
c t i v i t y

te p o r

2010

Theme : Distributed Systems and Services

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team lognet

Logical Networks: Self-organizing Overlay
Networks and Programmable Overlay

Computing Systems

Sophia Antipolis - Méditerranée

http://www.inria.fr
http://www.inria.fr/recherche/equipes/lognet.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.fr.html

Table of contents

1. Team . 1
2. Overall Objectives . 1

2.1. LogNet’s Motto and Logo 1
2.2. Overall objectives 1
2.3. Highlights 2

3. Scientific Foundations .3
3.1. Lognet’s general context 3
3.2. General definitions 4
3.3. Background: Arigatoni overlay network computer 4

3.3.1. Arigatoni units 5
3.3.2. Virtual organizations 6
3.3.3. Resource discovery protocol (RDP) 7
3.3.4. Virtual Intermittent Protocol (VIP) 7
3.3.5. Two simple examples 8

3.4. General research directions 9
3.4.1. On Virtual organizations 9
3.4.2. On Resource discovery 10
3.4.3. Execution model 11

4. Application Domains .13
4.1. Panorama 13
4.2. Potential applications 13

5. Software . 15
5.1. Ariwheels 15
5.2. Arigatoni simulator 15
5.3. myMed backbone 16
5.4. myMed client alpha 16
5.5. Synapse client 16
5.6. Open Synapse client 16
5.7. Husky interpreter 17
5.8. myTransport Gui 17
5.9. myDistributed Catatalog for Digitized Cultural Heritage 17
5.10. myStreaming P2P 19

6. New Results . 19
6.1. Synapse, interconnecting heterogeneous overlay networks 19
6.2. Intersection and Union Types à la Church 21
6.3. CarPal: interconnecting overlay networks for a community-driven shared mobility 21
6.4. myStreaming P2P 22

7. Other Grants and Activities . 22
8. Dissemination . 22

8.1. Participation in committees and referees 22
8.2. Teaching and Meeting organizations 23
8.3. Visitors 23

9. Bibliography .23

LogNet is an INRIA team.

1. Team
Research Scientist

Luigi Liquori [Team Leader, Research Director, DR2 INRIA, HdR]
External Collaborators

Claudio Casetti [Assistant professor, Politecnico di Torino, Italy]
Carla-Fabiana Chiasserini [Associate professor, Politecnico di Torino, Italy]
Michel Cosnard [CEO INRIA, HdR]

Technical Staff
Laurent Vanni [Expert engineer, until January 2013]

PhD Students
Vincenzo Ciancaglini [MENRT grant, defense planned in 2012]
Thao Nguyen [PRES UNS grant, from 1st Novembre 2010, defense planned in 2013]
Giang Ngo Hoang [Evariste Galois grant, PRES UNS, cotutelle, from 1st October 2010, defense planned in
2013]
Petar Maksimovic [TEMPUS-BASILEUS grant, cotutelle, defense planned in 2012]
Rossella Fortuna [Politecnico di Bari, from 18th March 2010 to 10th October 2010]
Salvatore Spoto [Università di Torino, from 1st October 2010 to 20th December 2010]

Administrative Assistant
Nathalie Bellesso [INRIA]

Others
Fofack Nicaise [Master Ubinet, from 1st March 2010 to 31th August 2010]
Thao Nguyen [Master Ubinet, from 1st March 2010 to 31th August 2010]
Ali Makké [Master Ubinet, from 1st March 2010 to 31th August 2010]
David Da Silva [IUT, from April 10th 2010 to June 12th 2010]
Nicolas Goles [INRIA internship, from January 6th 2010 to 1st March 2010]
Kevin Jeddy [IUT, from April 10th 2010 to June 12th 2010]

2. Overall Objectives

2.1. LogNet’s Motto and Logo
Our Motto is “Computer is moving on the edge of the Network...” by Jan Bosch, Nokia Labs, [LNCS 4415,
2007] and our logo is in Figure 1.

2.2. Overall objectives
We propose foundations for generic overlay networks and overlay computing systems. Such overlays are built
over a large number of distributed computational agents, virtually organized in colonies, and ruled by a leader
(broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators (primus inter
pares). Every agent asks the broker to log into the colony by declaring the resources that can be offered (with
variable guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively
be considered as evolved agents who can log into an outermost colony governed by another super-leader.
Communications and routing intra-colonies goes through a broker-2-broker PKI-based negotiation. Every
broker routes intra- and inter- service requests by filtering its resource routing table, and then forwarding
the request firstly inside its colony, and secondly outside, via the proper super-leader (thus applying an
endogenous-first-estrogen-last strategy). Theoretically, queries are formulæ in first-order logic equipped with
a small program used to orchestrate and synchronize atomic formulæ (atomic services). When the client agent

2 Activity Report INRIA 2010

Figure 1. Our logo

receives notification of all of (or part of) the requested resources, then the real resource exchange is performed
directly by the server(s) agents, without any further mediation of the broker, in a pure peer-to-peer fashion.
The proposed overlay promotes an intermittent participation in the colony, since peers can appear, disappear,
and organize themselves dynamically. This implies that the routing process may lead to failures, because some
agents have quit or are temporarily unavailable, or they were logged out manu militari by the broker due to
their poor performance or greediness. We aim to design, validate through simulation, and implement these
foundations in a generic overlay network computer system.

2.3. Highlights

Figure 2. The myMed social network

The tiny LogNet team has been granted by the Interreg Alcotra office of the three-year project myMed : un
réseau informatique transfrontalier pour léchange de contenus dans un environnement fixe et mobile. LogNet
will head the project; other partners are Vulog PME, GIR Maralpin, Politecnico di Torino, Uni. Torino, Uni.
Piemonte Orientale. The total budget 1380Keur (796Keur for l’INRIA) - the external founding is 932Keur
(526Keur for l’INRIA). The founders are UE, PACA, CG06, PREF06, and INRIA, see http://www.mymed.fr.

http://www.mymed.fr

Team lognet 3

3. Scientific Foundations

3.1. Lognet’s general context
The explosive growth of the Internet gives rise to the possibility of designing large overlay networks and
virtual organizations consisting of Internet-connected computers units, able to provide a rich functionality of
services which make use of aggregated computational power, storage, information resources, etc. We would
like to start our first activity report with the standard definition of a Computer System.

Definition 1 (Computer System)
A computer system consists of computer hardware and computer software.

• Computer Hardware is the physical part of a computer, including the digital circuitry, as distin-
guished from the computer software that is executed within the hardware. The hardware of a com-
puter is infrequently changed, in comparison with software and data.

• Computer Software consists of three parts, namely: system software, program software, and appli-
cation software.

– System Software helps run the computer hardware and the computer system. Examples are
operating systems (OS), device drivers, diagnostic tools, servers, windowing systems...

– Program Software usually provides tools to assist the programmer in writing computer
programs and software using different programming languages. Examples are text editors,
compilers, interpreters, linkers, debuggers for general purpose languages...

– Application Software allows end-users to accomplish one or more specific (non computer-
related) tasks, pertaining to fields such as industrial automation, business software, educa-
tional software, medical software, databases, computer games...

Starting from the previous basic skeleton definition, we elaborate the LogNet’s vision of what an Overlay
Network Computer System is. The reader can focus on the tiny, yet crucial differences.

Definition 2 (Overlay Computer System)
An overlay computer system consists of overlay computer hardware and overlay computer software.

• Overlay Computer Hardware is the physical part of an overlay computer, including the digital
circuitry, as distinguished from overlay computer software that is executed within the hardware.
The hardware of an overlay computer changes frequently and it is distributed in space and in time.
Hardware is organized in a network of collaborative computing agents connected via IP or ad-hoc
networks; hardware must be negotiated before being used.

• Overlay Computer Software consists of three parts, namely: overlay system software, overlay
program software, and overlay application software.

– Overlay System Software helps run the overlay computer hardware and the overlay
computer system. Examples are network middleware playing as a distributed opera-
ting system (dOS), resource discovery protocols, virtual intermittent protocols, security
protocols, reputation protocols...

– Overlay Program Software usually provides tools to assist a programmer in writing
overlay computer programs and software using different overlay programming languages.
Examples are compilers, interpreters, linkers, debuggers for workflow-, coordination-, and
query-languages.

– Overlay Application Software allows end-users to accomplish one or more specific (non-
computer related) tasks, pertaining to fields such as industrial automation, business soft-
ware, educational software, medical software, databases, and computer games...These
classes of applications deal with computational power (Grid), file and storage retrieval
(P2P), web services (Web2.0), band-services (VoIP), computation migrations...

4 Activity Report INRIA 2010

Therefore, LogNet’s objectives can be summarized as follows:

• to provide adequate notions and definitions of a generic overlay network computer; from a desktop
distributed calculator to a programmable distributed overlay computer;

• on the basis of these definitions, to propose a precise architecture of a generic overlay network
computer and implement it;

• on the basis of these definitions, to implement an overlay software factory suitable to help the logical
and software assembling of an overlay network computer.

3.2. General definitions
An overlay network is a computer network which is built on top of another network. Overlay networks can be
constructed in order to permit routing messages to destinations not specified by an IP address. In what follows,
we briefly describe the main entities underneath a virtual organization.
Agents. An agent in the overlay is the basic computational entity of the overlay: it is typically a device, like
a PDA, a laptop, a PC, or smaller devices, connected through IP or other ad hoc communication protocols in
different fashion (wired, wireless). Agents in the overlay can be thought of as being connected by virtual or
logical links, each of which corresponds to a path, through many physical links, in the underlying network.
For example, many peer-to-peer networks are overlay networks because they run on top of the Internet.
Colonies and colony leaders. Agents in the overlay are regrouped in Colonies. A colony is a simple virtual
organization consists of exactly one leader, offering some broker-like services, and some set of agents. The
leader, being also an agent, can be an agent of a colony different of the one he manages. Thus, agents are
simple computers (think of them as amoebas), or sub-colonies (think of them as protozoas). Every colony has
exactly one leader and at least one agent (the leader itself). Logically, an agent can be seen as a collapsed
colony, or a leader managing itself. The leader is the only one who knows all of the agents in its colony. One
of the tasks of the leader is to manage (un)subscriptions to its colony.
Resource discovery. By adhering to a colony, an agent can expose resources he has and/or ask for resources
it requires. Another task of a leader is to manage the resources available in its colony. Thus, when an agent of
the overlay needs a specific resource, he makes a request to its leader. A leader is devoted to contacting and
negotiating with potential servers, to authenticating clients and servers, and to routing requests. The rationale
ensuring scalability is that every request is handled firstly inside its colony, and then forwarded through the
proper super-leader (thus applying an endogenous-first-exogenous-last strategy).
Orchestration. When an agent receives an acknowledgment of a service request from the direct leader, then
the agent is served directly by the server(s) agents, i.e. without further mediation of the leader, in a pure P2P
fashion. Thus, the “main” program will be run on the agent computer machine that launched the service request
and received the resources availability: it will orchestrate and coordinate data and program resources executed
on others agent computers.

3.3. Background: Arigatoni overlay network computer
As suggested by our previous definitions, we are mainly concerned by three topics: network organization,
resource discovery and orchestration. These topics are studied in a complementary way by Arigatoni (work
started by Luigi Liquori and Michel Cosnard). In this section we will describe the current status of Arigatoni.

The Arigatoni overlay network computer, [1], [9], [8], [5], [6], [4] and [14], developed since 2006 in
the Mascotte Project Team by Luigi Liquori and Michel Cosnard, and then in the LogNet team, is a
structured multi-layer overlay network which provides resource discovery with variable guarantees in a
virtual organization where peers can appear, disappear, and self-organize themselves dynamically. Arigatoni
is universal in the sense of Turing machines, or generic as the von Neumann computer architecture is.

Team lognet 5

Every agent asks the broker to log into the colony by declaring the resources that it provides (with variable
guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively be
considered as evolved agents who can log into an outermost colony, which is governed by another super-leader.
Communications and routing intra-colonies go through a broker-2-broker PKI-based negotiation. Every broker
routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request
firstly inside its colony, and secondly outside, via the proper super-leader (thus applying an endogenous-first-
estrogen-last strategy).

Theoretically, queries are formulæ in first-order logic. When the client agent receives notification of all of (or
part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents,
without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes
an intermittent participation in the colony. Therefore, the routing process may lead to failures, because some
agents have quit, or are temporarily unavailable, or they were logged out by the broker due to their poor
performance or greediness.

Arigatoni features essentially two protocols: the resource discovery protocol dealing with the process of an
agent broker to find and negotiate resources to serve an agent request in its own colony, and the virtual
intermittent protocol dealing with (un)registrations of agents to colonies.

Dealing essentially with resource discovery and peers’ churn has one important advantage: the complete
generality and independence of any offered and requested resource. Arigatoni can fit with various scenarios
in the global computing arena, from classical P2P applications (file- or bandwidth-sharing), to new Web2.0
applications, to new V2V and V2I over MANET applications, to more sophisticated Grid applications, until
possible, futuristic migration computations, i.e. transfer of a non-completed local run to another agent, the
latter being useful in case of catastrophic scenarios, such as fire, a terrorist attack, an earthquake, etc.

3.3.1. Arigatoni units
In what follows, we briefly introduce the logic units underneath a generic overlay network.

Peers’ participation in Arigatoni’s colonies is managed by the Virtual Intermittent Protocol (VIP); the protocol
deals with the dynamic topology of the overlay, by allowing agent computers to login/logout to/from a colony
(using the SREG message). Due to this high node churn, the routing process may lead to failures, because
some agents have logged out, or because they are temporarily unavailable, or because they have logged out
manu militari by the broker for their poor performance or greediness.

The total decoupling between peers in space (peers do not know other peers’ locations), time (peers do not
participate in the interaction at the same time), synchronization (peers can issue service requests and do
something else, or may be doing something else when being asked for services), and encapsulation (peers
do not know each other) are key features of Arigatoni’s scalability.
Agent computer (AC). This unit can be, e.g., a cheap computer device consisting of a small RAM-ROM-HD
memory capacity, a modest CPU, a ≤ 40 keystrokes keyboard (or touchscreen), a tiny screen (≤ 4 inch), an
IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a USB port, and very few programs
installed inside, e.g. one simple editor, one or two compilers, a mail client, a mini browser... Our favorite
device actually is the Internet terminal Nokia N810. Of course, a AC can be a supercomputer, or an high
performance PC-cluster, a large database server, a high performance visualizer (e.g. connected to a virtual
reality center), or any particular resource provider, even a smart-dust. The operating system (if any) installed
within the AC is not important. The computer should be able to work in local mode for all of the tasks that it
could do locally, or in global mode, by first registering itself to one or many colonies of the overlay, and then
by asking and serving global requests via the colony leaders. In a nutshell, the tasks of an AC are:

• Discover the address of one or many agent brokers (ABs), playing as colony leaders, upon its arrival
in a “connected area”; this can be done using the underlay network and related technologies;

• Register on one or many ABs, thus de facto entering the Arigatoni’s virtual organization;

• Ask and offer some services to others ACs, via the leaders’ ABs;

6 Activity Report INRIA 2010

• Connect directly with other ACs in a P2P fashion, and offer/receive some services. Note that an AC
can also be a resource provider. This symmetry is one of the key features of Arigatoni. For security
reasons, we assume that all ACs come with their proper PKI certificate.

Agent Broker (AB). This unit can be, e.g., a computer device made up of a high speed CPU, an IP or ad hoc
connection (via DHCP, BLUETOOTH, WIFI, WIMAX...), a high speed hard-disk with a resource routing table
to route queries, and an efficient program to match and filter the routing table. The computer should be able
to work in global mode, by first registering itself in the overlay and then receiving, filtering and dispatching
global requests through the network. The tasks of a AB are:

• Discover the address of another super-AB, representing the super-leader of the super-colony, where
the AB colony is embedded. We assume that every AB comes with its proper PKI certificate. The
policy to accept or refuse the registration of an AC with a different PKI is left open to the level of
security requested by the colony;

• Register/unregister the proper colony with the leader AB which manages the super-colony;
• Register/unregister clients and servants AC in its colony, and update the internal resource routing

table accordingly;
• Receive the request for servicing of the client AC;
• Discover the resources that satisfy an AC request in its local base (local colony), according to its

resource routing table;
• Delegate the request to an AB leader of the direct super-colony in case the resource cannot be satisfied

in its proper colony; it must register itself (and by product its colony) with another super-colony;
• Perform a combination of the last two actions mentioned above;
• Deal with all PKI intra- and inter-colony policies;
• Notify, after a fixed timeout period, or when all ACs failed to satisfy the delegated request, the AC

client of the denial of service requested by the AC client;
• Send all the information necessary to make the AC client able to communicate with the AC servants.

This notification is encoded using the resource discovery protocol. (Finally, the AC client will
directly talk with the ACs servants).

Agent Router (AR). This unit implements all the low-level overlay network routines, those which really have
access to the IP or to the ad-hoc connections. In a nutshell, an AR is a shared library dynamically linked with
an AC or an AB. The AR is devoted to the following tasks:

• Upon the initial start-up of an AC (resp. AB) it helps to register the unit with one or many ABs that it
knows or discovers;

• Checks the well-formedness and forwards packets of the two Arigatoni’s protocols across the overlay
toward their destinations.

3.3.2. Virtual organizations
Agent computers communicate by first registering with the colony and then by asking and offering services.
The leader agent broker analyzes service requests/responses, coming from its own colony or arriving from a
surrounding colony, and routes requests/responses to other agents. Agent computers get in touch with each
other without any further intervention from the system, in a P2P fashion. Peers’ coordination is achieved by a
simple program written in an orchestration/business language à la BPEL, or JOpera.

Symmetrically, the leader of a colony can arbitrarily unregister an agent from its colony, e.g., because of its bad
performance when dealing with some requests or because of its high number of “embarrassing” requests for
the colony. This strategy, reminiscent of the Roman do ut des, is nowadays called, in Game Theory, Rapoport’s
tit-for-tat strategy [22] of cooperation based on reciprocity. Tit-for-tat is commonly used in economics, social
sciences, and it has been implemented by a computer program as a winning strategy in a chess-play challenge
against humans (see also the well known prisoner dilemma). In computer science, the tit-for-tat strategy is the
stability (i.e. balanced uploads and downloads) policy of the Bittorrent P2P protocol.

Team lognet 7

Once an agent computer has issued a request for some service, the system finds some agent computers (or,
recursively, some sub-colonies) that can offer the resources needed, and communicates their identities to the
(client) agent computer as soon as they are found.

The model also offers some mechanisms to dynamically adapt to dynamic topology changes of the overlay
network, by allowing an agent (computer or broker, representing a sub-colony) to login/logout to/from a
colony. This essentially means that the process of routing request/responses may lead to failure, because some
agents logged out or because they are temporarily unavailable (recall that agents are not slaves). This may
also lead to temporary denials of service or, more drastically, to the complete logout of an agent from a given
colony in the case where the former does not provide enough services to the latter.

3.3.3. Resource discovery protocol (RDP)
Kind of discovery. The are mostly two mechanisms of resource discovery, namely:

• The process of an AB to find and negotiate resources to serve an AC request in its own colony;

• The process of an AC (resp. AB) to discover an AB, upon physical/logical insertion in a colony.

The first discovery is processed by Arigatoni’s resource discovery protocol, while the second is processed
out of the Arigatoni overlay, using well-known network protocols, like DHCP, DNS, the service discovery
protocol SLP of BLUETOOTH, or Active/Passive Scanning in WIFI.

The current RDP protocol version allows the request for multiple services and service conjunctions. Adding
service conjunctions allows an AC to offer several services at the same time. Multiple service requests can be
also asked of an AB; each service is processed sequentially and independently of the others. As an example
of multiple instances, an AC may ask for three CPUs, or one chunk of 10GB of HD, or one gcc compiler. As
an example of a service conjunction, an AC may ask for another AC offering at the same time one CPUs, and
one chunk of 1GB of RAM, and one chunk of 10GB of HD, and one gcc compiler. If a request succeeds, then,
using a simple orchestration language, the AC client will use all resources offered by the servers ACs.

The RDP protocol proceeds as follows: suppose an AC X registers – using the intermittent protocol VIP
presented below – with an AB and declares its availability to offer a service S, while another AC Y, already
registered, issues a request for a service S′. Then, the AB looks in its routing table and filters S′ against S. If
there exists a solution to this filter equation, then X can provide a resource to Y. For example, the resource
S

M= [CPU = Intel,Time ≤ 10sec] filters against S′ M= [CPU = Intel,Time ≥ 5sec], with attribute values Intel
and Time between 5 and 10 seconds.
Routing tables in RDP. In Arigatoni, each AB maintains a routing table T locating the services that are
registered in its colony. The table is updated according to the dynamic registration and unregistration of ACs
in the overlay; thus, each AB maintains a partition of the data space. When an AC asks for a resource (service
request), then the query is filtered against the routing tables of the ABs where the query has arrived and the AC
is registered; in case of a filter-failure, the ABs forward the query to their direct super-ABs. Any answer of the
query must follow the reverse path.

Thus, resource lookup overhead reduces when a query is satisfied in the current colony. Most structured
overlays guarantee lookup operations that are logarithmic in the number of nodes. To improve routing
performance, caching and replication of data and search paths can be adopted. Replication also improves
load balancing, fault tolerance, and the durability of data items.

3.3.4. Virtual Intermittent Protocol (VIP)
There are essentially two ways in which an AC can register to an AB (sensible to its physical position in the
network topology), the latter not being enforced by the Arigatoni model (see [6]):

1. Registration of an AC to an AB belonging to the same current administrative domain;

2. Registration via tunneling of an AC to another AB belonging to a different administrative domain.

8 Activity Report INRIA 2010

If both registrations apply, the AC is de facto working in local mode in the current administrative domain and
working in global mode in another administrative domain. Symmetrically, an AC can unregister according to
the following simple rules “d’étiquette”:

• Unregistration of an AC is allowed only when there are no pending services demanded of or requested
from the leader AB of the colony: agent computers must always wait for an answer of the AB or for
a direct connection of the AC requesting or offering the promised service, or wait for an internal
timeout (the time-frame must be negotiated with the AB);

• (As a corollary of the above) an AB cannot unregister from its own colony, i.e. it cannot discharge
itself. However, for fault tolerance purposes, an AB can be faulty. In that case, the ACs unregister
one after the other and the colony disappears;

• Once an AC has been disconnected from a colony belonging to any administrative domain, it can
physically migrate into another colony belonging to any other administrative domain;

• Selfish agents in P2P networks, called “free riders”, that only utilize other peers’ resources without
providing any contribution in return, can be fired by a leader; if the leader of a colony finds that the
agent’s ratio of fairness is too small (≤ ε for a given ε), he can arbitrarily decide to fire that agent
without notice. Here, the VIP protocol also checks that the agent has no pending services to offer,
or that the timeout of some promised services has expired, the latter case meaning that the free rider
promised some services but finally did not provide any service at all (untrustworthiness).

Registration policies in VIP. VIP registration policies are usually not specified in the protocol itself; thus,
every agent broker is free to choose its acceptance policy. This induces different self-organization policies and
allows for reasoning on the colony’s load-balancing and kind of colonies. Possible politics and are:

• (mono-thematic) An agent broker accept an agent into its colony if the latter offers resources § that
the colony already has in quantity ≥ ε, for a given ε;

• (multi-thematic) An agent broker accept an agent if the latter offers resources that the colony has in
quantity ≤ ε, for a given ε;

• (unbalanced) An agent broker accepts an agent always;

• (pay-per-service) An agent broker accepts only agents that accept to pay some services;

• (metropolis/village) An agent broker accepts an agent into its colony only if the number of citizens
is greater/lesser than N ;

• (custom) An agent broker accepts an agent following a mix of the above politics.

3.3.5. Two simple examples
To give an idea of the possible usage of the Arigatoni generic overlay network we present two examples; the
first one has a Grid-computing flavor while the second is a nice interweaving of the Arigatoni overlay seated
on the top of both IP and MANET underlay network. For more information, the interested reader can have a
look on [1], [7], [3].
GRID: scenario for seismic monitoring. John, chief engineer of the SeismicDataCorp Company, Taiwan,
on board of the seismic data collector ship, has to decide on the next data collecting campaign. For this he
would like to process and analyze 100 TeraBytes of seismic data that have been recorded on the data mass
recorder located in the offshore data repository of the company. He has written the processing program for
modeling and visualizing the seismic cube using some parallel library like e.g. MPI or PVM: his program can
be distributed over different machines that will compute a chunk of the whole processing; however, the amount
of computation is so big that a supercomputer and a cluster of PCs have to be rented by the SeismicDataCorp
company. John will ask also for bandwidth in order to get rid of any bottlenecks related to the big amount of
data to be transferred. Then, the processed data should be analyzed using the Virtual Reality Center, (VRC)
based in Houston, U.S.A. by a specialist team and the resulting recommendations for the next data collect
campaign have to be sent to John. With this in mind:

Team lognet 9

Figure 3. Arigatoni Overlay Network for a Grid Seismic Monitoring Application

1. John logs onto the Arigatoni Overlay Network in a given colony in Taiwan, and sends a quite
complicated service request in order for the data to be processed using his own code. Usually the AB
leader of the colony will receive and process the request;

2. If the Resource Discovery performed by the AB succeeds, i.e. a supercomputer and a cluster and an
ISP are found, then the data are transferred at a very high speed and the “Sinfonia” begins;

3. John will also ask (in the RDP request) to the AC containing the seismic data to dispatch suitable
chunks of data to the supercomputer and the cluster designated by the AB to perform some pieces of
computation;

4. John will also ask (in the RDP request) to the supercomputer to perform the task of collecting
all intermediate results, so calculating the final result of the computation, like a “Maestro di
Orchestra”;

5. The processed data are then sent from the supercomputer, via the high speed ISP, to the Houston
center for being visualized and analyzed;

6. Finally, the specialist team’s recommendations will be sent to John’s laptop.

This scenario is pictorially presented in Figure 3 (we suppose a number of sub-colonies with related leaders
AB, all registered as agents to a super-AB;for example the John’s AB could be elected as the super-leader).
For simplify security issues, all AB’s are trusted using the same PKI, making all resources of their colonies
de facto common. An animation of the coordination program, written in the visual language JOpera can be
downloaded at http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv.

3.4. General research directions
Following our main three topics, network organization, resource discovery and orchestration, for middle and
long term research, we envisage the following studies.

3.4.1. On Virtual organizations

• Trees vs. graphs: a conflict without a cause. In the first versions of Arigatoni, the network topology
was tree- or forest-based. But since agents are not slaves, multiple registrations are in principle
possible and unavoidable. This weaves the network topology into a dynamic graph [21], where
nodes do not have a complete knowledge of the topology itself. As an immediate consequence,
our protocols must deal with multiple registrations of the same agent in different colonies, with the
natural consequence of resource overbooking, routing table update loops (when a service update

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/arigatoni_animation.wmv

10 Activity Report INRIA 2010

request comes back to the broker that generates the request itself), and resource discovery loops
(when a resource service request comes back to the agent that generates the request itself), see [9].

As an example of resource overbooking, suppose an agent computer registers to two colonies, by
declaring and offering the same resource S twice, i.e. once for each colony. This phenomenon
is well known in the telecommunications industry, as in the “frame-relay” world. For the record,
overbooking in telecommunications means that a telephone company has sold access to too many
customers who basically flood the telephone company lines, resulting in an inability for some
customers to use what they purchased. Other examples of overbooking can be found in the domain
of transportation (airlines) and hotel reservations.

Resource discovery is a non-trivial problem for large distributed systems featuring a discontinuous
amount of resources offered by agent computers and their intermittent participation in the overlay.
Peers’ intermittence lead also to the design of new routing algorithms and protocols stable to agent
churn; this scenario can be modeled using dynamic graph theory.

• Fault tolerance. The virtual organization model offers some mechanisms to dynamically adapt
to dynamic topology changes of the overlay network, by allowing an agent (computer or broker,
representing a sub-colony) to login/logout in/from a colony. This essentially means that the process
of routing requests and responses may lead to failure, because some agents logged out or because
they are temporarily unavailable (recall that agents are not slaves). This may also lead to temporary
denials of service or, more drastically, to the complete “delogging” of an agent from a given colony
in the case where the former does not provide enough services to the latter.

3.4.2. On Resource discovery

• Parametricity and universality. Dealing only with resource discovery has one important advan-
tage: the complete generality and independence of any offered and requested resource. Thus, Ariga-
toni can fit with various scenarios in the agent computing arena, from classical P2P applications, like
file- or band-sharing, to more sophisticated Grid applications, like remote and distributed big (and
small) computations, until possible, futuristic migration computations, i.e. transfer of a non com-
pleted local run in another agent computer, the latter being useful in case of catastrophic scenarios,
such as fire, a terrorist attack, an earthquake, etc., in the vein of agent programming languages à la
Obliq or Telescript. We could envisage at least the following scenarios to be a tight fit for our model:

– Request for computational power (i.e. the Grid);

– Request for memory space (i.e. distributed storage);

– Request for bandwidth (i.e. VoIP);

– Request for a distributed file retrieving (i.e. standard P2P applications);

– Request for a (possibly) distributed web service (i.e. query à la Google or any service
available via web-oriented protocols);

– Orchestration of a distributed execution of an algorithm (i.e. a kind of distributed von
Neumann machine);

– Request for a computation migration (i.e. transfer one partial run in another agent
computer, saving the partial results, as in a truly mobile ubiquitous computation);

– Request for a human computer interaction (the human playing the role of an agent)...

• Social model underneath an overlay network computer. The Arigatoni overlay network computer
defines mechanisms for devices to inter-operate, by offering services, in a way that is reminiscent to
Rapoport’s tit-for-tat strategy of co-operation based on reciprocity. This way to understand common
behavior of virtual organizations has some theoretical basis on Game Theory. Classical results from
game theory are based on the assumption that a shared amount of resources is available and then
users have an incentive to collaborate. The very first design of Arigatoni forced each AC to register

Team lognet 11

to only one AB. But, recent studies showed that the Arigatoni overlay can be smoothly scaled up to
a more general topology where each AC may simultaneously be registered to several AB, and where
a colony is just one possible social scheme [2].

This means that Arigatoni fits with motivations and cooperation behavior of different communities. It
tries to be policy neutral, leaving policy choices for each agent at the implementation or configuration
level, or at the community or organization level. Policy domains can overlap (one agent can define
himself as belonging “much” to the colony foo and “a little bit” to the colony bar). This denotes
a decentralized non-exclusive policy model. As such, one question can arise: who is Arigatoni
designed for? We believe the overlay is flexible enough to serve a mix of different “social structures”
and “end-users”:

– Independent end-user connecting through his ISP or migrating from hot-spot to hot-spot;

– Cooperative communities of disseminated agents;

– More regulated or hierarchical communities (maybe a better view of a corporate network);

– Cooperative or competitive resource providers and resource brokers.

• Quality metrics underneath an overlay network computer. The Arigatoni overlay network
computer is suitable to support various extended trust models. Moreover, the reputation score could
be expanded to a multi-dimensional value, for example, by adding a score for quality of the service
offered by an agent. However, Arigatoni encourages cooperation and enables gratuitous resource
offering. But it may also suit business extensions, e.g.:

– An agent computer can sell resource usage, creating a resource business;

– An agent broker can sell a resource discovery service, creating a brokering business (“I
point you to the best resources, more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of service extensions – among
others:

– How to create and call third party services for on-line payment of services;

– How to exchange digital cash for payment of services;

– How to negotiate service conditions between client and servants, including the price and
quality of service.

The one-to-many nature of the RDP protocol service request (SREQ) are of particular interest in
this case. Another possible Arigatoni extension may define how to join a third party auction server.
Candidate servants for a SREQ would contact the auction server and make their bid. The trusted
auction server chooses the elected candidate and service conditions based on auction terms. The
agent would then contact the auction server and get this information. Those extensions may take
advantage of the RDP optional fields [1], for example to transmit location and parameter information
to call a third party system.

3.4.3. Execution model

• Programming an overlay network computer. Once resources (hardware, software...) have been
discovered, the agent computer that made the request may wish to use and manipulate it; to
do this, the agent computer has written a (distributed) program in a new language (à la BPEL,
LINDA, YAWL, JOpera...), let’s call it Ivonne, in honor to the great scientist John von Neumann.
Those languages are often called (terminology often overlaps), coordination- workflow- dataflow-
orchestration- composition- metaprogramming- languages. Ivonne will have ad hoc primitives to
express sequences, iterators, cycles, parallel split, joins, synchronization, exclusive/multi/deferred
choice, simple/multi/synchronizing merge, discriminators, pipelining, cancellation, implicit termi-
nation, exception handling... [23].

12 Activity Report INRIA 2010

The “main” of an Ivonne program will be run on the agent computer machine that launched the
service request and received the resources availability: it will orchestrate and coordinate data and
program resources executed on others agent computers.

In case of failure of a remote service – due to a network problem or simply because of the
unreliability or untrustability of the agent that promised the resource – an exception handling
mechanism will send a resource discovery query on the fly to recover a faulty peer and the actual
state of the run represented, in semantic jargon, by the current continuation.

We also envisage to design a run-time distributed virtual machine, built on top of a virtual or
hardware machine, in order to scale-up from local to distributed computations and to fit with the
distributed nature of an overlay network computer. Communication between agent computers will
be performed through a logic bus, using Web technologies, like SOAP or AJAX protocols, or a
combination of Java-based JNI+RMI-protocols, or .NET, XPCOM, D-BUS, OLE bus protocols, or
even by enriching the Arigatoni protocol suite with an ad hoc control-flow and data-flow protocol,
and permitting to use it directly inside Ivonne.

The Ivonne language can be both interpreted and compiled. In the latter case we envisage the design
of an intermediate low-level distributed assembler language in which Ivonne could be compiled. The
intermediate machine code will recast the assembler pseudo code
move R0 R1
à la Backus [20] in
move dataR0 from ipR0:portR0 to ipR1:portR1
where, of course, latency is an non-trivial issue, or the assembler pseudo code
op R0 R1 R2 in
op on ipR0 with ipR0:portR0:dataR0 and ipR1:portR1:dataR1 and
stockin ipR2:portR2:dataR2.
Resuming, an overlay program will be a smooth combination of an overlay network connectivity
dealing with virtual organizations and discovery protocols, a computation of an algorithm resulting
of the summa of all algorithms running on different computer agents, and the coordination of all
computer agents, made by an Ivonne program.

+ Trust and security. In order to work securely, the Arigatoni overlay network computer needs to be able to
offer the following guarantees to its components:

• The communication between two agents must be secured;
• The role played by an agent (i.e. client AC, servant AC or AB) must be certified by a third party trusted

by the agents that communicate with this particular agent. A way to implement those constraints is to
use PKI certificates. A Certification Authority delivers certificates, and couples of private and public
keys for ACs and ABs which attest to their distinctive roles. The whole mechanisms involved by a
PKI are out of the scope of this research statement, but good use of PKIs and an implementation
compliant with RFC2743 can provide all the necessary security, namely the trustfulness on the
identity of the peers, and the trustfulness of all the transmitted data, i.e. secrecy, authenticity, and
integrity;

• In addition to PKIs, a more “liquid” trust model could be built, based on reputation mechanisms.
Reputation represents the amount of trust an agent in the overlay has in another agent based on its
partial view. In a nutshell:

– Each agent maintains a reputation score for each agent he knows;
– Each agent maintains a reputation score for each resource he serves;
– Exchanges between agents update each other’s scores dynamically;
– Conflicts between two or many agents are resolved by the broker leaders of the colonies to

which the agents belong;
– The computation of the reputation score (a trust metrics) and the way agents exchange

scores is left free to each single implementation.

Team lognet 13

A last word on implementation issues of the Arigatoni overlay network computer: it is well-known that two
technical barriers are commonly used to block transmission over IP network in overlays:

• Firewalls to drop UDP flows (usually considered as suspects);

• NAT techniques to mask to the outside world the real IP addresses of inside hosts; a NAT equipment
changes the IP source address when a packet goes to outside, and it changes the IP destination
address when a packet comes from outside.

The usage of these mechanisms is very frequent on the Internet and they are barriers that can prevent
connections between inside and outside agents in Arigatoni. The implementation of RFC3489 could be used
to overcome such obstacles.

4. Application Domains

4.1. Panorama
Because of its generality, our overlay network can target many applications. We would like to list a small list
of useful programmable overlay networks case studies that can be considered as “LogNet Grand Challenges”
to help potential readers understand the interest of our research program.

• New distributed models of computation

• Overlay networks over mobile ad hoc networks

• Reduce the digital divide

4.2. Potential applications
From large-scale computing machines to large-scale overlay network machines (John von Neumann
was right after all). This challenge is inspired by the seminal talk by John von Neumann, given in May 1946,
“Principles of Large-Scale Computing Machines”, typesetted and reprinted in [24]. At that time, “large-scale”
meant the ENIAC computer, i.e., 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors,
10,000 capacitors, 5 million joints, 30 short tons, 2.4m x 0.9m x 30m, stored in a 167 m2 room, and 150 kW
to operate. Today, thanks to the Moore’s law and to the Internet, “large scale” means “worldwide scale”, i.e.
the computer hardware is distributed in space and in time and must be negotiated before being used. The main
inspirations of the programmable overlay network computer research’s vein are still contained in that article.

The term “von Neumann bottleneck” was coined by John Backus in his 1977 ACM Turing award lecture.
Bottleneck refers to the fact that, since data and program are stored on the same support (the memory),
the throughput (data transfer rate) between the CPU and the memory is very low. In current von Neumann
architecture, the bottleneck is alleviated by using big cache memories. Since in overlay network computers the
bus can be modeled by an Internet connection, the data transfer is still more critical than on a single processor
machine. As such, we should probably look at new computer architectures, such as the Harvard one.

Needless to say that the “icing on the cake‘” will be to formalize this new distributed computational model
and architecture, together with a formal proof of its Turing completeness statement!
Developing a pedestrian/vehicular infrastructure based on an overlay network computer. We plan to
build an ad hoc vehicular network infrastructure using the Arigatoni overlay infrastructure. That network must
enable efficient and transparent access to the resources of on-board and roadside agents. In such a scenario,
commercial services and access to public information are available to vehicles transiting in specific areas
where such information is broadcast by roadside wireless gateways or by other vehicles. Data retrieved can
be stored on the on-board vehicle computer; then, they can be used and rebroadcast at a later time without the
need of persistent connectivity. These new features will offer innovative functions and services, such as:

• Distribution, from infrastructure to vehicle (I2V), and among vehicles (V2V), of safety and/or traffic-
related information;

14 Activity Report INRIA 2010

• Collection, from vehicles to infrastructures (V2I), of data useful to perform traffic management;

• Exchange of information between private vehicles and public transportation systems (buses, vehi-
cles, road side equipments...) to support and, thus, foster inter-modality in urban areas;

• Distribution of real-time, updated information to enable dynamic navigation services.

In this scenario, vehicles/pedestrians play the role of agent computers, while Bus-stop stations equipped with
IP network, routing tables and WIFI access point play the role of agent brokers; Buses play the role of mobile
agent brokers, a sort of proxy of a unique bus-stop agent broker. Proxy load balancing policies are left to the
bus headquarter (HQ). See, for more details, the Arigatoni’s sub-project Ariwheels.
Programming services for the new mesh overlay network in the Campus STIC of Sophia Antipolis.
The future Campus STIC, grouping EPU, UNSA, Eurecom, CNRS, and INRIA will be ready in one year.
It will be equipped with a WIFI network infrastructure implementing 802.11a/b/g protocols, with potential
evolution to 802.11n protocol. The main objectives of such an underlay network are to offer IP connection
to all of the Campus “citizens”: the network must guarantee the respect of French laws concerning public
network connections (décret 2006-358 sur l’offre de connexion au public loi 2006-64). To do this, it would
be suitable that all users get identified using, e.g., using the “pin” code of the student/employee-card. The
infrastructure mainly targets Internet access for all. The Campus STIC WIFI underlay network could be an
unique opportunity to have a real testbed into which we could put our programmable overlay to the test.
Arigatoni and Ariwheels could represent the overlay network infrastructure to offer much more than simply
an Internet connection: the LogNet vision can provide a list of interesting high-level semantic (on demand)
services, and a plausible way to implement it.
Reducing the Digital Divide [Sources Wikipedia]. The digital divide is the troubling gap between those
who use computers and the Internet and those who do not. The term digital divide had a moving target: at
first, it meant the ownership of a computer. Later, it meant access to the Internet. Most recently it centers on
broadband access. In modern usage, the term also means more than just access to hardware, it also refers to
the imbalance that exists amongst groups of society regarding their ability to use information technology.

The digital divide tends to focus on access to hardware, access to the Internet. The writer Lisa J. Servon argued
in 2002 that the digital divide “is a symptom of a larger and more complex problem – the problem of persistent
poverty and inequality”. The four major components that contribute to the digital divide are “socioeconomic
status, with income, educational level, and race among other factors associated with technological attainment”.

One area of significant focus was school computer access; in the 1990s, rich schools were much more likely
to provide their students with regular computer access. In the late 1990s, rich schools were much more likely
to have Internet access. In the context of schools, which have constantly been involved in the discussion of the
divide, current formulations of the divide focus more on how (and whether) computers are used by students,
and less on whether there are computers or Internet connections.

The USA E-rate program (officially the Schools and Libraries Program of the Universal Service Fund),
authorized in 1996 and implemented in 1997, directly addressed the technology gap between rich and poor
schools by allocating money from telecommunications taxes to poor schools without technology resources.
Although the program faced criticism and controversy in its methods of disbursement, it did provide over
100,000 schools with additional computing resources and Internet connectivity.

Recently, discussions regarding the digital divide in school access have broadened to include technology-
related skills and training in addition to basic access to computers and Internet access. An interesting example
is that, in the North of Italy, the town of Pordenone, 50,000 inhabitants, will be equipped with public local
WIFI LAN (e.g. see the declaration of the Major, in Italian, http://it.youtube.com/watch?v=zBTnkEnXTlc).
Our vision could contribute to reducing the digital divide in our society, and, more contextually, in the future
Campus STIC.

http://it.youtube.com/watch?v=zBTnkEnXTlc

Team lognet 15

5. Software

5.1. Ariwheels
Participants: Luigi Liquori [contact for the Ariwheels simulator], Claudio Casetti [Politecnico di Torino,
Italy], Diego Borsetti [Politecnico di Torino, Italy], Carla-Fabiana Chiasserini [Politecnico di Torino, Italy],
Diego Malandrino [Politecnico di Torino, Italy, contact for the Ariwheels client].

Ariwheels is an infomobility solution for urban environments, with access points deployed at both bus stops
(forming thus a wired backbone) and inside the buses themselves. Such a network is meant to provide
connectivity and services to the users of the public transport system, allowing them to exchange services,
resources and information through their mobile devices. Ariwheels is both:

• a protocol, based on Arigatoni and the publish/subscribe paradigm;

• a set of applications, implementing the protocol on the different types of nodes;

• a simulator, written in OMNET++ and recently ported to the ns2 simulator.

See the web page http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm and http://
arigtt.altervista.org.

5.2. Arigatoni simulator
Participants: Luigi Liquori [contact], Raphael Chand [Université de Geneva, Switzerland].

Figure 4. The Arigatoni simulator

We have implemented in C++ (∼2.5K lines of code) the Resource Discovery Algorithm and the Virtual
Intermittent Protocol of the Arigatoni Overlay Network. The simulator was used to measure the load when
we issued n service requests at Global Computers chosen uniformly at random. Each request contained a
certain number of instances of one service, also chosen uniformly at random. Each service request was then
handled by the Resource Discovery mechanism of Arigatoni networks.

http://www-sop.inria.fr/members/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://arigtt.altervista.org
http://arigtt.altervista.org

16 Activity Report INRIA 2010

Figure 5. The myMed backbone

5.3. myMed backbone
Participants: Luigi Liquori, Laurent Vanni [contact].

We have implemented a “backbone” for the myMed social network using a nosql database called Cassandra
http://cassandra.apache.org, the latter used also by social networks like FaceBook and Twitter. The backbone
relies on 50 PC quad code HP400 equipped of 2Tb each.

5.4. myMed client alpha
Participants: Luigi Liquori, Laurent Vanni [contact].

We have launched an alpha-version of the myMed social network that can be freely tested starting from our
myMed web page http://mymed.fr. Stay tuned with further releases in 2011.

5.5. Synapse client
Participants: Laurent Vanni [contact], Luigi Liquori, Cédric Tedeschi, Vincenzo Ciancaglini.

In order to test our Synapse protocol [18] on real platforms, we have initially developed JSynapse, a Java
software prototype, which uses the Java RMI standard for communication between nodes, and whose purpose
is to capture the very essence of our Synapse protocol. It is a flexible and ready-to-be-plugged library which
can interconnect any type of overlay networks. In particular, JSynapse fully implements a Chord-based inter-
overlay network. It was designed to be a lightweight and easy-to-extend software. We also provided some
practical classes which help in automating the generation of the inter-overlay network and the testing of
specific scenarios. We have experimented with JSynapse on the Grid’5000 platform connecting more than
20 clusters on 9 different sites. Again, Chord was used as the intra-overlay protocol. See, http://www-sop.
inria.fr/lognet/synapse/jSynapse/index.html.

5.6. Open Synapse client
Participant: Bojan Marinkovic [contact].

http://cassandra.apache.org
http://mymed.fr
http://www-sop.inria.fr/lognet/synapse/jSynapse/index.html
http://www-sop.inria.fr/lognet/synapse/jSynapse/index.html

Team lognet 17

Figure 6. The myMed alpha client

Opensynapse is an open source implementation of [18]. It is available for free under the GNU GPL. This
implemetation is based on Open Chord (v. 1.0.5) - an open source implementation of the Chord distributed
hash table implementation by Distributed and Mobile Systems Group Lehrstuhl fuer Praktische Informatik
Universitaet Bamberg, see http://www-sop.inria.fr/lognet/synapse/open-synapse/index.html.

Opensynapse is implemented on top of an arbitrary number of overlay networks. Inter-networking can be
built on top of Synapse in a very efficient way. Synapse is based on co-located nodes playing a role that is
reminiscent of neural synapses. The current implementation of Opensynapse in this precise case interconnects
many Chord overlay networks. The new client currently can interconnect an arbitrary number of Chord
networks. This implementation follows the notation presented in [13], and so, each new Chord network is
called a Floor.

5.7. Husky interpreter
Participants: Marthe Bonamy [contact], Luigi Liquori.

Husky is a variableless language based on lambda calculus and term rewriting systems. Husky is based on the
version 1.1 of Snake [10]. It was completely rewritten in CAML by Marthe Bonamy, ENSL (new parser, new
syntactic constructions, like, e.g., guards, anti-patterns, anti-expressions, exceptions and parametrized pattern
matching). In Husky all the keywords of the language are ASCII-symbols. It could be useful to teach basic
algorithms and pattern-matching to childrens.

5.8. myTransport Gui
Participants: Laurent Vanni [contact], Vincenzo Ciancaglini, Liquori Liquori.

myTransport is a GUI built on top of the Synapse protocol and network. Its purpose is to be a proof of concept
of the future service of infomobility to be available in the myMed social Network, see Figure 8. The GUI
is written in Java and it is fully functional in the Nokia N800 internet tablet devices. myTransport has been
ported to the myMed social network.

5.9. myDistributed Catatalog for Digitized Cultural Heritage
Participants: Vincenzo Ciancaglini [contact], Bojan Marinkovic, Liquori Liquori.

http://www-sop.inria.fr/lognet/synapse/open-synapse/index.html

18 Activity Report INRIA 2010

Figure 7. Launching the Husky interpreter

Figure 8. myTransport on the Nokia N800 Internet tablet

Team lognet 19

Figure 9. myDistributed Catalog

Peer-to-peer networks have emerged recently as a flexible decen- tralized solution to handle large amount of
data without the use of high-end servers. We have implemented a distributed catalog built up on an overlay
network called “Synapse”. The Synapse protocol allows interconnection of different overlay networks each of
them being an abstraction of a “community” of virtual providers. Data storage and data retrieval from different
kind of content providers (i.e. libraries, archives, museums, universities, research centers, etc.) can be stored
inside one catalog. We illustrate the concept based on the Synapse protocol: a catalog for digitized cultural
heritage of Serbia, see Figure 9.

5.10. myStreaming P2P
Participants: Vincenzo Ciancaglini [contact], Rossella Fortuna, Salvatore Spoto, Liquori Liquori, Luigi
Alfredo Grieco.

We have implemented in Python a fork of the Goalbit http://goalbit.sourceforge.net, an open source video
streaming platform peer-to-peer software streaming platform capable of distributing high-bandwidth live video
content to everyone preserving its quality. We have aligned with the classical gossip-based distribution protocol
a DHT that distribute contents according to a content-based strategy.

6. New Results

6.1. Synapse, interconnecting heterogeneous overlay networks
Participants: Luigi Liquori [contact], Cédric Tedeschi, Laurent Vanni, Francesco Bongiovanni, Vincenzo
Ciancaglini, Bojan Marinkovic.

We investigate Synapse, a scalable protocol for information retrieval over the inter-connection of heteroge-
neous overlay networks. Applications of top of Synapse see those intra-overlay networks as a unique inter-
overlay network.

Scalability in Synapse is achieved via co-located nodes, i.e. nodes that are part of multiple overlay networks
at the same time. Co-located nodes, playing the role of neural synapses and connected to several overlay
networks, give a larger search area and provide alternative routing.

http://goalbit.sourceforge.net

20 Activity Report INRIA 2010

Synapse can either work with “open” overlays adapting their protocol to synapse interconnection requirements,
or with “closed” overlays that will not accept any change to their protocol. Built-in primitives to deal with
social networking give an incentive for nodes cooperation. Results from simulation and experiments show that
Synapse is scalable, with a communication and state overhead scaling similarly as the networks interconnected.
thanks to alternate routing paths, Synapse also gives a practical solution to network partitions. We precisely
capture the behavior of traditional metrics of overlay networks within Synapse and present results from
simulations as well as some actual experiments of a client prototype on the Grid’5000 platform. The prototype
developed implements the Synapse protocol in the particular case of the inter-connection of many Chord
overlay networks.

The inter-connection of overlay networks has been recently identified as a promising model to cope with
today’s Internet issues such as scalability, resource discovery, failure recovery or routing efficiency, in
particular in the context of information retrieval. Some recent researches have focused on the design of
mechanisms for building bridges between heterogeneous overlay networks for the purpose of improving
cooperation between networks that have different routing mechanisms, logical topologies and maintenance
policies. However, more comprehensive approaches of such inter-connections for information retrieval and
both quantitative and experimental studies of its key metrics, such as satisfaction rate or routing length, are
still missing.

Many disparate overlay networks may not only simultaneously co-exist in the Internet but also compete
for the same resources on shared nodes and underlying network links. One of the problems of the overlay
networking area is how heterogeneous overlay networks may interact and cooperate with each other. Overlay
networks are heterogeneous and basically unable to cooperate each other in an effortless way, without
merging, an operation which is very costly since it not scalable and not suitable in many cases for security
reasons. However, in many situations, distinct overlay networks could take advantage of cooperating for
many purposes: collective performance enhancement, larger shared information, better resistance to loss of
connectivity (network partitions), improved routing performance in terms of delay, throughput and packets
loss, by, for instance, cooperative forwarding of flows.

As a basic example, let us consider two distant databases. One node of the first database stores one
(key, value) pair which is searched by a node of the second one. Without network cooperation those two
nodes will never communicate together. As another example, we have an overlay network where a number of
nodes got isolated by an overlay network failure, leading to a partition: if some or all of those nodes can be
reached via an alternative overlay network, than the partition “could” be recovered via an alternative routing.

In the context of large scale information retrieval, several overlays may want to offer an aggregation of
their information/data to their potential common users without losing control of it. Imagine two companies
wishing to share or aggregate information contained in their distributed databases, obviously while keeping
their proprietary routing and their exclusive right to update it. Finally, in terms of fault-tolerance, cooperation
can increase the availability of the system, if one overlay becomes unavailable the global network will only
undergo partial failure as other distinct resources will be usable.

We consider the tradeoff of having one vs. many overlays as a conflict without a cause: having a single global
overlay has many obvious advantages and is the de facto most natural solution, but it appears unrealistic in
the actual setting. In some optimistic case, different overlays are suitable for collaboration by opening their
proprietary protocols in order to build an open standard; in many other pessimistic cases, this opening is simply
unrealistic for many different reasons (backward compatibility, security, commercial, practical, etc.). As such,
studying protocols to interconnect collaborative (or competitive) overlay networks is an interesting research
vein.

The main contribution of thisresearch vein is to introduce, simulate and experiment with Synapse, a scalable
protocol for information retrieval over the inter-connection of heterogeneous overlay networks. The protocol
is based on co-located nodes, also called synapses, serving as low-cost natural candidates for inter-overlay
bridges. In the simplest case (where overlays to be interconnected are ready to adapt their protocols to the
requirements of interconnection), every message received by a co-located node can be forwarded to other
overlays the node belongs to. In other words, upon receipt of a search query, in addition to its forwarding to

Team lognet 21

the next hop in the current overlay (according to their routing policy), the node can possibly start a new search,
according to some given strategy, in some or all other overlay networks it belongs to. This obviously implies
to providing a Time-To-Live value and detection of already processed queries, to avoid infinite loop in the
network, as in unstructured peer-to-peer systems.

We also study interconnection policies as the explicit possibility to rely on social based strategies to build
these bridges between distinct overlays; nodes can invite or can be invited.

In case of concurrent overlay networks, inter-overlay routing becomes harder, as intra-overlays are provided as
some black boxes: a control overlay-network made of co-located nodes maps one hashed key from one overlay
into the original key that, in turn, will be hashed and routed in other overlays in which the co-located node
belongs to. This extra structure is unavoidable to route queries along closed overlays and to prevent routing
loops.

Our experiments and simulations show that a small number of well-connected synapses is sufficient in order
to achieve almost exhaustive searches in a “synapsed” network of structured overlay networks. We believe that
Synapse can give an answer to circumventing network partitions; the key points being that: (i) several logical
links for one node leads to as many alternative physical routes through these overlay, and (ii) a synapse can
retrieve keys from overlays that it doesn’t even know simply by forwarding their query to another synapse
that, in turn, is better connected. Those features are achieved in Synapse at the cost of some additional data
structures and in an orthogonal way to ordinary techniques of caching and replication. Moreover, being a
synapse can allow for the retrieval of extra information from many other overlays even if we are not connected
with, see [17].

6.2. Intersection and Union Types à la Church
Participants: Luigi Liquori, Dan Dougherty.

We studied an explicitly typed lambda calculus “à la Church” based on the union and intersection types
discipline; this system is the counterpart of the standard type assignment calculus “à la Curry”. Our typed
calculus enjoys Subject Reduction and confluence, and typed terms are strongly normalizing when the
universal type is omitted. Moreover, both type checking and type reconstruction are decidable. In contrast to
other typed calculi, a system with union types will fail to be “coherent” in the sense of Tannen, Coquand,
Gunter, and Scedrov: different proofs of the same typing judgement will not necessarily have the same
meaning. In response, we introduce a decidable notion of equality on type-assignment derivations inspired
by the equational theory of bicartesian-closed categories, see [16].

6.3. CarPal: interconnecting overlay networks for a community-driven shared
mobility
Participants: Vincenzo Ciancaglini, Luigi Liquori, Laurent Vanni.

Car sharing and car pooling have proven to be an effective solution to reduce the amount of running vehicles
by increasing the number of passengers per car amongst medium/big communities like schools or enterprises.
However, the success of such practice relies on the community ability to effectively share and retrieve
information about travelers and itineraries. Structured overlay networks such as Chord have emerged recently
as a flexible solution to handle large amount of data without the use of high-end servers, in a decentralized
manner. We hav studied CarPal, see Figure 10, a proof-of-concept for a mobility sharing application that
leverages a Distributed Hash Table to allow a community of people to spontaneously share trip information
without the costs of a centralized structure. The peer-to-peer architecture allows moreover the deployment on
portable devices and opens new scenarios where trips and sharing requests can be updated in real time. Using
an original protocol already developed that allows to interconnect different overlays/communities, the success
rate (number of shared rides) can be boosted up thus increasing the effectiveness of our solution. Simulations
results are shown to give a possible estimate of such effectiveness, see [15].

22 Activity Report INRIA 2010

Figure 10. The CarPal application based on Synapse

6.4. myStreaming P2P
Participants: Vincenzo Ciancaglini [contact], Rossella Fortuna, Salvatore Spoto, Liquori Liquori, Luigi
Alfredo Grieco.

Traditional gossip-based P2P-TV systems are broadly recognized as effective and scalable solutions for
Internet real-time video delivery. Nonetheless, significant performance limitations are still present in highly
heterogeneous environments, due to content and bandwidth bottleneck issues. In an attempt to resolve this
challenging issue, we extend herein the traditional gossip-based approach by means of a novel content-
based technique, allowing for content spreading and retrieval across a wider set of peers, disregarding classic
neighboring criteria, see [19].

7. Other Grants and Activities

7.1. European Initiatives
7.1.1. Interreg Alcotra: myMed, 2010-2012

Participants: Luigi Liquori, Laurent Vanni, Vincenzo Ciancaglini, Claudio Casetti, Carla-Fabiana Chi-
asserini.

The Interreg Alcotra office has founded the three-year project myMed : un réseau informatique transfrontalier
pour léchange de contenus dans un environnement fixe et mobile. LogNet will head the project; other partners
are Vulog PME, GIR Maralpin, Politecnico di Torino, Uni. Torino, Uni. Piemonte Orientale. The total budget
1380Keur (796Keur for l’INRIA) - the external founding is 932Keur (526Keur for l’INRIA). The founders are
UE, PACA, CG06, PREF06, and INRIA, see http://www-sop.inria.fr/mymed.

8. Dissemination

8.1. Participation in committees and referees
• Luigi Liquori is PC member of the Seventh International Workshop on Hot Topics in Peer-to-Peer

Systems HotP2P, 2011.

Moreover Luigi Liquori was a referee for the PROLE 2010 conference and of the Journal of Logic and
Computations.

http://www-sop.inria.fr/mymed

Team lognet 23

8.2. Teaching and Meeting organizations
• Luigi Liquori gave a course on Overlay and P2P networks at the DEUKS TEMPUS, Foundations of

Information Technologies summer school June 14-27, 2009, Novi Sad, Serbia.

• Luigi Liquori gave a 34h TD course on Peer to peer, Master Ubinet UNSA.

• Luigi Liquori gave a 20h TD course on Peer to peer, Master MISMFSI, Universidad Politechnica de
Valencia.

8.3. Visitors
IN

• Moreno Falaschi, full professor, U. Siena, 7dd,

• Linda Brodo, assistant professor, U. Sassari, 7dd.

OUT
Luigi Liquori visited the following sites:

• Politecnico di Torino, multiple visits,

• Universitá di Torino, multiple visits,

• Universidad Politecnica de Valencia, 3 weeks.

9. Bibliography
Major publications by the team in recent years

[1] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, in "JVA, John Vincent Atanasoff International Symposium on Modern Computing", IEEE, 2006,
p. 82–91, http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/jva-06.pdf.

[2] D. BENZA, M. COSNARD, L. LIQUORI, M. VESIN. Arigatoni: Overlaying Internet via Low Level Network
Protocols, INRIA, 2006, no 5805.

[3] D. BORSETTI, C. CASETTI, C. CHIASSERINI, L. LIQUORI. Content Discovery in Heterogeneous Mobile
Networks, in "Heterogeneous Wireless Access Networks: Architectures and Protocols", E. HOSSAIN (editor),
Springer-Verlag, 2008, p. 419–441.

[4] R. CHAND, M. COSNARD, L. LIQUORI. Powerful resource discovery for Arigatoni overlay network, in "Future
Generation Computer Systems", 2008, vol. 1, no 21, p. 31–38.

[5] R. CHAND, L. LIQUORI, M. COSNARD. Improving Resource Discovery in the Arigatoni Overlay Network,
in "ARCS, International Conference on Architecture of Computing Systems", Lecture Notes in Computer
Science, Springer-Verlag, 2007, vol. 4415, p. 98-111.

[6] M. COSNARD, L. LIQUORI, R. CHAND. Virtual Organizations in Arigatoni, in "DCM, International Workshop
on Developpment in Computational Models. Electr. Notes Theor. Comput. Sci.", 2007, vol. 171, no 3.

[7] L. LIQUORI, D. BORSETTI, C. CASETTI, C. CHIASSERINI. An Overlay Architecture for Vehicular Networks,
in "IFIP Networking, International Conference on Networking", Lecture Notes in Computer Science, Springer-
Verlag, 2008, vol. 4982, p. 60–71.

http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/jva-06.pdf

24 Activity Report INRIA 2010

[8] L. LIQUORI, M. COSNARD. Logical Networks: Towards Foundations for Programmable Overlay Networks and
Overlay Computing Systems, in "TGC, Trustworthy Global Computing", Lecture Notes in Computer Science,
Springer-Verlag, 2007, vol. 4912, p. 90–107.

[9] L. LIQUORI, M. COSNARD. Weaving Arigatoni with a Graph Topology, in "ADVCOMP, International
Conference on Advanced Engineering Computing and Applications in Sciences", IEEE Computer Society
Press, 2007.

[10] L. LIQUORI, B. SERPETTE. iRho: An Imperative Rewriting-calculus, in "MSCS, Mathematical Structures in
Computer Science", 2007, vol. 18, no 3.

[11] L. LIQUORI, A. SPIWACK. FeatherTrait: A Modest Extension of Featherweight Java, in "TOPLAS, ACM
Transaction on Programming Languages and Systems", 2007, vol. 30, no 2.

[12] L. LIQUORI, A. SPIWACK. Extending FeatherTrait Java with Interfaces, in "TCS, Theoretical Computer
Science", 2008, vol. 398, no 1-3, p. 243–260, Calculi, types and applications: Essays in honour of M. Coppo,
M. Dezani-Ciancaglini and S. Ronchi Della Rocca.

[13] L. LIQUORI, C. TEDESCHI, F. BONGIOVANNI. Babelchord: a social tower of DHT-based overlay networks,
in "IEEE, ISCC", 2009, p. 307-312.

Publications of the year
International Peer-Reviewed Conference/Proceedings

[14] R. CHAND, L. LIQUORI, M. COSNARD. Resource Discovery in the Arigatoni Model, in "IICS, International
Conference on Innovative Internet Community Services", Lecture Notes in Informatics, 2010, no 165, p.
437-449.

[15] V. CIANCAGLINI, L. LIQUORI, L. VANNI. CarPal: interconnecting overlay networks for a community-driven
shared mobility, in "TGC, Trustworthy Global Computing", Lecture Notes in Computer Science, Springer-
Verlag, 2010, vol. 6084, p. 301-317.

[16] D. DOUGHERTY, L. LIQUORI. Logic and computation in a lambda calculus with intersection and union types,
in "LPAR, International Conference on Logic for Programming Artificial Intelligence and Reasoning", Lecture
Notes in Computer Science, Springer-Verlag, 2010, vol. 6355, p. 173-191.

[17] L. LIQUORI, C. TEDESCHI, L. VANNI, F. BONGIOVANNI, V. CIANCAGLINI, B. MARINKOVIC. Synapse: A
Scalable Protocol for Interconnecting Heterogeneous Overlay Networks, in "IFIP Networking, International
Conference on Networking", Lecture Notes in Computer Science, Springer-Verlag, 2010, vol. 6091, p. 67–82.

Research Reports

[18] L. LIQUORI, C. TEDESCHI, L. VANNI, F. BONGIOVANNI, V. CIANCAGLINI, B. MARINKOVIC. Synapse:
a Scalable Protocol for Interconnecting Heterogeneous Overlay Networks, INRIA, April 2010, no RR-7255,
http://hal.inria.fr/inria-00474529/en.

Other Publications

http://hal.inria.fr/inria-00474529/en

Team lognet 25

[19] R. FORTUNA, L. LIQUORI, V. CIANCAGLINI, L. VANNI. A content-based strategy to increase cooperation
in P2P-TV systems, 2010, Submitted.

References in notes

[20] J. W. BACKUS. The IBM 701 Speedcoding System, in "J. ACM", 1954, vol. 1, no 1, http://doi.acm.org/10.
1145/320764.320766.

[21] D. EPPSTEIN, Z. GALIL, G. ITALIANO. Dynamic graph algorithms, in "Handbook of Algorithms and Theory
of Computation", CRC Press, 1998, chap. 22.

[22] A. RAPOPORT. Mathematical models of social interaction, John Wiley and Sons, 1963, vol. II, p. 493–579.

[23] W. M. P. VAN DER AALST, A. H. M. TER HOFSTEDE. YAWL: yet another workflow language, in "Information
System", 2005, vol. 30, no 4, p. 245-275.

[24] J. VON NEUMANN. The Principles of Large-Scale Computing Machines, in "IEEE Ann. Hist. Comput.", 1988,
vol. 10, no 4, p. 243–256.

http://doi.acm.org/10.1145/320764.320766
http://doi.acm.org/10.1145/320764.320766

