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2. Overall Objectives
2.1. Overall Objectives

Research carried out by the Geometrica project team is dedicated to Computational Geometry and Topology
and follows three major directions: (a). mesh generation and geometry processing; (b). topological and
geometric inference; (c). data structures and robust geometric computation. The overall objective of the
project-team is to give effective computational geometry and topology solid mathematical and algorithmic
foundations, to provide solutions to key problems as well as to validate theoretical advances through extensive
experimental research and the development of software packages that may serve as steps toward a standard
for reliable and effective geometric computing. Most notably, Geometrica, together with several partners
in Europe, plays a prominent role in the development of CGAL, a large library of computational geometry
algorithms.

2.2. Highlights
The European ERC starting grant proposal “IRON” submitted by P. Alliez has been accepted and will
start January 1st, 2011. IRON aims at streamlining the three-dimensional geometry processing pipeline by
developing guaranteed techniques for treating defect-laden data.
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3. Scientific Foundations

3.1. Mesh Generation and Geometry Processing
Meshes are becoming commonplace in a number of applications ranging from engineering to multimedia
through biomedecine and geology. For rendering, the quality of a mesh refers to its approximation properties.
For numerical simulation, a mesh is not only required to faithfully approximate the domain of simulation,
but also to satisfy size as well as shape constraints. The elaboration of algorithms for automatic mesh
generation is a notoriously difficult task as it involves numerous geometric components: Complex data
structures and algorithms, surface approximation, robustness as well as scalability issues. The recent trend
to reconstruct domain boundaries from measurements adds even further hurdles. Armed with our experience
on triangulations and algorithms, and with components from the CGAL library, we aim at devising robust
algorithms for 2D, surface, 3D mesh generation as well as anisotropic meshes. Our research in mesh generation
primarily focuses on the generation of simplicial meshes, i.e. triangular and tetrahedral meshes. We investigate
both greedy approaches based upon Delaunay refinement and filtering, and variational approaches based upon
energy functionals and associated minimizers.

The search for new methods and tools to process digital geometry is motivated by the fact that previous
attempts to adapt common signal processing methods have led to limited success: Shapes are not just
another signal but a new challenge to face due to distinctive properties of complex shapes such as topology,
metric, lack of global parameterization, non-uniform sampling and irregular discretization. Our research in
geometry processing ranges from surface reconstruction to surface remeshing through curvature estimation,
principal component analysis, surface approximationand surface mesh parameterization. Another focus is on
the robustness of the algorithms to defect-laden data. This focus stems from the fact that acquired geometric
data obtained through measurements or designs are rarely usable directly by downstream applications. This
generates bottlenecks, i.e., parts of the processing pipeline which are too labor-intensive or too brittle for
practitioners. Beyond reliability and theoretical foundations, our goal is to design methods which are also
robust to raw, unprocessed inputs.

3.2. Topological and Geometric Inference
Due to the fast evolution of data acquisition devices and computational power, scientists in many areas are
asking for efficient algorithmic tools for analyzing, manipulating and visualizing more and more complex
shapes or complex systems from approximating data. Many of the existing algorithmic solutions which come
with little theoretical guarantee provide unsatisfactory and/or unpredictable results. Since these algorithms
take as input discrete geometric data, it is mandatory to develop concepts that are rich enough to robustly
and correctly approximate continuous shapes and their geometric properties by discrete models. Ensuring
the correctness of geometric estimations and approximations on discrete data is a sensitive problem in many
applications.

Data sets being often represented as point sets in high dimensional spaces, there is a considerable interest
in analyzing and processing data in such spaces. Although these point sets usually live in high dimensional
spaces, one often expects them to be located around unknown, possibly non linear, low dimensional shapes.
These shapes are usually assumed to be smooth submanifolds or more generally compact subsets of the ambi-
ent space. It is then desirable to infer topological (dimension, Betti numbers,...) and geometric characteristics
(singularities, volume, curvature,...) of these shapes from the data. The hope is that this information will help
to better understand the underlying complex systems from which the data are generated. In spite of recent
promising results, many problems still remain open and to be addressed, need a tight collaboration between
mathematicians and computer scientists. In this context our goal is to contribute to the development of new
mathematically well founded and algorithmically efficient geometric tools for data analysis and processing
of complex geometric objects. Our main targeted areas of application include machine learning, data mining,
statistical analysis, and sensor networks.
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3.3. Data Structures and Robust Geometric Computation
GEOMETRICA has a large expertise of algorithms and data structures for geometric problems.We are pursuing
efforts to design efficient algorithms from a theoretical point of view, but we also put efforts in the effective
implementation of these results.

In the past years, we made significant contributions to algorithms for computing Delaunay triangulations
(which are used by meshes in the above paragraph). We are still working on the practical efficiency of existing
algorithms to compute or to exploit classical Euclidean triangulations in 2 and 3 dimensions, but the current
focus of our research is more aimed towards extending the triangulation efforts in several new directions of
research.

One of these directions is the triangulation of non Euclidean spaces such as periodic or projective spaces, with
various potential applications ranging from astronomy to granular material simulation.

Another direction is the triangulation of moving points, with potential applications to fluid dynamics where
the points represent some particles of some evolving physical material, and to variational methods devised to
optimize point placement for meshing a domain with a high quality elements.

Increasing the dimension of space is also a stimulating direction of research, as triangulating points in medium
dimension (say 4 to 15) has potential applications and makes new challenges to trade exponential complexity
of the problem in the dimension for the possibility to reach effective and practical results in reasonably small
dimensions.

On the complexity analysis side, we pursue efforts to obtain complexity analysis in some practical situations
involving randomized or stochastic hypotheses. On the algorithm design side, we are looking for new
paradigms to exploit parallelism on modern multicore hardware architectures.

Finally, all this work is done while keeping in mind concerns related to effective implementation of our work,
practical efficiency and robustness issues which have become a background task of all different works made
by GEOMETRICA.

4. Application Domains

4.1. Geometric Modeling and Shape Reconstruction
Modeling 3D shapes is required for all visualization applications where interactivity is a key feature since the
observer can change the viewpoint and get an immediate feedback. This interactivity enhances the descriptive
power of the medium significantly. For example, visualization of complex molecules helps drug designers
to understand their structure. Multimedia applications also involve interactive visualization and include e-
commerce (companies can present their products realistically), 3D games, animation and special effects in
motion pictures. The uses of geometric modeling also cover the spectrum of engineering, computer-aided
design and manufacture applications (CAD/CAM). More and more stages of the industrial development
and production pipeline are now performed by simulation, due to the increased performance of numerical
simulation packages. Geometric modeling therefore plays an increasingly important role in this area. Another
emerging application of geometric modeling with high impact is medical visualization and simulation.

In a broad sense, shape reconstruction consists of creating digital models of real objects from points. Example
application areas where such a process is involved are Computer Aided Geometric Design (making a car
model from a clay mockup), medical imaging (reconstructing an organ from medical data), geology (modeling
underground strata from seismic data), or cultural heritage projects (making models of ancient and or fragile
models or places). The availability of accurate and fast scanning devices has also made the reproduction of
real objects more effective such that additional fields of applications are coming into reach. The members of
GEOMETRICA have a long experience in shape reconstruction and contributed several original methods based
upon the Delaunay and Voronoi diagrams.
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4.2. Scientific Computing
Meshes are the basic tools for scientific computing using finite element methods. Unstructured meshes are
used to discretize domains bounded by complex shapes while allowing local refinements. GEOMETRICA
contributes to mesh generation of 2D and 3D possibly curved domains. Most of our methods are based upon
Delaunay triangulations, Voronoi diagrams and their variants. Anisotropic meshes are also investigated. We
investigate in parallel both greedy and variational mesh generation techniques. The greedy algorithms consist
of inserting vertices in an initial coarse mesh using the Delaunay refinement paradigm, while the variational
algorithms consists of minimizing an energy related to the shape and size of the elements. Our goal is to
show the complementarity of these two paradigms. Quadrangle surface meshes are also of interest for reverse
engineering and geometry processing applications. Our goal is to control the final edge alignment, the mesh
sizing and the regularity of the quadrangle tiling.

5. Software

5.1. CGAL, the Computational Geometry Algorithms Library
Participants: Pierre Alliez, Jean-Daniel Boissonnat, Manuel Caroli, Olivier Devillers, Michael Hemmer,
Pedro Machado Manhães de Castro, Sylvain Pion, Stéphane Tayeb, Monique Teillaud, Mariette Yvinec.

With the collaboration of Hervé Brönnimann, Frédéric Cazals, Frank Da, Christophe Delage, Andreas Fabri,
Julia Flötotto, Philippe Guigue, SamuelHornus, Menelaos Karavelas, Sébastien Loriot, Abdelkrim Mebarki,
Naceur Meskini, Andreas Meyer, Marc Pouget, François Rebufat, Laurent Rineau, LaurentSaboret, Radu Ursu,
and Camille Wormser. http://www.cgal.org

CGAL is a C++ library of geometric algorithms and data structures. Its development has been initially funded
and further supported by several European projects (CGAL, GALIA, ECG, ACS, AIM@SHAPE) since
1996. The long term partners of the project are research teams from the following institutes: INRIA Sophia
Antipolis - Méditerranée, Max-Planck Institut Saarbrücken, ETH Zürich, Tel Aviv University, together with
several others. In 2003, CGAL became an Open Source project (under the LGPL and QPL licenses), and it also
became commercialized by GEOMETRY FACTORY, a company Born of INRIA founded by Andreas Fabri.

The aim of the CGAL project is to create a platform for geometric computing supporting usage in both
industry and academia. The main design goals are genericity, numerical robustness, efficiency and ease of
use. These goals are enforced by a review of all submissions managed by an editorial board. As the focus is
on fundamental geometric algorithms and data structures, the target application domains are numerous: from
geological modeling to medical images, from antenna placement to geographic information systems, etc.

The CGAL library consists of a kernel, a list of algorithmic packages, and a support library. The kernel is made
of classes that represent elementary geometric objects (points, vectors, lines, segments, planes, simplices,
isothetic boxes, circles, spheres, circular arcs...), as well as affine transformations and a number of predicates
and geometric constructions over these objects. These classes exist in dimensions 2 and 3 (static dimension)
and d (dynamic dimension). Using the template mechanism, each class can be instantiated following several
representation modes : one can choose between Cartesian or homogeneous coordinates, use different types to
store the coordinates, and use reference counting or not. The kernel also provides some robustness features
using some specifically-devised arithmetic (interval arithmetic, multi-precision arithmetic, static filters...).

A number of packages provide geometric data structures as well as algorithms. The data structures are poly-
gons, polyhedra, triangulations, planar maps, arrangements and various search structures (segment trees, d-
dimensional trees...). Algorithms are provided to compute convex hulls, Voronoi diagrams, Boolean opera-
tions on polygons, solve certain optimization problems (linear, quadratic, generalized of linear type). Through
class and function templates, these algorithms can be used either with the kernel objects or with user-defined
geometric classes provided they match a documented interface.

http://www.cgal.org
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Finally, the support library provides random generators, and interfacing code with other libraries, tools, or
file formats (ASCII files, QT or LEDA Windows, OpenGL, Open Inventor, Postscript, Geomview...). Partial
interfaces with Python, SCILAB and the Ipe drawing editor are now also available.

GEOMETRICA is particularly involved in general maintainance, in the arithmetic issues that arise in the
treatment of robustness issues, in the kernel, in triangulation packages and their close applications such as
alpha shapes, in meshes... Three researchers of GEOMETRICA are members of the CGAL Editorial Board,
whose main responsibilities are the control of the quality of CGAL, making decisions about technical matters,
coordinating communication and promotion of CGAL.

CGAL is about 700,000 lines of code and supports various platforms: GCC (Linux, Mac OS X, Cygwin...),
Visual C++ (Windows), Intel C++... A new version of CGAL is released twice a year, and it is downloaded
about 10000 times a year. Moreover, CGAL is directly available as packages for the Debian, Ubuntu and Fedora
Linux distributions.

More numbers about CGAL: there are now 13 editors in the editorial board, with approximately 20 additional
developers. The user discussion mailing-list has more than 1000 subscribers with a relatively high traffic of
5-10 mails a day. The announcement mailing-list has more than 3000 subscribers.

6. New Results

6.1. Mesh Generation and Geometry Processing
6.1.1. 2D Centroidal Voronoi Tessellations with Constraints

Participants: Pierre Alliez, Olivier Devillers.

In collaboration with Jane Tournois (previously PhD student in our group, and now post-doc at TU Vienna).

We tackle the problem of constructing 2D centroidal Voronoi tessellations with constraints through an
efficient and robust construction of bounded Voronoi diagrams, the pseudo-dual of the constrained Delaunay
triangulation [23]. We exploit the fact that the cells of the bounded Voronoi diagram can be obtained by
clipping the ordinary ones against the constrained Delaunay edges. The clipping itself is efficiently computed
by identifying for each constrained edge the (connected) set of triangles whose dual Voronoi vertex is hidden
by the constraint. The resulting construction is amenable to Lloyd relaxation so as to obtain a centroidal
tessellation with constraints.

6.1.2. Optimizing Voronoi Diagrams for Polygonal Finite Element Computations
Participant: Pierre Alliez.

In collaboration with Daniel Sieger and Mario Botsch from Bielefeld University (Germany).

We present a 2D mesh improvement technique that optimizes Voronoi diagrams for their use in polygonal
finite element computations [32]. Starting from a centroidal Voronoi tessellation of the simulation domain
we optimize the mesh by minimizing a carefully designed energy functional that effectively removes the
major reason for numerical instabilities—short edges in the Voronoi diagram. We evaluate our method on
a 2D Poisson problem and demonstrate that our simple but effective optimization achieves a significant
improvement of the stiffness matrix condition number. See Figure 1.

6.1.3. Robust Surface Reconstruction from Raw Point Sets
Participants: Pierre Alliez, David Cohen-Steiner.

In collaboration with Fernando de Goes, Patrick Mullen and Mathieu Desbrun from Caltech.
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Figure 1. CVT (top) and optimized mesh (bottom) for Lake Superior using a K-Lipschitz sizing function with
K = 0.7. The underlying Delaunay triangulation contains 4036 triangles. The condition number reduces from

371877 to 190.
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We propose a modular framework for robust 3D reconstruction from unorganized, unoriented, noisy, and
outlier-ridden geometric data [20]. We gain robustness and scalability over previous methods through an
unsigned distance approximation to the input data followed by a global stochastic signing of the function.
An isosurface reconstruction is finally deduced via a sparse linear solve. We show with experiments on large,
raw, geometric datasets that this approach is scalable while robust to noise, outliers, and holes. The modularity
of our approach facilitates customization of the pipeline components to exploit specific idiosyncracies of
datasets, while the simplicity of each component leads to a straightforward implementation. See Figure 2.

Figure 2. Plaster Hand. Data scanned with a Kreon laser scanner mounted on an articulated arm; the 1.8M point
sampling is very anisotropic as it was obtained by manual sweeping of a 1D contact sensor. Top: input point set

(with a big hole at the bottom and others due to occlusions between the fingers), point set and 2D cut of unsigned
function, same 2D cut with nearby edges of the coarse mesh M, same 2D cut alone, and full ε-band. Middle: 2D

cuts of sign guess (red for inside, blue for outside and white uncertain), confidence (which decreases in the holes),
signed function after smoothing, isosurface of the robust unsigned function obtained by marching tetrahedra in the

lattice mesh, and same isosurface superimposed with input points. Bottom: views of the reconstructed surface
obtained by Delaunay refinement without and with points added, and cut view of the ε-band with the reconstructed

isosurface of the signed function inside, with and without the input points.

6.1.4. 3D Periodic Meshes
Participants: Manuel Caroli, Mikhail Bogdanov, Monique Teillaud.

In collaboration with Vissarion Fisikopoulos, Department of Informatics and Telecommunications, University
of Athens.

We show how the computation of 3D periodic triangulations can be used in combination of a surface mesh
generation method to compute meshes of triply-periodic surfaces (see Figure 3). For smooth surfaces, a
sufficiently refined output mesh is guaranteed to be both homeomorphic to the surface and geometrically
close to it [50].
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Figure 3. Meshing of triply-periodic surfaces: The Schwarz-p surface (left) and a surface used in bone scaffolding
(right, data by courtesy of Maarten Moesen, Department of Metallurgy and Materials Engineering, K.U. Leuven)

We are working on the extension to volume meshing (Figure 4).

Figure 4. Meshing of triply-periodic volumes.

6.1.5. Feature Preserving Mesh Generation from 3D Point Clouds
Participants: Nader Salman, Mariette Yvinec.

In collaboration with Quentin Mérigot, Stanford University.

We address the problem of generating quality surface triangle meshes from 3D point clouds sampled on
piecewise smooth surfaces. Using a feature detection process based on the covariance matrices of Voronoi
cells, we first extract from the point cloud a set of sharp features. Our algorithm also runs on the input
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point cloud a reconstruction process, such as Poisson reconstruction, providing an implicit surface. A feature
preserving variant of a Delaunay refinement process is then used to generate a mesh approximating the implicit
surface and containing a faithful representation of the extracted sharp edges. See figure 5. Such a mesh provides
an enhanced trade-off between accuracy and mesh complexity. The whole process is robust to noise and made
versatile through a small set of parameters which govern the mesh sizing, approximation error and shape of
the elements. We demonstrate the effectiveness of our method on a variety of models including laser scanned
datasets ranging from indoor to outdoor scenes [21].

Figure 5. Top left:the point clouds (coutesy of INPG). Top right: the extracted features. Bottom left: a mesh of the
implicit surface reconstructed by the Poisson reconstruction. Bottom right: the ouput of our feature preserving

mesh generation.

6.1.6. Polygon Mesh Processing
Participant: Pierre Alliez.

In collaboration with Mario Botsch, Leif Kobbelt, Mark Pauly and Bruno Lévy.

Geometry processing, or mesh processing, is a fast-growing area of research that uses concepts from
applied mathematics, computer science, and engineering to design efficient algorithms for the acquisition,
reconstruction, analysis, manipulation, simulation, and transmission of complex 3D models. Applications of
geometry processing algorithms already cover a wide range of areas from multimedia, entertainment, and
classical computer-aided design, to biomedical computing, reverse engineering, and scientific computing.
Over the last several years, triangle meshes have become increasingly popular, as irregular triangle meshes
have developed into a valuable alternative to traditional spline surfaces. This book [39] discusses the whole
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geometry processing pipeline based on triangle meshes. The pipeline starts with data input, for example, a
model acquired by 3D scanning techniques. This data can then go through processes of error removal, mesh
creation, smoothing, conversion, morphing, and more. The authors detail techniques for those processes using
triangle meshes.

6.2. Topological and Geometric Inference
6.2.1. Triangulating Smooth Submanifolds with Light Scaffolding

Participants: Jean-Daniel Boissonnat, Arijit Ghosh.

We propose an algorithm to sample and mesh a k-submanifold M of positive reach embedded in Rd. The
algorithm first constructs a crude sample of M using a brute force method. It then refines the sample according
to a prescribed parameter ε, and builds a mesh that approximates M. Differently from most algorithms that have
been developped for meshing surfaces of R3, the refinement phase does not rely on a subdivision of Rd (such as
a grid or a triangulation of the sample points) since the size of such scaffoldings depends exponentially on the
ambient dimension d. Instead, we only compute local stars consisting of k-dimensional simplices around each
sample point. By refining the sample, we can insure that all stars become coherent leading to a k-dimensional
triangulated manifold M̂. The algorithm uses only simple numerical operations. We show that the size of the
sample is O(ε−k) and that M̂ is a good triangulation of M. More specifically, we show that M and M̂ are
isotopic, that their Hausdorff distance is O(ε2) and that the maximum angle between their tangent bundles is
O(ε). The asymptotic complexity of the algorithm is T (ε) = O(ε−k2−k) (for fixed M, d and k).

6.2.2. Topological Inference via Meshing
Participant: Steve Oudot.

In collaboration with Benoît Hudson (TTI), Gary Miller and Donald Sheehy (CMU).

We apply ideas from mesh generation to improve the time and space complexities of computing the full per-
sistent homological information associated with a point cloud P in Euclidean space Rd. Classical approaches
rely on the Cech, Rips, α-complex, or witness complex filtrations of P, whose complexities scale up very badly
with d. For instance, the alpha-complex filtration incurs the nΩ(d) size of the Delaunay triangulation, where n
is the size of P. The common alternative is to truncate the filtrations when the sizes of the complexes become
prohibitive, possibly before discovering the most relevant topological features. In this work we propose a new
collection of filtrations, based on the Delaunay triangulation of a carefully-chosen superset of P, whose sizes
are reduced to 2O(d2)n. A nice property of these filtrations is to be interleaved multiplicatively with the family
of offsets of P, so that the persistence diagram of P can be approximated in 2O(d2)n3 time in theory, with a
near-linear observed running time in practice. Thus, our approach remains tractable in medium dimensions,
say 4 to 10 [31].

6.2.3. Persistence-based Segmentation of Deformable Shapes
Participants: Frédéric Chazal, Primoz Skraba.

In collaboration with Maks Ovsjanikov and Leo Guibas (Stanford).

We combine two ideas: persistence-based clustering and the Heat Kernel Signature (HKS) function to obtain
a multi-scale isometry invariant mesh segmentation algorithm. The key advantages of this approach is that
it is tunable through a few intuitive parameters and is stable under near-isometric deformations. Indeed the
method comes with feedback on the stability of the number of segments in the form of a persistence diagram.
There are also spatial guarantees on part of the segments. Finally, we present an extension to the method
which first detects regions which are inherently unstable and segments them separately. Both approaches are
reasonably scalable and come with strong guarantees. We show numerous examples and a comparison with
the segmentation benchmark and the curvature function [33].

6.2.4. Geometric Inference for Measures based on Distance Functions.
Participants: Frédéric Chazal, David Cohen-Steiner.
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In collaboration with Quentin Mérigot (Stanford).

Data often comes in the form of a point cloud sampled from an unknown compact subset of Euclidean space.
The general goal of geometric inference is then to recover geometric and topological features (Betti numbers,
curvatures,...) of this subset from the approximating point cloud data. In recent years, it appeared that the
study of distance functions allows to address many of these questions successfully. However, one of the main
limitations of this framework is that it does not cope well with outliers nor with background noise. In this
paper [44], we show how to extend the framework of distance functions to overcome this problem. Replacing
compact subsets by measures, we introduce a notion of distance function to a probability distribution in
Rn. These functions share many properties with classical distance functions, which makes them suitable for
inference purposes. In particular, by considering appropriate level sets of these distance functions, it is possible
to associate in a robust way topological and geometric features to a probability measure (see Figure 6). We
also discuss connections between our approach and non parametric density estimation as well as mean-shift
clustering.

(a) (b)

Figure 6. On the left, a point cloud sampled on a mechanical part to which 10% of outliers (uniformly sampled in a box enclosing the model)

have been added. On the right, the reconstruction of an isosurface of the distance function to the uniform probability measure on this point

cloud.

6.2.5. Zigzag Persistent Homology in Matrix Multiplication Time
Participant: Primoz Skraba.

This work has been done in collaboration with Nikola Milosavljevic (MPI Saarbrücken) and Dmitriy Morozov
(Stanford Univ.).

We present a new algorithm for computing zigzag persistent homology, an algebraic structure which encodes
changes to homology groups of a simplicial complex over a sequence of simplex additions and deletions
[47]. Provided that there is an algorithm that multiplies two n× n matrices in M(n) time, our algorithm runs
in O(M(n)logn) time if M(n) = O(n2), and O(M(n)) time otherwise, for a sequence of n additions and
deletions. In particular, the running time is O(n2.376), by result of Coppersmith and Winograd. The fastest
previously known algorithm for this problem takes O(n3) time in the worst case.
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6.3. Data Structures and Robust Geometric Computation
6.3.1. The Size of some Trees Constructed on Planar Point Sets

Participants: Pedro Machado Manhães de Castro, Olivier Devillers.

The Euclidean minimal k-insertion tree (EMITk) is obtained for a set of n points obtained by linking the last
point to the closest amongst the k last inserted point. EMIT1 is just the chain of points in insertion order and
EMITn is the minimum spanning tree. If the weight w of an edge e is its Euclidean length to the power of
α, we show that

∑
e∈EMITk

w(e) is O(n · k−α/d) in the worst case, where d is the dimension, for d ≥ 2 and
0 < α < d. We also analyze the expected size of EMITk and some stars, when points are evenly distributed
inside the unit ball, for any α > 0 [16], [48]. These results are used in the next section.

6.3.2. Simple and Efficient Distribution-Sensitive Point Location in Triangulations
Participants: Pedro Machado Manhães de Castro, Olivier Devillers.

Point location in spatial subdivision is one of the most studied problems in computational geometry. In the
case of triangulations of Rd, we revisit the problem to exploit a possible coherence between the query-points.

For a single query, walking in the triangulation is a classical strategy with good practical behavior and expected
complexity O(n1/d) if the points are evenly distributed. Based upon this strategy, we analyze, implement,
and evaluate a distribution-sensitive point location algorithm based on the classical Jump & Walk, called
Keep, Jump, & Walk. For a batch of query-points, the main idea is to use previous queries to improve the
current one. In practice, Keep, Jump, & Walk is actually a very competitive method to locate points in a
triangulation.

Regarding point location in a Delaunay triangulation, we show how the Delaunay hierarchy can be used to
answer, under some hypotheses, a query q with a O(log #(pq)) randomized expected complexity, where p is
a previously located query and #(s) indicates the number of simplices crossed by the line segment s.

The Delaunay hierarchy has O(n log n) time complexity and O(n) memory complexity in the plane, and under
certain realistic hypotheses these complexities generalize to any finite dimension.

Finally, we combine the good distribution-sensitive behavior of Keep, Jump, & Walk, and the good complexity
of the Delaunay hierarchy, into a novel point location algorithm called Keep, Jump, & Climb. To the best of
our knowledge, Keep, Jump, & Climb is the first practical distribution-sensitive algorithm that works both in
theory and in practice for Delaunay triangulation—it is actually faster than the Delaunay hierarchy regardless
of the spatial coherence of queries, and significantly faster when queries have strong spatial coherence [16],
[49].

6.3.3. Delaunay Triangulation of Imprecise Points, Preprocess and Actually Get a Fast Query
Time
Participant: Olivier Devillers.

Given a set of disks, we can preprocess them so that given a point in each disk, we can compute the Delaunay
triangulation of these points in linear time if the disk are disjoint unit disks [45]. The proposed method is
much simpler than previous similar method and is in practice actually faster than computing the Delaunay
triangulation from scratch (without the knowledge of the disks).

6.3.4. Oja Medians and Centers of Gravity
Participant: Olivier Devillers.

This work has been done in collaboration with Dan Chen and Pat Morin (Carleton Univ.), John Iacono
(Polytechnic, NY), and Stefan Langerman (Univ. Bruxelles).

Given a point set S, various notion of depth can be defined. The Oja depth of a query is the sum of the volume
of all simplices formed by the query and points from S, and an Oja center is a point that minimize the Oja
depth. In this work, relations between the center of gravity and Oja center are explored [28].
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6.3.5. Delaunay Triangulations of Point Sets in Closed Euclidean d-Manifolds
Participants: Manuel Caroli, Monique Teillaud.

We give a definition of the Delaunay triangulation of a point set in a closed Euclidean d-manifold, i.e. a
compact quotient space of the Euclidean space for a discrete group of isometries (a so-called Bieberbach group
or crystallographic group). We describe a geometric criterion to check whether a partition of the manifold
actually forms a triangulation (which subsumes that it is a simplicial complex). We provide an algorithm to
compute the Delaunay triangulation of the manifold for a given set of input points, if it exists. Otherwise,
the algorithm returns the Delaunay triangulation of a finitely sheeted covering space of the manifold. The
algorithm has optimal randomized worst-case time and space complexity.

Whereas there was prior work for the special case of the flat torus, as far as we know this is the first result
for general closed Euclidean d-manifolds. This research is motivated by application fields, like computational
biology for instance, showing a need to perform simulations in quotient spaces of the Euclidean space by more
general groups of isometries than the groups generated by d independent translations [43], [26].

6.3.6. Parallel Geometric Algorithms for Multi-Core Computers
Participant: Sylvain Pion.

In collaboration with Vicente Batista (former INRIA intern), David Millman from University of North Carolina
at Chapel Hill, Johannes Singler from Universität Karlsruhe, and Marc Jeanmoungin (INRIA intern from ENS
Paris).

Computers with multiple processor cores using shared memory are now ubiquitous. We present several par-
allel geometric algorithms that specifically target this environment, with the goal of exploiting the additional
computing power. The d-dimensional algorithms we describe are (a) spatial sorting of points, as is typically
used for preprocessing before using incremental algorithms, (b) kd-tree construction, (c) axis-aligned box in-
tersection computation, and finally (d) bulk insertion of points in Delaunay triangulations for mesh generation
algorithms or simply computing Delaunay triangulations. We show experimental results for these algorithms
in 3D, using our implementations based on CGAL. This work is a step towards what we hope will become a
parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring
significant user intervention [17].

We also started work on parallel mesh generation, built on top of our work just described.

6.3.7. The Design of Core 2: A Library for Exact Numeric Computation in Geometry and
Algebra
Participant: Sylvain Pion.

In collaboration with Jihun Yu (New York University), Chee Yap (New York University), Zilin Du (New York
University) and Hervé Brönnimann (Polytechnic University Brooklyn).

There is a growing interest in numeric-algebraic techniques in the computer algebra community as such
techniques can speed up many applications. This paper is concerned with one such approach called Exact
Numeric Computation (ENC). The ENC approach to algebraic number computation is based on iterative
verified approximations, combined with constructive zero bounds. This paper describes Core 2, the latest
version of the Core Library, a package designed for applications such as non-linear computational geometry.
The adaptive complexity of ENC combined with filters makes such libraries practical.

Core 2 smoothly integrates our algebraic ENC subsystem with transcendental functions with ε-accurate
comparisons. This paper describes how the design of Core 2 addresses key software issues such as modularity,
extensibility, efficiency in a setting that combines algebraic and transcendental elements. Our redesign
preserves the original goals of the Core Library, namely, to provide a simple and natural interface for ENC
computation to support rapid prototyping and exploration. We present examples, experimental results, and
timings for our new system, released as Core Library 2.0 [34].
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6.3.8. On the Complexity of Sets of Free Lines and Line Segments Among Balls in Three
Dimensions
Participant: Marc Glisse.

This work has been done in collaboration with Sylvain Lazard from EPI VEGAS.

We present two new fundamental lower bounds on the worst-case combinatorial complexity of sets of free lines
and sets of maximal free line segments in the presence of balls in three dimensions. We first prove that the set
of maximal non-occluded line segments among n disjoint unit balls has complexity Ω(n4), which matches the
trivial O(n4) upper bound. This improves the trivial Ω(n2) bound and also a previously known Ω(n3) lower
bound for the restricted setting of arbitrary-size balls. This result settles, negatively, the natural conjecture
that this set of line segments, or, equivalently, the visibility complex, has smaller worst-case complexity for
disjoint fat objects than for skinny triangles. We also prove an Ω(n3) lower bound on the complexity of the set
of non-occluded lines among n balls of arbitrary radii, improving on the trivial Ω(n2) bound. This new bound
almost matches the O(n3+ε) upper bound obtained recently by Rubin [29].

6.3.9. Reverse Nearest Neighbors Search in High Dimensions using Locality-Sensitive
Hashing
Participant: Steve Oudot.

In collaboration with David Arthur (Stanford then Google).

We investigate the problem of finding reverse nearest neighbors efficiently. Although provably good solutions
exist for this problem in low or fixed dimensions, to this date the methods proposed in high dimensions are
mostly heuristic. We introduce a method that is both provably correct and efficient in all dimensions, based on
a reduction of the problem to one instance of ε-nearest neighbor search plus a controlled number of instances
of exhaustive r-PLEB, a variant of Point Location among Equal Balls where all the r-balls centered at the data
points that contain the query point are sought for, not just one. The former problem has been extensively
studied and elegantly solved in high dimensions using Locality-Sensitive Hashing (LSH) techniques. By
contrast, the latter problem has a complexity that is still not fully understood. We revisit the analysis of the LSH
scheme for exhaustive r-PLEB using a somewhat refined notion of locality-sensitive family of hash function,
which brings out a meaningful output-sensitive term in the complexity of the problem. Our analysis, combined
with a non-isometric lifting of the data, enables us to answer exhaustive r-PLEB queries (and down the road
reverse nearest neighbors queries) efficiently. Along the way, we obtain a simple algorithm for answering
exact nearest neighbor queries, whose complexity is parametrized by some condition number measuring the
inherent difficulty of a given instance of the problem [41].

6.3.10. Certified Complex Root Isolation via Adaptive Root Separation Bounds
Participant: Michael Hemmer.

In collaboration with Michael Sagraloff from MPII and Michael Kerber from IST.

We address the problem of root isolation for polynomial systems: for an affine, zero-dimensional polynomial
system of N equations in N variables, we describe an algorithm to encapsulate all complex solutions into
disjoint regions, each containing precisely one solution (called isolating regions). Our approach also computes
the multiplicity of each solution. The main novelty is a new approach to certify that a set of computed regions
is indeed isolating. It is based on an adaptive root separation bound obtained from combining information
about the approximate location of roots and resultant calculus. Here we use simple subdivision method to
determine the number of roots within certain regions. The resultant calculus only takes place over prime fields
to avoid the disadvantageous coefficient growth in symbolic methods, without sacrificing the exactness of the
output. The presented approach is complete for uni- and bivariate systems, and in general applies in higher
dimensions as well, possibly after a coordinate change.

6.3.11. A Complete, Exact and Efficient Implementation for Computing the Edge-Adjacency
Graph of an Arrangement of Quadrics
Participant: Michael Hemmer.
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In collaboration with Sylvain Petitjean and Laurent Dupont from EPI VEGAS and Elmar Schömer from the
University of Mainz.

Figure 7. Arrangement of quadrics

We present a complete, exact and efficient implementation to compute the edge-adjacency graph of an
arrangement of quadrics, i.e. surfaces of algebraic degree 2 (Figure 7). This is a major step towards the
computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of
the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection
points and from that the edge-adjacency graph of the arrangement. Our implementation is complete in the sense
that it can handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection
points. It is exact in that it always computes the mathematically correct result. It is efficient in terms of running
times, i.e. it compares favorably to the only previous implementation [19].

6.3.12. Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space, with Fast
Point-Location
Participant: Michael Hemmer.

In collaboration with Ophir Setter and Dan Halperin from the University of Tel Aviv.

Supplementary material and in particular the prototypical code of our implementation can be found in the
website: http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page

We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi
diagram of lines in space (Figure 8). This is a major milestone towards the robust construction of the Voronoi
diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we
always compute the mathematically correct result. The algorithm is complete in the sense that it can handle
all configurations, in particular all degenerate ones. The algorithm requires O(n3+ε) time and space, where n
is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-
location queries in O(log2 n) expected time. The implementation employs the CGAL packages for constructing
arrangements and lower envelopes together with advanced algebraic tools [30], [46].

http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page
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Figure 8. Voronoi diagram of lines

6.3.13. A Generic Algebraic Kernel for Non-linear Geometric Applications
Participant: Michael Hemmer.

In collaboration with Eric Berberich from MPII and Michael Kerber from IST.

We report on a generic (uni- and bivariate) algebraic kernel that becomes available to the public with CGAL 3.7.
It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of
polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel
is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have
already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the
triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic
curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide
exhaustive experiments showing that our implementation is competitive and often outperforms existing
implementation on non-linear curves available in CGAL, which demonstrates the general usefulness of the
presented software [42].

6.4. Software
6.4.1. CGAL

Two major new releases of CGAL, versions 3.6 and 3.7, have been been made available in 2010. These releases
contain the following new features, involving GEOMETRICA researchers:
— Algebraic Kernel [36]. This package, introduced in CGAL 3.6, is targeted to provide black-box implemen-
tations of state-of-the-art algorithms to determine, compare and approximate real roots of univariate polyno-
mials and bivariate polynomial systems. So far the package only provides models for the univariate kernel.
Nevertheless, it already defines concepts for the bivariate kernel, since this settles the interface for upcoming
implementations.
— 3D Periodic Alpha-Shapes. The packages 3D alpha-shapes [38] and 3D periodic triangulations [37] have
been interfaced in CGAL 3.6, which allows to compute 3D periodic alpha-shapes.
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Figure 9. Arrangements of rotated algebraic curves

—3D Mesh Generation. The mesh generation package was introduced in CGAL 3.5. From release CGAL 3.6,
the package proposes, after Delaunay refinement phase, an optimization phase to improve the quality of the
mesh, in particular to get rid of slivers (see figure 10). The release CGAL 3.7 includes a demo of the mesh
generation package and the code has been optimized for efficiency [35].

The new release also contains new packages implemented by our CGAL partners and improvements to some
existing packages: a detailed list can be found on the CGAL web site.

A one-week CGAL developers meeting has been organized in June at INRIA by Monique Teillaud. There were
18 participants.

7. Contracts and Grants with Industry

7.1. Geometry Factory
The initial development phase of the CGAL library has been made by a European consortium. In order to
achieve the transfer and diffusion of CGAL in the industry, a company called GEOMETRY FACTORY has been
founded in January 2003 by Andreas Fabri (http://www.geometryfactory.com).

The goal of this company is to pursue the development of the library and to offer services in connection with
CGAL (maintenance, support, teaching, advice). GEOMETRY FACTORY is a link between the researchers from
the computational geometry community and the industrial users.

It offers licenses to interested companies, and provides support. There are contracts in various domains such
as CAD/CAM, medical applications, GIS, computer vision...

GEOMETRY FACTORY is keeping close contacts with the original consortium members, and in particular with
GEOMETRICA.

http://www.geometryfactory.com
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Figure 10. A mesh generated from a 3D segmented medical image of a liver. On the left part, the histograms of
dihedral angles in the mesh are shown repectively before optimization (top), after ODT smoothing (middle), after

ODT smoothing and vertex perturbation (bottom). The figures correspond in each case to the measure in degrees of
the smallest and the biggest dihedral angles in the mesh.
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In 2010, GEOMETRY FACTORY had the following new customers for CGAL packages developed by GEO-
METRICA: Dr.D Studios (spatial sorting, animation, Australia), Forum8 (2D mesh generation, animation, New
Zealand), Esri (AABB tree, GIS, USA), NexGeo (2D mesh generation, GIS, Corea), Polytec (2D mesh genera-
tion, Laser Measurement, Germany), Sierra Nevada Corp. (2D triangulations, GIS, USA), Alberta Sustainable
Resource Development (2D triangulations, fire fight, Canada).
Additionally, there were two confidential customers, one for surface reconstruction, and one for 3D alpha-
shapes.

Moreover, research licenses (in-house research usage for all of CGAL) have been purchased by: Volkswa-
gen (car industry, Germany), Navteq (image processing, USA), InfoTerra (image processing, F), Boeing (air
planes, USA), Lawrence Berkeley National Laboratory (USA), KU Leuven (B), Australian National Uni-
versity (Australia), ZIB - Zuse-Institut Berlin (Germany), BRGM (geophysics, F), and by one confidential
customer.

7.2. Dassault Systèmes
Participants: Frédéric Chazal, Nicolas Montana.

In collaboration with André Lieutier (Dassault Systèmes)

The goal of this study is to develop and implement robust and efficient 3D Boolean operators and surface
regularization tools for industrial use.

The motivation of this work comes from machining simulation where the computation of the part of the space
swept by a moving tool involves a huge amount of Boolean operations (unions, intersections, differences).
Such computations meet two main difficulties (that are both theoretical and technical): First, 3D Boolean
operations face robustness issues and second, the output of large sequences of Boolean operations usually
consists of very complicated meshes containing many irrelevant topological and geometric features that need
to be removed for further processing. In this study, we intend to develop a software based on an original
theoretical approach which overcomes these difficulties.

7.3. Lumiscaphe
Participants: Pierre Alliez, Mariette Yvinec.

In collaboration with Jean-Christophe Leducq (Lumiscaphe) and Alain Tayeb (master intern in our project-
team).

Our goal was to devise a new intersection oracle for the mesh generators of CGAL, specialized for parametric
NURBS surfaces (common in CAD). The main added value to proceed by Delaunay refinement and access the
input surface through an oracle is to be able to mesh the union of NURBS surface patches at once instead of
meshing each patch separately. For models comprising hundreds of patches we obtain meshes with lower
complexity and with only well-shaped triangles. For a given intersection query with a line segment, our
methodology consists of using a Newton iteration in the parameter space of all NURBS patches in order
to track the intersection point(s). As future work we wish to elaborate upon a robust version of the intersection
oracle, so as to deal with defect-laden NURBS surfaces. The current prototype code will be later consolidated
and added to the CGAL library.

8. Other Grants and Activities

8.1. National Actions
8.1.1. ADT CGAL-Mesh

Participants: Pierre Alliez, Mariette Yvinec, Jean-Daniel Boissonnat, Stéphane Tayeb, Dobrina Boltcheva.
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CGAL-Mesh is a two-year INRIA technological development action started in March 2009. Building upon
components from CGAL, we have started implementing generic and robust mesh generation algorithms for
surfaces, 3D domains as well as time-varying 3D domains. We primarily target applications which involve
data acquired from the physical world: geology, medicine, 3D cartography and reverse engineering. We wish
to establish for the whole duration of the action a close collaboration with industrial and academic partners so
as to maximize the impact of the platform for a number of applications and research experiments.

- Starting date: March 2009

- Duration: 2 years

8.1.2. ANR Triangles
Participants: Manuel Caroli, Pedro Machado Manhães de Castro, Olivier Devillers, Sylvain Pion, Monique
Teillaud.

Web site: http://www.inria.fr/sophia/geometrica/collaborations/triangles/

We lead the TRIANGLES project funded by the ANR. The project involves:
— the «Laboratoire d’InfoRmatique en Image et Systèmes d’information» (LIRIS), Lyon,
— the «Département d’informatique de l’ENS»
— the GEOMETRICA team.

Triangulations are essential in many applications, in particular for meshing and shape reconstruction. We want
to develop and distribute new results for academic and industrial researchers. The goal of the project is the
development of robust and effective algorithms for the manipulation of large sets of points, of moving sets
of points and points in non Euclidean spaces such as periodic spaces (torus, cylinder), projective, oriented
projective or hyperbolic spaces. The results obtained will be implemented in the CGAL library and will
be applied to computer vision (visual envelopes, camera calibration), fluid dynamics, astronomy, computer
graphics and medical applications.

In the GEOMETRICA team, Triangles is co-funding the scholarship of Pedro de Castro (with «Région PACA»)
and funding travel expenses and computers. Several meetings have been organized between participants,
details can be found on the project’s web page. A workshop has been organized with the associated team
OrbiCG in december (see Section Workshops below).

- Starting date: November 2007

- Duration: 3 years + 6 months prolongation.

8.1.3. ANR GAIA
Participants: Jean-Daniel Boissonnat, Frédéric Chazal, Arijit Ghosh, David Cohen-Steiner.

The aim of this project is to formalize a collaboration between researchers from computational geometry,
machine learning and computer vision to study distortions and in particular Bregman divergences, information
theory, statistics, Riemannian geometry, and convex analysis.

The other partners of the project are the Université des Antilles et de la Guyane (R. Nock, coordinator), the
Ecole Polytechnique (F. Nielsen) and the Lear project-team (C. Schmid).

- Starting date: November 2007

- Duration: 4 years

8.1.4. ANR Galapagos
Participant: Sylvain Pion.

In this project, we wish to apply computerized theorem proving tools to two aspects of geometry. One aspect
concerns computational geometry. The second aspect is focused on verifying geometric reasoning steps in
usual constructions, such as constructions with rules and compass. Other participants in this contract are the
universities of Strasbourg and Poitiers, the ENSIEE in Evry and the Ecole Normale Supérieure in Lyon. The
leader of the project is the MARELLE project-team.

http://www.inria.fr/sophia/geometrica/collaborations/triangles/
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- Starting date: November 2007.

- Duration: 3 years.

8.1.5. ANR GIGA
Participants: Pierre Alliez, Jean-Daniel Boissonnat, Frédéric Chazal, David Cohen-Steiner, Mariette Yvinec,
Steve Oudot, Marc Glisse, Primoz Skraba.

GIGA stands for Geometric Inference and Geometric Approximation. GIGA aims at designing mathematical
models and algorithms for analyzing, representing and manipulating discretized versions of continuous shapes
without losing their topological and geometric properties. By shapes, we mean sub-manifolds or compact
subsets of, possibly high dimensional, Riemannian manifolds. This research project is divided into tasks which
have Geometric Inference and Geometric Approximation as a common thread. Shapes can be represented in
three ways: a physical representation (known only through measurements), a mathematical representation
(abstract and continuous), and a computerized representation (inherently discrete). The GIGA project aims at
studying the transitions from one type to the other, as well as the associated discrete data structures.

Some tasks are motivated by problems coming from data analysis, which can be found when studying data sets
in high dimensional spaces. They are dedicated to the development of mathematically well-founded models
and tools for the robust estimation of topological and geometric properties of data sets sampled around an
unknown compact set in Euclidean spaces or around Riemannian manifolds.

Some tasks are motivated by problems coming from data generation, which can be found when studying data
sets in lower dimensional spaces (Euclidean spaces of dimension 2 or 3). The proposed research activities aim
at leveraging some concepts from computational geometry and harmonic forms to provide novel algorithms
for generating discrete data structures either from mathematical representations (possibly deriving from an
inference process) or from raw, unprocessed discrete data. We target both isotropic and anisotropic meshes,
and simplicial as well as quadrangle and hexahedron meshes.

This project coordinated by GEOMETRICA also involves researchers from the INRIA team-project ABS,
CNRS (Grenoble), and a representative from the industry holding a PAST position (Visiting Professor from
Industry) at the university of Grenoble.

- Starting date: October 2009.

- Duration: 4 years.

8.1.6. ANR Gyroviz
Participants: Pierre Alliez, Jean-Daniel Boissonnat, Nader Salman, Mariette Yvinec.

The Gyroviz project was selected by the ANR in the framework of the call Audivisual and Multimedia
techniques. The project, which was launched in December 2007 for three years, involves the SME Sofresud
(Toulon, coordinator) and IXSEA and research teams from the CEA, INRIA and SupMECA Toulon. The
project addresses the challenge of automatic modeling of 3D physical scenes from located frames. The
aim of the project is to couple new accurate inertial sensors with an image acquisition device and efficient
reconstruction algorithms to obtain an automatic image-based modeling system.

- Starting date: December 2007.

- Duration: 3 years.

8.1.7. DIGITEO project GAS: Geometry Algorithms and Statistics
Participants: Claire Caillerie, Frédéric Chazal, David Cohen-Steiner, Bertrand Michel, Steve Oudot.

The project GAS was selected by the DIGITEO consortium in the framework of the “Domaines d’Intérêt
Majeur” call of the Région Île-de-France. The project intends to explore and to develop new research at the
crossing of information geometry, computational geometry and statistics. It started in September 2008 for an
expected duration of 2 years. The other partners of the project are the Ecole Polytechnique (F. Nielsen) and
the SELECT project-team (G. Celeux, P. Massart).
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- Starting date: September 2008.

- Duration: 2 years.

8.1.8. DIGITEO Chair C3TTA: Cell Complexes in Computational Topology: Theory and
Applications
Participants: Claire Caillerie, Frédéric Chazal, David Cohen-Steiner, Steve Oudot, Primoz Skraba, Amit
Patel.

The primary purpose of this project is to bring about a close collaboration between the chair holder Dr Vin
de Silva and Digiteo teams working on the development of topological and geometric methods in Computer
Science. The research program is motivated by problems coming from the increasing need of studying and
analyzing the (often huge) data sets that are now available in many scientific and economic domains. Indeed,
due to the improvements of measurement devices and data storage tools, the available data about complex
shapes or complex systems are growing very fast. These data being often represented as point clouds in high
dimensional (or even infinite dimensional) spaces there is a considerable interest in analyzing and processing
data in such spaces. Despite the high dimensionality of the ambiant space, one often expects them to be located
around an unknown, possibly non linear, low dimensional shape. It is then appealing to infer and analyse
topological and geometric characteristics of that shape from the data. The hope is that this information will help
to process more efficiently the data and to better understand the underlying complex systems from which the
data are generated. In the last few years, topological and geometric approaches to obtain such information have
encountered an increasing interest. The goal of this project is to bring together the complementary expertises
in computational topology and geometry of the involved Digiteo teams and in applied geometry and algebraic
topology of V. de Silva to develop new topological approaches to the previous mentioned domain. The project
intends to develop both the theoretical and practical sides of this subject. The other partners of the project are
the Ecole Polytechnique (L. Castelli-Aleardi and F. Nielsen) and the CEA (E. Goubault).

- Starting date: January 2009.

- Duration: 3 years.

8.2. Actions Funded by the EC
8.2.1. Coordination action FOCUS K3D

Participants: Pierre Alliez, Jean-Daniel Boissonnat, Mariette Yvinec.

Web page: http://www.focusk3d.eu/.

FOCUS K3D (ICT-2007-214993) is a Coordination Action of the European Union’s 7th Framework Pro-
gramme. The other consortium members are:
– Istituto di Matematica Applicata e Tecnologie Informatiche - Unità Organizzativa di Genova - Consiglio
Nazionale delle Ricerche (CNR-IMATI-GE), Italy.
– Center for Research and Technology - Thessaly - Laboratory for Information Technology Systems and
Services (CERETETH), Greece.
– École Polytechnique Federale de Lausanne - VRlab (EPFL), Switzerland.
– Fraunhofer-Institut für Graphische Datenverarbeitung, Germany.
– Université de Genève - MIRALab, Switzerland.
– SINTEF, Norway.
– Utrecht University, The Netherlands.
The aim of FOCUS K3D was to foster the comprehension, adoption and use of knowledge intensive
technologies for coding and sharing 3D media content in application communities by: (i) exploiting the
scientific and technological advances in the representation of the semantics of 3D media to increase awareness
of the new technologies for intelligent 3D content creation and management; (ii) building user-driven scenarios
to evaluate and adapt the technologies so far developed to the requirements of application environments; and
(iii) fostering a shift of role of 3D content users, from passive consumers of technologies to active creators.

http://www.focusk3d.eu/
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- Dates: March 2008 - March 2010.

- Duration: 2 years.

8.2.2. CG Learning
Participants: Jean-Daniel Boissonnat, Frédéric Chazal, David Cohen-Steiner, Olivier Devillers, Marc Glisse,
Steve Oudot, Mariette Yvinec.

Web page: http://cglearning.eu/.

Computational Geometric Learning (ICT-2007-255827) is FET Open project of the European Union’s 7th
Framework Programme. The consortium members are:
– Friedrich-Schiller Universität Jena
– National and Kapodestrian University of Athens
– Technische Universität Dortmund
– Institut National de Recherche en Informatique
– Tel Aviv University
– Eidgenössische Technische Hochschule Zürich
– Rijksuniversität Groningen
– Freie Universität Berlin
High dimensional geometric data are ubiquitous in science and engineering, and thus processing and analyzing
them is a core task in these disciplines. The Computational Geometric Learning project (CG Learning) aims at
extending the success story of geometric algorithms with guarantees, as achieved in the CGAL library and the
related EU funded research projects, to spaces of high dimensions. This is not a straightforward task. For many
problems, no efficient algorithms exist that compute the exact solution in high dimensions. This behavior is
commonly called the curse of dimensionality. We plan to address the curse of dimensionality by focusing on
inherent structure in the data like sparsity or low intrinsic dimension, and by resorting to fast approximation
algorithms. The following two kinds of approximation guarantee are particularly desirable: first, the solution
approximates an objective better if more time and memory resources are employed (algorithmic guarantee),
and second, the approximation gets better when the data become more dense and/or more accurate (learning
theoretic guarantee). To lay the foundation of a new field—computational geometric learning—we will follow
an approach integrating both theoretical and practical developments, the latter in the form of the construction
of a high quality software library and application software.

- Dates : November 2010, November 2013.

- Duration: 3 years.

8.3. International initiatives
8.3.1. Associate team TGDA

Participants: Jean-Daniel Boissonnat, Frédéric Chazal, David Cohen-Steiner, Quentin Mérigot, Steve Oudot.

We are involved in an INRIA associated team with the group of Prof. Leonidas Guibas at Stanford University
since January 2008. Our collaboration focuses on Topological and Geometric Data Analysis. More precisely,
our aim is to develop new topological and geometric frameworks and algorithms for the analysis of data
sets represented by point clouds in possibly high-dimensional or non-Euclidean spaces. Several visits took
place in 2010 leading to several joint publications. Among the scientific outcomes of this collaboration are a
new stability theory for topological persistence, a new analysis method for scalar fields defined over sampled
Riemannian manifolds, and a clustering algorithm based on persistence.

8.3.2. Associate team DDGM
Participants: Pierre Alliez, David Cohen-Steiner.

http://cglearning.eu/
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We are involved in an INRIA associate team with Prof. Desbrun’s group at Caltech since January 2009. Our
goal is to collaborate on topics commonly referred to as Geometry Processing. This year we have exchanged
on robust surface reconstruction. In addition to Prof. Desbrun three students from Caltech were involved in
the collaboration. We applied for renewal of the associate team for 2011.

8.3.3. Associate team OrbiCG
Participants: Mikhail Bogdanov, Manuel Caroli, Monique Teillaud.

The associate team OrbiCG started in 2009. It is a joint project with two institutes of the University of
Groningen: the Institute of Mathematics and Computing Science led by Gert Vegter, and Rien van de Weijgaert
from the Kapteyn Astronomical Institute. This research was originally motivated by the needs of astronomers
in Groningen who study the evolution of the large scale mass distribution in our universe by running dynamical
simulations on periodic 3D data. Our goal is to extend the traditional focus of computational geometry on the
Euclidean space Rd ("urbi") to encompass various spaces ("orbi"), in particular orbit spaces of the Euclidean
space, of the hyperbolic space, and of the sphere.

8.4. Exterior research visitors
— Gert Vegter, Institute of Mathematics and Computing Science, University of Groningen, NL, two weeks in
February, two weeks in october, one week in December.
— Jonathan Shewchuk, University of Berkeley, 3 months in February-April.
— Johan Hidding, Institute of Mathematics and Computing Science, University of Groningen, NL, one week
in December.
— Pratyush Pranav, Kapteyn Astronomical Institute, University of Groningen, NL, three weeks in June.
— Rien van de Weijgaert, Kapteyn Astronomical Institute, University of Groningen, NL, one week in
December.
— Mathieu Desbrun, Caltech, one week in July.
— Fernando de Goes, Caltech, one month in June-July.
— Amir Vaxman, Technion, one week in September.
— Leonidas Guibas Stanford, 2 weeks in Sophia Antipolis in August and 3 weeks in Saclay in October-
September.

9. Dissemination

9.1. Animation of the scientific community
9.1.1. Editorial boards of scientific journals

— P. Alliez is an associate editor ACM Transactions on Graphics and Graphical Models. He was an associate
editor of The Visual Computer until October 2010.
— J-D. Boissonnat is a member of the editorial board of the Journal of the ACM, Discrete and Computational
Geometry, Algorithmica, the International Journal of Computational Geometry and Applications and the
electronic Journal of Computational Geometry. He is also a member of the editorial advisory board of the
Springer Verlag book series Geometry and Computing.
— F. Chazal is an associate editor of Graphical Models and SIAM journal on Imaging Science.
— M. Teillaud is a member of the editorial board of CGTA, Computational Geometry: Theory and Applica-
tions and of IJCGA, the International Journal of Computational Geometry and Applications.
— M. Yvinec is a member of the editorial board of Journal of Discrete Algorithms.
— P. Alliez, M. Hemmer, S. Pion (chair), M. Teillaud (review manager), and M. Yvinec are members of the
CGAL editorial board.
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9.1.2. Conference program committees
— P. Alliez was paper co-chair of Pacific Graphics 2010. He was a programme committee member of
Eurographics Symposium on Geometry Processing, ACM Symposium on Solid and Physical Modeling,
Shape Modeling International and Advances in Architectural Geometry. He also organized a mini-symposium
on Open Source Software for Curves and Surfaces for the seventh international conference on Curves and
Surfaces.
— J-D. Boissonnat was a programme committee member of Eurographics Symposium on Geometry Pro-
cessing and a member of the organization committee of the seventh international conference on Curves and
Surfaces.
— F. Chazal was a programme committee member of ATMCS 2010, Shape Modeling International.
— D. Cohen-Steiner was a programme committee member of Eurographics Symposium on Geometry
Processing 2010.
— S. Pion was a programme committee member of ESA 2010, European Symposium on Algorithms.
— Monique Teillaud was a member of the Third International Congress on Mathematical Software, held in
Kobe University, Kobe, Japan, September 13-17, 2010.

9.1.3. Steering committees
— Monique Teillaud is a member of the Computational Geometry Steering Committee.

9.1.4. Ph.D. thesis and HDR committees
— P. Alliez was a member of the PhD committee of Mathieu Bredif (Telecom ParisTech and IGN, France),
and thesis reviewer for Thierry Stein (INRIA Rhône-Alpes) and Julie Digne (ENS Cachan).
— J-D. Boissonnat was a member of the PhD committee of Pooran Memari (Université de Nice - Sophia
Antipolis), Nicolas Montana (Université Paris-Sud), Jean-Marie Mirebeau (Paris 6), Nader Salman (Université
de Nice - Sophia Antipolis).
— F. Chazal was a member of the PhD committee of Nicolas Montana (Université Paris-Sud), Julie Digne
(ENS Cachan) and Maks Ovsjanikov (Stanford).
— O. Devillers was a member of the PhD committee of P. M. M. de Castro (University of Nice-Sophia
Antipolis).
— M. Teillaud was a reviewer and a member of the HDR committee of Guillaume Damiand (Université Claude
Bernard Lyon 1), a reviewer and a member of the PhD committee of Maria Pentcheva (Université Nancy 2),
and a member of the PhD committee of Luis Peñaranda (Université Nancy 2) and of Manuel Caroli (Université
de Nice - Sophia Antipolis).
— Mariette Yvinec was a member of the PhD committee of Nader Salman (Université de Nice - Sophia
Antipolis).

9.1.5. INRIA committees
— P. Alliez is member of the COST GTAI (conseil d’orientation scientifique et technologique, groupe de
travail actions incitatives), of the commission d’animation scientifique (CAS) and of the comité de suivi
doctoral (CSD).
— J-D. Boissonnat was a member of the CR2/CR1 recruitment committee of INRIA Rhône-Alpes.
— F. Chazal is a member (chair since November) of the “Commission scientifique” at INRIA Saclay - Île de
France.
— M. Teillaud is a member of the INRIA Evaluation Board, the INRIA Sophia Antipolis - Méditerranée CDT
(Committee for Technologic Development), and the national INRIA CDT.

9.1.6. Other committees
— J.-D. Boissonnat chaired the visiting committee of LIAMA (Pékin), november 2010.
— J.-D. Boissonnat is a member of the working groups GP1 (Modèles et calcul) and GP2 (Logiciels et
systèmes informatiques) de l’Alliance des sciences et technologies du numérique (Allistène).
— S. Pion is a member of the experts group of AFNOR for the standardization of the C++ language within
the ISO/WG21 working group.
— S. Pion is a member of the IEEE-1788 working group for standardization of interval arithmetic.
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9.1.7. Conference organization
— J-D. Boissonnat chairs the scientific committee of the Jacques Morgenstern colloquium.
— O. Devillers, C. French, and M. Teillaud co-organized the Triangles-OrbiCG workshop on computational
geometry. http://www.inria.fr/sophia/geometrica/collaborations/triangles/Workshop/
— M. Yvinec and P. Alliez co-organized the workshop on Semantic 3D Media and Content within the
framework of the EU coordinated action Focus K3D (http://195.251.17.14/conference/).

9.1.8. Web site
M. Teillaud is maintaining the Computational Geometry Web Pages http://www.computational-geometry.org/,
hosted by INRIA. This site offers general interest information for the computational geometry community,
in particular the Web proceedings of the Video Review of Computational Geometry, part of the Annual
Symposium on Computational Geometry.

9.2. Teaching
9.2.1. Teaching responsibilities

— Monique Teillaud is a member of the jury of the Agrégation de Mathématiques.

9.2.2. Teaching at universities
We give here the details of graduate courses. Web pages of these courses can be found on the web site :
http://www.inria.fr/sophia/geometrica/

2009-2010 courses (taught in 2010)
— Master IFI 1ère année (Nice), Computational Geometry, O. Devillers (12h).
2010-2011 courses (taught in 2010)
— International Chair of Tsinghua University (Beijing), Shape reconstruction, J-D. Boissonnat (2 days).
— Master IFI (Sophia Antipolis), Geometric algorithms, theory and practice, P. Alliez, O. Devillers and M.
Teillaud (28h).
— Ecole des Ponts ParisTech (Paris), Meshes and Applications, P. Alliez with collaboration from G. Peyré
(21h).
— Master at EFREI (Paris), Geometric algorithms, P. Alliez and B. Pellenard (45h).
— Winter school, ENS Lyon, Algorithms for geometric approximation J.-D. Boissonnat, F. Chazal and M.
Yvinec (24).
— Master MPRI (Paris) Computational Geometric Learning J.-D. Boissonnat, F. Chazal and M. Yvinec (24h).

9.2.3. Internships
Internship proposals can be found on the web at http://www.inria.fr/sophia/geometrica/
— Mikhail Bogdanov, 3D periodic volume meshes, Moscow Institute of Physics and Technology.
— Thu-Hien Nguyen Thi, Tangential complex, MPRI.
— Fei (Sophie) Che, 3D triangulation demo, in the framework of the Google Summer of Code, University of
Delaware (PhD student)
— Amir Vaxman, Oracle for subdivision surfaces, in the framework of the Google Summer of Code, Technion
(PhD student).
— Alain Tayeb, Meshing NURBS surfaces, in collaboration with Lumiscaphe (Master student).
— Boris Dalstein, Quadrangle surface tiling, (student from ENS Lyon).
— Marc Jeanmougin, Parallel Mesh Generation, (student from ENS Paris).
— Kacper Rzepecki, Improving and simplifying the CGAL Triangulation API, in the framework of the Google
Summer of Code, Warsaw, Poland.
— Maxime Brénon, Experimental study of nearest and reverse nearest neighbor searches using Locality-
Sensitive Hashing (Master student).

9.2.4. Ongoing Ph.D. theses
— Mikhail Bogdanov, Triangulations in non-Euclidean spaces, Université de Nice-Sophia Antipolis.

http://www.inria.fr/sophia/geometrica/collaborations/triangles/Workshop/
http://195.251.17.14/conference/
http://www.computational-geometry.org/
http://www.inria.fr/sophia/geometrica/index.php?option=com_content&view=section&layout=blog&id=5&Itemid=5
http://www.inria.fr/sophia/geometrica/index.php?option=com_content&view=section&id=7&Itemid=7
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— Alexandre Bos, Topological methods for geometric data classification, Université Paris XI.
— Claire Caillerie, Sélection de modèles pour l’inférence géométrique, Université Paris XI.
— Arijit Ghosh, Computational Information Geometry, Université de Nice-Sophia Antipolis.
— Bertrand Pellenard, Surface and Domain Tiling, Université de Nice-Sophia Antipolis.

9.2.5. Ph.D. and HDR defenses
— Manuel Caroli, Triangulating Point Sets in Orbit Spaces, Université de Nice-Sophia Antipolis, December
10th.
— Pedro Machado Manhães de Castro, Practical Ways to Accelerate Delaunay Triangulations, Université de
Nice-Sophia Antipolis, October 25th.
— Nicolas Montana, Calcul robuste d’enveloppes de solides en mouvement. Application à la simulation de
l’enlèvement de matière en usinage, Université Paris-Sud, June 2010.
— Pooran Memari, Geometric tomography with topological guarantees, Université de Nice-Sophia Antipolis,
March 26th.
— Nader Salman, 3D point clouds to feature preserving meshes, Université de Nice-Sophia Antipolis,
December 16th.

9.3. Participation to conferences, seminars, invitations
9.3.1. Invited Talks

Invited talks at conferences :
— P. Alliez, “Digital Geometry Processing”, Le modèle et l’algorithme, INRIA Rocquencourt, January 2010.
— J-D. Boissonnat, “Maillage et reconstruction de variétés”, LAAS, March 2010.
— J-D. Boissonnat, “Star stitching”, Journée conjointe MSPC/AFA Génération de maillages : théorie et
applications”, November 2010.
— J-D. Boissonnat, “Histoire naturelle de la géométrie algorithmique”, Lycée Alphonse Daudet, Nîmes,
Septembre 2010.
— P. Alliez, “Traitement numerique de la geometrie”, Lycée Alphonse Daudet, Nîmes, Septembre 2010.
— F. Chazal, “Geometric inference for probability measures: extracting robust geometric information from
noisy data”, Journées STAR, Rennes II, October 2010.
— F. Chazal, “Geometric inference for probability measures: extracting robust geometric information from
noisy data”, Algebra and Topology: Methods, Computation and Science, June 2010.
— F. Chazal, “Geometric Inference”, Curves and Surfaces 2010, Avignon, June 2010.
— S. Oudot, “Analysis of Scalar Fields over Point Cloud Data”, Algebra and Topology: Methods, Computation
and Science, June 2010.

9.3.2. Conferences and Seminars
Members of the project have presented their published articles at conferences. The reader can refer to the
bibliography to obtain the corresponding list. We list below all other talks given in seminars, summer schools
and other workshops.
— J.-D. Boissonnat, “Manifold Reconstruction using Tangential Delaunay Complexes”, Stanford university,
January 2010.
— F. Chazal, “Geometric inference for probability measures: extracting robust geometric information from
noisy data”, séminaire parisien de statistique, IHP, January 2010.
— F. Chazal, “Geometric Inference”, Stanford, Feb. 2010.
— J.-D. Boissonnat, “Manifold Reconstruction using Tangential Delaunay Complexes”, Journées de
Géométrie Algorithmique, Luminy, mars 2010.
— C. Caillerie, “Sélection de modèle pour l’approximation simpliciale”, Journées de Géométrie Algorith-
mique, Luminy, mars 2010.
— M. Caroli, “Computing 3D Periodic Triangulations”, Journées de Géométrie Algorithmique, Luminy, mars
2010.
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— O. Devillers, “Influence du bruit sur le nombre de points extrêmes”, Journées de Géométrie Algorithmique,
Luminy, mars 2010.
— P. Skraba, “Soft Clustering and Persistent Homology”, Journées de Géométrie Algorithmique, Luminy,
mars 2010.
— P. M. M. de Castro, “Self-Adapting Point Location”, Journées de Géométrie Algorithmique, Luminy, mars
2010.
— F. Chazal, “Calcul géométrique : de la modélisation des formes 3D à la recherche de structures
géométriques dans les masses de données”, séminaire Maths et Société, Neuchatel, avril 2010.
— F. Chazal, “Geometric inference for probability measures: extracting robust geometric information from
noisy data”, séminaire de mathématiques, Neuchâtel, avril 2010.
— P. Alliez, “Robust Surface Reconstruction from Raw Point Sets”, ENS Cachan, Juin 2010.
— O. Devillers, “Triangulation de Delaunay de points dans des disques. Concilier complexité et efficacité”,
Journées Informatique et Géométrie, Grenoble, septembre 2010.
— M. Glisse, “Persistance topologique et stabilité”, Journées Informatique et Géométrie, Grenoble, septembre
2010.
— M. Yvinec, “CGAL-mesh”, seminar at CEMRACS 2010, SMAI, Marseille Luminy, september 2010.
— M. Yvinec, “CGAL-mesh”, Tetrahedron workshop, Swansea U.K., septembre 2010.
— F. Chazal, “Geometric inference for probability measures: extracting robust geometric information from
noisy data”, séminaire de mathématiques, Mulhouse, novembre 2010.

9.3.3. The Geometrica seminar
http://www.inria.fr/sophia/geometrica/
The GEOMETRICA seminar featured presentations from the following visiting scientists:
— I. Bloch and T. Boubekeur (Telecom Paris Tech) : Modélisation réaliste du corps humain: intérprétation
d’images et informatique graphique.
— A. Vaxman (Technion) : A multi-resolution approach to heat kernels on discrete surfaces.
— A. Vaxman (Technion) : On line reconstruction of 3D objects from arbitrary cross-section data.
— L. Guibas (Stanford) : The information is in the maps.
— T. Lewiner (PUC) : Fast generation of pointerless octree duals.
— G. Tavares (PUC) : Geometry processing and application to 3D oil reservoir reconstruction.
— F. de Goes (Caltech) : Exoskeleton: shape abstraction driven by perceptual parts.
— L. de Luca (CNRS/MCC Marseille) : Methods, formalisms and tools for digital surveying and representa-
tion of architectural heritage.
— Y. Wei (LIAMA) : Real-time simulation of blood flow interactions in vascular procedures.
— M. Fisher (Stanford) : Context-aware scene modeling.
— J.M. Favreau (CNR-IMATI) : Outils pour le pavage de surfaces.
— G. Vegter (Groeningen) : Complexity of curve approximation.
— N. Wolpert (Stuttgart) : Maintaining exactly the convex hull of points moving along circles.

9.3.4. Scientific visits
— Pierre Alliez, Caltech, Nov 19-Dec 22.
— Jean-Daniel Boissonnat, Stanford, Jan. 20- Feb, 3, 2010.
— Manuel Caroli, University of Groningen, May 3-28.
— Manuel Caroli, Stanford University, October 26-27.
— Frédéric Chazal, Stanford, Feb 22 - March 5.
— Frédéric Chazal, Stanford, Nov 26-Dec 4.
— Monique Teillaud, University of Groningen, May 19-28.

9.3.5. Distinctions
— Michael Hemmer received the Dan David Prize Fellowship, Dan David Foundation, Tel Aviv, Israel, May
10.

http://www.inria.fr/sophia/geometrica/index.php?option=com_content&view=section&id=3&Itemid=3
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— F. Chazal and P. Skraba received with M. Ovsjanikov and L. Guibas from Stanford the best paper award
[33] at the NORDIA workshop 2010 (CVPR 2010).
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