

[image: cover]

lognet
Logical Networks: Self-organizing Overlay
Networks and Programmable Overlay Computing Systems
2010 Research Team Activity Report
	Sophia Antipolis - Méditerranée

	 Field :
	 Networks, Systems and Services, Distributed Computing

Theme :
Distributed Systems and Services
Presentation of the Team

	Members
	Overall Objectives	[bookmark: uid3]LogNet's Motto and Logo
	[bookmark: uid5]Overall objectives
	[bookmark: uid6]Highlights

	Scientific Foundations	[bookmark: uid9]Lognet's general
context
	[bookmark: uid25]General definitions
	[bookmark: uid26]Background:
Arigatoni overlay network computer
	[bookmark: uid69]General
research directions

	Application Domains	[bookmark: uid108]Panorama
	[bookmark: uid112]Potential
applications

	Software	[bookmark: uid118]Ariwheels
	[bookmark: uid122]Arigatoni simulator
	[bookmark: uid124]myMed backbone
	[bookmark: uid126]myMed client alpha
	[bookmark: uid128]Synapse client
	[bookmark: uid129]Open Synapse client
	[bookmark: uid130]Husky interpreter
	[bookmark: uid132]myTransport Gui
	[bookmark: uid134]myDistributed Catatalog for
Digitized Cultural Heritage
	[bookmark: uid136]myStreaming P2P

	New Results	[bookmark: uid138]Synapse, interconnecting heterogeneous overlay networks
	[bookmark: uid139]Intersection and Union Types à la Church
	[bookmark: uid140]CarPal: interconnecting overlay
networks for a community-driven shared mobility
	[bookmark: uid142]myStreaming P2P

	Other Grants and Activities	[bookmark: uid144]European Initiatives

	Dissemination	[bookmark: uid147]Participation in
committees and referees
	[bookmark: uid149]Teaching and Meeting
organizations
	[bookmark: uid153]Visitors

	Bibliography
		Major publications
	Publications of the year
	References in notes

LogNet is an INRIA team.

Section: Members
Research Scientist
Luigi Liquori [Team Leader, Research Director, DR2 INRIA, HdR]

External Collaborators
Claudio Casetti [Assistant professor, Politecnico di Torino, Italy]
Carla-Fabiana Chiasserini [Associate professor, Politecnico di Torino, Italy]
Michel Cosnard [CEO INRIA, HdR]
Technical Staff
Laurent Vanni [Expert engineer, until January 2013]
PhD Students
Vincenzo Ciancaglini [MENRT grant, defense planned in 2012]
Thao Nguyen [PRES UNS grant, from 1st Novembre 2010, defense planned in 2013]
Giang Ngo Hoang [Evariste Galois grant, PRES UNS, cotutelle, from 1st October 2010, defense planned in 2013]
Petar Maksimovic [TEMPUS-BASILEUS grant, cotutelle, defense planned in 2012]
Rossella Fortuna [Politecnico di Bari, from 18th March 2010 to 10th October 2010]
Salvatore Spoto [Università di Torino, from 1st October 2010 to 20th December 2010]

Administrative Assistant
Nathalie Bellesso [INRIA]
Others
Fofack Nicaise [Master Ubinet, from 1st March 2010 to 31th August 2010]
Thao Nguyen [Master Ubinet, from 1st March 2010 to 31th August 2010]
Ali Makké [Master Ubinet, from 1st March 2010 to 31th August 2010]
David Da Silva [IUT, from April 10th 2010 to June 12th 2010]
Nicolas Goles [INRIA internship, from January 6th 2010 to 1st March 2010]
Kevin Jeddy [IUT, from April 10th 2010 to June 12th 2010]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]LogNet's Motto and Logo
	[bookmark: uid5]Overall objectives
	[bookmark: uid6]Highlights

 [bookmark: uid3] Section:
 Overall Objectives
LogNet's Motto and Logo

Our Motto is “Computer is moving on the edge of the
Network...” by Jan Bosch, Nokia Labs, [LNCS 4415, 2007] and our
logo is in Figure 1 .

[bookmark: uid4]Figure
	1. Our logo	[image: IMG/LogNet-Logo3]

[bookmark: uid5] Section:
 Overall Objectives
Overall objectives

We propose foundations for generic overlay networks and
overlay computing systems. Such overlays are built over a
large number of distributed computational agents, virtually
organized in colonies, and ruled by a leader (broker)
who is elected democratically (vox populi, vox dei) or
imposed by system administrators (primus inter pares). Every
agent asks the broker to log into the colony by declaring the
resources that can be offered (with variable guarantees). Once
logged in, an agent can ask the broker for other resources.
Colonies can recursively be considered as evolved agents who
can log into an outermost colony governed by another super-leader.
Communications and routing intra-colonies goes through a
broker-2-broker PKI-based negotiation. Every broker routes intra-
and inter- service requests by filtering its resource
routing table, and then forwarding the request firstly inside its
colony, and secondly outside, via the proper super-leader (thus
applying an endogenous-first-estrogen-last strategy).
Theoretically, queries are formulæ in first-order logic equipped
with a small program used to orchestrate and
synchronize atomic formulæ (atomic services). When the
client agent receives notification of all of (or part of) the requested
resources, then the real resource exchange is performed directly by
the server(s) agents, without any further mediation of the broker,
in a pure peer-to-peer fashion. The proposed overlay promotes an
intermittent participation in the colony, since peers can
appear, disappear, and organize themselves dynamically. This implies
that the routing process may lead to failures, because some
agents have quit or are temporarily unavailable, or they were logged
out manu militari by the broker due to their poor performance
or greediness. We aim to design, validate through simulation, and
implement these foundations in a generic overlay network computer
system.

[bookmark: uid6] Section:
 Overall Objectives
Highlights

[bookmark: uid7]Figure
	2. The myMed social network	[image: IMG/myMed]

The tiny LogNet team has been granted by the Interreg Alcotra office
of the three-year project myMed : un réseau informatique
transfrontalier pour léchange de contenus dans un environnement
fixe et mobile. LogNet will head the project; other partners are
Vulog PME, GIR Maralpin, Politecnico di Torino, Uni. Torino,
Uni. Piemonte Orientale. The total budget 1380Keur (796Keur for
l'INRIA) - the external founding is 932Keur (526Keur for
l'INRIA). The founders are UE, PACA, CG06, PREF06, and INRIA, see
http://www.mymed.fr .

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid9]Lognet's general
context
	[bookmark: uid25]General definitions
	[bookmark: uid26]Background:
Arigatoni overlay network computer
	[bookmark: uid69]General
research directions

 [bookmark: uid9] Section:
 Scientific Foundations
Lognet's general
context

The explosive growth of the Internet gives rise to the possibility
of designing large overlay networks and virtual
organizations consisting of Internet-connected computers units,
able to provide a rich functionality of services which make use of
aggregated computational power, storage, information resources,
etc. We would like to start our first activity report with the
standard definition of a Computer System.

Definition 1 (Computer System)

A computer system consists of computer hardware and
computer software.

	[bookmark: uid11] Computer Hardware is the physical part of a computer,
including the digital circuitry, as distinguished from the
computer software that is executed within the hardware. The
hardware of a computer is infrequently changed, in
comparison with software and data.

	[bookmark: uid12] Computer Software consists of three parts, namely:
system software, program software, and application software.

	[bookmark: uid13] System Software helps run the computer hardware and
the computer system. Examples are operating systems
(OS), device drivers, diagnostic tools, servers, windowing
systems...

	[bookmark: uid14] Program Software usually provides tools to assist the
programmer in writing computer programs and software using
different programming languages. Examples are text editors,
compilers, interpreters, linkers,
debuggers for general purpose languages...

	[bookmark: uid15] Application Software allows end-users to accomplish
one or more specific (non computer-related) tasks, pertaining to
fields such as industrial automation, business software, educational
software, medical software, databases, computer games...

Starting from the previous basic skeleton definition, we elaborate
the LogNet's vision of what an Overlay Network Computer
System is. The reader can focus on the tiny, yet crucial
differences.

Definition 2 (Overlay Computer System)

An overlay computer system consists of overlay computer
hardware and overlay computer software.

	[bookmark: uid17] Overlay Computer Hardware is the physical part of an
overlay computer, including the digital circuitry, as
distinguished from overlay computer software that is executed
within the hardware. The hardware of an overlay computer
changes frequently and it is distributed
in space and in time. Hardware is organized in a network of
collaborative computing agents connected via IP or ad-hoc
networks; hardware must be negotiated before being
used.

	[bookmark: uid18] Overlay Computer Software consists of three parts,
namely: overlay system software, overlay program software, and
overlay application software.

	[bookmark: uid19] Overlay System Software helps run the overlay computer
hardware and the overlay computer system. Examples are
network middleware playing as a
distributed opera- ting system (dOS),
resource discovery protocols, virtual intermittent protocols,
security protocols, reputation protocols...

	[bookmark: uid20] Overlay Program Software usually provides tools to
assist a programmer in writing overlay computer programs and
software using different overlay programming
languages. Examples are compilers,
interpreters, linkers, debuggers for
workflow-, coordination-, and
query-languages.

	[bookmark: uid21] Overlay Application Software allows end-users to
accomplish one or more specific (non-computer related) tasks,
pertaining to fields such as industrial automation, business software,
educational software, medical software, databases, and computer
games...These classes of applications deal with
computational power (Grid), file and storage retrieval
(P2P), web services (Web2.0), band-services (VoIP),
computation migrations...

Therefore, LogNet's objectives can be summarized as follows:

	[bookmark: uid22] to provide adequate notions and definitions of a generic
overlay network computer; from a desktop distributed calculator to
a programmable distributed overlay computer;

	[bookmark: uid23] on the basis of these definitions, to propose a precise
architecture of a generic overlay network computer and implement
it;

	[bookmark: uid24] on the basis of these definitions, to implement an overlay
software factory suitable to help the logical and software
assembling of an overlay network computer.

[bookmark: uid25] Section:
 Scientific Foundations
General definitions

An overlay network is a computer network which is built on top of
another network. Overlay networks can be constructed in order to
permit routing messages to destinations not specified by an IP address. In what follows, we briefly describe the main entities
underneath a virtual organization.

Agents.
An agent in the overlay is the basic computational entity of the
overlay: it is typically a device, like a PDA, a laptop, a PC, or
smaller devices, connected through IP or other ad hoc
communication protocols in different fashion (wired, wireless).
Agents in the overlay can be thought of as being connected by virtual
or logical links, each of which corresponds to a path, through many
physical links, in the underlying network. For example, many
peer-to-peer networks are overlay networks because they run on top of
the Internet.

Colonies and colony leaders.
Agents in the overlay are regrouped in Colonies. A colony is
a simple virtual organization consists of exactly one leader,
offering some broker-like services, and some set of agents.
The leader, being also an agent, can be an agent of a colony
different of the one he manages. Thus, agents are simple computers
(think of them as amoebas), or sub-colonies (think of them as
protozoas). Every colony has exactly one leader and at
least one agent (the leader itself). Logically, an agent can be seen
as a collapsed colony, or a leader managing itself. The
leader is the only one who knows all of the agents in its colony. One of the
tasks of the leader is to manage (un)subscriptions to its colony.

Resource discovery.
By adhering to a colony, an agent can expose resources he has and/or ask
for resources it requires. Another task of a leader is to manage the
resources available in its colony. Thus, when an agent of the overlay
needs a specific resource, he makes a request to its leader. A
leader is devoted to contacting and negotiating with potential
servers, to authenticating clients and servers, and to routing
requests. The rationale ensuring scalability is that every request
is handled firstly inside its colony, and then forwarded through the
proper super-leader (thus applying an
endogenous-first-exogenous-last strategy).

Orchestration.
When an agent receives an acknowledgment of a service request from
the direct leader, then the agent is served directly by the
server(s) agents, i.e. without further mediation of the leader, in
a pure P2P fashion. Thus, the “main” program will be run on
the agent computer machine that launched the service request and
received the resources availability: it will orchestrate and
coordinate data and program resources executed on others agent
computers.

[bookmark: uid26] Section:
 Scientific Foundations
Background:
Arigatoni overlay network computer

As suggested by our previous definitions, we are mainly concerned by
three topics: network organization, resource discovery and
orchestration. These topics are studied in a complementary way by
Arigatoni (work started by Luigi Liquori and Michel Cosnard). In
this section we will describe the current status of Arigatoni.

The Arigatoni overlay network computer,
[1] , [9] , [8] , [5] , [6] , [4] and [14] ,
developed since 2006 in the Mascotte Project Team by
Luigi Liquori and Michel Cosnard, and then in the LogNet team, is a
structured multi-layer overlay network which provides resource
discovery with variable guarantees in a virtual organization where
peers can appear, disappear, and self-organize themselves
dynamically. Arigatoni is universal in the sense of Turing
machines, or generic as the von Neumann computer architecture
is.

Every agent asks the broker to log into the colony by declaring the
resources that it provides (with variable guarantees). Once logged
in, an agent can ask the broker for other resources. Colonies can
recursively be considered as evolved agents who can log into an
outermost colony, which is governed by another super-leader. Communications
and routing intra-colonies go through a broker-2-broker PKI-based
negotiation. Every broker routes intra- and inter- service
requests by filtering its resource routing table, and then
forwarding the request firstly inside its colony, and secondly outside,
via the proper super-leader (thus applying an
endogenous-first-estrogen-last strategy).

Theoretically, queries are formulæ in first-order logic. When the
client agent receives notification of all of (or part of) the requested
resources, then the real resource exchange is performed directly by
the server(s) agents, without any further mediation of the broker,
in a pure peer-to-peer fashion. The proposed overlay promotes an
intermittent participation in the colony. Therefore, the
routing process may lead to failures, because some agents
have quit, or are temporarily unavailable, or they were logged out
by the broker due to their poor performance or greediness.

Arigatoni features essentially two protocols: the resource
discovery protocol dealing with the process of an agent broker to
find and negotiate resources to serve an agent request in its own
colony, and the virtual intermittent protocol dealing with
(un)registrations of agents to colonies.

Dealing essentially with resource discovery and peers' churn has one
important advantage: the complete generality and independence of any
offered and requested resource. Arigatoni can fit with various
scenarios in the global computing arena, from classical P2P applications (file- or bandwidth-sharing), to new Web2.0 applications, to new V2V and V2I over MANET applications, to
more sophisticated Grid applications, until possible, futuristic
migration computations, i.e. transfer of a non-completed
local run to another agent, the latter being useful in case of
catastrophic scenarios, such as fire, a terrorist attack, an earthquake,
etc.

[bookmark: uid27] Arigatoni units

In what follows, we briefly introduce the logic units
underneath a generic overlay network.

Peers' participation in Arigatoni's colonies is managed by the
Virtual Intermittent Protocol (VIP); the protocol deals
with the dynamic topology of the overlay, by allowing agent
computers to login/logout to/from a colony (using the SREG message). Due to this high node churn, the routing process may
lead to failures, because some agents have logged out, or
because they are temporarily unavailable, or because they have
logged out manu militari by the broker for their poor
performance or greediness.

The total decoupling between peers in space (peers do not
know other peers' locations), time (peers do not participate
in the interaction at the same time), synchronization (peers
can issue service requests and do something else, or may be doing
something else when being asked for services), and
encapsulation (peers do not know each other) are key
features of Arigatoni's scalability.

Agent computer (AC).
This unit can be, e.g., a cheap computer device consisting of a small
RAM-ROM-HD memory capacity, a modest CPU, a ≤40
keystrokes keyboard (or touchscreen), a tiny screen (≤ 4
inch), an IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI,
WIMAX...), a USB port, and very few programs installed
inside, e.g. one simple editor, one or two compilers, a
mail client, a mini browser... Our favorite device
actually is the Internet terminal Nokia N810. Of course, a
AC can be a supercomputer, or an high performance PC-cluster, a
large database server, a high performance visualizer (e.g. connected to a virtual reality center), or any particular resource
provider, even a smart-dust. The operating system (if any)
installed within the AC is not important. The computer should be
able to work in local mode for all of the tasks that it could
do locally, or in global mode, by first registering itself
to one or many colonies of the overlay, and then by asking and
serving global requests via the colony leaders. In a nutshell, the
tasks of an AC are:

	[bookmark: uid28] Discover the address of one or many agent brokers (ABs),
playing as colony leaders, upon its arrival in a
“connected area”; this can be done using the underlay network
and related technologies;

	[bookmark: uid29] Register on one or many ABs, thus de facto entering the
Arigatoni's virtual organization;

	[bookmark: uid30] Ask and offer some services to others ACs, via the leaders' ABs;

	[bookmark: uid31] Connect directly with other ACs in a P2P fashion, and
offer/receive some services. Note that an AC can also be a
resource provider. This symmetry is one of the key features of
Arigatoni. For security reasons, we assume that all ACs come
with their proper PKI certificate.

Agent Broker (AB). This unit can be, e.g., a computer
device made up of a high speed CPU, an IP or ad hoc connection
(via DHCP, BLUETOOTH, WIFI, WIMAX...), a high speed hard-disk
with a resource routing table to route queries, and an
efficient program to match and filter the routing table. The
computer should be able to work in global mode, by first
registering itself in the overlay and then receiving, filtering and
dispatching global requests through the network. The tasks of a
AB are:

	[bookmark: uid32] Discover the address of another super-AB, representing
the super-leader of the super-colony, where the AB colony is embedded. We assume that every AB comes with its
proper PKI certificate. The policy to accept or refuse the
registration of an AC with a different PKI is left open to the
level of security requested by the colony;

	[bookmark: uid33] Register/unregister the proper colony with the leader
AB which manages the super-colony;

	[bookmark: uid34] Register/unregister clients and servants AC in its colony,
and update the internal resource routing table accordingly;

	[bookmark: uid35] Receive the request for servicing of the client AC;

	[bookmark: uid36] Discover the resources that satisfy an AC request in its
local base (local colony), according to its resource routing
table;

	[bookmark: uid37] Delegate the request to an AB leader of the direct
super-colony in case the resource cannot be satisfied in its
proper colony; it must register itself (and by product its colony)
with another super-colony;

	[bookmark: uid38] Perform a combination of the last two actions mentioned above;

	[bookmark: uid39] Deal with all PKI intra- and inter-colony policies;

	[bookmark: uid40] Notify, after a fixed timeout period, or when all ACs
failed to satisfy the delegated request, the AC client of the
denial of service requested by the AC client;

	[bookmark: uid41] Send all the information necessary to make the AC client
able to communicate with the AC servants. This notification is
encoded using the resource discovery protocol. (Finally, the AC client will directly talk with the ACs servants).

Agent Router (AR).
This unit implements all the low-level overlay network routines,
those which really have access to the IP or to the ad-hoc
connections. In a nutshell, an AR is a shared library dynamically
linked with an AC or an AB. The AR is devoted to the following
tasks:

	[bookmark: uid42] Upon the initial start-up of an AC (resp. AB) it helps to
register the unit with one or many ABs that it knows or
discovers;

	[bookmark: uid43] Checks the well-formedness and forwards packets of the two
Arigatoni's protocols across the overlay toward their
destinations.

[bookmark: uid44] Virtual organizations

Agent computers communicate by first registering with the colony and
then by asking and offering services. The leader agent broker
analyzes service requests/responses, coming from its own colony or
arriving from a surrounding colony, and routes requests/responses to
other agents. Agent computers get in touch with each other without
any further intervention from the system, in a P2P fashion.
Peers' coordination is achieved by a simple program written in an
orchestration/business language à la BPEL, or JOpera.

Symmetrically, the leader of a colony can arbitrarily unregister an
agent from its colony, e.g., because of its bad performance when
dealing with some requests or because of its high number of
“embarrassing” requests for the colony. This strategy,
reminiscent of the Roman do ut des, is nowadays called, in
Game Theory, Rapoport's tit-for-tat strategy
[22] of cooperation based on reciprocity.
Tit-for-tat is commonly used in economics, social sciences, and it
has been implemented by a computer program as a winning strategy in
a chess-play challenge against humans (see also the well known
prisoner dilemma). In computer science, the tit-for-tat
strategy is the stability (i.e. balanced uploads and downloads)
policy of the Bittorrent P2P protocol.

Once an agent computer has issued a request for some service, the
system finds some agent computers (or, recursively, some
sub-colonies) that can offer the resources needed, and communicates
their identities to the (client) agent computer as soon as they are
found.

The model also offers some mechanisms to dynamically adapt to
dynamic topology changes of the overlay network, by allowing
an agent (computer or broker, representing a sub-colony) to
login/logout to/from a colony. This essentially means that the
process of routing request/responses may lead to failure, because
some agents logged out or because they are temporarily unavailable
(recall that agents are not slaves). This may also lead to
temporary denials of service or, more drastically, to the complete
logout of an agent from a given colony in the case where the former
does not provide enough services to the latter.

[bookmark: uid45] Resource discovery protocol (RDP)

Kind of discovery.
The are mostly two mechanisms of resource discovery, namely:

	[bookmark: uid46] The process of an AB to find and negotiate resources to
serve an AC request in its own colony;

	[bookmark: uid47] The process of an AC (resp. AB) to discover an AB, upon
physical/logical insertion in a colony.

The first discovery is processed by Arigatoni's resource discovery
protocol, while the second is processed out of the Arigatoni overlay, using well-known network protocols, like DHCP, DNS, the
service discovery protocol SLP of BLUETOOTH, or Active/Passive
Scanning in WIFI.

The current RDP protocol version allows the request for
multiple services and service conjunctions. Adding
service conjunctions allows an AC to offer several services at the
same time. Multiple service requests can be also asked of an AB;
each service is processed sequentially and independently of the others.
As an example of multiple instances, an AC may ask for three CPUs, or one chunk of 10GB of HD, or one gcc compiler. As an example of a service conjunction, an AC may
ask for another AC offering at the same time one CPUs,
and one chunk of 1GB of RAM, and one chunk of
10GB of HD, and one gcc compiler. If a
request succeeds, then, using a simple orchestration language, the
AC client will use all resources offered by the servers ACs.

The RDP protocol proceeds as follows: suppose an AC [image: Im1 $\#120247 $]
registers – using the intermittent protocol VIP presented below
– with an AB and declares its availability to offer a service
[image: Im2 $\#120242 $], while another AC [image: Im3 $\#120248 $], already registered, issues a request
for a service [image: Im4 ${\#120242 }^'$]. Then, the AB looks in its routing
table and filters [image: Im4 ${\#120242 }^'$] against [image: Im2 $\#120242 $]. If there exists a
solution to this filter equation, then [image: Im1 $\#120247 $] can provide a resource
to [image: Im3 $\#120248 $].
For example, the resource
[image: Im5 ${\#120242 {~\mover =\#9653 ~}[\#120226 \#120239 \#120244 =\#120232 \#120263 \#120269 \#120254 \#120261 ,\#120243 \#120258 \#120262 \#120254 \#8804 10\#120268 \#120254 \#120252]}$] filters against
[image: Im6 ${{\#120242 }^'{~\mover =\#9653 ~}{[\#120226 \#120239 \#120244 =\#120232 \#120263 \#120269 \#120254 \#120261 ,\#120243 \#120258 \#120262 \#120254 \#8805 5\#120268 \#120254 \#120252]}}$], with attribute
values [image: Im7 $\#120232 \#120263 \#120269 \#120254 \#120261 $] and [image: Im8 $\#120243 \#120258 \#120262 \#120254 $] between 5 and
10 seconds.

Routing tables in RDP.
In Arigatoni, each AB maintains a routing table [image: Im9 $\#120243 $]
locating the services that are registered in its colony. The
table is updated according to the dynamic registration and
unregistration of ACs in the overlay; thus, each AB maintains
a partition of the data space. When an AC asks for a resource
(service request), then the query is filtered against the
routing tables of the ABs where the query has arrived and the AC is registered; in case of a filter-failure, the ABs forward
the query to their direct super-ABs. Any answer of the query must
follow the reverse path.

Thus, resource lookup overhead reduces when a query is satisfied in
the current colony. Most structured overlays guarantee lookup
operations that are logarithmic in the number of nodes. To improve
routing performance, caching and replication of data and search
paths can be adopted. Replication also improves load balancing,
fault tolerance, and the durability of data items.

[bookmark: uid48] Virtual Intermittent Protocol (VIP)

There are essentially two ways in which an AC can register to an AB (sensible to its physical position in the network topology), the
latter not being enforced by the Arigatoni model (see
[6]):

	[bookmark: uid49] Registration of an AC to an AB belonging to the same
current administrative domain;

	[bookmark: uid50] Registration via tunneling of an AC to another AB belonging to a different administrative domain.

If both registrations apply, the AC is de facto working in local
mode in the current administrative domain and working in
global mode in another administrative domain. Symmetrically,
an AC can unregister according to the following simple rules
“d'étiquette”:

	[bookmark: uid51] Unregistration of an AC is allowed only when there are no
pending services demanded of or requested from the leader AB of the
colony: agent computers must always wait for an answer of the AB or for a direct connection of the AC requesting or offering the
promised service, or wait for an internal timeout (the time-frame
must be negotiated with the AB);

	[bookmark: uid52] (As a corollary of the above) an AB cannot unregister from
its own colony, i.e. it cannot discharge itself. However, for
fault tolerance purposes, an AB can be faulty. In that case, the
ACs unregister one after the other and the colony disappears;

	[bookmark: uid53] Once an AC has been disconnected from a colony belonging to
any administrative domain, it can physically migrate into another
colony belonging to any other administrative domain;

	[bookmark: uid54] Selfish agents in P2P networks, called “free riders”, that
only utilize other peers' resources without providing any
contribution in return, can be fired by a leader; if the leader of
a colony finds that the agent's ratio of fairness is too small
(≤ϵ for a given ϵ), he can arbitrarily
decide to fire that agent without notice. Here, the VIP protocol also checks that the agent has no pending services to
offer, or that the timeout of some promised services has expired,
the latter case meaning that the free rider promised some services
but finally did not provide any service at all (untrustworthiness).

Registration policies in VIP.
VIP registration policies are usually not specified in the
protocol itself; thus, every agent broker is free to choose its
acceptance policy. This induces different self-organization policies
and allows for reasoning on the colony's load-balancing and kind of colonies.
Possible politics and are:

	[bookmark: uid55] (mono-thematic) An agent broker accept an agent into its
colony if the latter offers resources [image: Im10 $§$] that the colony already
has in quantity [image: Im11 ${\#8805 \#1013 }$], for a given ϵ;

	[bookmark: uid56] (multi-thematic) An agent broker accept an agent if the
latter offers resources that the colony has in quantity ≤ϵ, for a given ϵ;

	[bookmark: uid57] (unbalanced) An agent broker accepts an agent always;

	[bookmark: uid58] (pay-per-service) An agent broker accepts only agents
that accept to pay some services;

	[bookmark: uid59] (metropolis/village) An agent broker accepts an agent into
its colony only if the number of citizens is greater/lesser than
N;

	[bookmark: uid60] (custom) An agent broker accepts an agent following a mix
of the above politics.

[bookmark: uid61] Two simple examples

To give an idea of the possible usage of the Arigatoni generic overlay
network we present two examples; the first one has a Grid-computing
flavor while the second is a nice interweaving of the Arigatoni overlay seated on the top of both IP and MANET underlay network.
For more information, the interested reader can have a look on
[1] , [7] , [3] .

[bookmark: uid62]Figure
	3. Arigatoni Overlay Network for a Grid Seismic Monitoring
Application	[image: IMG/GRID]

GRID: scenario for seismic monitoring. John, chief
engineer of the SeismicDataCorp Company, Taiwan, on board of the
seismic data collector ship, has to decide on the next data collecting
campaign. For this he would like to process and analyze 100 TeraBytes of
seismic data that have been recorded on the data mass recorder
located in the offshore data repository of the company.
He has written the processing program for modeling and visualizing the
seismic cube using some parallel library like e.g. MPI
or PVM : his program can be distributed over different machines
that will compute a chunk of the whole processing; however, the amount of
computation is so big that a supercomputer and a cluster of PCs have to be
rented by the SeismicDataCorp company. John will ask also
for bandwidth in order to get rid of any bottlenecks related
to the big amount of data to be transferred. Then, the processed
data should be analyzed using the Virtual Reality Center,
(VRC) based in Houston, U.S.A. by a specialist team and the
resulting recommendations for the next data collect campaign have to
be sent to John. With this in mind:

	[bookmark: uid63] John logs onto the Arigatoni Overlay Network in a given colony
in Taiwan, and sends a quite complicated service request in order
for the data to be processed using his own code. Usually the AB leader of the colony will receive and process the request;

	[bookmark: uid64] If the Resource Discovery performed by the AB succeeds,
i.e. a supercomputer and a cluster and an ISP are found, then
the data are transferred at a very high speed and the
“Sinfonia” begins;

	[bookmark: uid65] John will also ask (in the RDP request) to the AC containing the seismic data to dispatch suitable chunks of data to
the supercomputer and the cluster designated by the AB to
perform some pieces of computation;

	[bookmark: uid66] John will also ask (in the RDP request) to the supercomputer
to perform the task of collecting all intermediate results, so calculating the
final result of the computation, like a “Maestro di
Orchestra”;

	[bookmark: uid67] The processed data are then sent from the supercomputer, via
the high speed ISP, to the Houston center for being visualized
and analyzed;

	[bookmark: uid68] Finally, the specialist team's recommendations will be sent to
John's laptop.

This scenario is pictorially presented in Figure 3 (we
suppose a number of sub-colonies with related leaders AB, all
registered as agents to a super-AB;for example the John's AB could be elected as the super-leader). For simplify security issues,
all AB's are trusted using the same PKI, making all resources of their
colonies de facto common. An animation of the coordination program,
written in the visual language JOpera can be downloaded at
http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv .

[bookmark: uid69] Section:
 Scientific Foundations
General
research directions

Following our main three topics, network organization, resource
discovery and orchestration, for middle and long term research, we
envisage the following studies.

[bookmark: uid70] On Virtual organizations

	[bookmark: uid71] Trees vs. graphs: a conflict without a cause.
In the first versions of Arigatoni, the network topology was
tree- or forest-based. But since agents are not slaves, multiple
registrations are in principle possible and unavoidable. This
weaves the network topology into a dynamic graph
[21] , where nodes do not have a complete knowledge of
the topology itself. As an immediate consequence, our protocols
must deal with multiple registrations of the same agent in
different colonies, with the natural consequence of resource
overbooking, routing table update loops (when a service update
request comes back to the broker that generates the request
itself), and resource discovery loops (when a resource service
request comes back to the agent that generates the request
itself), see [9] .

As an example of resource overbooking, suppose an agent computer
registers to two colonies, by declaring and offering the same
resource S twice, i.e. once for each colony. This phenomenon
is well known in the telecommunications industry, as in the
“frame-relay” world. For the record, overbooking in
telecommunications means that a telephone company has sold access
to too many customers who basically flood the telephone company
lines, resulting in an inability for some customers to use what
they purchased. Other examples of overbooking can be found in the
domain of transportation (airlines) and hotel reservations.

Resource discovery is a non-trivial problem for large distributed
systems featuring a discontinuous amount of resources offered by
agent computers and their intermittent participation in the
overlay. Peers' intermittence lead also to the design of new routing
algorithms and protocols stable to agent churn; this scenario can
be modeled using dynamic graph theory.

	[bookmark: uid72] Fault tolerance. The virtual organization model offers
some mechanisms to dynamically adapt to dynamic topology
changes of the overlay network, by allowing an agent (computer
or broker, representing a sub-colony) to login/logout in/from a
colony. This essentially means that the process of routing
requests and responses may lead to failure, because some agents
logged out or because they are temporarily unavailable (recall
that agents are not slaves). This may also lead to temporary
denials of service or, more drastically, to the complete
“delogging” of an agent from a given colony in the case where
the former does not provide enough services to the latter.

[bookmark: uid73] On Resource discovery

	[bookmark: uid74] Parametricity and universality.
Dealing only with resource discovery has one important advantage:
the complete generality and independence of any offered and
requested resource. Thus, Arigatoni can fit with various
scenarios in the agent computing arena, from classical P2P applications, like file- or band-sharing, to more sophisticated
Grid applications, like remote and distributed big (and small)
computations, until possible, futuristic migration
computations, i.e. transfer of a non completed local run in
another agent computer, the latter being useful in case of
catastrophic scenarios, such as fire, a terrorist attack, an earthquake,
etc., in the vein of agent programming languages à la Obliq or
Telescript. We could envisage at least the following scenarios
to be a tight fit for our model:

	[bookmark: uid75] Request for computational power (i.e. the Grid);

	[bookmark: uid76] Request for memory space (i.e. distributed storage);

	[bookmark: uid77] Request for bandwidth (i.e. VoIP);

	[bookmark: uid78] Request for a distributed file retrieving (i.e. standard P2P applications);

	[bookmark: uid79] Request for a (possibly) distributed web service (i.e. query
à la Google
or any service available via web-oriented protocols);

	[bookmark: uid80] Orchestration of a distributed execution of an algorithm (i.e. a
kind of distributed von Neumann machine);

	[bookmark: uid81] Request for a computation migration (i.e. transfer one partial
run in another agent computer, saving the partial results, as in
a truly mobile ubiquitous computation);

	[bookmark: uid82] Request for a human computer interaction (the human playing
the role of an agent)...

	[bookmark: uid83] Social model underneath an overlay network computer.
The Arigatoni overlay network computer defines mechanisms for
devices to inter-operate, by offering services, in a way that is
reminiscent to Rapoport's tit-for-tat strategy of
co-operation based on reciprocity. This way to understand
common behavior of virtual organizations has some theoretical
basis on Game Theory. Classical results from game theory are
based on the assumption that a shared amount of resources is
available and then users have an incentive to collaborate. The
very first design of Arigatoni forced each AC to register to
only one AB. But, recent studies showed that the Arigatoni overlay can be smoothly scaled up to a more general topology
where each AC may simultaneously be registered to several AB,
and where a colony is just one possible social
scheme [2] .

This means that Arigatoni fits with motivations and
cooperation behavior of different communities. It tries to be
policy neutral, leaving policy choices for each agent at
the implementation or configuration level, or at the community
or organization level. Policy domains can overlap (one agent
can define himself as belonging “much” to the colony foo and
“a little bit” to the colony bar). This denotes a
decentralized non-exclusive policy model. As such, one question
can arise: who is Arigatoni designed for? We believe the
overlay is flexible enough to serve a mix of different “social
structures” and “end-users”:

	[bookmark: uid84] Independent end-user connecting through his ISP or
migrating from hot-spot to hot-spot;

	[bookmark: uid85] Cooperative communities of disseminated agents;

	[bookmark: uid86] More regulated or hierarchical communities (maybe a better
view of a corporate network);

	[bookmark: uid87] Cooperative or competitive resource providers and resource
brokers.

	[bookmark: uid88] Quality metrics underneath an overlay network computer.
The Arigatoni overlay network computer is suitable to support
various extended trust models. Moreover, the reputation score could
be expanded to a multi-dimensional value, for example, by adding a
score for quality of the service offered by an agent. However,
Arigatoni encourages cooperation and enables gratuitous
resource offering. But it may also suit business extensions,
e.g.:

	[bookmark: uid89] An agent computer can sell resource usage, creating a
resource business;

	[bookmark: uid90] An agent broker can sell a resource discovery service, creating
a brokering business (“I point you to the best resources,
more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of
service extensions – among others:

	[bookmark: uid91] How to create and call third party services for on-line
payment of services;

	[bookmark: uid92] How to exchange digital cash for payment of services;

	[bookmark: uid93] How to negotiate service conditions between client and
servants, including the price and quality of service.

The one-to-many nature of the RDP protocol service request
(SREQ) are of particular interest in this case. Another
possible Arigatoni extension may define how to join a third
party auction server. Candidate servants for a SREQ would
contact the auction server and make their bid. The trusted
auction server chooses the elected candidate and service
conditions based on auction terms. The agent would then contact
the auction server and get this information. Those extensions
may take advantage of the RDP optional fields
[1] , for example to transmit location and
parameter information to call a third party system.

[bookmark: uid94] Execution model

	[bookmark: uid95] Programming an overlay network computer.
Once resources (hardware, software...) have been discovered,
the agent computer that made the request may wish to use and
manipulate it; to do this, the agent computer has written a
(distributed) program in a new language (à la BPEL, LINDA,
YAWL, JOpera...), let's call it Ivonne, in honor to the
great scientist John von Neumann. Those languages are often
called (terminology often overlaps), coordination-
workflow- dataflow- orchestration- composition-
metaprogramming- languages. Ivonne will have ad hoc primitives to express sequences, iterators, cycles, parallel
split, joins, synchronization, exclusive/multi/deferred
choice, simple/multi/synchronizing merge, discriminators,
pipelining, cancellation, implicit termination, exception
handling... [23] .

The “main” of an Ivonne program will be run on the agent
computer machine that launched the service request and received
the resources availability: it will orchestrate and coordinate
data and program resources executed on others agent computers.

In case of failure of a remote service – due to a
network problem or simply because of the unreliability or
untrustability of the agent that promised the resource – an
exception handling mechanism will send a resource discovery
query on the fly to recover a faulty peer and the actual
state of the run represented, in semantic jargon, by the
current continuation.

We also envisage to design a run-time distributed virtual
machine, built on top of a virtual or hardware machine, in
order to scale-up from local to distributed computations and to
fit with the distributed nature of an overlay network computer.
Communication between agent computers will be performed through a
logic bus, using Web technologies, like SOAP or AJAX protocols, or a combination of Java-based JNI+RMI-protocols,
or .NET, XPCOM, D-BUS, OLE bus
protocols, or even by enriching the Arigatoni protocol suite
with an ad hoc control-flow and data-flow protocol, and
permitting to use it directly inside Ivonne.

The Ivonne language can be both interpreted and compiled. In the
latter case we envisage the design of an intermediate low-level
distributed assembler language in which Ivonne could be compiled.
The intermediate machine code will recast the assembler pseudo
code

move R0 R1

à la Backus [20] in

move dataR0 from ipR0:portR0 to ipR1:portR1

where, of
course,
latency is an non-trivial issue, or the assembler pseudo code

op R0 R1 R2 in

op on ipR0 with ipR0:portR0:dataR0
and
ipR1:portR1:dataR1 and

stockin ipR2:portR2:dataR2 .

Resuming, an overlay program will be a smooth combination
of an overlay network connectivity dealing with virtual
organizations and discovery protocols, a computation of an
algorithm resulting of the summa of all algorithms
running on different computer agents, and the coordination of
all computer agents, made by an Ivonne program.

	[bookmark: uid96] Trust and security.
In order to work securely, the Arigatoni overlay network
computer needs to be able to offer the following guarantees to its
components:

	[bookmark: uid97] The communication between two agents must be secured;

	[bookmark: uid98] The role played by an agent (i.e. client AC, servant AC or AB) must be certified by a third party trusted by the agents
that communicate with this particular agent. A way to implement
those constraints is to use PKI certificates. A
Certification Authority delivers certificates, and
couples of private and public keys for ACs and ABs which
attest to their distinctive roles. The whole mechanisms involved
by a PKI are out of the scope of this research statement, but
good use of PKIs and an implementation compliant with RFC2743 can provide all the necessary security, namely the
trustfulness on the identity of the peers, and the trustfulness
of all the transmitted data, i.e. secrecy, authenticity, and
integrity;

	[bookmark: uid99] In addition to PKIs, a more “liquid” trust model could
be built, based on reputation mechanisms. Reputation
represents the amount of trust an agent in the overlay has in
another agent based on its partial view. In a nutshell:

	[bookmark: uid100] Each agent maintains a reputation score for each agent
he knows;

	[bookmark: uid101] Each agent maintains a reputation score for each
resource he serves;

	[bookmark: uid102] Exchanges between agents update each
other's scores dynamically;

	[bookmark: uid103] Conflicts between two or many agents are resolved by
the broker leaders of the colonies to which the agents
belong;

	[bookmark: uid104] The computation of the reputation score (a trust
metrics) and the way agents exchange scores is left free to
each single implementation.

A last word on implementation issues of the Arigatoni overlay
network computer: it is well-known that two technical barriers are
commonly used to block transmission over IP network in overlays:

	[bookmark: uid105] Firewalls to drop UDP flows (usually considered as
suspects);

	[bookmark: uid106] NAT techniques to mask to the outside world the real IP addresses of inside hosts; a NAT equipment changes the IP source address when a packet goes to outside, and it
changes the IP destination address when a packet comes
from outside.

The usage of these mechanisms is very frequent on the Internet and
they are barriers that can prevent connections between
inside and outside agents in Arigatoni. The
implementation of RFC3489 could be used to overcome such
obstacles.

 Application Domains

 	Application Domains	[bookmark: uid108]Panorama
	[bookmark: uid112]Potential
applications

 [bookmark: uid108] Section:
 Application Domains
Panorama

Because of its generality, our overlay network can target many
applications. We would like to list a small list of useful
programmable overlay networks case studies that can be considered
as “LogNet Grand Challenges” to help potential readers
understand the interest of our research program.

	[bookmark: uid109] New distributed models of computation

	[bookmark: uid110] Overlay networks over mobile ad hoc networks

	[bookmark: uid111] Reduce the digital divide

[bookmark: uid112] Section:
 Application Domains
Potential
applications

From large-scale computing machines to large-scale
overlay network machines (John von Neumann was right after all).
This challenge is inspired by the seminal talk by John von Neumann,
given in May 1946, “Principles of Large-Scale Computing Machines”,
typesetted and reprinted in [24] . At that time,
“large-scale” meant the ENIAC computer, i.e., 17,468 vacuum
tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000
capacitors, 5 million joints, 30 short tons, 2.4m x 0.9m x 30m,
stored in a 167 m 2 room, and 150 kW to operate. Today, thanks to
the Moore's law and to the Internet, “large scale” means
“worldwide scale”, i.e. the computer hardware is distributed in
space and in time and must be negotiated before being used. The main
inspirations of the programmable overlay network computer research's
vein are still contained in that article.

The term “von Neumann bottleneck” was coined by John Backus in his
1977 ACM Turing award lecture. Bottleneck refers to the fact that,
since data and program are stored on the same support (the memory),
the throughput (data transfer rate) between the CPU and the memory
is very low. In current von Neumann architecture, the bottleneck is
alleviated by using big cache memories. Since in overlay network
computers the bus can be modeled by an Internet connection, the data
transfer is still more critical than on a single processor
machine. As such, we should probably look at new computer
architectures, such as the Harvard one.

Needless to say that the “icing on the cake`” will be to formalize
this new distributed computational model and architecture, together
with a formal proof of its Turing completeness statement!

Developing a pedestrian/vehicular infrastructure based
on an overlay network computer.
We plan to build an ad hoc vehicular network infrastructure using
the Arigatoni overlay infrastructure. That network must enable
efficient and transparent access to the resources of on-board and
roadside agents. In such a scenario, commercial services and access
to public information are available to vehicles transiting in
specific areas where such information is broadcast by roadside
wireless gateways or by other vehicles. Data retrieved can be stored
on the on-board vehicle computer; then, they can be used and
rebroadcast at a later time without the need of persistent
connectivity. These new features will offer innovative functions and
services, such as:

	[bookmark: uid113] Distribution, from infrastructure to vehicle (I2V), and among
vehicles (V2V), of safety and/or traffic-related information;

	[bookmark: uid114] Collection, from vehicles to infrastructures (V2I), of data
useful to perform traffic management;

	[bookmark: uid115] Exchange of information between private vehicles and public
transportation systems (buses, vehicles, road side
equipments...) to support and, thus, foster inter-modality in
urban areas;

	[bookmark: uid116] Distribution of real-time, updated information to enable
dynamic navigation services.

In this scenario, vehicles/pedestrians play the role of agent
computers, while Bus-stop stations equipped with IP network,
routing tables and WIFI access point play the role of agent
brokers; Buses play the role of mobile agent brokers, a sort of
proxy of a unique bus-stop agent broker. Proxy load balancing
policies are left to the bus headquarter (HQ). See, for more
details, the Arigatoni's sub-project Ariwheels.

Programming services for the new mesh overlay network
in the Campus STIC of Sophia Antipolis.
The future Campus STIC, grouping EPU, UNSA, Eurecom, CNRS, and INRIA
will be ready in one year. It will be equipped with a WIFI network
infrastructure implementing 802.11a/b/g protocols, with potential
evolution to 802.11n protocol. The main objectives of such an
underlay network are to offer IP connection to all of the Campus
“citizens”: the network must guarantee the respect of French laws
concerning public network connections (décret 2006-358 sur
l'offre de connexion au public loi 2006-64). To do this, it would
be suitable that all users get identified using, e.g., using the
“pin” code of the student/employee-card. The infrastructure mainly
targets Internet access for all. The Campus STIC WIFI underlay
network could be an unique opportunity to have a real testbed into
which we could put our programmable overlay to the test. Arigatoni and Ariwheels could represent the overlay network infrastructure
to offer much more than simply an Internet connection: the
LogNet vision can provide a list of interesting high-level semantic
(on demand) services, and a plausible way to implement it.

Reducing the Digital Divide [Sources
Wikipedia].
The digital divide is the troubling gap between those who use
computers and the Internet and those who do not. The term digital
divide had a moving target: at first, it meant the ownership of a
computer. Later, it meant access to the Internet. Most recently it centers
on broadband access. In modern usage, the term also means more than
just access to hardware, it also refers to the imbalance that exists
amongst groups of society regarding their ability to use information
technology.

The digital divide tends to focus on access to hardware, access to
the Internet. The writer Lisa J. Servon argued in 2002 that the
digital divide “is a symptom of a larger and more complex problem
– the problem of persistent poverty and inequality”. The four
major components that contribute to the digital divide are
“socioeconomic status, with income, educational level, and race
among other factors associated with technological attainment”.

One area of significant focus was school computer access; in
the 1990s, rich schools were much more likely to provide their
students with regular computer access. In the late 1990s, rich
schools were much more likely to have Internet access. In the
context of schools, which have constantly been involved in the
discussion of the divide, current formulations of the divide focus
more on how (and whether) computers are used by students, and less
on whether there are computers or Internet connections.

The USA E-rate program (officially the Schools and Libraries Program
of the Universal Service Fund), authorized in 1996 and implemented
in 1997, directly addressed the technology gap between rich and poor
schools by allocating money from telecommunications taxes to poor
schools without technology resources. Although the program faced
criticism and controversy in its methods of disbursement, it did
provide over 100,000 schools with additional computing resources and
Internet connectivity.

Recently, discussions regarding the digital divide in school access
have broadened to include technology-related skills and training in
addition to basic access to computers and Internet access. An
interesting example is that, in the North of Italy, the town of
Pordenone, 50,000 inhabitants, will be equipped with public local
WIFI LAN (e.g. see the declaration of the Major, in Italian,
http://it.youtube.com/watch?v=zBTnkEnXTlc). Our
vision could contribute to reducing the digital divide in our
society, and, more contextually, in the future Campus STIC.

 Software

 	Software	[bookmark: uid118]Ariwheels
	[bookmark: uid122]Arigatoni simulator
	[bookmark: uid124]myMed backbone
	[bookmark: uid126]myMed client alpha
	[bookmark: uid128]Synapse client
	[bookmark: uid129]Open Synapse client
	[bookmark: uid130]Husky interpreter
	[bookmark: uid132]myTransport Gui
	[bookmark: uid134]myDistributed Catatalog for
Digitized Cultural Heritage
	[bookmark: uid136]myStreaming P2P

 [bookmark: uid118] Section:
 Software
Ariwheels
Participants :
 Luigi Liquori [contact for the Ariwheels simulator] , Claudio Casetti [Politecnico di Torino, Italy] , Diego Borsetti [Politecnico di Torino, Italy] , Carla-Fabiana Chiasserini [Politecnico di Torino, Italy] , Diego Malandrino [Politecnico di Torino, Italy, contact for the Ariwheels client] .

Ariwheels is an infomobility solution for urban environments, with
access points deployed at both bus stops (forming thus a wired
backbone) and inside the buses themselves. Such a network is meant to
provide connectivity and services to the users of the public
transport system, allowing them to exchange services, resources and
information through their mobile devices. Ariwheels is both:

	[bookmark: uid119] a protocol, based on Arigatoni and the publish/subscribe
paradigm;

	[bookmark: uid120] a set of applications, implementing the protocol on the
different types of nodes;

	[bookmark: uid121] a simulator, written in OMNET++ and recently ported to the ns2
simulator.

See the web page
http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
and
http://arigtt.altervista.org .

[bookmark: uid122] Section:
 Software
Arigatoni simulator
Participants :
 Luigi Liquori [contact] , Raphael Chand [Université de Geneva, Switzerland] .

[bookmark: uid123]Figure
	4. The Arigatoni simulator	[image: IMG/Simulateur-Arigatoni]

We have implemented in C++ ([image: Im12 $\#8764 $]2.5K lines of code) the Resource
Discovery Algorithm and the Virtual Intermittent Protocol of the
Arigatoni Overlay Network. The simulator was used to measure the
load when we issued n service requests at Global Computers chosen
uniformly at random. Each request contained a certain number of
instances of one service, also chosen uniformly at random. Each
service request was then handled by the Resource Discovery mechanism
of Arigatoni networks.

[bookmark: uid124] Section:
 Software
myMed backbone
Participants :
 Luigi Liquori, Laurent Vanni [contact] .

[bookmark: uid125]Figure
	5. The myMed backbone	[image: IMG/myMed-backbone]

We have implemented a “backbone” for the myMed social network
using a nosql database called Cassandra
http://cassandra.apache.org ,
the latter used also by social networks like FaceBook and
Twitter. The backbone relies on 50 PC quad code HP400 equipped of
2Tb each.

[bookmark: uid126] Section:
 Software
myMed client alpha
Participants :
 Luigi Liquori, Laurent Vanni [contact] .

[bookmark: uid127]Figure
	6. The myMed alpha client	[image: IMG/myMed-alpha-login]	[image: IMG/myMed-alpha-desk]

We have launched an alpha-version of the myMed social network that
can be freely tested starting from our myMed web page
http://mymed.fr . Stay tuned with
further releases in 2011.

[bookmark: uid128] Section:
 Software
Synapse client
Participants :
 Laurent Vanni [contact] , Luigi Liquori, Cédric Tedeschi, Vincenzo Ciancaglini.

In order to test our Synapse protocol
[18] on real
platforms, we have initially developed JSynapse, a Java software
prototype, which uses the Java RMI standard for communication between
nodes, and whose purpose is to capture the very essence of our
Synapse protocol. It is a flexible and ready-to-be-plugged library
which can interconnect any type of overlay networks. In particular,
JSynapse fully implements a Chord-based inter-overlay network. It
was designed to be a lightweight and easy-to-extend software. We also
provided some practical classes which help in automating the
generation of the inter-overlay network and the testing of specific
scenarios. We have experimented with JSynapse on the Grid'5000
platform connecting more than 20 clusters on 9 different
sites. Again, Chord was used as the intra-overlay protocol.
See,
http://www-sop.inria.fr/lognet/synapse/jSynapse/index.html .

[bookmark: uid129] Section:
 Software
Open Synapse client
Participant :
 Bojan Marinkovic [contact] .

Opensynapse is an open source implementation of
[18] . It is available for free under the GNU GPL. This
implemetation is based on Open Chord (v. 1.0.5) - an open source
implementation of the Chord distributed hash table implementation by
Distributed and Mobile Systems
Group Lehrstuhl fuer Praktische Informatik Universitaet Bamberg, see
http://www-sop.inria.fr/lognet/synapse/open-synapse/index.html .

Opensynapse is implemented on top of an arbitrary number of overlay
networks. Inter-networking can be built on top of Synapse in a very
efficient way. Synapse is based on co-located nodes playing a role
that is reminiscent of neural synapses. The current implementation
of Opensynapse in this precise case interconnects many Chord overlay
networks. The new client currently can interconnect an arbitrary
number of Chord networks. This implementation follows the notation
presented in [13] , and so, each new Chord network is called
a Floor.

[bookmark: uid130] Section:
 Software
Husky interpreter
Participants :
 Marthe Bonamy [contact] , Luigi Liquori.

[bookmark: uid131]Figure
	7. Launching the Husky interpreter	[image: IMG/husky]

Husky is a variableless language based on lambda calculus and term
rewriting systems. Husky is based on the version 1.1 of Snake [10] . It was completely rewritten in CAML by Marthe
Bonamy, ENSL (new parser, new syntactic constructions, like, e.g.,
guards, anti-patterns, anti-expressions, exceptions and parametrized
pattern matching). In Husky all the keywords of the language are
ASCII-symbols. It could be useful to teach basic algorithms and
pattern-matching to childrens.

[bookmark: uid132] Section:
 Software
myTransport Gui
Participants :
 Laurent Vanni [contact] , Vincenzo Ciancaglini, Liquori Liquori.

[bookmark: uid133]Figure
	8. myTransport on the Nokia N800 Internet tablet	[image: IMG/mytransport]

myTransport is a GUI built on top of the Synapse protocol and
network. Its purpose is to be a proof of concept of the future
service of infomobility to be available in the myMed social Network,
see Figure 8 . The GUI is written in Java and it
is fully functional in the Nokia N800 internet tablet
devices. myTransport has been ported to the myMed social network.

[bookmark: uid134] Section:
 Software
myDistributed Catatalog for
Digitized Cultural Heritage
Participants :
 Vincenzo Ciancaglini [contact] , Bojan Marinkovic, Liquori Liquori.

[bookmark: uid135]Figure
	9. myDistributed Catalog	[image: IMG/mycatalog]

Peer-to-peer networks have emerged recently as a flexible decen-
tralized solution to handle large amount of data without the use of
high-end servers. We have implemented a distributed catalog
built up on an overlay network called “Synapse”. The Synapse
protocol allows interconnection of different overlay networks each
of them being an abstraction of a “community” of virtual providers.
Data storage and data retrieval from different kind of content
providers (i.e. libraries, archives, museums, universities, research
centers, etc.) can be stored inside one catalog. We illustrate the
concept based on the Synapse protocol: a catalog for digitized
cultural heritage of Serbia, see Figure 9 .

[bookmark: uid136] Section:
 Software
myStreaming P2P
Participants :
 Vincenzo Ciancaglini [contact] , Rossella Fortuna, Salvatore Spoto, Liquori Liquori, Luigi Alfredo Grieco.

We have implemented in Python a fork of the Goalbit
http://goalbit.sourceforge.net ,
an open source video streaming platform peer-to-peer software
streaming platform capable of distributing high-bandwidth live video
content to everyone preserving its quality. We have aligned with the
classical gossip-based distribution protocol a DHT that distribute
contents according to a content-based strategy.

 New Results

 	New Results	[bookmark: uid138]Synapse, interconnecting heterogeneous overlay networks
	[bookmark: uid139]Intersection and Union Types à la Church
	[bookmark: uid140]CarPal: interconnecting overlay
networks for a community-driven shared mobility
	[bookmark: uid142]myStreaming P2P

 [bookmark: uid138] Section:
 New Results
Synapse, interconnecting heterogeneous overlay networks
Participants :
 Luigi Liquori [contact] , Cédric Tedeschi, Laurent Vanni, Francesco Bongiovanni, Vincenzo Ciancaglini, Bojan Marinkovic.

We investigate Synapse, a scalable protocol for
information retrieval over the inter-connection of heterogeneous
overlay networks. Applications of top of Synapse see those
intra-overlay networks as a unique inter-overlay network.

Scalability in Synapse is achieved via co-located nodes, i.e. nodes
that are part of multiple overlay networks at the same time.
Co-located nodes, playing the role of neural synapses and
connected to several overlay networks, give a larger search area
and provide alternative routing.

Synapse can either work with “open” overlays adapting their
protocol to synapse interconnection requirements, or with “closed”
overlays that will not accept any change to their protocol.
Built-in primitives to deal with social networking
give an incentive for nodes cooperation.
Results from simulation and experiments show that Synapse is
scalable, with a communication and state overhead scaling similarly
as the networks interconnected. thanks to alternate routing paths,
Synapse also gives a practical solution to network partitions.
We precisely capture the behavior of traditional metrics of overlay
networks within Synapse and present results from simulations as well
as some actual experiments of a client prototype on the Grid'5000
platform. The prototype developed implements the Synapse protocol in
the particular case of the inter-connection of many Chord overlay
networks.

The inter-connection of overlay networks has been recently
identified as a promising model to cope with today's Internet issues
such as scalability, resource discovery, failure recovery or routing
efficiency, in particular in the context of information retrieval.
Some recent researches have focused on the design of mechanisms for
building bridges between heterogeneous overlay networks for the
purpose of improving cooperation between networks that have
different routing mechanisms, logical topologies and maintenance
policies. However, more comprehensive approaches of such
inter-connections for information retrieval and both quantitative
and experimental studies of its key metrics, such as satisfaction
rate or routing length, are still missing.

Many disparate overlay networks may not only simultaneously co-exist
in the Internet but also compete for the same resources on shared
nodes and underlying network links. One of the problems of the
overlay networking area is how heterogeneous overlay networks may
interact and cooperate with each other. Overlay
networks are heterogeneous and basically unable to cooperate each
other in an effortless way, without merging, an operation which is
very costly since it not scalable and not suitable in many cases for
security reasons. However, in many situations, distinct overlay
networks could take advantage of cooperating for many purposes:
collective performance enhancement, larger shared information,
better resistance to loss of connectivity (network partitions),
improved routing performance in terms of delay, throughput and
packets loss, by, for instance, cooperative forwarding of flows.

As a basic example, let us consider two distant databases. One node
of the first database stores one (key, value) pair which is
searched by a node of the second one. Without network cooperation
those two nodes will never communicate together. As another example,
we have an overlay network where a number of nodes got isolated by
an overlay network failure, leading to a partition: if some or all
of those nodes can be reached via an alternative overlay network,
than the partition “could” be recovered via an alternative
routing.

In the context of large scale information retrieval, several
overlays may want to offer an aggregation of their information/data
to their potential common users without losing control of it.
Imagine two companies wishing to share or aggregate information
contained in their distributed databases, obviously while keeping
their proprietary routing and their exclusive right to update it.
Finally, in terms of fault-tolerance, cooperation can increase the
availability of the system, if one overlay becomes unavailable the
global network will only undergo partial failure as other distinct
resources will be usable.

We consider the tradeoff of having one vs. many overlays as a
conflict without a cause: having a single global overlay has many
obvious advantages and is the de facto most natural
solution, but it appears unrealistic in the actual setting. In some
optimistic case, different overlays are suitable for collaboration
by opening their proprietary protocols in order to build an open
standard; in many other pessimistic cases, this opening is simply
unrealistic for many different reasons (backward compatibility,
security, commercial, practical, etc.). As such, studying protocols
to interconnect collaborative (or competitive) overlay networks is
an interesting research vein.

The main contribution of thisresearch vein is to introduce, simulate
and experiment with Synapse, a scalable protocol for
information retrieval over the inter-connection of heterogeneous
overlay networks. The protocol is based on co-located nodes, also
called synapses, serving as low-cost natural candidates for
inter-overlay bridges. In the simplest case (where overlays to be
interconnected are ready to adapt their protocols to the
requirements of interconnection), every message received by a
co-located node can be forwarded to other overlays the node belongs
to. In other words, upon receipt of a search query, in addition to
its forwarding to the next hop in the current overlay (according to
their routing policy), the node can possibly start a new search,
according to some given strategy, in some or all other overlay
networks it belongs to. This obviously implies to providing a
Time-To-Live value and detection of already processed queries, to
avoid infinite loop in the network, as in unstructured peer-to-peer
systems.

We also study interconnection policies as the explicit
possibility to rely on social based strategies to build these
bridges between distinct overlays; nodes can invite or can be
invited.

In case of concurrent overlay networks, inter-overlay routing
becomes harder, as intra-overlays are provided as some black boxes:
a control overlay-network made of co-located nodes maps one
hashed key from one overlay into the original key that, in turn,
will be hashed and routed in other overlays in which the co-located
node belongs to. This extra structure is unavoidable to route
queries along closed overlays and to prevent routing loops.

Our experiments and simulations show that a small number of
well-connected synapses is sufficient in order to achieve almost
exhaustive searches in a “synapsed” network of structured overlay
networks. We believe that Synapse can give an answer to
circumventing network partitions; the key points being that:
(i) several logical links for one node leads to as many
alternative physical routes through these overlay, and
(ii) a synapse can retrieve keys from overlays that it doesn't
even know simply by forwarding their query to another synapse that,
in turn, is better connected.
Those features are achieved in Synapse at the cost of some
additional data structures and in an orthogonal way to ordinary
techniques of caching and replication. Moreover, being a synapse can
allow for the retrieval of extra information from many other
overlays even if we are not connected with, see [17] .

[bookmark: uid139] Section:
 New Results
Intersection and Union Types à la Church
Participants :
 Luigi Liquori, Dan Dougherty.

We studied an explicitly typed lambda calculus “à la Church” based
on the union and intersection types discipline; this system is the
counterpart of the standard type assignment calculus “à la Curry”.
Our typed calculus enjoys Subject Reduction and confluence, and typed
terms are strongly normalizing when the universal type is omitted.
Moreover, both type checking and type reconstruction are decidable. In
contrast to other typed calculi, a system with union types will fail
to be “coherent” in the sense of Tannen, Coquand, Gunter, and
Scedrov: different proofs of the same typing judgement will not
necessarily have the same meaning. In response, we introduce a
decidable notion of equality on type-assignment derivations inspired
by the equational theory of bicartesian-closed categories, see
[16] .

[bookmark: uid140] Section:
 New Results
CarPal: interconnecting overlay
networks for a community-driven shared mobility
Participants :
 Vincenzo Ciancaglini, Luigi Liquori, Laurent Vanni.

[bookmark: uid141]Figure
	10. The CarPal application based on Synapse	[image: IMG/carpal]

Car sharing and car pooling have proven to be an effective solution
to reduce the amount of running vehicles by increasing the number of
passengers per car amongst medium/big communities like schools or
enterprises. However, the success of such practice relies on the
community ability to effectively share and retrieve information
about travelers and itineraries. Structured overlay networks such as
Chord have emerged recently as a flexible solution to handle large
amount of data without the use of high-end servers, in a
decentralized manner. We hav studied CarPal, see Figure
10 , a proof-of-concept for
a mobility sharing application that leverages a Distributed Hash
Table to allow a community of people to spontaneously share trip
information without the costs of a centralized structure. The
peer-to-peer architecture allows moreover the deployment on portable
devices and opens new scenarios where trips and sharing requests can
be updated in real time. Using an original protocol already
developed that allows to interconnect different
overlays/communities, the success rate (number of shared
rides) can be boosted up thus increasing the effectiveness of our
solution. Simulations results are shown to give a possible estimate
of such effectiveness, see [15] .

[bookmark: uid142] Section:
 New Results
myStreaming P2P
Participants :
 Vincenzo Ciancaglini [contact] , Rossella Fortuna, Salvatore Spoto, Liquori Liquori, Luigi Alfredo Grieco.

Traditional gossip-based P2P-TV systems are broadly recognized as
effective and scalable solutions for Internet real-time video
delivery. Nonetheless, significant performance limitations are still
present in highly heterogeneous environments, due to content and
bandwidth bottleneck issues. In an attempt to resolve
this challenging issue, we extend herein the traditional
gossip-based approach by means of a novel content-based technique,
allowing for content spreading and retrieval across a wider set of
peers, disregarding classic neighboring criteria, see [19] .

 Other Grants and Activities

 	Other Grants and Activities	[bookmark: uid144]European Initiatives

 [bookmark: uid144] Section:
 Other Grants and Activities
European Initiatives

[bookmark: uid145] Interreg Alcotra: myMed, 2010-2012
Participants :
 Luigi Liquori, Laurent Vanni, Vincenzo Ciancaglini, Claudio Casetti, Carla-Fabiana Chiasserini.

The Interreg Alcotra office has founded the three-year project
myMed : un réseau informatique
transfrontalier pour léchange de contenus dans un
environnement fixe et mobile. LogNet will head the project;
other partners are Vulog PME, GIR Maralpin, Politecnico di Torino,
Uni. Torino, Uni. Piemonte Orientale. The total budget 1380Keur
(796Keur for l'INRIA) - the external founding is 932Keur (526Keur
for l'INRIA). The founders are UE, PACA, CG06, PREF06, and INRIA,
see
http://www-sop.inria.fr/mymed .

 Dissemination

 	Dissemination	[bookmark: uid147]Participation in
committees and referees
	[bookmark: uid149]Teaching and Meeting
organizations
	[bookmark: uid153]Visitors

 [bookmark: uid147] Section:
 Dissemination
Participation in
committees and referees

	[bookmark: uid148] Luigi Liquori is PC member of the Seventh International Workshop
on Hot Topics in Peer-to-Peer Systems HotP2P, 2011.

Moreover Luigi Liquori was a referee for the PROLE 2010 conference and
of the Journal of Logic and Computations.

[bookmark: uid149] Section:
 Dissemination
Teaching and Meeting
organizations

	[bookmark: uid150] Luigi Liquori gave a course on Overlay and P2P networks at the
DEUKS TEMPUS, Foundations of Information Technologies summer school
June 14-27, 2009, Novi Sad, Serbia.

	[bookmark: uid151] Luigi Liquori gave a 34h TD course on Peer to peer, Master Ubinet UNSA.

	[bookmark: uid152] Luigi Liquori gave a 20h TD course on Peer to peer, Master MISMFSI, Universidad Politechnica de Valencia.

[bookmark: uid153] Section:
 Dissemination
Visitors

IN

	[bookmark: uid154] Moreno Falaschi, full professor, U. Siena, 7dd,

	[bookmark: uid155] Linda Brodo, assistant professor, U. Sassari, 7dd.

OUT

Luigi Liquori visited the following sites:

	[bookmark: uid156] Politecnico di Torino, multiple visits,

	[bookmark: uid157] Universitá di Torino, multiple visits,

	[bookmark: uid158] Universidad Politecnica de Valencia, 3 weeks.

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: lognet-2010-bid0]
	D. Benza, M. Cosnard, L. Liquori, M. Vesin.
Arigatoni: Overlaying Internet via Low Level Network Protocols, in: JVA, John Vincent Atanasoff International Symposium on Modern Computing, IEEE, 2006, p. 82–91.
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/jva-06.pdf

 	[2][bookmark: lognet-2010-bid11]
	D. Benza, M. Cosnard, L. Liquori, M. Vesin.
Arigatoni: Overlaying Internet via Low Level Network Protocols, INRIA, 2006, no 5805.

 	[3][bookmark: lognet-2010-bid9]
	D. Borsetti, C. Casetti, C. Chiasserini, L. Liquori.
Content Discovery in Heterogeneous Mobile Networks, in: Heterogeneous Wireless Access Networks: Architectures and Protocols, E. Hossain (editor), Springer-Verlag, 2008, p. 419–441.

 	[4][bookmark: lognet-2010-bid5]
	R. Chand, M. Cosnard, L. Liquori.
Powerful resource discovery for Arigatoni overlay network, in: Future Generation Computer Systems, 2008, vol. 1, no 21, p. 31–38.

 	[5][bookmark: lognet-2010-bid3]
	R. Chand, L. Liquori, M. Cosnard.
Improving Resource Discovery in the Arigatoni Overlay Network, in: ARCS, International Conference on Architecture of Computing Systems, Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 4415, p. 98-111.

 	[6][bookmark: lognet-2010-bid4]
	M. Cosnard, L. Liquori, R. Chand.
Virtual Organizations in Arigatoni, in: DCM, International Workshop on Developpment in Computational Models. Electr. Notes Theor. Comput. Sci., 2007, vol. 171, no 3.

 	[7][bookmark: lognet-2010-bid8]
	L. Liquori, D. Borsetti, C. Casetti, C. Chiasserini.
An Overlay Architecture for Vehicular Networks, in: IFIP Networking, International Conference on Networking, Lecture Notes in Computer Science, Springer-Verlag, 2008, vol. 4982, p. 60–71.

 	[8][bookmark: lognet-2010-bid2]
	L. Liquori, M. Cosnard.
Logical Networks: Towards Foundations for Programmable Overlay Networks and Overlay Computing Systems, in: TGC, Trustworthy Global Computing, Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 4912, p. 90–107.

 	[9][bookmark: lognet-2010-bid1]
	L. Liquori, M. Cosnard.
Weaving Arigatoni with a Graph Topology, in: ADVCOMP, International Conference on Advanced Engineering Computing and Applications in Sciences, IEEE Computer Society Press, 2007.

 	[10][bookmark: lognet-2010-bid17]
	L. Liquori, B. Serpette.
iRho: An Imperative Rewriting-calculus, in: MSCS, Mathematical Structures in Computer Science, 2007, vol. 18, no 3.

 	[11][bookmark: lognet-2010-bid22]
	L. Liquori, A. Spiwack.
FeatherTrait: A Modest Extension of Featherweight Java, in: TOPLAS, ACM Transaction on Programming Languages and Systems, 2007, vol. 30, no 2.

 	[12][bookmark: lognet-2010-bid23]
	L. Liquori, A. Spiwack.
Extending FeatherTrait Java with Interfaces, in: TCS, Theoretical Computer Science, 2008, vol. 398, no 1-3, p. 243–260, Calculi, types and applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della Rocca.

 	[13][bookmark: lognet-2010-bid16]
	L. Liquori, C. Tedeschi, F. Bongiovanni.
Babelchord: a social tower of DHT-based overlay networks, in: IEEE, ISCC, 2009, p. 307-312.

[bookmark: year]Publications of the year
International Peer-Reviewed Conference/Proceedings
	[14][bookmark: lognet-2010-bid6]
	R. Chand, L. Liquori, M. Cosnard.
Resource Discovery in the Arigatoni Model, in: IICS, International Conference on Innovative Internet Community Services, Lecture Notes in Informatics, 2010, no 165, p. 437-449.

 	[15][bookmark: lognet-2010-bid20]
	V. Ciancaglini, L. Liquori, L. Vanni.
CarPal: interconnecting overlay networks for a community-driven shared mobility, in: TGC, Trustworthy Global Computing, Lecture Notes in Computer Science, Springer-Verlag, 2010, vol. 6084, p. 301-317.

 	[16][bookmark: lognet-2010-bid19]
	D. Dougherty, L. Liquori.
Logic and computation in a lambda calculus with intersection and union types, in: LPAR, International Conference on Logic for Programming Artificial Intelligence and Reasoning, Lecture Notes in Computer Science, Springer-Verlag, 2010, vol. 6355, p. 173-191.

 	[17][bookmark: lognet-2010-bid18]
	L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini, B. Marinkovic.
Synapse: A Scalable Protocol for Interconnecting Heterogeneous Overlay Networks, in: IFIP Networking, International Conference on Networking, Lecture Notes in Computer Science, Springer-Verlag, 2010, vol. 6091, p. 67–82.

Internal Reports
	[18][bookmark: lognet-2010-bid15]
	L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini, B. Marinkovic.
Synapse: a Scalable Protocol for Interconnecting Heterogeneous Overlay Networks, INRIA, April 2010, no RR-7255.
http://hal.inria.fr/inria-00474529/en

Other Publications
	[19][bookmark: lognet-2010-bid21]
	R. Fortuna, L. Liquori, V. Ciancaglini, L. Vanni.
A content-based strategy to increase cooperation in P2P-TV systems, 2010, Submitted.

[bookmark: References]References in notes
	[20][bookmark: lognet-2010-bid13]
	J. W. Backus.
The IBM 701 Speedcoding System, in: J. ACM, 1954, vol. 1, no 1.
http://doi.acm.org/10.1145/320764.320766

 	[21][bookmark: lognet-2010-bid10]
	D. Eppstein, Z. Galil, G. Italiano.
Dynamic graph algorithms, in: Handbook of Algorithms and Theory of Computation, CRC Press, 1998, chap. 22.

 	[22][bookmark: lognet-2010-bid7]
	A. Rapoport.
Mathematical models of social interaction, John Wiley and Sons, 1963, vol. II, p. 493–579.

 	[23][bookmark: lognet-2010-bid12]
	W. M. P. van der Aalst, A. H. M. ter Hofstede.
YAWL: yet another workflow language, in: Information System, 2005, vol. 30, no 4, p. 245-275.

 	[24][bookmark: lognet-2010-bid14]
	J. von Neumann.
The Principles of Large-Scale Computing Machines, in: IEEE Ann. Hist. Comput., 1988, vol. 10, no 4, p. 243–256.

OEBPS/IMG/math_image_6.png
S" = [CPU = Intel, Time

Ssec]

OEBPS/IMG/myMed-alpha-login.jpg
mYMed v1.0 alpha Documentation Forum Contact Blog

Connectez-vous avec votre compte: [ULIL0]

Ou simplement en tant que:

myMed se joint a votre réseau social préféré
pour ajouter de nouvelles fonctionnalités!

3

user

a
o

user
- 2
user - /

) 4

user

Vous n'étes pas encore abonnés a un réseau social?
myMed en fourni un pour vous!

Nom

Prénom

eMail

Mot de pass

Confirmation

Je suis Homme :]

inscription

mymed

Réseau Social Transfrontalier

OEBPS/IMG/myMed-alpha-desk.jpg
myMed home page: Luigi Liquori

Name: Lulgl Liguori
Gender: male
Langage: it IT

Profile from: facebook

Michele Suppa
Maria Slivia Rettore
Nadine Kunigk
Adolfo Tontoll
Fablo Roccatagliata
Andrea Masnata
Vanessa Vauth
Vanessa Marclé
Giovanni Gherdovich
Gianlulgl Perotto
Sari Lappalainen

Francals | English | Italiano

>l

New applications | Top 10 applications | all applications rechercher
‘ :
myTransport myKayak
—
myAngel myMantagne
myProduct

myCasoun

| =

myProfile myPreference mylnfo

“Ensemble par-dela les frontiéres”

wa : Région
= DRhn: W€ PACA !- B inRIA

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/math_image_7.png
ntel

OEBPS/IMG/Simulateur-Arigatoni.jpg
[mascotie:-/ARIGATONI/CODE - Konsol
Session Edit View Eookmarks Setings Help

Tarouts Jees/Toca /b ibetiert 70.6: %0 vervion information svellable Creavired by -/ ou)
Jalout: Juse/locul dib/Libetaces o 20 version intormation svailanle Ceocuised by /a ut)

"] _sglone:~/ARIGATONYCODE | @ mascotte:-/ARIGATONI/CODE

OEBPS/IMG/math_image_8.png
Time

OEBPS/IMG/LogNet-Logo3.jpg

OEBPS/IMG/math_image_12.png

OEBPS/IMG/husky.jpg
-bash-3.2§ ./huskyl.5

g8
The Pirst Ascii-Oriented Programming Language
Based on the Original Screenplay of the
Inperative Rewriting Caleulus v 1.1

Kernel Certified by Cog
Powered by OCanL
Copyright INRIA 2009

NoEffect Theory Loaded
Version 1.lalpha
2. = Learn Husky

OEBPS/IMG/math_image_4.png

OEBPS/IMG/carpal.png
" myTransport: Enterprise Network e e T noD
Jon Locate idebap —
« publsh = Network
Search - Infomation
“ony: e e
ddress 82 e
2ip Coe o
e student
“Time:
Retwork
o information
contact
information

/" \
Enterprise Network
. - Synapse: e -
Vet N\ l. g
/ \
Student Network Enterprise Network

. A)

OEBPS/IMG/math_image_3.png

OEBPS/IMG/math_image_5.png
= Intel, Time < 10sec]

OEBPS/IMG/math_image_9.png

OEBPS/IMG/math_image_11.png

OEBPS/IMG/math_image_2.png

OEBPS/IMG/GRID.png
GBU Taiwar

g e

1t

John Taiwan

Seismic Data

&| GBUGRU

1sP

[T esuise s [===
Network P
Network
Super computer
GBUGRU
INTERNET =r|
ek I
PCluster
ﬂ i U VARG Houston
<

T GCU/GRU
[

«—> crREcUESTRESPONS

€—P VERY HGHSPEED [SP

OEBPS/IMG/math_image_1.png

OEBPS/IMG/math_image_10.png

OEBPS/IMG/mycatalog.png
Digital catalog
= Digital catalog

. File Edit Network Help
File Edit Network Help
New Record| : Searchby: [Related asset] ‘seir:h‘

- |New Record| - Searchby: [Related asset v | for: [search| 5 — =
Search results for Related asset = [Iprva rukovet

Search results for Related asset = 52 | = [Fprva rukovet

5results

Title | Creator Digital object owner Archival date v MIME Format. Creator: Stevan St. Mokranjac

Na Drinl Cuprija Vo Andric Serblan Natlonal Heritage, | 21/02/2010 Location: http://www.youtube.com/watch?v=6caduvWB DpE

Miroslavljevo jevandelie | anonymous. Serbian National Heritage | 21/02/2010 | JPEG o Serbian National Heritage Library

Iprva rukovet Stevan St. Mokranjac| Serbian National Heritage | 21/02/2010 | Video

|
Banjica Concentration Camp | Branka Prpa Historical Archives of Beld 21/02/2010 | HTML I Related asset:

Vasilije Aritmetika Damjanovié National Center of Digitizi 21/02/2010 | PDF < February >

Sun Mon Tue Wed Thu
2 3 4
9

1
7 8 10 1
¥ 15 16 17 18
21 22 23 24 25
28

Archivial date:

MIME type: video

Additional Notes: [Title: First garland

g |

| Display raw XML | | Close tab |

Message Area

|Message Area

OEBPS/IMG/myMed.jpg

OEBPS/IMG/mytransport.jpg

OEBPS/IMG/myMed-backbone.jpg
myMed Architecture: Network
v

‘

s(’l

