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2. Overall Objectives

2.1. An overview of geometric numerical integration
A fundamental and enduring challenge in science and technology is the quantitative prediction of time-
dependent nonlinear phenomena. While dynamical simulation (for ballistic trajectories) was one of the first
applications of the digital computer, the problems treated, the methods used, and their implementation have
all changed a great deal over the years. Astronomers use simulation to study long term evolution of the solar
system. Molecular simulations are essential for the design of new materials and for drug discovery. Simulation
can replace or guide experiment, which often is difficult or even impossible to carry out as our ability to
fabricate the necessary devices is limited.
During the last decades, we have seen dramatic increases in computing power, bringing to the fore an ever
widening spectrum of applications for dynamical simulation. At the boundaries of different modeling regimes,
it is found that computations based on the fundamental laws of physics are under-resolved in the textbook
sense of numerical methods. Because of the vast range of scales involved in modeling even relatively simple
biological or material functions, this limitation will not be overcome by simply requiring more computing
power within any realistic time. One therefore has to develop numerical methods which capture crucial
structures even if the method is far from “converging" in the mathematical sense. In this context, we are forced
increasingly to think of the numerical algorithm as a part of the modeling process itself. A major step forward
in this area has been the development of structure-preserving or “geometric" integrators which maintain
conservation laws, dissipation rates, or other key features of the continuous dynamical model. Conservation of
energy and momentum are fundamental for many physical models; more complicated invariants are maintained
in applications such as molecular dynamics and play a key role in determining the long term stability of
methods. In mechanical models (biodynamics, vehicle simulation, astrodynamics) the available structure may
include constraint dynamics, actuator or thruster geometry, dissipation rates and properties determined by
nonlinear forms of damping.
In recent years the growth of geometric integration has been very noticeable. Features such as symplecticity
or time-reversibility are now widely recognized as essential properties to preserve, owing to their physical
significance. This has motivated a lot of research [42], [37], [35] and led to many significant theoretical
achievements (symplectic and symmetric methods, volume-preserving integrators, Lie-group methods, ...).
In practice, a few simple schemes such as the Verlet method or the Störmer method have been used for years
with great success in molecular dynamics or astronomy. However, they now need to be further improved in
order to fit the tremendous increase of complexity and size of the models.



2 Activity Report INRIA 2010

2.2. Overall objectives
To become more specific, the project IPSO aims at finding and implementing new structure-preserving
schemes and at understanding the behavior of existing ones for the following type of problems:

• systems of differential equations posed on a manifold.

• systems of differential-algebraic equations of index 2 or 3, where the constraints are part of the
equations.

• Hamiltonian systems and constrained Hamiltonian systems (which are special cases of the first two
items though with some additional structure).

• highly-oscillatory systems (with a special focus of those resulting from the Schrödinger equation).

Although the field of application of the ideas contained in geometric integration is extremely wide (e.g.
robotics, astronomy, simulation of vehicle dynamics, biomechanical modeling, biomolecular dynamics, geo-
dynamics, chemistry...), IPSO will mainly concentrate on applications for molecular dynamics simulation and
laser simulation:

• There is a large demand in biomolecular modeling for models that integrate microscopic molecular
dynamics simulation into statistical macroscopic quantities. These simulations involve huge systems
of ordinary differential equations over very long time intervals. This is a typical situation where the
determination of accurate trajectories is out of reach and where one has to rely on the good qualitative
behavior of structure-preserving integrators. Due to the complexity of the problem, more efficient
numerical schemes need to be developed.

• The demand for new models and/or new structure-preserving schemes is also quite large in laser
simulations. The propagation of lasers induces, in most practical cases, several well-separated scales:
the intrinsically highly-oscillatory waves travel over long distances. In this situation, filtering the
oscillations in order to capture the long-term trend is what is required by physicists and engineers.

...

3. Scientific Foundations

3.1. Structure-preserving numerical schemes for solving ordinary differential
equations
Participants: François Castella, Philippe Chartier, Erwan Faou.

In many physical situations, the time-evolution of certain quantities may be written as a Cauchy problem for a
differential equation of the form

y′(t) = f(y(t)),

y(0) = y0.
(1)

For a given y0, the solution y(t) at time t is denoted ϕt(y0). For fixed t, ϕt becomes a function of y0 called the
flow of (1). From this point of view, a numerical scheme with step size h for solving (1) may be regarded as an
approximation Φh of ϕh. One of the main questions of geometric integration is whether intrinsic properties
of ϕt may be passed on to Φh.

This question can be more specifically addressed in the following situations:

3.1.1. Reversible ODEs
The system (1) is said to be ρ-reversible if there exists an involutive linear map ρ such that
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ρ ◦ ϕt = ϕ−1
t ◦ ρ = ϕ−t ◦ ρ. (2)

It is then natural to require that Φh satisfies the same relation. If this is so, Φh is said to be symmetric.
Symmetric methods for reversible systems of ODEs are just as much important as symplectic methods for
Hamiltonian systems and offer an interesting alternative to symplectic methods.

3.1.2. ODEs with an invariant manifold
The system (1) is said to have an invariant manifold g whenever

M = {y ∈ Rn; g(y) = 0} (3)

is kept globally invariant by ϕt. In terms of derivatives and for sufficiently differentiable functions f and g,
this means that

∀ y ∈ M, g′(y)f(y) = 0.

As an example, we mention Lie-group equations, for which the manifold has an additional group structure.
This could possibly be exploited for the space-discretisation. Numerical methods amenable to this sort of
problems have been reviewed in a recent paper [34] and divided into two classes, according to whether they
use g explicitly or through a projection step. In both cases, the numerical solution is forced to live on the
manifold at the expense of some Newton’s iterations.

3.1.3. Hamiltonian systems
Hamiltonian problems are ordinary differential equations of the form:

ṗ(t) = −∇qH(p(t), q(t)) ∈ Rd

q̇(t) = ∇pH(p(t), q(t)) ∈ Rd
(4)

with some prescribed initial values (p(0), q(0)) = (p0, q0) and for some scalar function H , called the
Hamiltonian. In this situation,H is an invariant of the problem. The evolution equation (4) can thus be regarded
as a differential equation on the manifold

M = {(p, q) ∈ Rd × Rd;H(p, q) = H(p0, q0)}.

Besides the Hamiltonian function, there might exist other invariants for such systems: when there exist d
invariants in involution, the system (4) is said to be integrable. Consider now the parallelogram P originating
from the point (p, q) ∈ R2d and spanned by the two vectors ξ ∈ R2d and η ∈ R2d, and let ω(ξ, η) be the sum
of the oriented areas of the projections over the planes (pi, qi) of P ,

ω(ξ, η) = ξTJη,

where J is the canonical symplectic matrix

J =

[
0 Id

−Id 0

]
.
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A continuously differentiable map g from R2d to itself is called symplectic if it preserves ω, i.e. if

ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

A fundamental property of Hamiltonian systems is that their exact flow is symplectic. Integrable Hamiltonian
systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations,
as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction
of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations of
Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of
time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.

3.1.4. Differential-algebraic equations
Whenever the number of differential equations is insufficient to determine the solution of the system, it may
become necessary to solve the differential part and the constraint part altogether. Systems of this sort are
called differential-algebraic systems. They can be classified according to their index, yet for the purpose of
this expository section, it is enough to present the so-called index-2 systems

ẏ(t) = f(y(t), z(t)),
0 = g(y(t)),

(5)

where initial values (y(0), z(0)) = (y0, z0) are given and assumed to be consistent with the constraint
manifold. By constraint manifold, we imply the intersection of the manifold

M1 = {y ∈ Rn, g(y) = 0}

and of the so-called hidden manifold

M2 = {(y, z) ∈ Rn × Rm,
∂g

∂y
(y)f(y, z) = 0}.

This manifold M = M1

⋂
M2 is the manifold on which the exact solution (y(t), z(t)) of (5) lives.

There exists a whole set of schemes which provide a numerical approximation lying on M1. Furthermore,
this solution can be projected on the manifold M by standard projection techniques. However, it it worth
mentioning that a projection destroys the symmetry of the underlying scheme, so that the construction of a
symmetric numerical scheme preserving M requires a more sophisticated approach.

3.2. Highly-oscillatory systems
Participants: François Castella, Philippe Chartier, Erwan Faou.

In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1) involves
fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much
cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the
number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

q̈ = −∇V (q) (6)
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where the potential V (q) is a sum of potentials V = W + U acting on different time-scales, with ∇2W
positive definite and ‖∇2W‖ >> ‖∇2U‖. In order to get a bounded error propagation in the linearized
equations for an explicit numerical method, the step size must be restricted according to

hω < C,

whereC is a constant depending on the numerical method and where ω is the highest frequency of the problem,
i.e. in this situation the square root of the largest eigenvalue of∇2W . In applications to molecular dynamics for
instance, fast forces deriving from W (short-range interactions) are much cheaper to evaluate than slow forces
deriving from U (long-range interactions). In this case, it thus seems highly desirable to design numerical
methods for which the number of evaluations of slow forces is not (at least not too much) affected by the
presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the
Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one
indeed gets the time-dependent Schrödinger equation:

iψ̇(t) =
1
ε
H(t)ψ(t), (7)

where H(t) is finite-dimensional matrix and where ε typically is the square-root of a mass-ratio (say
electron/ion for instance) and is small (ε ≈ 10−2 or smaller). Through the coupling with classical mechanics
(H(t) is obtained by solving some equations from classical mechanics), we are faced once again with two
different time-scales, 1 and ε. In this situation also, it is thus desirable to devise a numerical method able to
advance the solution by a time-step h > ε.

3.3. Geometric schemes for the Schrödinger equation
Participants: François Castella, Philippe Chartier, Erwan Faou.

Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy
preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian
structures. This is the case of the time-dependent Schrödinger equation, which we may write as

iε
∂ψ

∂t
= Hψ, (8)

where ψ = ψ(x, t) is the wave function depending on the spatial variables x = (x1, · · · , xN ) with xk ∈ Rd

(e.g., with d = 1 or 3 in the partition) and the time t ∈ R. Here, ε is a (small) positive number representing the
scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

k=1

ε2

2mk
∆xk

and V = V (x),

where mk > 0 is a particle mass and ∆xk
the Laplacian in the variable xk ∈ Rd, and where the real-valued

potential V acts as a multiplication operator on ψ.
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The multiplication by i in (8) plays the role of the multiplication by J in classical mechanics, and the energy
〈ψ|H|ψ〉 is conserved along the solution of (8), using the physicists’ notations 〈u|A|u〉 = 〈u,Au〉 where 〈 , 〉
denotes the Hermitian L2-product over the phase space. In quantum mechanics, the number N of particles is
very large making the direct approximation of (8) very difficult.

The numerical approximation of (8) can be obtained using projections onto submanifolds of the phase space,
leading to various PDEs or ODEs: see [40], [39] for reviews. However the long-time behavior of these
approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite
dimensional. In the general case, it is very difficult to prove the preservation of qualitative properties of (8) such
as energy conservation or growth in time of Sobolev norms. The reason for this is that backward error analysis
is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

ψ1 = exp (−i(δt)V/2) exp (i(δt)∆) exp (−i(δt)V/2)ψ0 (9)

where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator
is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these
schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space
or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose
long-time properties turn out to be more tractable.

3.4. High-frequency limit of the Helmholtz equation
Participant: François Castella.

The Helmholtz equation models the propagation of waves in a medium with variable refraction index. It is a
simplified version of the Maxwell system for electro-magnetic waves.

The high-frequency regime is characterized by the fact that the typical wavelength of the signals under
consideration is much smaller than the typical distance of observation of those signals. Hence, in the high-
frequency regime, the Helmholtz equation at once involves highly oscillatory phenomena that are to be
described in some asymptotic way. Quantitatively, the Helmholtz equation reads

iαεuε(x) + ε2∆xuε + n2(x)uε = fε(x). (10)

Here, ε is the small adimensional parameter that measures the typical wavelength of the signal, n(x) is the
space-dependent refraction index, and fε(x) is a given (possibly dependent on ε) source term. The unknown
is uε(x). One may think of an antenna emitting waves in the whole space (this is the fε(x)), thus creating at
any point x the signal uε(x) along the propagation. The small αε > 0 term takes into account damping of the
waves as they propagate.

One important scientific objective typically is to describe the high-frequency regime in terms of rays
propagating in the medium, that are possibly refracted at interfaces, or bounce on boundaries, etc. Ultimately,
one would like to replace the true numerical resolution of the Helmholtz equation by that of a simpler,
asymptotic model, formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation, the specificity of the Helmholtz equation is
the following. While the wave equation typically describes the evolution of waves between some initial time
and some given observation time, the Helmholtz equation takes into account at once the propagation of waves
over infinitely long time intervals. Qualitatively, in order to have a good understanding of the signal observed
in some bounded region of space, one readily needs to be able to describe the propagative phenomena in the
whole space, up to infinity. In other words, the “rays” we refer to above need to be understood from the initial
time up to infinity. This is a central difficulty in the analysis of the high-frequency behaviour of the Helmholtz
equation.
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3.5. From the Schrödinger equation to Boltzmann-like equations
Participant: François Castella.

The Schrödinger equation is the appropriate way to describe transport phenomena at the scale of electrons.
However, for real devices, it is important to derive models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows to obtain quantitative informa-
tion about electronic transport in crystals. It reads, in convenient adimensional units,

i∂tψ(t, x) = −1
2
∆xψ + V (x)ψ, (11)

where V (x) is the potential and ψ(t, x) is the time- and space-dependent wave function. However, the size
of real devices makes it important to derive simplified models that are valid at a larger scale. Typically, one
wishes to have kinetic transport equations. As is well-known, this requirement needs one to be able to describe
“collisions” between electrons in these devices, a concept that makes sense at the macroscopic level, while
it does not at the microscopic (electronic) level. Quantitatively, the question is the following: can one obtain
the Boltzmann equation (an equation that describes collisional phenomena) as an asymptotic model for the
Schrödinger equation, along the physically relevant micro-macro asymptotics? From the point of view of
modelling, one wishes here to understand what are the “good objects”, or, in more technical words, what are the
relevant “cross-sections”, that describe the elementary collisional phenomena. Quantitatively, the Boltzmann
equation reads, in a simplified, linearized, form :

∂tf(t, x, v) =
∫
R3
σ(v, v′) [f(t, x, v′) − f(t, x, v)]dv′. (12)

Here, the unknown is f(x, v, t), the probability that a particle sits at position x, with a velocity v, at time t.
Also, σ(v, v′) is called the cross-section, and it describes the probability that a particle “jumps” from velocity
v to velocity v′ (or the converse) after a collision process.

3.6. Spatial approximation for solving ODEs
Participants: Philippe Chartier, Erwan Faou.

The technique consists in solving an approximate initial value problem on an approximate invariant manifold
for which an atlas consisting of easily computable charts exists. The numerical solution obtained is this way
never drifts off the exact manifold considerably even for long-time integration.

Instead of solving the initial Cauchy problem, the technique consists in solving an approximate initial value
problem of the form:

ỹ′(t) = f̃(ỹ(t)),

ỹ(0) = ỹ0,
(13)

on an invariant manifold M̃ = {y ∈ Rn; g̃(y) = 0}, where f̃ and g̃ approximate f and g in a sense that remains
to be defined. The idea behind this approximation is to replace the differential manifold M by a suitable
approximation M̃ for which an atlas consisting of easily computable charts exists. If this is the case, one can
reformulate the vector field f̃ on each domain of the atlas in an easy way. The main obstacle of parametrization
methods [41] or of Lie-methods [38] is then overcome.

The numerical solution obtained is this way obviously does not lie on the exact manifold: it lives on the
approximate manifold M̃. Nevertheless, it never drifts off the exact manifold considerably, if M and M̃ are
chosen appropriately close to each other.
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An obvious prerequisite for this idea to make sense is the existence of a neighborhood V of M containing
the approximate manifold M̃ and on which the vector field f is well-defined. In contrast, if this assumption
is fulfilled, then it is possible to construct a new admissible vector field f̃ given g̃. By admissible, we mean
tangent to the manifold M̃, i.e. such that

∀ y ∈ M̃, G̃(y)f̃(y) = 0,

where, for convenience, we have denoted G̃(y) = g̃′(y). For any y ∈ M̃, we can indeed define

f̃(y) = (I − P (y))f(y), (14)

where P (y) = G̃T (y)(G̃(y)G̃T (y))
−1
G̃(y) is the projection along M̃.

4. Application Domains

4.1. Laser physics
Laser physics considers the propagation over long space (or time) scales of high frequency waves. Typically,
one has to deal with the propagation of a wave having a wavelength of the order of 10−6m, over distances
of the order 10−2m to 104m. In these situations, the propagation produces both a short-scale oscillation and
exhibits a long term trend (drift, dispersion, nonlinear interaction with the medium, or so), which contains
the physically important feature. For this reason, one needs to develop ways of filtering the irrelevant high-
oscillations, and to build up models and/or numerical schemes that do give information on the long-term
behavior. In other terms, one needs to develop high-frequency models and/or high-frequency schemes.

This task has been partially performed in the context of a contract with Alcatel, in that we developed a new
numerical scheme to discretize directly the high-frequency model derived from physical laws.

Generally speaking, the demand in developing such models or schemes in the context of laser physics, or
laser/matter interaction, is large. It involves both modeling and numerics (description of oscillations, structure
preserving algorithms to capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling, one would like to understand the very coupling
between a laser propagating in, say, a fiber, and the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is a Schrödinger like equation that
describes the evolution of the atoms, when coupled to the laser field. Here the laser field induces a potential
that acts directly on the atom, and the link bewteeen this potential and the laser itself is given by the so-called
dipolar matrix, a matrix made up of physical coefficients that describe the polarization of the atom under the
applied field.

The scientific objective here is twofold. First, one wishes to obtain tractable asymptotic models that average out
the high oscillations of the atomic system and of the laser field. A typical phenomenon here is the resonance
between the field and the energy levels of the atomic system. Second, one wishes to obtain good numerical
schemes in order to solve the Bloch equation, beyond the oscillatory phenomena entailed by this model.
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4.2. Molecular Dynamics
In classical molecular dynamics, the equations describe the evolution of atoms or molecules under the action
of forces deriving from several interaction potentials. These potentials may be short-range or long-range and
are treated differently in most molecular simulation codes. In fact, long-range potentials are computed at only a
fraction of the number of steps. By doing so, one replaces the vector field by an approximate one and alternates
steps with the exact field and steps with the approximate one. Although such methods have been known and
used with success for years, very little is known on how the “space" approximation (of the vector field) and
the time discretization should be combined in order to optimize the convergence. Also, the fraction of steps
where the exact field is used for the computation is mainly determined by heuristic reasons and a more precise
analysis seems necessary. Finally, let us mention that similar questions arise when dealing with constrained
differential equations, which are a by-product of many simplified models in molecular dynamics (this is the
case for instance if one replaces the highly-oscillatory components by constraints).

5. New Results

5.1. Quasi invariant modified Sobolev norms for semi linear reversible PDEs
Participant: Erwan Faou.

This is a joint work with B. Grébert, from the University of Nantes.

We consider a general class of infinite dimensional reversible differential systems. In [22] we assume a non
resonance condition on the linear frequencies, and we construct for such systems almost invariant pseudo
norms that are closed to Sobolev-like norms. This allows us to prove that if the Sobolev norm of index s of the
initial data z0 is sufficiently small (of order ε) then the Sobolev norm of the solution is bounded by 2ε during
very long time (of order ε−r with r arbitrary). It turns out that this theorem applies to a large class of reversible
semi linear PDEs including the non linear Schrödinger equation on the d-dimensional torus. We also apply
our method to a system of coupled NLS equations which is reversible but not Hamiltonian. We also notice
that for the same class of reversible systems we can prove a Birkhoff normal form theorem that in turn implies
the same bounds on the Sobolev norms. Nevertheless the technics that we use to prove the existence of quasi
invariant pseudo norms is much more simple and direct.

5.2. Birkhoff normal form for splitting methods applied to semi linear
Hamiltonian PDEs
Participant: Erwan Faou.

This is a joint work with B. Grébert and E. Paturel, from the University of Nantes.

We consider here Hamiltonian PDEs associated with a Hamiltonian function that can be split into a linear
unbounded operator and a regular nonlinear part. We consider splitting methods associated with this decom-
position. Using a finite dimensional Birkhoff normal form result, we show the almost preservation of the
actions of the numerical solution associated with the splitting method over arbitrary long time and for asymp-
totically large level of space approximation, provided the Sobolev norm of the initial data is small enough.
This result holds under generic Ênon-resonance conditions on the frequencies of the linear operator and on the
step size. We apply these results to nonlinear Schrödinger equations as well as the nonlinear wave equation.
In [23] we consider the case of fully discrete Hamiltonian PDEs, and in [24] we consider abstract splitting
methods associated with this decomposition where no discretization in space is made. In this latter situation,
the results hold for rounded numerical schemes avoiding at each step possible high frequency energy drift.

5.3. Koiter Estimate Revisited
Participant: Erwan Faou.
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This is a joint work with M. Dauge, from the University of Rennes I.

The goal of the work [13] is to prove a universal energy estimate between the solution of the three-dimensional
Lamé system on a thin clamped shell and a displacement reconstructed from the solution of the classical Koiter
model. The mid-surface S of the shell is an arbitrary smooth manifold with boundary. The bound of our energy
estimate only involves the thickness parameter ε, constants attached to S, the loading, the two-dimensional
energy of the solution of the Koiter model and “wave-lengths” associated with this latter solution. This result
is in the same spirit as Koiter’s who gave a heuristic estimate in the end of the sixties. Taking boundary layers
into account, we obtain rigorous estimates, which prove to be sharp in the cases of plates and elliptic shells.

5.4. Comportement asymptotique à haute conductivité de l’épaisseur de peau
en électromagnétisme
Participant: Erwan Faou.

This is a joint work with V. Péron and M. Dauge, from the University of Rennes I.

In [28], [14], [26], [25], we consider the equations of electromagnetism set on a domain made of a dielectric
and a conductor subdomain in a regime where the conductivity is large. Assuming smoothness for the
dielectricÐconductor interface, relying on recent works we prove that the solution of the Maxwell equations
admits a multiscale asymptotic expansion with profile terms rapidly decaying inside the conductor. This skin
effect is measured by introducing a skin depth function that turns out to depend on the mean curvature of
the boundary of the conductor. We then confirm these asymptotic results by numerical experiments in various
axisymmetric configurations. We also investigate numerically the case of a nonsmooth interface, namely a
cylindrical conductor.

5.5. Reconciling alternate methods for the determination of charge
distributions: A probabilistic approach to high-dimensional least-squares
approximations
Participant: Erwan Faou.

This is a joint work with N. Champagnat, from INRIA (TOSCA).

In [31], we propose extensions and improvements of the statistical analysis of distributed multipoles (SADM)
algorithm put forth by CHIPOT in 1998 for the derivation of distributed atomic multipoles from the quantum-
mechanical electrostatic potential. The method is mathematically extended to general least-squares problems
and provides an alternative approximation method in cases where the original least-squares problem is
computationally not tractable, either because of its ill-posedness or its high-dimensionality. The solution
is approximated employing a Monte Carlo method that takes the average of a random variable defined as
the solutions of random small least-squares problems drawn as subsystems of the original problem. The
conditions that ensure convergence and consistency of the method are discussed, along with an analysis of
the computational cost in specific instances.

5.6. Hamiltonian interpolation of splitting approximations for nonlinear PDEs
Participant: Erwan Faou.

This is a joint work with B. Grébert, from the University of Nantes.

In [21], we consider a wide class of semi linear Hamiltonian partial differential equations and their approxima-
tion by time splitting methods. We assume that the nonlinearity is polynomial, and that the numerical trajectory
remains at least uniformly integrable with respect to an eigenbasis of the linear operator (typically the Fourier
basis). We show the existence of a modified interpolated Hamiltonian equation whose exact solution coin-
cides with the discrete flow at each time step over a long time. While for standard splitting or implicit-explicit
schemes, this long time depends on a cut-off condition in the high frequencies (CFL condition), we show that
it can be made exponentially large with respect to the step size for a class of modified splitting schemes.
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5.7. A Nekhoroshev type theorem for the nonlinear Schrödinger equation on
the d-dimensional torus
Participant: Erwan Faou.

This is a joint work with B. Grébert, from the University of Nantes.

In [32] we prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

iut = −∆u+ VIu+ ∂ug(u, u) , x ∈ T d,

where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely we prove
that if the initial datum is analytic in a strip of width ρ > 0 whose norm on this strip is equal to ε then, if ε
is small enough, the solution of the nonlinear Schrödinger equation above remains analytic in a strip of width
ρ/2, with norm bounded on this strip byCε over a very long time interval of order ε−α| ln ε|β , where 0 < β < 1
is arbitrary and C > 0 and α > 0 are positive constants depending on β and ρ.

5.8. Energy cascades for NLS on the torus
Participant: Erwan Faou.

This is a joint work with R. Carles, from CNRS.

In the work [29], we consider the nonlinear Schrödinger equation with cubic (focusing or defocusing)
nonlinearity on the multidimensional torus. For special small initial data containing only five modes, we
exhibit a countable set of time layers in which arbitrarily large modes are created. The proof relies on a
reduction to multiphase weakly nonlinear geometric optics, and on the study of a particular two-dimensional
discrete dynamical system.

5.9. Composing B-series of integrators and vector fields
Participant: Philippe Chartier.

This is a joint work with E. Hairer, from the University of Geneva and G. Vilmart from EPFL.

Hairer and Wanner [36] introduced the concept of B-series. B-series and extensions thereof are now exposed
in various textbooks and lie at the core of several recent theoretical developments. B-Series owe their success
to their ability to represent most numerical integrators, e.g. Runge-Kutta methods, splitting and composition
methods, underlying one-step method of linear multistep formulae, as well as modified vector fields, i.e. vector
fields built on derivatives of a given function. In some applications, B-series naturally combine with each other,
according to two different laws. The composition law of Butcher and the substitution law of Chartier, Hairer
and Vilmart.

The aim of the paper [10] is to explain the fundamental role in numerical analysis of these two laws and
to explore their common algebraic structure and relationships. It complements, from a numerical analyst
perspective, the work of Calaque, Ebraihimi-Fard & Manchon [33], where more sophisticated algebra is used.
We introduce into details the composition and substitution laws, as considered in the context of numerical
analysis and relate each law to a Hopf algebra. Then we explore various relations between the two laws and
consider a specific map related to the logarithm. Eventually, we mention the extension of the substitution law
to P-series, which are of great use for partitionned or split systems of ordinary differential equations.

5.10. Higher-order averaging, formal series and numerical integration
Participant: Philippe Chartier.

This is a joint work with A. Murua, from the University of the Basque Country (Spain) and J.M. Sanz-Serna
and M.P. Calvo, from the University of Valladolid (Spain).
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In [11], we show how B-series may be used to derive in a systematic way the analytical expressions of the
high-order stroboscopic averaged equations that approximate the slow dynamics of highly oscillatory systems.
For first order systems we give explicitly the form of the averaged systems with O(εj)-errors, j = 1, 2, 3 (2πε
denotes the period of the fast oscillations). For second order systems with large forces, we also give the explicit
form of the averaged systems. The Fermi-Pasta-Ulam model and the inverted Kapitsa pendulum are used as
illustrations. For the former it is shown that our approach establishes the adiabatic invariance of the oscillatory
energy. Finally we use B-series to analyze multiscale numerical integrators that implement the method of
averaging. We construct integrators that are able to approximate not only the simplest, lowest order averaged
equation but also its high-order counterparts.

5.11. A Fast Multipole Method for Geometric Numerical Integrations of
Hamiltonian Systems
Participants: Philippe Chartier, Erwan Faou.

This is joint work with E. Darrigrand from the University of Rennes I.

The Fast Multipole Method (FMM) has been widely developed and studied for the evaluation of Coulomb
energy and Coulomb forces. A major problem occurs when the FMM is applied to approximate the Coulomb
energy and Coulomb energy gradient within geometric numerical integrations of Hamiltonian systems consid-
ered for solving astronomy or molecular-dynamics problems: The FMM approximation involves an approxi-
mated potential which is not regular. Its lack of regularity implies a loss of the preservation of the Hamiltonian
of the system. In [9], we contributed to a significant improvement of the FMM with regard to this problem :
we investigated a regularization of the Fast Multipole Method in order to recover Hamiltonian preservation.
Numerical results obtained on a toy problem confirm the gain of such a regularization of the fast method.

5.12. High frequency behaviour of the Maxwell-Bloch model with relaxations:
convergence to the Schrödinger-Boltzmann system
Participant: François Castella.

In [30], with E. Dumas, we analyze the high-frequency behaviour of a physically natural model for the
propagation of electromagnetic waves in a cristal.

Our starting point is a Maxwell equation for the wave, coupled with a Schrödinger-like equation for the atoms
in the cristal, known as the Bloch model. The coupling term is quadratic. It describes, at a quantum level,
the interaction between the wave and the atoms, like photon exchange, excitation of the atom, frequency
conversion through nonlinear interaction, or so. The context makes it natural to cpnsider a high-frequency
situation, since we aim at deriving a macroscopic model, valid at the macro scale, to modelize the interaction
between the atom and the actual waves, which naturally have a short wavelength, hence a large frequency. The
initial system is thus stiff (due to the high-frequency situation), and it involves a large number of nknowns:
6 unknowns for the wave (electric field + magnetic field), and N2 unknowns for the cristal, where N is the
number of energy levels of each individual atom.

We show that this system is asymptotically well described by a simpler, non-stiff equation, involving
1 +N unknowns only. The asymptotic model involves one Schrödinger-like equation for the wave, and one
Boltzmann-like equation for the atoms to describe the evolution of the occupation rate of the atoms’ N energy
levels. The coupling between both equations is cubic. The Schrödinger equation for the wave describes the
slow evolution of the waves’ envelope. The Boltzmann equation for the atoms describes the transitions between
the various energy levels of the atom, under the action of the electromagnetic wave.

We recover here in a rigorous fashion the physically relevant asymptotic model, and we point out the very
value of the transition rates between the various energy levels of the atom, a new result.

5.13. Scalar conservation laws with stochastic forcing
Participant: Arnaud Debussche.
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In [20], we show that the Cauchy Problem for a randomly forced, periodic multi-dimensional scalar first-
order conservation law with additive or multiplicative noise is well-posed: it admits a unique solution,
characterized by a kinetic formulation of the problem, which is the limit of the solution of the stochastic
parabolic approximation.

5.14. Asymptotic behavior of stochastic PDEs with random coefficients
Participant: Arnaud Debussche.

In [12], we study the long time behavior of the solution of a stochastic PDEs with random coefficients assuming
that randomness arises in a different independent scale. We apply the obtained results to 2D- Navier–Stokes
equations.

5.15. The nonlinear Schrödinger equation with white noise dispersion
Participant: Arnaud Debussche.

In [15], we prove that under certain scaling the nonlinear Schrödinger equation with random dispersion
converges to the nonlinear Schrödinger equation with white noise dispersion. The aim of these works is to
prove that this latter equation is globally well posed in L2 or H1. The main ingredient is the generalization of
the classical Strichartz estimates. Additionally, we justify rigorously the formal limit described above.

In the second article [19], we improve the Strichartz estimates obtained previously for the Schrödinger
equation with white noise dispersion in one dimension. This allows us to prove global well posedness when
a quintic critical nonlinearity is added to the equation. We finally show that the white noise dispersion is the
limit of smooth random dispersion.

5.16. Weak approximation of stochastic partial differential equations: the
nonlinear case
Participant: Arnaud Debussche.

In [16], we study the error of the Euler scheme applied to a stochastic partial differential equation. We prove
that as it is often the case, the weak order of convergence is twice the strong order. A key ingredient in our
proof is Malliavin calculus which enables us to get rid of the irregular terms of the error. We apply our method
to the case a semilinear stochastic heat equation driven by a space-time white noise.

5.17. Ergodic BSDEs under weak dissipative assumptions
Participant: Arnaud Debussche.

In this paper [18] we study ergodic backward stochastic differential equations (EBSDEs) dropping the strong
dissipativity assumption needed previously. In other words we do not need to require the uniform exponential
decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is
assumed to be non degenerate. We show existence of solutions by use of coupling estimates for a non-
degenerate forward stochastic differential equations with bounded measurable non-linearity. Moreover we
prove uniqueness of “Markovian” solutions exploiting the recurrence of the same class of forward equations.
Applications are then given to the optimal ergodic control of stochastic partial differential equations and to the
associated ergodic Hamilton-Jacobi-Bellman equations.

5.18. Asymptotic first exit times of the Chafee-Infante equation with small
heavy tailed noise
Participant: Arnaud Debussche.

Motivated by paleoclimatological issues, in [17] we determine asymptotic
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first exit times for the Chafee-Infante equation forced by heavy tailed Levy diffusions from reduced domains
of attraction in the limit of small intensity. We show that in contrast to the case of Gaussian diffusion the
expected first exit times are polynomial in terms of the intensity.

6. Other Grants and Activities

6.1. National Initiatives
Participants: François Castella, Philippe Chartier, Arnaud Debussche, Erwan Faou.

6.1.1. ARC grant HYBRID 2009-2010
The Hybrid ARC project has been granted by the INRIA and group members of

• The IPSO project and the ENS Cachan Bretagne

• The TOSCA Project (head: D. Talay)

• The MICMAC project (head: E. Cancès)

• The SIMPAF Project (head: T. Goudon)

• The eDAM laboratory (head: C. Chipot)

The main aim of this project is to derive and analyze numerical methods for the simulation of complex systems
arising in molecular dynamics. It turns out that these systems are in essence hybrid, and include in their
definition deterministic and stochastic terms. Our goal is to group and mix technics that are a priori disjoint: use
of symplectic integrator to handle Hamiltonian ordinary differential over long time and probabilistic methods
to sample the invariant law of a stochastic differential equation.

6.1.2. Programme INRIA "Equipes Associées": MIMOL
This is an exchange program between the IPSO team and the numerical analysis groups in Tübingen, headed
by C. Lubich and in the University of the Basque Country headed by A. Murua. E. Faou is the coordinator of
the french part of this project.

This program was valid for three years (2008-2009-2010).

6.1.3. Programme Hubert Curien Picasso
This is an exchange program between the IPSO team and the numerical analysis groups in San Sebastian
(Ander Murua), Valladolid (Jesus-Maria Sanz-Serna and Maripaz Calvo), Valencia (Sergio Blanes) and
Castellon (Fernando Casas). This program was valid for two years (2009 and 2010). P. Chartier is the
coodinator for the french side.

6.1.4. ANR Programme blanc (BLAN) MEGAS: 2009-2012
Title: Geometric methods and sampling: application to molecular simulation. The project is financed for 3
years, coordinated by Tony Lelièvre and gathers the following teams and persons:

• Team of Eric Cancès at CERMICS

• Team IPSO

• Mathias Rousset from INRIA Lille

• Christophe Chipot, from the CNRS in Nancy.

P. Chartier is the coordinator for IPSO.
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7. Dissemination

7.1. Program committees, editorial Boards and organization of conferences
• P. Chartier is member of the editorial board of M2AN.

• P. Chartier is member of the editorial board of ESAIM Proceedings.

• P. Chartier organised a workshop on Numerical methods for Highly-oscillatory ODEs and PDEs,
Dinard, January 27-29.

• E. Faou is the leader of the INRIA associated team MIMOL (2008–2010)

• A. Debussche is member of the editorial board of SINUM.

• A. Debussche is member of the editorial board of Differential and Integral Equations.

• A. Debussche is Director of the mathematics department of the antenne de Bretagne ENS Cachan.

• A. Debussche co-organised with M. Hairer the workshop: Stochastic Partial Differential Equations:
Approximation, Asymptotics and Computation, Isaac Newton Institute, Cambridge, June 28 - july.

7.2. INRIA and University committees
• P. Chartier is member of the Commission d’Evaluation at INRIA.

• P. Chartier is member of the Comité des Projets at INRIA-Rennes.

• P. Chartier is member of the bureau of the Comité des Projets at INRIA-Rennes.

• A. Debussche is member of the CNU, Section 26.

7.3. Teaching
• E. Faou was oral examiner at ENS Cachan Bruz (“agrégation”).

• P. Chartier was lecturer at the Ecole Normale Supérieure de Cachan Bretagne. Course: Ordinary
differential equations.

• E. Faou was Visiting Professor, FIM, ETH Zürich during the spring trimester.

• A. Debussche gave a mini course on "Stochastic Navier-Stokes equations: well posedness and
ergodic properties" in the CIME summer school "Topics in mathematical fluid-mechanics" at
Cetraro, Italy.

7.4. Participation in conferences
Concerning P. Chartier:

• JEAN, IRMAR, Rennes, November 25, 2010 (Invited Speaker).

• Workshop DANCE on Dynamics, Attractors and Nonlinearities, Calatayud, November 04-06, 2010
(Invited Speaker)

• Seminar University of Nice, October 12, 2010.

• Simulation of hybrid dynamical systems and applications to molecular dynamics, IHP-Paris, 27-30
september, 2010 (Invited Speaker)

• IMAC Workshop on Splitting methods for differential equations, Castellon, 6-8 september, 2010
(Invited Speaker)

• Workshop on Combinatorics and Control, Madrid (CSIC), April 6-9, 2010 (Invited Plenary
Speaker).

• Seminar Ecole Polytechnique Fédérale de Lausanne, February 17, 2010.
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Concerning E. Faou:

• December 2010: Séminaire EDP et applications, ENS Lyon & Univ. Lyon 1.

• October 2010: Workshop on time integration, Innsbruck (Austria).

• September 2010: Workshop on Asymptotic Regimes for Schrödinger equations, CIRM, Marseille.

• September 2010: Workshop on splitting methods for differential equations, Castellon (Spain).

• July 2010: Seminar at the Basque center for applied mathematics, Bilbao (Spain).

• June 2010: Invitation to the workshop on Stochastic Partial Differential Equations: Approximation,
Asymptotics and Computation, Newton Institute, Cambridge (UK).

• May 2010: Séminaire d’analyse numérique, Université de Genève (Switzerland).

• April 2010: Journée Dynamiques des équations Hamiltoniennes, Nantes (France).

• April 2010: Seminar in the University of Strasbourg (France).

• March 2010: Seminar of Numerical analysis, University of Tübingen (Germany).

• March 2010: Analysis Seminar, University of Zürich (Switzerland).

• March 2010: Seminar at the CMAP, Ecole Polytechnique (France).

• February 2010: Seminar in the University of Karlsruhe (Germany)

Concerning A. Debussche:

• February 2010: Séminaire MOX, Politecnico di Milano.

• April 2010: Séminaire Probabiltés, ENS Lyon & Univ. Lyon 1.

• April 2010: Séminaire Physique Mathématiques, Institut Fourier, Grenoble.

• June 2010: International Conference on Advances in PDE and their applications, Fudan Univ.,
Shangai.

• June 2010: Mathematical problems in Hydrodynamics, Univ. Cergy-Pontoise.

• December 2010: Berliner Kolloquium Wahrscheinlichkeitstheorie, T.U. Berlin.

7.5. International exchanges
• P. Chartier visited the University of the Basque Country for two weeks.

• Arnaud Debussche visited the Isaac Newton Institute, Cambridge, for one month.

8. Bibliography
Major publications by the team in recent years

[1] G. ANDREOIU, E. FAOU. Complete asymptotics for shallow shells, in "Asymptotic analysis", 2001, vol. 25, p.
239-270.

[2] A. AUBRY, P. CHARTIER. On improving the convergence of Radau IIA methods when applied to index-2 DAEs,
in "SIAM Journal on Numerical Analysis", 1998, vol. 35, no 4, p. 1347-1367.

[3] A. AUBRY, P. CHARTIER. Pseudo-symplectic Runge-Kutta methods, in "BIT", 1998, vol. 38, p. 439–461.

[4] F. CASTELLA. From the von Neumann equation to the Quantum Boltzmann equation in a deterministic
framework, in "J. Stat. Phys.", 2001, vol. 104–1/2, p. 387–447.



Project-Team ipso 17

[5] F. CASTELLA. Propagation of space moments in the Vlasov-Poisson Equation and further results, in "Ann.
I.H.P., Anal. NonLin.", 1999, vol. 16–4, p. 503–533.

[6] R. CHAN, P. CHARTIER, A. MURUA. Post-projected Runge-Kutta methods for index-2 differential-algebraic
equations, in "Applied Numerical Mathematics", 2002, vol. 42, no 1-3, p. 77-94.

[7] M. DAUGE, I. DJURDJEVIC, E. FAOU, A. ROESSLE. Eigenmode asymptotics in thin elastic plates, in "J. Math.
Pures Appl.", 1999, vol. 78, p. 925-954.

[8] E. FAOU. Elasticity on a thin shell: Formal series solution, in "Asymptotic analysis", 2002, vol. 31, p. 317-361.

Publications of the year
Articles in International Peer-Reviewed Journal

[9] P. CHARTIER, E. DARRIGRAND, E. FAOU. A regular fast multipole method for geometric numerical in-
tegrations of Hamiltonian systems, in "BIT Numerical Mathematics", 2010, vol. 50, no 1, p. 23-40
[DOI : 10.1007/S10543-010-0248-6], http://hal.inria.fr/hal-00536695/en.

[10] P. CHARTIER, E. HAIRER, G. VILMART. Algebraic structures of B-series, in "Found. Comput. Math.", 2010,
vol. 10, no 4, p. 407–427, http://dx.doi.org/10.1007/s10208-010-9065-1.

[11] P. CHARTIER, A. MURUA, J. M. SANZ-SERNA. Higher-Order Averaging, Formal Series and Numeri-
cal Integration I: B-series, in "Foundations of Computational Mathematics", 2010, vol. 10, p. 695-727,
10.1007/s10208-010-9074-0, http://dx.doi.org/10.1007/s10208-010-9074-0.

[12] G. DA PRATO, A. DEBUSSCHE. Asymptotic behavior of stochastic PDEs with random coefficients, in "DCDS
A", 2010, vol. 27, no 4, p. 1553–1570.

[13] M. DAUGE, E. FAOU. Koiter Estimate Revisited, in "Mathematical Models and Methods in Applied Sciences",
2010, vol. 20, no 1, p. pp. 1-42 [DOI : 10.1142/S0218202510004131], http://hal.inria.fr/hal-00202628/en.

[14] M. DAUGE, E. FAOU, V. PÉRON. Comportement asymptotique à haute conductivité de l’épaisseur de peau
en électromagnétisme, in "C. R. Acad. Sci. Paris, Sér. I.", 2010, vol. 348, p. 385–390.

[15] A. DE BOUARD, A. DEBUSSCHE. The nonlinear Schrodinger equation with white noise dispersion, in
"Journal of Funct. Anal.", 2010, vol. 259, no 1, p. pp. 1300-1321.

[16] A. DEBUSSCHE. Weak approximation of stochastic partial differential equations: the nonlinear case, in "Math.
of Comp.", 2010, To appear.

[17] A. DEBUSSCHE, M. HOGELE, P. IMKELLER. Asymptotic first exit times of the Chafee-Infante equation with
small heavy tailed noise, in "Elect. Comm. Prob.", 2010, To appear.

[18] A. DEBUSSCHE, Y. HU, G. TESSITORE. Ergodic BSDEs under weak dissipative assumptions, in "Stoch.
Proc; Appl.", 2010, To appear.

http://hal.inria.fr/hal-00536695/en
http://dx.doi.org/10.1007/s10208-010-9065-1
http://dx.doi.org/10.1007/s10208-010-9074-0
http://hal.inria.fr/hal-00202628/en


18 Activity Report INRIA 2010

[19] A. DEBUSSCHE, Y. TSUSTUMI. 1D quintic nonlinear equation with white noise dispersion, in "Journal de
Math. Pures et Appl.", 2010, To appear.

[20] A. DEBUSSCHE, J. VOVELLE. Scalar conservation laws with stochastic forcing, in "Journal of Funct. Anal.",
2010, vol. 259, p. 1014–1042.

[21] E. FAOU, B. GRÉBERT. Hamiltonian interpolation of splitting approximations for nonlinear PDEs, in "Found.
Comput. Math.", 2010, In revision.

[22] E. FAOU, B. GRÉBERT. Quasi invariant modified Sobolev norms for semi linear reversible PDEs, in
"Nonlinearity", 2010, vol. 23, p. 429–443.

[23] E. FAOU, B. GRÉBERT, E. PATUREL. Birkhoff normal form for splitting methods applied to semi linear
Hamiltonian PDEs. Part I: Finite dimensional discretization., in "Numer. Math.", 2010, vol. 114, p. 429–458.

[24] E. FAOU, B. GRÉBERT, E. PATUREL. Birkhoff normal form for splitting methods applied to semi linear
Hamiltonian PDEs. Part II: Abstract splitting., in "Numer. Math.", 2010, vol. 114, p. 459–490.

Invited Conferences

[25] G. CALOZ, M. DAUGE, E. FAOU, V. PÉRON, C. POIGNARD. A Transmission Problem in Electromagnetism
with a Singular Interface, in "6th Singular Days on Asymptotic Methods for PDEs", Allemagne Berlin, May
2010, http://hal.inria.fr/inria-00528523/en.

[26] V. PÉRON, G. CALOZ, M. DAUGE, E. FAOU. Skin Effect in Electromagnetism and Asymptotic Behaviour of
Skin Depth for High Conductivity, in "WONAPDE 2010 Third Chilean Workshop on Numerical Analysis of
Partial Differential Equations", Chili Concepcion, Jan 2010, http://hal.inria.fr/inria-00528519/en.

Research Reports

[27] E. ANCEAUME, F. CASTELLA, R. LUDINARD, B. SERICOLA. Markov Chains Competing for Transitions:
Application to Large-Scale Distributed Systems, INRIA, May 2010, http://hal.inria.fr/inria-00485667/en.

Other Publications

[28] G. CALOZ, M. DAUGE, E. FAOU, V. PÉRON. On the influence of the geometry on skin effect in electromag-
netism, 2010, unpublished, http://hal.inria.fr/hal-00503170/en.

[29] R. CARLES, E. FAOU. Energy cascades for NLS on T d, 2010, unpublished, http://hal.inria.fr/hal-00528792/
en.

[30] F. CASTELLA, E. DUMAS. High frequency behaviour of the Maxwell-Bloch model with relaxations: conver-
gence to the Schrödinger-Boltzmann system, 2010, unpublished, http://hal.inria.fr/hal-00505587/en.

[31] N. CHAMPAGNAT, C. CHIPOT, E. FAOU. Reconciling alternate methods for the determination of charge
distributions: A probabilistic approach to high-dimensional least-squares approximations, 2010, unpublished,
http://hal.inria.fr/inria-00345411/en.

http://hal.inria.fr/inria-00528523/en
http://hal.inria.fr/inria-00528519/en
http://hal.inria.fr/inria-00485667/en
http://hal.inria.fr/hal-00503170/en
http://hal.inria.fr/hal-00528792/en
http://hal.inria.fr/hal-00528792/en
http://hal.inria.fr/hal-00505587/en
http://hal.inria.fr/inria-00345411/en


Project-Team ipso 19

[32] E. FAOU, B. GRÉBERT. A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-
dimensional torus., 2010, unpublished, http://hal.inria.fr/hal-00466803/en.

References in notes

[33] D. CALAQUE, K. EBRAHIMI-FARD, D. MANCHON. Two Hopf algebras of trees interacting, 2008, http://
www.citebase.org/abstract?id=oai:arXiv.org:0806.2238.

[34] E. HAIRER. Geometric integration of ordinary differential equations on manifolds, in "BIT", 2001, vol. 41,
p. 996–1007.

[35] E. HAIRER, C. LUBICH, G. WANNER. Geometric Numerical Integration. Structure-Preserving Algorithms for
Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer,
Berlin, 2006.

[36] E. HAIRER, G. WANNER. On the Butcher group and general multi-value methods, in "Computing", 1974,
vol. 13, p. 1–15.

[37] E. HAIRER, G. WANNER. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic
Problems, Springer Series in Computational Mathematics 14, 2, Springer-Verlag, Berlin, 1996.

[38] A. ISERLES, H. Z. MUNTHE-KAAS, S. P. NØRSETT, A. ZANNA. Lie-group methods, in "Acta Numerica",
2000, p. 215–365.

[39] C. LUBICH. A variational splitting integrator for quantum molecular dynamics, in "Appl. Numer. Math.",
2004, vol. 48, p. 355–368.

[40] C. LUBICH. On variational approximations in quantum molecular dynamics, in "Math. Comp.", 2009, to
appear.

[41] F. A. POTRA, W. C. RHEINBOLDT. On the numerical solution of Euler-Lagrange equations, in "Mech. Struct.
& Mech.", 1991, vol. 19, p. 1–18.

[42] J. M. SANZ-SERNA, M. P. CALVO. Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

http://hal.inria.fr/hal-00466803/en
http://www.citebase.org/abstract?id=oai:arXiv.org:0806.2238
http://www.citebase.org/abstract?id=oai:arXiv.org:0806.2238

