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2. Overall Objectives

2.1. Introduction
The MISTIS team aims to develop statistical methods for dealing with complex problems or data. Our
applications consist mainly of image processing and spatial data problems with some applications in biology
and medicine. Our approach is based on the statement that complexity can be handled by working up from
simple local assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we focus on involve mixture models, Markov models,
and, more generally, hidden structure models identified by stochastic algorithms on one hand, and semi and
non-parametric methods on the other hand.

Hidden structure models are useful for taking into account heterogeneity in data. They concern many areas
of statistical methodology (finite mixture analysis, hidden Markov models, random effect models, etc). Due
to their missing data structure, they induce specific difficulties for both estimating the model parameters and
assessing performance. The team focuses on research regarding both aspects. We design specific algorithms for
estimating the parameters of missing structure models and we propose and study specific criteria for choosing
the most relevant missing structure models in several contexts.
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Semi- and non-parametric methods are relevant and useful when no appropriate parametric model exists for
the data under study either because of data complexity, or because information is missing. The focus is on
functions describing curves or surfaces or more generally manifolds rather than real valued parameters. This
can be interesting in image processing for instance where it can be difficult to introduce parametric models
that are general enough (e.g. for contours).

2.2. Highlights
The 17th Working Group on Model-Based Clustering was organized in Grenoble in July 2010. The organizing
committee consisted of G. Celeux (INRIA Futurs), F. Forbes (Mistis), B. Murphy (Univ. College Dublin) and
A. Raftery (Univ. of Washington). F. Forbes was in charge of the local organization.

3. Scientific Foundations

3.1. Mixture models
Participants: Lamiae Azizi, Christine Bakhous, Lotfi Chaari, Senan James Doyle, Jean-Baptiste Durand,
Florence Forbes, Stéphane Girard, Vasil Khalidov, Marie-José Martinez, Darren Wraith.

In a first approach, we consider statistical parametric models, θ being the parameter, possibly multi-
dimensional, usually unknown and to be estimated. We consider cases where the data naturally divides into
observed data y = y1, ..., yn and unobserved or missing data z = z1, ..., zn. The missing data zi represents for
instance the memberships of one of a set of K alternative categories. The distribution of an observed yi can
be written as a finite mixture of distributions,

f(yi | θ) =
K∑

k=1

P (zi = k | θ)f(yi | zi, θ) . (1)

These models are interesting in that they may point out hidden variable responsible for most of the observed
variability and so that the observed variables are conditionally independent. Their estimation is often difficult
due to the missing data. The Expectation-Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. It provides parameter estimation but
also values for missing data.

Mixture models correspond to independent zi’s. They are increasingly used in statistical pattern recognition.
They enable a formal (model-based) approach to (unsupervised) clustering.

3.2. Markov models
Participants: Lamiae Azizi, Christine Bakhous, Lotfi Chaari, Senan James Doyle, Jean-Baptiste Durand,
Florence Forbes, Vasil Khalidov, Darren Wraith.

Graphical modelling provides a diagrammatic representation of the logical structure of a joint probability
distribution, in the form of a network or graph depicting the local relations among variables. The graph
can have directed or undirected links or edges between the nodes, which represent the individual variables.
Associated with the graph are various Markov properties that specify how the graph encodes conditional
independence assumptions.

It is the conditional independence assumptions that give graphical models their fundamental modular structure,
enabling computation of globally interesting quantities from local specifications. In this way graphical models
form an essential basis for our methodologies based on structures.
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The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields. The
specificity of Markovian models is that the dependencies between the nodes are limited to the nearest neighbor
nodes. The neighborhood definition can vary and be adapted to the problem of interest. When parts of the
variables (nodes) are not observed or missing, we refer to these models as Hidden Markov Models (HMM).
Hidden Markov chains or hidden Markov fields correspond to cases where the zi’s in (1) are distributed
according to a Markov chain or a Markov field. They are a natural extension of mixture models. They are
widely used in signal processing (speech recognition, genome sequence analysis) and in image processing
(remote sensing, MRI, etc.). Such models are very flexible in practice and can naturally account for the
phenomena to be studied.

Hidden Markov models are very useful in modelling spatial dependencies but these dependencies and the pos-
sible existence of hidden variables are also responsible for a typically large amount of computation. It follows
that the statistical analysis may not be straightforward. Typical issues are related to the neighborhood structure
to be chosen when not dictated by the context and the possible high dimensionality of the observations. This
also requires a good understanding of the role of each parameter and methods to tune them depending on the
goal in mind. Regarding estimation algorithms, they correspond to an energy minimization problem which
is NP-hard and usually performed through approximation. We focus on a certain type of methods based on
the mean field principle and propose effective algorithms which show good performance in practice and for
which we also study theoretical properties. We also propose some tools for model selection. Eventually we
investigate ways to extend the standard Hidden Markov Field model to increase its modelling power.

3.3. Functional Inference, semi- and non-parametric methods
Participants: Julie Carreau, El-Hadji Deme, Jonathan El-Methni, Mathieu Fauvel, Laurent Gardes, Stéphane
Girard, Alexandre Lekina, Eugen Ursu.

We also consider methods which do not assume a parametric model. The approaches are non-parametric
in the sense that they do not require the assumption of a prior model on the unknown quantities. This
property is important since, for image applications for instance, it is very difficult to introduce sufficiently
general parametric models because of the wide variety of image contents. Projection methods are then a way
to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel methods which rely on
smoothing the data using a set of kernels (usually probability distributions) are other examples. Relationships
exist between these methods and learning techniques using Support Vector Machine (SVM) as this appears
in the context of level-sets estimation (see section 3.3.2). Such non-parametric methods have become the
cornerstone when dealing with functional data [48]. This is the case, for instance, when observations are
curves. They enable us to model the data without a discretization step. More generally, these techniques
are of great use for dimension reduction purposes (section 3.3.3). They enable reduction of the dimension
of the functional or multivariate data without assumptions on the observations distribution. Semi-parametric
methods refer to methods that include both parametric and non-parametric aspects. Examples include the
Sliced Inverse Regression (SIR) method [55] which combines non-parametric regression techniques with
parametric dimension reduction aspects. This is also the case in extreme value analysis [47], which is based
on the modelling of distribution tails (see section 3.3.1). It differs from traditional statistics which focuses on
the central part of distributions, i.e. on the most probable events. Extreme value theory shows that distribution
tails can be modelled by both a functional part and a real parameter, the extreme value index.

3.3.1. Modelling extremal events
Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of probability
distributions. More specifically, it focuses on the limiting distributions for the minimum or the maximum of
a large collection of random observations from the same arbitrary distribution. Let X1,n ≤ ... ≤ Xn,n denote
n ordered observations from a random variable X representing some quantity of interest. A pn-quantile of
X is the value xpn such that the probability that X is greater than xpn is pn, i.e. P (X > xpn

) = pn. When
pn < 1/n, such a quantile is said to be extreme since it is usually greater than the maximum observation Xn,n

(see Figure 1).
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Figure 1. The curve represents the survival function x → P (X > x). The 1/n-quantile is estimated by the
maximum observation so that x̂1/n = Xn,n. As illustrated in the figure, to estimate pn-quantiles with pn < 1/n, it

is necessary to extrapolate beyond the maximum observation.

To estimate such quantiles therefore requires dedicated methods to extrapolate information beyond the
observed values of X . Those methods are based on Extreme value theory. This kind of issue appeared in
hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting from
flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function ` is a slowly
varying function i.e. such that

`(tx)
`x

→ 1 as x →∞ (3)

for all t > 0. The function `(x) acts as a nuisance parameter which yields a bias in the classical extreme-
value estimators developed so far. Such models are often referred to as heavy-tail models since the probability
of extreme events decreases at a polynomial rate to zero. It may be necessary to refine the model (2,3) by
specifying a precise rate of convergence in (3). To this end, a second order condition is introduced involving
an additional parameter ρ ≤ 0. The larger ρ is, the slower the convergence in (3) and the more difficult the
estimation of extreme quantiles.
More generally, the problems that we address are part of the risk management theory. For instance, in
reliability, the distributions of interest are included in a semi-parametric family whose tails are decreasing
exponentially fast. These so-called Weibull-tail distributions [9] are defined by their survival distribution
function:
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P (X > x) = exp {−xθ`(x)}, x > x0 > 0. (4)

Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family. An
important part of our work consists in establishing links between models (2) and (4) in order to propose
new estimation methods. We also consider the case where the observations were recorded with a covariate
information. In this case, the extreme-value index and the pn-quantile are functions of the covariate. We
propose estimators of these functions by using moving window approaches, nearest neighbor methods, or
kernel estimators.

3.3.2. Level sets estimation
Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology, one
is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
population. Points outside this bound are considered as outliers compared to the reference population. Level
sets estimation can be looked at as a conditional quantile estimation problem which benefits from a non-
parametric statistical framework. In particular, boundary estimation, arising in image segmentation as well as
in supervised learning, is interpreted as an extreme level set estimation problem. Level sets estimation can also
be formulated as a linear programming problem. In this context, estimates are sparse since they involve only a
small fraction of the dataset, called the set of support vectors.

3.3.3. Dimension reduction
Our work on high dimensional data requires that we face the curse of dimensionality phenomenon. Indeed,
the modelling of high dimensional data requires complex models and thus the estimation of high number of
parameters compared to the sample size. In this framework, dimension reduction methods aim at replacing the
original variables by a small number of linear combinations with as small as a possible loss of information.
Principal Component Analysis (PCA) is the most widely used method to reduce dimension in data. However,
standard linear PCA can be quite inefficient on image data where even simple image distorsions can lead to
highly non-linear data. Two directions are investigated. First, non-linear PCAs can be proposed, leading to
semi-parametric dimension reduction methods [52]. Another field of investigation is to take into account the
application goal in the dimension reduction step. One of our approaches is therefore to develop new Gaussian
models of high dimensional data for parametric inference [44]. Such models can then be used in a Mixtures or
Markov framework for classification purposes. Another approach consists in combining dimension reduction,
regularization techniques, and regression techniques to improve the Sliced Inverse Regression method [55].

4. Application Domains

4.1. Image Analysis
Participants: Christine Bakhous, Lotfi Chaari, Senan James Doyle, Mathieu Fauvel, Florence Forbes, Eric
Frichot, Laurent Gardes, Stéphane Girard, Vasil Khalidov, Kai Qin, Darren Wraith.

As regards applications, several areas of image analysis can be covered using the tools developed in the
team. More specifically, in collaboration with the Perception team, we address various issues in computer
vision involving Bayesian modelling and probabilistic clustering techniques. Other applications in medical
imaging are natural. We work more specifically on MRI data, in collaboration with the Grenoble Institute of
Neuroscience (GIN) and LNAO from the NeuroSpin center of CEA Saclay (see Sections 5.2 and 6.2.1). We
also consider other statistical 2D fields coming from other domains such as remote sensing, in collaboration
with Laboratoire de Planétologie de Grenoble. In the context of the ANR MDCO Vahine project, see
section 7.2, we work on hyperspectral multi-angle images. In the context of the "pole de competivite" project
I-VP, we work of images of PC Boards.
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4.2. Biology, Environment and Medicine
Participants: Lamiae Azizi, Christine Bakhous, Lotfi Chaari, Senan James Doyle, Florence Forbes, Eric
Frichot, Laurent Gardes, Stéphane Girard, Vasil Khalidov, Marie-José Martinez, Eugen Ursu, Darren Wraith.

A second domain of applications concerns biology and medecine. We consider the use of missing data models
in epidemiology. We also investigated statistical tools for the analysis of bacterial genomes beyond gene
detection. Applications in population genetics and neurosiences (Sections 5.2 and 6.2.1) are also considered.
Finally, in the context of the ANR VMC project Medup, see section 7.2, we study the uncertainties in the
forecasting and climate projection for Mediterranean high-impact weather events.

4.3. Reliability
Participants: Jean-Baptiste Durand, Laurent Gardes, Stéphane Girard.

Reliability and industrial lifetime analysis are applications developed through collaborations with the EDF
research department and the LCFR laboratory (Laboratoire de Conduite et Fiabilité des Réacteurs) of CEA
Cadarache. We also consider failure detection in print infrastructure through collaboration with Xerox,
Meylan.

5. Software

5.1. The ECMPR software
Participant: Florence Forbes.

Joint work with: Radu Horaud and Manuel Iguel.

The ECMPR (Expectation Conditional Maximization for Point Registration) package implements [46] [19].
It registers two (2D or 3D) point clouds using an algorithm based on maximum likelihood with hidden
variables. The method can register both rigid and articulated shapes. It estimates both the rigid or the kinematic
transformation between the two shapes as well as the parameters (covariances) associated with the underlying
Gaussian mixture model. It has been registered in APP in 2010 under the GPL license.

5.2. The LOCUS software
Participants: Florence Forbes, Senan James Doyle.

Joint work with: Michel Dojat, C. Garbay and B. Scherrer.

The LOCUS software analyses in few minutes a 3D MR brain scan and identifies brain tissues and a large
number of brain structures. An image is divided into cubes on each of which a statistical model is applied.
This provides a number of local treatments that are then integrated to ensure consistency at a global level. It
results a low sensitivity to artefacts. The statistical model is based on a Markovian approach which enables to
capture the relations between tissues and structures, to integrate a priori anatomical knowledge and to handle
local estimations and spatial correlations. A description and a video of the software are available at the web
site http://locus.gforge.inria.fr, which is still under construction. The software is written in C++ (50,000 lines).
It has been registered in APP in 2010 under an owner license.

5.3. The POPEYE software
Participants: Florence Forbes, Vasil Khalidov.

Joint work with: Radu Horaud, Miles Hansard, Ramya Narasimha, Elise Arnaud.

http://locus.gforge.inria.fr
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POPEYE contains software modules and libraries jointly developed by three partners within the POP STREP
project: INRIA, University of Sheffield, and University of Coimbra. It includes kinematic and dynamic control
of the robot head, stereo calibration, camera-microphone calibration, auditory and image processing, stereo
matching, binaural localization, audio-visual speaker localization. Currently, this software package is not
distributed outside POP.

5.4. The HDDA and HDDC toolboxes
Participant: Stéphane Girard.

Joint work with: Charles Bouveyron (Université Paris 1) and Gilles Celeux (Select, INRIA). The High-
Dimensional Discriminant Analysis (HDDA) and the High-Dimensional Data Clustering (HDDC) toolboxes
contain respectively efficient supervised and unsupervised classifiers for high-dimensional data. These classi-
fiers are based on Gaussian models adapted for high-dimensional data [44]. The HDDA and HDDC toolboxes
are available for Matlab and are included into the software MixMod [43]. Recently, a R package has been
developped and integrated in The Comprehensive R Archive Network (CRAN). It can be downloaded at the
following URL: http://cran.r-project.org/web/packages/HDclassif/.

5.5. The Extremes freeware
Participants: Laurent Gardes, Stéphane Girard.

Joint work with: Diebolt, J. (CNRS) and Garrido, M. (INRA Clermont-Ferrand-Theix).

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme quantile
estimation procedures and model selection methods. This software results from a collaboration with EDF
R&D. It is also a consequence of the PhD thesis work of Myriam Garrido [51]. The software is written in
C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments. It can
be downloaded at the following URL: http://extremes.gforge.inria.fr/.

5.6. The SpaCEM3 program
Participants: Lamiae Azizi, Senan James Doyle, Florence Forbes.

SpaCEM3 (Spatial Clustering with EM and Markov Models) is a software that provides a wide range of
supervised or unsupervised clustering algorithms. The main originality of the proposed algorithms is that
clustered objects do not need to be assumed independent and can be associated with very high-dimensional
measurements. Typical examples include image segmentation where the objects are the pixels on a regular grid
and depend on neighbouring pixels on this grid. More generally, the software provides algorithms to cluster
multimodal data with an underlying dependence structure accounting for some spatial localisation or some
kind of interaction that can be encoded in a graph.

This software, developed by present and past members of the team, is the result of several research develop-
ments on the subject. The current version 2.09 of the software is CeCILLB licensed.
Main features. The approach is based on the EM algorithm for clustering and on Markov Random Fields
(MRF) to account for dependencies. In addition to standard clustering tools based on independent Gaussian
mixture models, SpaCEM3 features include:

• The unsupervised clustering of dependent objects. Their dependencies are encoded via a graph not
necessarily regular and data sets are modelled via Markov random fields and mixture models (eg.
MRF and Hidden MRF). Available Markov models include extensions of the Potts model with the
possibility to define more general interaction models.

• The supervised clustering of dependent objects when standard Hidden MRF (HMRF) assumptions
do not hold (ie. in the case of non-correlated and non-unimodal noise models). The learning and test
steps are based on recently introduced Triplet Markov models.

http://cran.r-project.org/web/packages/HDclassif/
http://extremes.gforge.inria.fr/
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• Selection model criteria (BIC, ICL and their mean-field approximations) that select the "best" HMRF
according to the data.

• The possibility of producing simulated data from:
– general pairwise MRF with singleton and pair potentials (typically Potts models and

extensions)
– standard HMRF, ie. with independent noise model
– general Triplet Markov models with interaction up to order 2

• A specific setting to account for high-dimensional observations.
• An integrated framework to deal with missing observations, under Missing At Random (MAR)

hypothesis, with prior imputation (KNN, mean, etc), online imputation (as a step in the algorithm),
or without imputation.

The software is available at http://spacem3.gforge.inria.fr. A user manual in English is available on the web
site above together with example data sets.

5.7. The FASTRUCT software
Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former Post-doctoral fellow in Mistis).

The FASTRUCT program is dedicated to the modelling and inference of population structure from genetic
data. Bayesian model-based clustering programs have gained increased popularity in studies of population
structure since the publication of the software STRUCTURE [58]. These programs are generally acknowl-
edged as performing well, but their running-time may be prohibitive. FASTRUCT is a non-Bayesian imple-
mentation of the classical model with no-admixture uncorrelated allele frequencies. This new program relies
on the Expectation-Maximization principle, and produces assignment rivaling other model-based clustering
programs. In addition, it can be several-fold faster than Bayesian implementations. The software consists of
a command-line engine, which is suitable for batch-analysis of data, and a MS Windows graphical interface,
which is convenient for exploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at http://mistis.inrialpes.fr/
realisations.html.

The functionalities are further described in the related publication:

• Molecular Ecology Notes 2006 [45].

5.8. The TESS software
Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former post-doctoral fellow in Mistis).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial population genetics.
Is it particularly useful for seeking genetic barriers or genetic discontinuities in continuous populations. The
method is based on a hierarchical mixture model where the prior distribution on cluster labels is defined as a
Hidden Markov Random Field [49]. Given individual geographical locations, the program seeks population
structure from multilocus genotypes without assuming predefined populations. TESS takes input data files
in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE). It returns graphical
displays of cluster membership probabilities and geographical cluster assignments through its Graphical User
Interface.

The functionalities and the comparison with three other Bayesian Clustering programs are specified in the
following publication:

• Molecular Ecology Notes 2007

http://spacem3.gforge.inria.fr
http://mistis.inrialpes.fr/realisations.html
http://mistis.inrialpes.fr/realisations.html
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6. New Results

6.1. Mixture models
6.1.1. Taking into account the curse of dimensionality

Participant: Stéphane Girard.

Joint work with: Bouveyron, C. (Université Paris 1), Celeux, G. (Select, INRIA), Jacques, J. (Université
Lille 1).

In the PhD work of Charles Bouveyron (co-advised by Cordelia Schmid from the INRIA LEAR team) [44],
we propose new Gaussian models of high dimensional data for classification purposes. We assume that the
data live in several groups located in subspaces of lower dimensions. Two different strategies arise:

• the introduction in the model of a dimension reduction constraint for each group

• the use of parsimonious models obtained by imposing to different groups to share the same values
of some parameters

This modelling yields a new supervised classification method called High Dimensional Discriminant Analysis
(HDDA) [4]. Some versions of this method have been tested on the supervised classification of objects in
images. This approach has been adapted to the unsupervised classification framework, and the related method
is named High Dimensional Data Clustering (HDDC) [3].

In collaboration with Gilles Celeux and Charles Bouveyron, we are currently working on the automatic
selection of the discrete parameters of the model. The results are submitted for publication [40]. Also, the
description of the R package is submitted for publication [39]. An application to the classification of high-
dimensional vibrational spectroscopy data has also been developped [20].

6.1.2. Information criteria for model selection in the case of multimodal data
Participants: Florence Forbes, Vasil Khalidov.

Joint work with: Radu Horaud from the INRIA Perception team.

A multimodal data setting is a combination of multiple data sets each of them being generated from a different
sensors. The data sets live in different physical spaces with different dimensionalities and cannot be embedded
in a single common space. We focus on the issue of clustering such multimodal data. This raises the question
of how to perform pairwise comparisons between observations living in different spaces. A solution within the
framework of Gaussian mixture models and the Expectation-Maximization (EM) algorithm, has been proposed
in [21]. Each modality is associated to a modality-specific Gaussian mixture which shares with the others a
number of common parameters and a common number of components. Each component corresponds to a
common multimodal event that is responsible for a number of observations in each modality. As this number
of components is usually unknown, we propose information criteria for selecting this number from the data.
We introduce new appropriate criteria based on a penalized maximum likelihood principle. A consistency
result for the estimator of the common number of components is given under some assumptions. In practice,
the need for a maximum likelihood estimation also requires that we are able to properly initialize the EM
algorithm of [21]. We then also propose an efficient initialization procedure. This procedure and the new
conjugate BIC score we derived are illustrated successfully on a challenging two modality task of detecting
and localizing audio-visual objects.

6.1.3. Multiple scaled Student distributions with application to clustering
Participants: Florence Forbes, Senan James Doyle, Darren Wraith.
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There is an increasingly large literature for statistical approaches to cluster data for a very wide variety of
applications. For many applications there has also been an increasing need for approaches to be robust in
some sense. For example, in some applications the tails of normal distributions are shorter than appropriate
or parameter estimations are affected by atypical observations (outliers). A popular approach proposed for
these cases is to fit a mixture of Student distributions (either univariate or multivariate) providing an additional
degree of freedom (dof) parameter which can be viewed as a robustness tuning parameter.

An additional advantage of the Student approach is a convenient computational tractability via the use of the
EM algorithm with the cluster membership treated as missing variable/data. An additional numerical procedure
is then used to find the ML estimate of the degree of freedom.

There are many ways to generalize the Student distribution. Recent approaches such as the skew Student
etc.. Much less interest though has focussed on alternative forms for the degree of freedom parameter. The
standard student in this regard has one disadvantage: all its marginals are Student but have the same degree of
freedom and hence the same amount of tailweight. As noted by Azzalini and Genton in a recent review paper,
a simple example is where one variable has Cauchy tails (df=1) and another Gaussian. In this situation, "the
single degrees of freedom parameter has to provide a compromise between those two tail behaviours". One
solution could be to take a product of independent t-distributions of varying degree of freedom but assuming
no correlation between dimensions. For many applications this may however be too strong an assumption.
Jones in 2002 proposed a dependent bivariate t distribution with marginals of different degree of freedom but
the tractability of the extension to the multivariate case is unclear. Increasingly there has been much research
on copula approaches to account for flexible distributional forms but the choice as to which one to use in this
case and the applicability to (even) moderate dimensions is not clear.

In this work we propose to extend the Student distribution to allow for the degree of freedom parameter
to be estimated differently in each dimension of the parameter space. The key feature of the approach is a
decomposition of the covariance matrix which facilitates the separate estimation and also allows for arbitrary
correlation between dimensions. The properties of the approach and an assessment of it’s performance are
outlined on several datasets that are particularly challenging to the standard Student mixture case and also to
many alternative clustering approaches.

6.2. Markov models
6.2.1. Bayesian Weighting of Multiple MR Sequences for Brain Lesion Segmentation

Participants: Florence Forbes, Senan James Doyle, Eric Frichot, Darren Wraith.

Joint work with: Michel Dojat (Grenoble Institute of Neuroscience).

A healthy brain is generally segmented into three tissues: cephalo spinal fluid, grey matter and white matter.
Statistical based approaches usually aim to model probability distributions of voxel intensities with the idea
that such distributions are tissue-dependent. The delineation and quantification of brain lesions is critical
to establishing patient prognosis, and for charting the development of pathology over time. Typically, this
is performed manually by a medical expert, however automatic methods have been proposed (see [59] for
review) to alleviate the tedious, time consuming and subjective nature of manual delineation. Automated or
semi-automated brain lesion detection methods can be classified according to their use of multiple sequences, a
priori knowledge about the structure of normal brain, tissue segmentation models, and whether or not specific
lesion types are targeted. A common feature is that most methods are based on the initial identification of
candidate regions for lesions. In most approaches, normal brain tissue a priori maps are used to help identify
regions where the damaged brain differs, and the lesion is identified as an outlier. Existing methods frequently
make use of complementary information from multiple sequences. For example, lesion voxels may appear
atypical in one modality and normal in another. This is well known and implicitly used by neuroradiologists
when examining data. Within a mathematical framework, multiple sequences enable the superior estimation
of tissue classes in a higher dimensional space.
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For multiple MRI volumes, intensity distributions are commonly modelled as multi-dimensional Gaussian
distributions. This provides a way to combine the multiple sequences in a single segmentation task but with
all the sequences having equal importance. However, given that the information content and discriminative
power to detect lesions vary between different MR sequences, the question remains as to how to best combine
the multiple channels. Depending on the task at hand, it might be beneficial to weight the various sequences
differently.

In this work, rather than trying to detect lesion voxels as outliers from a normal tissue model, we adopt an
incorporation strategy whose goal is to identify lesion voxels as an additional fourth component. Such an
explicit modelling of the lesions is usually avoided. It is difficult for at least two reasons: 1) most lesions
have a widely varying and unhomogeneous appearance (eg. tumors or stroke lesions) and 2) lesion sizes can
be small (eg. multiple sclerosis lesions). In a standard tissue segmentation approach, both reasons usually
prevent accurate model parameter estimation resulting in bad lesion delineation. Our approach aims to make
this estimation possible by modifying the segmentation model with an additional weight field. We propose to
modify the tissue segmentation model so that lesion voxels become inliers for the modified model and can be
identified as genuine model components. Compared to robust estimation approaches (eg. [60]) that consist of
down-weighting the effect of outliers on the main model estimation, we aim to increase the weight of candidate
lesion voxels to overcome the problem of under-representation of the lesion class.

We introduce weight parameters in the segmentation model and then solve the issue of prescribing values for
these weights by developing a Bayesian framework. This has the advantage of avoiding the specification of ad-
hoc weight values and of enabling the incorporation of expert knowledge through a weight prior distribution.
We provide an estimation procedure based on a variational Expectation Maximization (EM) algorithm to
produce the corresponding segmentation. Furthermore, in the absence of explicit expert knowledge, we show
how the weight prior can be specified to guide the model toward lesion identification. Experiments on artificial
and real lesions of various sizes are reported to have demonstrated the good performance of our approach.

These latter experiments have been carried out with a first version of the method that uses diagonal covariance
matrices in the Gaussian parts of the model [25], [26]. We extended recently to non-diagonal covariance
matrices for a more general formulation. This new formulation is still under validation.

6.2.2. Variational approach for the joint estimation-detection of Brain activity from functional
MRI data
Participants: Florence Forbes, Lotfi Chaari.

Joint work with: Michel Dojat (Grenoble Institute of Neuroscience), Philippe Ciuciu and Thomas Vincent
from Neurospin, CEA in Saclay..

The goal is to investigate the possibility of using Variational approximation techniques as an alternative
to MCMC-based methods for the joint estimation-detection of brain activity in functional MRI data [56].
We investigated the so-called JDE (Joint Detection Estimation) framework developed by P. Ciuciu and
collaborators at NeuroSpin [56] [23], [28] and derived a variational version of it. This new formulation is
under validation.

6.2.3. Disparity and normal estimation through alternating maximization
Participant: Florence Forbes.

Joint work with: Elise Arnaud, Radu Horaud and Ramya Narasimha from the INRIA Perception team.

In this work [27], we propose an algorithm that recovers binocular disparities in accordance with the surface
properties of the scene under consideration. To do so, we estimate the disparity as well as the normals in the
disparity space, by setting the two tasks in a unified framework. A novel joint probabilistic model is defined
through two random fields to favor both intra-field (within neighboring disparities and neighboring normals)
and inter-field (between disparities and normals) consistency. Geometric contextual information is introduced
in the models for both normals and disparities. The models are optimized using an appropriate alternating
maximization procedure. We illustrate the performance of our approach on synthetic and real data.
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6.2.4. Consistent detection, localization and tracking of Audio-Visual Objects with Variational
EM
Participants: Florence Forbes, Vasil Khalidov.

Joint work with: Radu Horaud from the INRIA Perception team.

This work addresses the issue of detecting, locating and tracking objects that are both seen and heard in a
scene. We give this problem an interpretation within an unsupervised clustering framework and propose a
novel approach based on feature consistency. This model is capable of resolving the observations that are due
to detector errors, thus improving the estimation accuracy. We formulate the task as a maximum likelihood
estimation problem and perform the inference by a version of the expectation-maximization algorithm, which
is formally derived, and which provides cooperative estimates of observation errors, observation assignments,
and object tracks. We describe several experiments with single- and multiple- person detection, localization
and tracking.

6.2.5. Spatial risk mapping for rare disease with hidden Markov fields and variational EM
Participants: Lamiae Azizi, Florence Forbes, Senan James Doyle.

Joint work with: David Abrial, Christian Ducrot and Myriam Garrido from INRA Clermont-Ferrand-Theix.

The analysis of the geographical variations of a disease and their representation on a map is an important
step in epidemiology. The goal is to identify homogeneous regions in terms of disease risk and to gain better
insights into the mechanisms underlying the spread of the disease. Traditionally, the region under study is
partitioned into a number of areas on which the observed cases of a given disease are counted and compared
to the population size in this area. It has also become clear that spatial dependencies between counts had to
be taken into account when analyzing such location-dependent data. One of the most popular approach which
has been extensively used in this context, is the so-called BYM model introduced by Besag, York and Mollié
in 1991. This model corresponds to a Bayesian hierarchical modelling approach. It is based on an Hidden
Markov Random Field (HMRF) model where the latent intrinsic risk field is modelled by a Markov field with
continuous state space, namely a Gaussian Conditionally Auto-Regressive (CAR) model. The model inference
therefore results in a real-valued estimation of the risk at each location and one of the main reported limitation
is that local discontinuities in the risk field are not modelled potentially leading to risk maps that are too
smooth. In some cases, coarser representations where areas with similar risk values are grouped are desirable.
Grouped representations have the advantage that they provide clearly delimited areas for different risk levels,
which is helpful for decision-makers to interpret the risk structure and determine protection measures. Using
the BYM model it is possible to derive from the model output such a grouping using, either fixed risk ranges
(usually difficult to choose in practice) or a more automated clustering techniques. In any case this post-
processing step is likely to be sub-optimal. In this work, we investigate procedures that include such a risk
classification.

There have been several attempts to take into account the presence of discontinuities in the spatial structure of
the risk. Within hierarchical approaches, one possibility is to move the spatial dependence one level higher in
the hierarchy. Green and Richardson in 2002 proposed to replace the continuous risk field by a partition model
involving the introduction of a finite number of risk levels and allocations variables to assign each area under
study to one of these levels. Spatial dependencies are then taken into account by modelling the allocation
variables as a discrete state-space Markov field, namely a spatial Potts model. This results in a discrete HMRF
modelling. The general effect is also to recast the disease mapping issue into a clustering task using spatial
finite Poisson mixtures. In the same spirit, Fernandez and Green proposed another class of spatial mixture
models, in which the spatial dependence is pushed yet one level higher. Of course, the higher the spatial
dependencies in the hierarchy the more flexible the model but also the more difficult the parameter estimation.
As regards inference, these various attempts have in common the use of simulation intensive Monte Carlo
Markov Chain (MCMC) techniques which can present serious difficulties in applying them to large data sets
in a reasonable time.
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Following the idea of using a discrete HMRF model for disease mapping, we propose to use for inference,
as an alternative to simulation-based techniques, an Expectation Maximization framework. This framework
is commonly used to solve clustering tasks but leads to intractable computation when considering non-trivial
Markov dependencies. However, approximation techniques are available and, among them we propose to
investigate variational approximations for their computational efficiency and good performance in practice. In
particular, we consider the so-called mean field principle [6] that provides a deterministic way to deal with
intractable MRF models and has proven to perform well in a number of applications.

Human disease data usually has this particularity that the populations under consideration are large and
the risk values relatively high, say between 0.5 and 1.5. This is not fully representative of epidemiological
studies, especially studies of non-contagious diseases in animals. When considering animal epidemiology, we
may have to face instead low size populations and risk levels much smaller than 1, typically 10−5 to 10−3.
Difficulties in applying techniques that work in the first (human) case to data sets in the second (animal) case
have not been investigated. In addition, no particular difficulties regarding initialization and model selection
are usually reported. This is far from being the case in all practical problems. In this work we propose to go
further and to address a number of related issues. More specifically, we investigate the model behavior in more
detail. We pay special attention to the main two inherent issues when using EM procedures, namely algorithm
initialization and model selection. The EM solution can highly depend on its starting position. We show that
simple initializations do not always work, especially for rare disease for which the risks are small. We then
propose and compare different initialization strategies in order to get a robust way of initializing for most
situations arising in practice.

In addition we build on the standard hidden Markov field model by considering a more general formulation
that is able to encode more complex interactions than the standard Potts model. In particular we are able to
encode the fact that risk levels in neighboring regions cannot be too different while the standard Potts model
penalizes the same way different neighboring risks whatever the amplitude of their difference.

6.2.6. Optimization of the consumption of printers using Markov decision processes
Participants: Laurent Donini, Jean-Baptiste Durand, Stéphane Girard.

Joint work with: Ciriza, V. and Bouchard, G. (Xerox XRCE, Meylan).

In the context of the PhD thesis of Laurent Donini, we have proposed several approaches to optimize the
resources consumed by printers. The first aim of this work is to determine an optimal value of the timeout of an
isolated printer, so as to minimize its electrical consumption. This optimal timeout is obtained by modeling the
stochastic process of the print requests, by computing the expected consumption under this model, according
to the characteristics of the printers, and then by minimizing this expectation with respect to the timeout. Two
models are considered for the request process: a renewal process, and a hidden Markov chain. Explicit values
of the optimal timeout are provided when possible. In other cases, we provide some simple equation satisfied
by the optimal timeout. It is also shown that a model based on a renewal process offers as good results as
an empirical minimization of the consumption based on exhaustive search of the timeout, for a largely lower
computational cost. This work has been extended to take into account the users’ discomfort resulting from
numerous shutdowns of the printers, which yield increased waiting time. This has also been extended to
printers with several states of sleep, or with separate reservoirs of solid ink. The results are submitted for
publication [41].

As a second step, the case of a network of printers has been considered. The aim is to decide on which
printer some print request must be processed, so as to minimize the total power consumption of the network of
printers, taking into account user discomfort. Our approach is based on Markov Decision Processes (MDPs),
and explicit solutions for the optimal decision are not available anymore. Furthermore, to simplify the problem,
the timeout values are considered are fixed. The state space is continuous, and its dimension increases linearly
with the number of printers, which quickly turns the usual algorithms (i.e. value or policy iteration) intractable.
This is why different variants have been considered, among which the Sarsa algorithm.
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6.3. Semi and non-parametric methods
6.3.1. Modelling extremal events

Participants: Stéphane Girard, Laurent Gardes, Jonathan El-methni, El-Hadji Deme.

Joint work with: Guillou, A. (Univ. Strasbourg).

We introduced a new model of tail distributions depending on two parameters τ ∈ [0, 1] and θ > 0 [17]. This
model includes very different distribution tail behaviors from Fréchet and Gumbel maximum domains of
attraction. In the particular cases of Pareto type tails (τ = 1) or Weibull tails (τ = 0), our estimators coincide
with classical ones proposed in the literature, thus permitting us to retrieve their asymptotic normality in an
unified way. Our current work consists in defining an estimator of the parameter τ . This would permit the
construction of new estimators of extreme quantiles and to propose a test procedure in order to discriminate
between Pareto and Weibull tails.
We are also working on the estimation of the second order parameter ρ (see paragraph 3.3.1). Our goal is to
propose a new family of estimators encompassing the existing ones (see for instance [54], [53]). This work
is in collaboration with El-Hadji Deme, a PhD student from the Université de Saint-Louis (Sénégal). El-Hadji
Deme obtained a one-year mobility grant to work within the Mistis team on extreme-value statistics.

6.3.2. Conditional extremal events
Participants: Stéphane Girard, Laurent Gardes, Julie Carreau, Alexandre Lekina, Eugen Ursu.

Joint work with: Amblard, C. (TimB in TIMC laboratory, Univ. Grenoble I) and Daouia, A. (Univ. Toulouse I)

The goal of the PhD thesis of Alexandre Lekina is to contribute to the development of theoretical and
algorithmic models to tackle conditional extreme value analysis, ie the situation where some covariate
information X is recorded simultaneously with a quantity of interest Y . In such a case, the tail heaviness
of Y depends on X, and thus the tail index as well as the extreme quantiles are also functions of the covariate.
We combine nonparametric smoothing techniques [48] with extreme-value methods in order to obtain efficient
estimators of the conditional tail index and conditional extreme quantiles. When the covariate is deterministic
(fixed design), moving window and nearest neighbours methods are adopted [18]. When the covariate is
random (random design), we focus on kernel methods [15]. Conditional extremes are studied in climatology
where one is interested in how climate change over years might affect extreme temperatures or rainfalls. In this
case, the covariate is univariate (time). Bivariate examples include the study of extreme rainfalls as a function
of the geographical location. The application part of the study is joint work with the LTHE (Laboratoire
d’étude des Transferts en Hydrologie et Environnement) located in Grenoble [16].

More future work will include the study of multivariate and spatial extreme values. With this aim, a research
on some particular copulas [1] has been initiated with Cécile Amblard, since they are the key tool for building
multivariate distributions [57]. The PhD thesis of Jonathan El-methni should address this problem too.

6.3.3. Level sets estimation
Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Guillou, A. (Univ. Strasbourg), Stupfler, G. (Univ. Strasbourg), P. Jacob (Univ. Montpellier
II) and Daouia, A. (Univ. Toulouse I).

The boundary bounding the set of points is viewed as the larger level set of the points distribution. This is
then an extreme quantile curve estimation problem. We proposed estimators based on projection as well as on
kernel regression methods applied on the extreme values set, for particular set of points [10].
In collaboration with A. Daouia, we investigate the application of such methods in econometrics [37]: A new
characterization of partial boundaries of a free disposal multivariate support is introduced by making use of
large quantiles of a simple transformation of the underlying multivariate distribution. Pointwise empirical
and smoothed estimators of the full and partial support curves are built as extreme sample and smoothed
quantiles. The extreme-value theory holds then automatically for the empirical frontiers and we show that
some fundamental properties of extreme order statistics carry over to Nadaraya’s estimates of upper quantile-
based frontiers.
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In the PhD thesis of Gilles Stupfler (co-directed by Armelle Guillou and Stéphane Girard), new estimators
of the boundary are introduced. The regression is performed on the whole set of points, the selection of the
“highest” points being automatically performed by the introduction of high order moments. The results are
submitted for publication [42].
We are also working on the extension of our results to more general sets of points. To this end, we focus
on the family of conditional heavy tails. An estimator of the conditional tail index has been proposed, and
the corresponding conditional extreme quantile estimator has been derived [18] in a fixed design setting. The
extension to the random design framework is published in [15]. This work has been initiated in the PhD work
of Laurent Gardes [50], co-directed by Pierre Jacob and Stéphane Girard.

6.3.4. Nuclear plants reliability
Participants: Laurent Gardes, Stéphane Girard.

Joint work with: Perot, N., Devictor, N. and Marquès, M. (CEA).

One of the main activities of the LCFR (Laboratoire de Conduite et Fiabilité des Réacteurs), CEA Cadarache,
concerns the probabilistic analysis of some processes using reliability and statistical methods. In this context,
probabilistic modelling of steel tenacity in nuclear plant tanks has been developed. The databases under
consideration include hundreds of data indexed by temperature, so that, reliable probabilistic models have
been obtained for the central part of the distribution. However, in this reliability problem, the key point is to
investigate the behavior of the model in the distribution tail. In particular, we are mainly interested in studying
the lowest tenacities when the temperature varies (Figure 2).

Figure 2. Tenacity as a function of the temperature.

This work is supported by a research contract (from December 2008 to December 2010) involving MISTIS and
the LCFR.

6.3.5. Quantifying uncertainties on extreme rainfall estimations
Participants: Julie Carreau, Eugen Ursu, Laurent Gardes, Stéphane Girard.

Joint work with: Molinié, G. from Laboratoire d’Etude des Transferts en Hydrologie et Environnement
(LTHE), France.
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Extreme rainfalls are generally associated with two different precipitation regimes. Extreme cumulated rainfall
over 24 hours results from stratiform clouds on which the relief forcing is of primary importance. Extreme
rainfall rates are defined as rainfall rates with low probability of occurrence, typically with higher mean return-
levels than the maximum observed level. For example Figure 3 presents the return levels for the Cévennes-
Vivarais region obtained in [16]. It is then of primary importance to study the sensitivity of the extreme rainfall
estimation to the estimation method considered. A preliminary work on this topic has been presented in two
international workshops on climate [32], [33]. MISTIS got a Ministry grant for a related ANR project (see
Section 7.2).

Figure 3. Map of the mean return-levels (in mm) for a period of 10 years.

6.3.6. Retrieval of Mars surface physical properties from OMEGA hyperspectral images.
Participants: Mathieu Fauvel, Laurent Gardes, Stéphane Girard.

Joint work with: Douté, S. from Laboratoire de Planétologie de Grenoble, France in the context of the
VAHINE project (see Section 7.2).

Visible and near infrared imaging spectroscopy is one of the key techniques to detect, to map and to
characterize mineral and volatile (eg. water-ice) species existing at the surface of planets. Indeed the chemical
composition, granularity, texture, physical state, etc. of the materials determine the existence and morphology
of the absorption bands. The resulting spectra contain therefore very useful information. Current imaging
spectrometers provide data organized as three dimensional hyperspectral images: two spatial dimensions and
one spectral dimension. Our goal is to estimate the functional relationship F between some observed spectra
and some physical parameters. To this end, a database of synthetic spectra is generated by a physical radiative
transfer model and used to estimate F . The high dimension of spectra is reduced by Gaussian regularized sliced
inverse regression (GRSIR) to overcome the curse of dimensionality and consequently the sensitivity of the
inversion to noise (ill-conditioned problems). This method is compared with the more classical SVM approach.
GRSIR has the advantage of being very fast, interpretable and accurate. Recall that SVM approximates the
functional F : y = F (x) using a solution of the form F (x) =

∑n
i=1 αi K(x, xi) + b, where xi are samples

from the training set, K a kernel function and ((αi)
n
i=1, b) are the parameters of F which are estimated

during the training process. The kernel K is used to produce a non-linear function. The SVM training entails
minimization of

[
1
n

∑`
i=1 l (F (xi), yi) + λ‖F‖2

]
with respect to ((αi)

n
i=1, b), and with l (F (x), y) = 0 if

|F (x)− y| ≤ ε and |F (x)− y| − ε otherwise. Prior to running the algorithm, the following parameters need
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to be fitted: ε which controls the resolution of the estimation, λ which controls the smoothness of the solution
and the kernel parameters (γ for the Gaussian kernel).

6.3.7. Statistical analysis of hyperspectral multi-angular data from Mars
Participants: Mathieu Fauvel, Florence Forbes, Laurent Gardes, Stéphane Girard.

Joint work with: Douté, S. from Laboratoire de Planétologie de Grenoble, France in the context of the
VAHINE project (see Section 7.2).

A new generation of imaging spectrometers is emerging with an additional angular dimension, in addition to
the three usual dimensions, two spatial dimensions and one spectral dimension. The surface of planets will
now be observed from different view points on the satellite trajectory, corresponding to about ten different
angles, instead of only one corresponding usually to the vertical (0 degree angle) view point. Multi-angle
imaging spectrometers present several advantages: the influence of the atmosphere on the signal can be better
identified and separated from the surface signal on focus, and the shape and size of the surface components
and the surfaces granularity can be better characterized. However, this new generation of spectrometers also
results in a significant increase in the size (several tera bits expected) and complexity of the generated data.
To investigate the use of statistical techniques to deal with these generic sources of complexity, we made
preliminary experiments using our HDDC technique on a first set of realistic synthetic 4D spectral data
provided by our collaborators from LPG. However, it appeared that this data set was not relevant for our
study due to the fact that the simulated angular information provided was not discriminant and could not
enable us to draw useful conclusions. Further experiments on other data sets are then necessary.

7. Other Grants and Activities

7.1. National Actions
MISTIS participates in the weekly statistical seminar of Grenoble. F. Forbes is one of the organizers and several
lecturers have been invited in this context.

7.2. National initiatives
MISTIS got, for the period 2008-2010, Ministry grants for two projects supported by the French National
Research Agency (ANR):

• MDCO (Masse de Données et Connaissances) program. This three-year project is called "Visuali-
sation et analyse d’images hyperspectrales multidimensionnelles en Astrophysique" (VAHINE). It
aims at developing physical as well as mathematical models, algorithms, and software able to deal
efficiently with hyperspectral multi-angle data but also with any other kind of large hyperspectral
dataset (astronomical or experimental). It involves the Observatoire de la Côte d’Azur (Nice), and
two universities (Strasbourg I and Grenoble I). For more information please visit the associated web
site: http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php.

• VMC (Vulnérabilité : Milieux et climats) program. This three-year project is called "Forecast
and projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation
on environment" (MEDUP) and deals with the quantification and identification of sources of
uncertainties associated with forecasting and climate projection for Mediterranean high-impact
weather events. The propagation of these uncertainties on the environment is also considered, as
well as how they may combine with the intrinsic uncertainties of the vulnerability and risk analysis
methods. It involves Météo-France and three universities (Paris VI, Grenoble I and Toulouse III).
(http://www.cnrm.meteo.fr/medup/).

http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php
http://www.cnrm.meteo.fr/medup/
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MISTIS is also a partner in a new three-year MINALOGIC project (I-VP for Intuitive Vision Programming)
supported by the French Government. The project is led by VI Technology (http://www.vitechnology.com),
a world leader in Automated Optical Inspection (AOI) of a broad range of electronic components. The
other partners involved are the CMM (Centre de Morphologie Mathematiques) in Fontainebleau, and Pige
Electronique in Bourg-Les-Valence. The NOESIS company, which is a leader in the field of image processing
and analysis software, in Crolles, is also involved to provide help with software development. The overall
goal is to exploit statistical and image processing techniques more intensively to improve defect detection
capability and programming time based on existing AOI principles so as to eventually reach a reliable defect
detection with virtually zero programming skills and efforts.

MISTIS is also involved in another three-year MINALOGIC project, called OPTYMIST-II, through the co-
advising, with Dominique Morche from LETI, of Julie Carreau’s post-doctoral subject. The goal is to address
variability issues when designing electronic components.

7.3. International initiatives
7.3.1. North Africa

S. Girard has joint work with M. El Aroui (ISG Tunis) and El-Hadji Deme (PhD student from the Université
de Saint-Louis, Sénégal)

7.3.2. North America
F. Forbes has joint work with C. Fraley and A. Raftery (Univ. of Washington, USA).

7.3.3. Europe
European STREP HUMAVIPS (2010-13). MISTIS is involved in a new three-year European project (STREP)
started in February 2010. The project is named HUMAVIPS (Humanoids ables with auditory and visual
abilities in populated spaces) and was in 2009/10 the only INRIA coordinated project granted in the highly
competitive FP7-ICT program of the European Union. The partners involved are the Perception and Mistis
teams from INRIA Rhone-alpes (coord.), the Czech Technical University CTU Czech Republic, Aldebaran
Robotics ALD France, Idiap Research Institute Switzerland and Bielefeld University BIU Germany. The goal
is to develop humanoid robots with integrated audio-visual perception systems and social skills, capable of
handling multi-party conversations and interactions with people in realtime. The MISTIS contribution will
consist in developing statistical machine learning techniques for interactive robotic applications.

S. Girard has also joint work with Prof. A. Nazin (Institute of Control Science, Moscow, Russia).

M.J. Martinez has joint work with Prof. J. Hinde and E. Holian (National University of Ireland, Galway,
Ireland).

8. Dissemination

8.1. Leadership within scientific community
Since September 2009, F. Forbes is head of the committee in charge of examining post-doctoral candidates at
INRIA Grenoble Rhône-Alpes ("Comité des Emplois Scientifiques").

Since September 2009, F. Forbes is also a member of the INRIA national committee, "Comité d’animation
scientifique", in charge of analyzing and motivating innovative activities in Applied Mathematics.

F. Forbes is part of an INRA (French National Institute for Agricultural Research) Network (MSTGA) on
spatial statistics. She is also part of an INRA committee (CSS MBIA) in charge of evaluating INRA researchers
once a year.

S. Girard is a member of the committee (Comité de Sélection) in charge of examining applications to Faculty
member positions at University Pierre Mendes France (UPMF, Grenoble II).

http://www.vitechnology.com
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F. Forbes and S. Girard were elected as members of the bureau of the “Analyse d’images, quantification, et
statistique” group in the Société Française de Statistique (SFdS).

S. Girard was selected as an expert for the national fund for the scientific development of Chili (FONDECYT).

S. Girard was selected as an expert by the Research concil of the University of Leuven to evaluate research
proposals.

S. Girard was involved in the PhD committees of Dmitri Novikov (Université Montpellier II) and Thi Mong
Ngoc Nguyen (Université de Bordeaux).

F. Forbes was involved in the PhD committes of Tomas Crivelli from team VISTA INRIA Rennes, Univ. Rennes
I. PhD title: Mixed state Markov models for image motion analysis (March 2010) and of Lotfi Châari from
University Paris-Est. PhD subject: Reconstruction d’images médicales d’IRM à l’aide de représentations en
ondelettes (November 2010).

F. Forbes was also involved in the HDR committee of Nicolas Wicker, assistant professor at Strasbourg
University (December 2010).

8.2. Teaching
F. Forbes lectured a graduate course on the EM algorithm at Univ. Joseph Fourier, Grenoble I.

L. Gardes and M.-J. Martinez are faculty members at Univ. Pierre Mendès France, Grenoble II.

L. Gardes and S. Girard lectured a graduate course on extreme value analysis at Univ. Joseph Fourier, Grenoble
I.

J.-B. Durand is a faculty member at Ensimag, Grenoble INP.
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