo-Menjouet [Coordina-
tor], Vitaly Volpert.

• ANR (jeunes chercheurs) ProCell "Mathematical Methods for Erythropoiesis Modelling: from
Proteins to Cell Populations", 2009-2013.
Participants: Samuel Bernard, Fabien Crauste [Coordinator], Olivier Gandrillon, Polina Kurbatova,
Laurent Pujo-Menjouet, Emmanuelle Terry, Vitaly Volpert.

• ANR BIMOD "Hybrid models of cell populations. Application to cancer modelling and treatment",
2010-2014.
Participants: Mostafa Adimy, Fabien Crauste, Polina Kurbatova, Vitaly Volpert [Coordinator].

• ANR Anatools "Analytical tools for cancer chemotherapy improvement", 2007-2010 (coordinator:
C. Perigaud from the university of Montpelier 2).
Participants: Laurent Pujo-Menjouet, Vitaly Volpert.

7.3. European Initiatives
• PAI France-Pologne "Reaction diffusion equations in biology", 2010-2011, with Instytut Podsta-

wowych Problemòw Techniki, Varsovie.
Participants: Stéphane Génieys [Coordinator], Vitaly Volpert.

• PAI France-Grece "Patient specific modelling of atherosclerotic lesions leading to vascular stenosis",
2010-2011, with Institute of Applied and Computational Mathematics, Heraklion-Crete.
Participants: Stéphane Génieys [Coordinator], Vitaly Volpert.

7.4. International Initiatives
• Project PICS CNRS RUSSIE "Mathematical modelling of blood diseases", 2010-2012.

Participants: Samuel Bernard, Fabien Crauste, Polina Kurbatova, Laurent Pujo-Menjouet, Vitaly
Volpert [Coordinator].

• French-Moroccan program CNRS/CNRST "Reduction of complexity in differential equations aris-
ing from population dynamics", 2008-2010.
Participants: Mostafa Adimy [Coordinator], Fabien Crauste.

8. Dissemination

8.1. Animation of the scientific community
• F. Crauste and O. Gandrillon have participated in the organization of the yearly IPG conference

(IPG’10: Integrative Post-Genomics), in Lyon, 27-30 September 2010. This conference has been
sponsored by INRIA.

• M. Adimy has participated in the organization of RIMM-2010, First International Workshop on the
Role and Impact of Mathematics in Medicine, in Paris, 10-12 June 2010. This conference has been
sponsored by INRIA.

• M. Adimy and F. Crauste have organized a biomathematics session in the second congress of the
"Société Marocaine de Mathématiques Appliquées" (SM2A), in Rabat (Morocco), 28-30 June 2010.

• F. Crauste has organized a biomathematics session in the "10ème Colloque Franco-Roumain de
Mathématiques Appliquées", in Poitiers, 26-31 August 2010.
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