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2. Overall Objectives
2.1. Introduction

SEQUEL means “Sequential Learning”. As such, SEQUEL focuses on the task of learning in artificial systems
(either hardware, or software) that gather information along time. Such systems are named (learning) agents
(or learning machines) in the following. These data may be used to estimate some parameters of a model,
which in turn, may be used for selecting actions in order to perform some long-term optimization task.
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For the purpose of model building, the agent needs to represent information collected so far in some compact
form and use it to process newly available data.

The acquired data may result from an observation process of an agent in interaction with its environment (the
data thus represent a perception). This is the case when the agent makes decisions (in order to attain a certain
objective) that impact the environment, and thus the observation process itself.

Hence, in SEQUEL, the term sequential refers to two aspects:

• The sequential acquisition of data, from which a model is learned (supervised and non supervised
learning),

• the sequential decision making task, based on the learned model (reinforcement learning).

Examples of sequential learning problems include:

Supervised learning tasks deal with the prediction of some response given a certain set of observations of
input variables and responses. New sample points keep on being observed.

Unsupervised learning tasks deal with clustering objects, these latter making a flow of objects. The
(unknown) number of clusters typically evolves during time, as new objects are observed.

Reinforcement learning tasks deal with the control (a policy) of some system which has to be optimized
(see [79]). We do not assume the availability of a model of the system to be controlled.

In all these cases, we mostly assume that the process can be considered stationary for at least a certain amount
of time, and slowly evolving.

We wish to have any-time algorithms, that is, at any moment, a prediction may be required/an action may be
selected making full use, and hopefully, the best use, of the experience already gathered by the learning agent.

The perception of the environment by the learning agent (using its sensors) is generally neither the best one to
make a prediction, nor to take a decision (we deal with Partially Observable Markov Decision Problem). So,
the perception has to be mapped in some way to a better, and relevant, state (or input) space.

Finally, an important issue of prediction regards its evaluation: how wrong may we be when we perform a
prediction? For real systems to be controlled, this issue can not be simply left unanswered.

To sum-up, in SEQUEL, the main issues regard:

• the learning of a model: we focus on models that map some input space RP to R,

• the observation to state mapping,

• the choice of the action to perform (in the case of sequential decision problem),

• the performance guarantees,

• the implementation of usable algorithms,

all that being understood in a sequential framework.

2.2. Highlights
• This year, Sébastien Bubeck has defended his Ph.D. thesis, entitled “Bandits Games and Clustering

Foundations” [11]. Not only is it the first Ph.D. defence in SequeL, but it is also a highly successful
one: Sébastien has been awarded a Gilles Kahn 2010 prize, a prize awarded by Specif to the best
Ph.D. theses in Computer Science, in France (patronized by the Academy of Science). The thesis
supervisor was Rémi Munos.

• The research of Rémi Coulom on artificial Go players has received further recognition, in the form
of two important international awards (see Section 9.1). This work has been also highlighted in the
popular science magazine “Pour la Science”, featuring on the cover [51].
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3. Scientific Foundations

3.1. Introduction
SEQUEL is primarily grounded on two domains:

• the problem of decision under uncertainty,

• statistical analysis and statistical learning, which provide the general concepts and tools to solve this
problem.

To help the reader who is unfamiliar with these questions, we briefly present key ideas below.

3.2. Decision under uncertainty
The phrase “Decision under uncertainty” refers to the problem of taking decisions when we do not have a full
knowledge neither of the situation, nor of the consequences of the decisions, as well as when the consequences
of decision are non deterministic.

We introduce two specific sub-domains, namely the Markov decision processes which models sequential
decision problems, and bandit problems.

3.2.1. Markov decision processes
Sequential decision processes occupy the heart of the SEQUEL project; a detailed presentation of this problem
may be found in Puterman’s book [75].

A Markov Decision Process (MDP) is defined as the tuple (X,A, P, r) where X is the state space, A is the
action space, P is the probabilistic transition kernel, and r : X×A× X → IR is the reward function. For the
sake of simplicity, we assume in this introduction that the state and action spaces are finite. If the current
state (at time t) is x ∈ X and the chosen action is a ∈ A, then the Markov assumption means that the transition
probability to a new state x′ ∈ X (at time t + 1) only depends on (x, a). We write p(x′|x, a) the corresponding
transition probability. During a transition (x, a) → x′, a reward r(x, a, x′) is incurred.

In the MDP (X,A, P, r), each initial state x0 and action sequence a0, a1, ... gives rise to a sequence of
states x1, x2, ..., satisfying P (xt+1 = x′|xt = x, at = a) = p(x′|x, a), and rewards1 r1, r2, ... defined by
rt = r(xt, at, xt+1).

The history of the process up to time t is defined to be Ht = (x0, a0, ..., xt−1, at−1, xt). A policy π is a
sequence of functions π0, π1, ..., where πt maps the space of possible histories at time t to the space of
probability distributions over the space of actions A. To follow a policy means that, in each time step, we
assume that the process history up to time t is x0, a0, ..., xt and the probability of selecting an action a is equal
to πt(x0, a0, ..., xt)(a). A policy is called stationary (or Markovian) if πt depends only on the last visited
state. In other words, a policy π = (π0, π1, ...) is called stationary if πt(x0, a0, ..., xt) = π0(xt) holds for all
t ≥ 0. A policy is called deterministic if the probability distribution prescribed by the policy for any history is
concentrated on a single action. Otherwise it is called a stochastic policy.

We move from an MD process to an MD problem by formulating the goal of the agent, that is what the sought
policy π has to optimize? It is very often formulated as maximizing (or minimizing), in expectation, some
functional of the sequence of future rewards. For example, an usual functional is the infinite-time horizon sum
of discounted rewards. For a given (stationary) policy π, we define the value function V π(x) of that policy π
at a state x ∈ X as the expected sum of discounted future rewards given that we state from the initial state x
and follow the policy π:

1Note that for simplicity, we considered the case of a deterministic reward function, but in many applications, the reward rt itself is a
random variable.
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V π(x) = E

[ ∞∑
t=0

γtrt|x0 = x, π

]
, (1)

where E is the expectation operator and γ ∈ (0, 1) is the discount factor. This value function V π gives an
evaluation of the performance of a given policy π. Other functionals of the sequence of future rewards may
be considered, such as the undiscounted reward (see the stochastic shortest path problems [67]) and average
reward settings. Note also that, here, we considered the problem of maximizing a reward functional, but a
formulation in terms of minimizing some cost or risk functional would be equivalent.

In order to maximize a given functional in a sequential framework, one usually applies Dynamic Programming
(DP) [65], which introduces the optimal value function V ∗(x), defined as the optimal expected sum of rewards
when the agent starts from a state x. We have V ∗(x) = supπ V π(x). Now, let us give two definitions about
policies:

• We say that a policy π is optimal, if it attains the optimal values V ∗(x) for any state x ∈ X, i.e.,
if V π(x) = V ∗(x) for all x ∈ X. Under mild conditions, deterministic stationary optimal policies
exist [66]. Such an optimal policy is written π∗.

• We say that a (deterministic stationary) policy π is greedy with respect to (w.r.t.) some function V
(defined on X) if, for all x ∈ X,

π(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV (x′)] .

where arg maxa∈A f(a) is the set of a ∈ A that maximizes f(a). For any function V , such a greedy
policy always exists because A is finite.

The goal of Reinforcement Learning (RL), as well as that of dynamic programming, is to design an optimal
policy (or a good approximation of it).

The well-known Dynamic Programming equation (also called the Bellman equation) provides a relation
between the optimal value function at a state x and the optimal value function at the successors states x′

when choosing an optimal action: for all x ∈ X,

V ∗(x) = max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (2)

The benefit of introducing this concept of optimal value function relies on the property that, from the optimal
value function V ∗, it is easy to derive an optimal behavior by choosing the actions according to a policy
greedy w.r.t. V ∗. Indeed, we have the property that a policy greedy w.r.t. the optimal value function is an
optimal policy:

π∗(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (3)

In short, we would like to mention that most of the reinforcement learning methods developed so far are built
on one (or both) of the two following approaches ( [81]):

• Bellman’s dynamic programming approach, based on the introduction of the value function. It
consists in learning a “good” approximation of the optimal value function, and then using it to
derive a greedy policy w.r.t. this approximation. The hope (well justified in several cases) is that the
performance V π of the policy π greedy w.r.t. an approximation V of V ∗ will be close to optimality.
This approximation issue of the optimal value function is one of the major challenge inherent to
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the reinforcement learning problem. Approximate dynamic programming addresses the problem
of estimating performance bounds (e.g. the loss in performance ||V ∗ − V π|| resulting from using
a policy π -greedy w.r.t. some approximation V - instead of an optimal policy) in terms of the
approximation error ||V ∗ − V || of the optimal value function V ∗ by V . Approximation theory and
Statistical Learning theory provide us with bounds in terms of the number of sample data used
to represent the functions, and the capacity and approximation power of the considered function
spaces.

• Pontryagin’s maximum principle approach, based on sensitivity analysis of the performance measure
w.r.t. some control parameters. This approach, also called direct policy search in the Reinforcement
Learning community aims at directly finding a good feedback control law in a parameterized policy
space without trying to approximate the value function. The method consists in estimating the so-
called policy gradient, i.e. the sensitivity of the performance measure (the value function) w.r.t.
some parameters of the current policy. The idea being that an optimal control problem is replaced
by a parametric optimization problem in the space of parameterized policies. As such, deriving a
policy gradient estimate would lead to performing a stochastic gradient method in order to search
for a local optimal parametric policy.

Finally, many extensions of the Markov decision processes exist, among which the Partially Observable MDPs
(POMDPs) is the case where the current state does not contain all the necessary information required to decide
for sure of the best action.

3.2.2. Bandits
Bandit problems illustrate the fundamental difficulty of decision making in the face of uncertainty: A decision
maker must choose between what seems to be the best choice (“exploit”), or to test (“explore”) some
alternative, hoping to discover a choice that beats the current best choice.

The classical example of a bandit problem is deciding what treatment to give each patient in a clinical trial
when the effectiveness of the treatments are initially unknown and the patients arrive sequentially. These
bandit problems became popular with the seminal paper [76], after which they have found applications in
diverse fields, such as control, economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is specified by K real-valued distributions. In each time step
a decision maker can select one of the distributions to obtain a sample from it. The samples obtained
are considered as rewards. The distributions are initially unknown to the decision maker, whose goal is to
maximize the sum of the rewards received, or equivalently, to minimize the regret which is defined as the loss
compared to the total payoff that can be achieved given full knowledge of the problem, i.e., when the arm
giving the highest expected reward is pulled all the time.

The name “bandit” comes from imagining a gambler playing with K slot machines. The gambler can pull the
arm of any of the machines, which produces a random payoff as a result: When arm k is pulled, the random
payoff is drawn from the distribution associated to k. Since the payoff distributions are initially unknown,
the gambler must use exploratory actions to learn the utility of the individual arms. However, exploration has
to be carefully controlled since excessive exploration may lead to unnecessary losses. Hence, to play well,
the gambler must carefully balance exploration and exploitation. Auer et al. [64] introduced the algorithm
UCB (Upper Confidence Bounds) that follows what is now called the “optimism in the face of uncertainty
principle”. Their algorithm works by computing upper confidence bounds for all the arms and then choosing
the arm with the highest such bound. They proved that the expected regret of their algorithm increases at most
at a logarithmic rate with the number of trials, and that the algorithm achieves the smallest possible regret up
to some sub-logarithmic factor (for the considered family of distributions).

3.3. Statistical analysis of time series
Many of the problems of machine learning can be seen as extensions of classical problems of mathematical
statistics to their (extremely) non-parametric and model-free cases. Other machine learning problems are
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founded on such statistical problems. Statistical problems of sequential learning are mainly those that are
concerned with the analysis of time series. These problems are as follows.

3.3.1. Sequence prediction
Given a series of observations x1, · · · , xn it is required to predict the probability distribution of the next
outcome xn+1, before it is revealed and the process continues. Different goals can be formulated in this setting.
One can either make some assumptions on the probability measure that generates the sequence x1, · · · , xn, · · ·,
such as that the outcomes are independent and identically distributed (i.i.d.), or that the sequence is a Markov
chain, that it is a stationary process, etc. More generally, one can assume that the data is generated by
a probability measure that belongs to a certain set C. In these cases the goal is to have the discrepancy
between the predicted and the “true” probabilities to go to zero, if possible, with guarantees on the speed
of convergence.

Alternatively, rather than making some assumptions on the data, one can change the goal: the predicted
probabilities should be asymptotically as good as those given by the best reference predictor from a certain
pre-defined set.

3.3.2. Hypothesis testing
Given a series of observations of x1, · · · , xn, · · · generated by some unknown probability measure µ, the
problem is to test a certain given hypothesis H0 about µ, versus a given alternative hypothesis H1. There
are many different examples of this problem. Perhaps the simplest one is testing a simple hypothesis “µ is
Bernoulli i.i.d. measure with probability of 0 equals 1/2” versus “µ is Bernoulli i.i.d. with the parameter
different from 1/2”. More interesting cases include the problems of model verification: for example, testing
that µ is a Markov chain, versus that it is a stationary ergodic process but not a Markov chain. In the case
when we have not one but several series of observations, we may wish to test the hypothesis that they are
independent, or that they are generated by the same distribution. Applications of these problems to a more
general class of machine learning tasks include the problem of feature selection, the problem of testing that
a certain behavior (such pulling a certain arm of a bandit, or using a certain policy) is better (in terms of
achieving some goal, or collecting some rewards) than another behavior, or than a class of other behaviors.

The problem of hypothesis testing can also be studied in its general formulations: given two (abstract)
hypothesis H0 and H1 about the unknown measure that generates the data, fund out whether it is possible
to test H0 against H1 (with confidence), and if yes then how can one do it.

3.3.3. Clustering
The problem of clustering, while being a classical problem of mathematical statistics, belongs to the realm
of unsupervised learning. For time series, this problem can be formulated as follows: given several samples
x1 = (x1

1, · · · , x1
n1

), · · · , xN = (x1
N , · · · , xN

nN
), we wish group similar objects together. While this is of course

not a precise formulation, it can be made precise if we assume that the samples were generated by k
different distributions. Alternatively, one may assume some specific model on the data, leading to different
formalizations of the problem.

3.4. Statistical learning
Before detailing some issues of statistical learning, let us remind the definition of a few terms.

Glossary

Machine learning refers to a system capable of the autonomous acquisition and integration of
knowledge. This capacity to learn from experience, analytical observation, and other means,
results in a system that can continuously self-improve and thereby offer increased efficiency and
effectiveness. (source: AAAI website)

Statistical learning is an approach to machine intelligence which is based on statistical modeling of
data. With a statistical model in hand, one applies probability theory and decision theory to get
an algorithm. This is opposed to using training data merely to select among different algorithms
or using heuristics/“common sense” to design an algorithm.

http://www.aaai.org/AITopics/html/machine.html
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Kernel method Generally speaking, a kernel function is a function that maps a couple of points
to a real value. Typically, this value is a measure of dissimilarity between the two points.
Assuming a few properties on it, the kernel function implicitly defines a dot product in some
function space. This very nice formal property as well as a bunch of others have ensured a
strong appeal for these methods in the last 10 years in the field of function approximation. Many
classical algorithms have been “kernelized”, that is, restated in a much more general way than
their original formulation. Kernels also implicitly induce the representation of data in a certain
“suitable” space where the problem to solve (classification, regression, ...) is expected to be
simpler (non-linearity turns to linearity).

The fundamental tools used in SEQUEL come from the field of statistical learning [71]. We briefly present
the most important for us to date, namely, kernel-based non parametric function approximation, and non
parametric Bayesian models.

3.4.1. Kernel methods for non parametric function approximation
In statistics in general, and applied mathematics, the approximation of a multi-dimensional real function
given some samples is a well-known problem (known as either regression, or interpolation, or function
approximation, ...). Regressing a function from data is a key ingredient of our research, or to the least, a
basic component of most of our algorithms. In the context of sequential learning, we have to regress a function
while data samples are being obtained one at a time, while keeping the constraint to be able to predict points
at any step along the acquisition process. In sequential decision problems, we typically have to learn a value
function, or a policy.

Many methods have been proposed for this purpose. We are looking for suitable ones to cope with the problems
we wish to solve. In reinforcement learning, the value function may have areas where the gradient is large;
these are areas where the approximation is difficult, while these are also the areas where the accuracy of the
approximation should be maximal to obtain a good policy (and where, otherwise, a bad choice of action may
imply catastrophic consequences).

We particularly favor non parametric methods since they make quite a few assumptions about the function
to learn. In particular, we have strong interests in l1-regularization, and the (kernelized-)LARS algorithm. l1-
regularization yields sparse solutions, and the LARS approach produces the whole regularization path very
efficiently, which helps solving the regularization parameter tuning problem.

3.4.2. Non–parametric Bayesian models
Numerous problems in signal processing may be solved efficiently by way of a Bayesian approach. The
use of Monte-Carlo methods allows us to handle non–linear, as well as non–Gaussian, problems. In their
standard form, they require the formulation of probability densities in a parametric form. For instance, it
is a common usage to use Gaussian likelihood, because it is handy. However, in some applications such as
Bayesian filtering, or blind deconvolution, the choice of a parametric form of the density of the noise is
often arbitrary. If this choice is wrong, it may also have dramatic consequences on the estimation quality.
To overcome this shortcoming, one possible approach is to consider that this density must also be estimated
from data. A general Bayesian approach then consists in defining a probabilistic space associated with the
possible outcomes of the object to be estimated. Applied to density estimation, it means that we need to define
a probability measure on the probability density of the noise : such a measure is called a random measure. The
classical Bayesian inference procedures can then been used. This approach being by nature non parametric,
the associated frame is called Non Parametric Bayesian.

In particular, mixtures of Dirichlet processes [69] provide a very powerful formalism. Dirichlet Processes are
a possible random measure and Mixtures of Dirichlet Processes are an extension of well-known finite mixture
models. Given a mixture density f(x|θ), and G(dθ) =

∑∞
k=1 ωkδUk

(dθ), a Dirichlet process, we define a
mixture of Dirichlet processes as:
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F (x) =
∫

Θ

f(x|θ)G(dθ) =
∞∑

k=1

ωkf(x|Uk) (4)

where F (x) is the density to be estimated. The class of densities that may be written as a mixture of Dirichlet
processes is very wide, so that they really fit a very large number of applications.

Given a set of observations, the estimation of the parameters of a mixture of Dirichlet processes is performed
by way of a Monte Carlo Markov Chain (MCMC) algorithm. Dirichlet Process Mixture are also widely used in
clustering problems. Once the parameters of a mixture are estimated, they can be interpreted as the parameters
of a specific cluster defining a class as well. Dirichlet processes are well known within the machine learning
community and its potential in statistical signal processing still need to be developped.

3.4.3. Random Finite Sets for multisensor multitarget tracking
In the general multi-sensor multi-target Bayesian framework, an unknown (and possibly varying) number of
targets whose states x1, ...xn are observed by several sensors which produce a collection of measurements
z1, ..., zm at every time step k. Well-known models to this problem are track-based models, such as the joint
probability data association (JPDA), or joint multi-target probabilities, such as the joint multi-target probability
density. Common difficulties in multi-target tracking arise from the fact that the system state and the collection
of measures from sensors are unordered and their size evolve randomly through time. Vector-based algorithms
must therefore account for state coordinates exchanges and missing data within an unknown time interval.
Although this approach is very popular and has resulted in many algorithms in the past, it may not the optimal
way to tackle the problem, since the sate and the data are in fact sets and not vectors.

The random finite set theory provides a powerful framework to deal with these issues. Mahler’s work on
finite sets statistics (FISST) provides a mathematical framework to build multi-object densities and derive the
Bayesian rules for state prediction and state estimation. Randomness on object number and their states are
encapsulated into random finite sets (RFS), namely multi-target(state) sets X = {x1, ..., xn} and multi-sensor
(measurement) set Zk = {z1, ..., zm}. The objective is then to propagate the multitarget probability density
fk|k(X|Z(k)) by using the Bayesian set equations at every time step k:

fk+1|k(X|Z(k)) =
∫

fk+1|k(X|W )fk|k(W |Z(k))δW

fk+1|k+1(X|Z(k+1)) =
fk+1(Zk+1|X)fk+1|k(X|Z(k))∫

fk+1(Zk+1|W )fk+1|k(W |Z(k))δW

(5)

where:

• X = {x1, ..., xn} is a multi-target state, i.e. a finite set of elements xi defined on the single-target
space X; 2

• Zk+1 = {z1, ..., zm} is the current multi-sensor observation, i.e. a collection of measures zi pro-
duced at time k + 1 by all the sensors;

• Z(k) =
⋃

t6k Zt is the collection of observations up to time k;

• fk|k(W |Z(k)) is the current multi-target posterior density in state W ;

• fk+1|k(X|W ) is the current multi-target Markov transition density, from state W to state X;

• fk+1(Z|X) is the current multi-sensor/multi-target likelihood function.

2The state xi of a target is usually composed of its position, its velocity, etc.
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Although equations (5) may seem similar to the classical single-sensor/single-target Bayesian equations, they
are generally intractable because of the presence of the set integrals. For, a RFS Ξ is characterized by the
family of its Janossy densities jΞ,1(x1), jΞ,2(x1, x2)... and not just by one density as it is the case with vectors.
Mahler then introduced the PHD, defined on single-target state space. The PHD is the quantity whose integral
on any region S is the expected number of targets inside S. Mahler proved that the PHD is the first-moment
density of the multi-target probability density. Although defined on single-state space X, the PHD encapsulates
information on both target number and states. The Probability Hypothesis Density is a well-known method for
single-sensor multi-target tracking problems in a Bayesian framework, but the extension to the multi-sensor
case seems to remain a challenge.

4. Application Domains

4.1. Outline
SEQUEL aims at solving problems of prediction, as well as problems of optimal and adaptive control. As such,
the application domains are very numerous.

The application domains have been organized as follows:

• adaptive control,

• signal analysis and processing,

• functional prediction,

• neuroscience.

4.2. Adaptive control
Adaptive control is an important application of the research being done in SEQUEL. Reinforcement learning
precisely aims at controlling the behavior of systems and may be used in situations with more or less
information available. Of course, the more information, the better, in which case methods of (approximate)
dynamic programming may be used [74]. But, reinforcement learning may also handle situations where the
dynamics of the system is unknown, situations where the system is partially observable, and non stationary
situations. Indeed, in these cases, the behavior is learned by interacting with the environment and thus naturally
adapts to the changes of the environment. Furthermore, the adaptive system may also take advantage of expert
knowledge when available.

Clearly, the spectrum of potential applications is very wide: as far as an agent (a human, a robot, a virtual
agent) has to take a decision, in particular in cases where he lacks some information to take the decision, this
enters the scope of our activities. To exemplify the potential applications, let us cite:

• game softwares: in the 1990’s, RL has been the basis of a very successful Backgammon program,
TD-Gammon [80] that learned to play at an expert level by basically playing a very large amount of
games against itself;

Today, various games are studied with RL techniques.

• many optimization problems that are closely related to operation research, but taking into account
the uncertainty, and the stochasticity of the environment: see the job-shop scheduling, or the cellular
phone frequency allocation problems, resource allocation in general [74]

• we can also foresee that some progress may be made by using RL to design adaptive conversational
agents, or system-level as well as application-level operating systems that adapt to their users habits.
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More generally, these ideas fall into what adaptive control may bring to human beings, in making
their life simpler, by being embedded in an environment that is made to help them, an idea phrased
as “ambiant intelligence”.

• The sensor management problem consists in determining the best way to task several sensors when
each sensor has many modes and search patterns. In the detection/tracking applications, the tasks
assigned to a sensor management system are for instance:

– detect targets,

– track the targets in the case of a moving target and/or a smart target (a smart target can
change its behavior when it detects that it is under analysis),

– combine all the detections in order to track each moving target,

– dynamically allocate the sensors in order to achieve the previous three tasks in an optimal
way. The allocation of sensors, and their modes, thus defines the action space of the
underlying Markov decision problem.

In the more general situation, some sensors may be localized at the same place while others are
dispatched over a given volume. Tasking a sensor may include, at each moment, such choices as
where to point and/or what mode to use. Tasking a group of sensors includes the tasking of each
individual sensor but also the choice of collaborating sensors subgroups. Of course, the sensor
management problem is related to an objective. In general, sensors must balance complex trade-
offs between achieving mission goals such as detecting new targets, tracking existing targets, and
identifying existing targets. The word “target” is used here in its most general meaning, and the
potential applications are not restricted to military applications. Whatever the underlying application,
the sensor management problem consists in choosing at each time an action within the set of available
actions.

• sequential decision processes are also very well-known in economy. They may be used as a decision
aid tool, to help in the design of social helps, or the implementation of plants (see [78], [77] for such
applications).

4.3. Signal analysis and processing
Applications of sequential learning in the field of signal processing are also very numerous. A signal is
naturally sequential as it flows. It usually comes from the recording of the output of sensors but the recording
of any sequence of numbers may be considered as a signal like the stock-exchange rates evolution with respect
to time and/or place, the number of consumers at a mall entrance or the number of connections to a web site.
Signal processing has several objectives: predict , estimate, remove noise, characterize or classify. The signal is
often considered as sequential: we want to predict, estimate or classify a value (or a feature) at time t knowing
the past values of the parameter of interest or past values of data related to this parameter.

Signals may be processed in several ways. One of the best way is the time-frequency analysis in which the
frequencies of each signal are analyzed with respect to time. This concept has been generalized to the time-
scale analysis obtained by a wavelet transform. Both analysis are based on the projection of the original signal
onto a well-chosen function basis. Signal processing is also closely related to the probability field as the
uncertainty inherent to many signals leads to consider them as stochastic processes: the Bayesian framework
is actually one of the main frameworks within which signals are processed for many purposes. However, there
exists alternatives like belief functions. Belief functions were introduced by Demspter few decades ago and
have been successfully used in the few past years in fields where probability had, during many years, no
alternatives like in classification. Belief functions can be viewed as a generalization of probabilities which can
capture both imprecision and uncertainty. Belief functions are also closely related to data fusion where once
more they can be considered as a serious alternative to probabilities.
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4.4. Functional prediction
One of the current trends in machine learning aims at dealing with data that are functions, rather than points or
vectors. Generally speaking, functions represent a behavior (of a person, of an apparatus, or of an algorithm,
or a response of a system, ...).

One application of functional prediction which is particularly emphasized these days, is the understanding of
client behavior, either in material shops, or in virtual shops on the web. This understanding may then be used
for different ends, such as the management of stocks according to sales, the proposition of products according
to those already bought, the “instantaneous” management of some resource in the shop (advisors, cashiers,
instant promotions, personalized advertisement, ...).

4.5. Neuroscience
Machine learning methods may be used for at least two means in neurosciences:

1. as in any other (experimental) scientific domain, the machine learning methods relying heavily on
statistics, they may be used to analyze experimental data,

2. dealing with induction learning, that is the ability to generalize from facts which is an ability
that is considered to be one of the basic components of “intelligence”, machine learning may be
considered as a model of learning in living beings. In particular, the temporal difference methods
for reinforcement learning has strong ties with various concepts of psychology (Thorndike’s law of
effect, and the Rescorla-Wagner law to name the two most well-known).

5. Software

5.1. Software
5.1.1. Crazy Stone

Participant: Rémi Coulom.

Crazy Stone, is a top-level Go-playing program that has been developed by Rémi Coulom since 2005. Crazy
Stone won several major international Go tournaments in the past. In 2010, a license of Crazy Stone was sold
to a Japanese company, Unbalance Corporation. Crazy Stone should be available for sale in Japan in 2011.

6. New Results

6.1. Introduction
New results are organized in the following sections:

1. decision under uncertainty,

2. foundations of machine learning,

3. supervised learning,

4. unsupervised learning (clustering),

5. signal processing (sensor networks).

6.2. Decision under uncertainty
Participants: Sébastien Bubeck, Alexandra Carpentier, Pierre-Arnaud Coquelin, Rémi Coulom, Victor
Gabillon, Mohammad Ghavamzadeh, Sertan Girgin, Jean-François Hren, Alessandro Lazaric, Manuel Loth,
Odalric-Ambrym Maillard, Rémi Munos, Olivier Nicol, Philippe Preux.
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6.2.1. Reinforcement learning and approximate dynamic programming
6.2.1.1. Strengthening the Links between Approximate Dynamic Programming and Statistical Learning Theory

The main objective here is to use tools from statistical learning theory to derive finite-sample performance
bounds for approximate dynamic programming (ADP) algorithms. The goal is to derive bounds on the
performance of the policies induced by these algorithms in terms of the number of simulation data and the
capacity and approximation power of the considered function and policy spaces. I believe that the results of this
study allow us to have a better understanding of the functionality of these algorithms and help us to design them
more efficiently. We derived the first performance bounds for linear function spaces for two widely-used ADP
algorithms: least-squares temporaldifference learning [31], [50], [62] and Bellman residual minimization [34].
We also presented the first complete analysis of classification-based policy iteration algorithms, a relatively
new and not well-studied class of ADP methods [30], [49], [61]. These algorithms work without explicit value
function representation, and define the evaluation of the policy at each iteration and the generation of the next
policy together as a classification problem. We have also studied algorithmic methods that can improve sample
efficiency in this class of algorithms [54].

6.2.1.1.1. Error Propagation for Approximate Policy and Value Iteration

In this work [22] we address the question of how the approximation error/Bellman residual at each iteration
of Approximate Policy / Value Iteration algorithms influence the quality of the resulted policy. We quantify
the performance loss as Lp norm of the approximation error / Bellman residual at each iteration. Moreover,
we show that the performance loss depends on the expectation of the squared Radon-Nikodym derivative of a
certain distribution rather than its supremum as opposed to the previous results. Also our results indicate that
the contribution of the Bellman residual / approximation error to the performance loss is more prominent in
latter iterations of API/AVI, and the effect of an error term in early iterations decays exponentially fast.

6.2.1.2. Bayesian Multi-Task Reinforcement Learning:

In this work [29], [48], we consider the multi-task RL (MTRL) scenario in which the learner is provided
with a number of MDPs with common state and action spaces. For any given policy, only a small number
of samples can be generated in each MDP, which may not be enough to accurately evaluate the policy. In
such a MTRL problem, it is necessary to identify classes of tasks with similar structure and to learn them
jointly. We considered a particular class of MTRL problems in which the tasks share structure in their value
functions. To allow the value functions to share a common structure, it is assumed that they are all sampled
from a common prior.We adopted the Gaussian process temporal-difference value function model for each
task, modeled the distribution over the value functions using a hierarchical Bayesian model, and developed
solutions to the following problems: (i) joint learning of the value functions (multi-task learning), and (ii)
efficient transfer of the information acquired in (i) to facilitate learning the value function of a newly observed
task (transfer learning).

6.2.1.3. RL in High-dimensional Spaces:

A primary goal here is to devise RL algorithms whose sample and computational complexities do not grow
rapidly with the dimension of the state space. We have particularly looked into recent directions popularized
in compressive sensing concerning the preservation of properties, such as norm or inner-product, of high
dimensional objects when projected on possibly much lower dimensional random subspaces. We have derived
and analyzed a least-squares policy iteration algorithm with random projections [24].

6.2.1.4. Bayesian Policy Gradient and Actor-Critic Algorithms:

Mohammad Ghavamzadeh continued his collaboration with Yaakov Engel (Haifa Israel) on this topic [56],
[55]. In this work, we used Bayesian reasoning to develop more sample-efficient policy gradient and actor-
critic algorithms. We proposed a Bayesian framework that models the policy gradient as a Gaussian process.
This reduces the number of samples needed to obtain accurate gradient estimates, resulting in faster conver-
gence than the conventional Monte-Carlo-based policy gradient and actor-critic algorithms. Moreover, esti-
mates of the natural gradient and a measure of the uncertainty in the gradient estimates, namely, the gradient
covariance, are provided at little extra cost.
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6.2.1.5. Regularization in RL:

Mohammad Ghavamzadeh continued his collaboration with Amir massoud Farahmand and Csaba Szepesvári
at the university of Alberta, Canada, and Shie Mannor at Technion, Israel, on using regularization methods
for automatic model selection for value function approximation in RL. We have devised and analyzed the
first `2-regularized RL algorithms by adding `2-regularization to three well-known ADP algorithms: fitted Q-
iteration, modified Bellman residual minimization, and least-squares temporal-difference learning [52], [53].
The designed algorithms work in both linear and reproducing kernel Hilbert spaces.

6.2.2. Planning and exploration vs. exploitation trade-off
6.2.2.1. Open Loop Optimistic Planning

In this work [18] we consider the problem of planning in a stochastic and discounted environment with a
limited numerical budget. More precisely, we investigate strategies exploring the set of possible sequences
of actions, so that, once all available numerical resources (e.g. CPU time, number of calls to a generative
model) have been used, one returns a recommendation on the best possible immediate action to follow based
on this exploration. The performance of a strategy is assessed in terms of its simple regret, that is the loss in
performance resulting from choosing the recommended action instead of an optimal one. We first provide a
minimax lower bound for this problem, and show that a uniform planning strategy matches this minimax rate
(up to a logarithmic factor). Then we propose a UCB (Upper Confidence Bounds)-based planning algorithm,
called OLOP (Open-Loop Optimistic Planning), which is also minimax optimal, and prove that it enjoys much
faster rates when there is a small proportion of near-optimal sequences of actions. Finally, we compare our
results with the regret bounds one can derive for our setting with bandits algorithms designed for an infinite
number of arms.

6.2.2.2. Best Arm Identification in Multi-Armed Bandits

In this work [17] we consider the problem of finding the best arm in a stochastic multi-armed bandit game.
The regret of a forecaster is here defined by the gap between the mean reward of the optimal arm and the
mean reward of the ultimately chosen arm. We propose a highly exploring UCB policy and a new algorithm
based on successive rejects. We show that these algorithms are essentially optimal since their regret decreases
exponentially at a rate which is, up to a logarithmic factor, the best possible. However, while the UCB policy
needs the tuning of a parameter depending on the unobservable hardness of the task, the successive rejects
policy benefits from being parameter-free, and also independent of the scaling of the rewards.

6.2.3. Applications
6.2.3.1. The Ubiquitous Virtual Seller

The first months of work on this project during the Fall of 2009 led us to the conclusion that an important work
on the recommendation of products was required to help such a virtual seller. So, we focused on this issue,
considering that the problem of recommendation systems is a very general setting that can be tailored to solve
many problems (the problem of ad selection on the web for instance, see below), and that our group has to get
more acquainted with this domain of research.

In 2010, this work has been mostly of technological nature. We designed a recommendation system to
recommend products on a commercial website. This recommendation system comes as a plug-in for the
Firefox web browser than can be enabled at will, and that automatically embed recommended products on
product pages.

See also the contract section (Sec. 7.1.6) of the report for specific details about the contract itself.
6.2.3.2. Ad selection on web portals

We continued the work initiated in 2009 work on the selection of displayed ads on web pages. We have been
able to propose algorithms that significantly improve the resolution of this problem [25], [58]. In particular,
we have shown that optimizing advertisement display, handling finite budgets and finite lifetimes in a dynamic
and non-stationary setting, is feasible within realistic computational time constraints (such as serving several
dozens of ads per second). We have also given some insights in what can be gained by handling these
constraints, depending on the properties of the advertisements to display.
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Furthermore, Orange provided us some web log files related to the ad service. We have begun to mine these
web logs to get more accurate figures about real data, and the real behavior of human beings facing ads on
web pages. However, due to the enormous size of these logs, the work has not gone as far as we wished. We
have actually acquired a computer with a very large main memory (256 Gbytes) to handle such large datasets.
In the coming years, we wish to work on very large datasets (tera-bytes and more), so that this work is our first
step towards working with very large datasets.

6.3. Foundations of machine learning
Participant: Daniil Ryabko.

6.3.1. Sequence prediction in the most general form.
The problem of sequence prediction consists in forecasting, on each step of time n, the probabilities of the next
outcome of the observed sequence of data x1, x2, · · · , xn, · · ·. In the most general formulation of the problem,
we assume that we are given a set C of probability measures (on the space of infinite sequences). We can then
assume that the sequence is generated by an unknown measure µ that belongs to C.

This general formulation is motivated by the diversity of sequential prediction problems: they include analysis
of biological, financial, textual or web-generated data, to mention a few. Naturally, one has to have different
models for these problems, and therefore one is interested in finding a general procedure for constructing a
predictor, given only some weak probabilistic constraints on the data; this is formalized by saying that the
data-generating process comes from a known but arbitrary family C.

6.3.1.1. Finding predictors for arbitrary families of processes: realizable case

The contribution of this work [15] is in characterizing the families C of measures for which asymptotically
accurate predictors exist, and in providing a specific and simple form in which to look for a solution. We
show that if any predictor works, then there exists a Bayesian predictor, whose prior is discrete, and which
works too. We also find several sufficient and necessary conditions for the existence of a predictor, in terms of
topological characterizations of the family C, as well as in terms of local behavior of the measures in C, which
in some cases lead to procedures for constructing such predictors.

It should be emphasized that the framework is completely general: the stochastic processes considered are not
required to be i.i.d., stationary, or to belong to any parametric or countable family.

6.3.1.2. Relation between the realizable and non-realizable cases of the sequence prediction problem

The realizable case of the sequence prediction problem is when the measure µ belongs to an arbitrary but
known class C of process measures. The non-realizable case is when µ is completely arbitrary, but the
prediction performance is measured with respect to a given set C of process measures. We are interested
in the relations between these problems and between their solutions, as well as in characterizing the cases
when a solution exists, and finding these solutions. In this work [40] we show that if the quality of prediction
is measured by total variation distance, then these problems coincide, while if it is measured by expected
average KL divergence, then they are different. For some of the formalizations we also show that when a
solution exists, it can be obtained as a Bayes mixture over a countable subset of C. As an illustration to the
general results obtained, we show that a solution to the non-realizable case of the sequence prediction problem
exists for the set of all finite-memory processes, but does not exist for the set of all stationary processes.

6.3.2. Statistical inference
We have developed a new theoretical framework that has allowed us to solve some classical problems of
mathematical statistics in a radically more general setting. Namely, the setting is that the data is generated by
a stationary ergodic process (or processes, depending on the problem), and no assumptions of independence,
mixing rates, etc., as well as no parametric assumptions, are made. The obtained results include a general
hypothesis testing procedure, a consistent change point estimator, and a consistent classification procedure
[16]. Previous results on these problems concerned only much more restricted settings (e.g. i.i.d. data).
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6.3.2.1. An impossibility result on process discrimination

We have shown [14] that consistent homogeneity testing is impossible in this setting, which means that given
two growing samples of data which are only known to be generated by stationary ergodic processes, one
cannot in general tell whether they are generated by the same or by different process distributions, even in
the weakest asymptotic setting, and even if the processes are binary-valued. This is particularly remarkable in
view of our result that establishes a consistent change point estimator. This also solves an open problem about
discrimination between ergodic processes [72].

6.3.2.2. A criterion for the existence of consistent tests

The most general result that we have obtained [41] on hypothesis testing provides a complete characterization
(necessary and sufficient conditions) for the existence of a consistent test for membership to an arbitrary family
H0 of stationary ergodic discrete-valued processes, against H1 which is the complement of H0 to this class of
processes. The criterion is that H0 has to be closed in the topology of distributional distance, and closed under
taking ergodic decompositions of its elements.

6.4. Supervised learning
Participants: Emmanuel Duflos, Hachem Kadri, Manuel Loth, Odalric-Ambrym Maillard, Rémi Munos,
Philippe Preux.

6.4.1. Regression and classification
6.4.1.1. Scrambled objects for Least Squares Regression

In this work [36] we consider least-squares regression using a randomly generated subspace GP ⊂ F of
finite dimension P , where F is a function space of infinite dimension, e.g. L2([0, 1]d). GP is defined as the
span of P random features that are linear combinations of the basis functions of F weighted by random
Gaussian i.i.d. coefficients. In particular, we consider multi-resolution random combinations at all scales of a
given mother function, such as a hat function or a wavelet. In this latter case, the resulting Gaussian objects
are called scrambled wavelets and we show that they enable to approximate functions in Sobolev spaces
Hs([0, 1]d). As a result, given N data, the least-squares estimate ĝ built from P scrambled wavelets has
excess risk ||f∗ − ĝ||2P = O(||f∗||2Hs([0,1]d)(log P )/P + P (log N)/N) for target functions f∗ ∈ Hs([0, 1]d)
of smoothness order s > d/2. An interesting aspect of the resulting bounds is that they do not depend on
the distribution P from which the data are generated, which is important in a statistical regression setting
considered here. Randomization enables to adapt to any possible distribution. We describe an efficient
numerical implementation using lazy expansions with numerical complexity Õ(2dN3/2 log N + N2), where
d is the dimension of the input space.

6.4.1.2. Iso-regularization descent

Revisiting Osborne’s papers on the resolution of the LASSO problem [73], M. Loth proposed a new algorithm
named the Iso-Regularization descent, to solve this problem [33]. This algorithm is currently the most efficient
to be known; in particular, it is more efficient than the cyclic coordinate descent [70], and computes the
regularization path of the LASSO as efficiently as the LARS. This algorithm is also able to solve other
regularized problems, such as the grouped LASSO, and the elastic net problem. A complete presentation
of this algorithm will appear in Manuel Loth’s PhD dissertation, in the early 2011, and will be submitted to a
journal.

6.4.2. Online Learning
6.4.2.1. Online Learning in Adversarial Lipschitz Environments

We consider [35] the problem of online learning in an adversarial environment when the reward functions
chosen by the adversary are assumed to be Lipschitz. This setting extends previous works on linear and convex
online learning. We provide a class of algorithms with cumulative regret upper bounded by O(

√
dT log(λ))

where d is the dimension of the search space, T the time horizon, and λ the Lipschitz constant. Efficient
numerical implementations using particle methods are discussed. Applications include online supervised
learning problems for both full and partial (bandit) information settings, for a large class of non-linear
regressors/classifiers, such as neural networks.
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6.4.3. Functional regression
The work led by Hachem Kadri on functional regression has made much progress in 2010. In our work,
“functional” regression means that we consider regression problems, and more generally supervised learning
problems, in which observations, and response(s) are functions. The usual approach to this problem is to
consider vectors instead of functions. A kernel approach for this purpose means functions acting on functions,
that is, operators; moreover, to be valid, these operators should respect some properties. Exhibiting such
operators that respect those properties is difficult, but a basic requirement if we want to use such an approach
in any application. Different functional kernels have been exhibited, and different algorithms to solve the
minimization problem have been proposed [28]. The multi-task setting has also been investigated, that is
the setting is which more than one functional response has to be made. An application to speech inversion
has been tackled. To compare our functional approach with the more traditional vector-based approach, we
have recently written describing the resolution of such a speech inversion task, that exhibit state of the art
performance [60].

6.4.4. Applications
6.4.4.1. Computer graphics

As a follow-up to the successful work performed in 2009 related to computer graphics, an experimental work
has been performed to investigate the potential of the ECON algorithm at representing photometric solids [20],
[45] with regards to a neural network approach.

6.4.4.2. Medical data analysis

Jérémie Mary made an informal collaboration with an INSERM lab (ERI-12) of the University of Amiens
about picture analysis of some cells in order to detect the effect in the cellular mobility of the muscles (based
on the vinculine and actine observation). Another work was conducted with the Lab of psychology of the
University of Lille 3 on the analysis of human gesture by Geoffrey Megardon under supervision of J. Mary.

6.4.4.3. Thermal model optimisation

Some software has been developed by Jérémie Mary and Antoine Chamot to optimize thermal models which
can be used with the software Energy Plus. It achieved a drop in error rate of 40% versus full human modelling,
on the data collected by Effigenie (see also Section 7.1.4).

6.5. Unsupervised learning
Participants: Jérémie Mary, Daniil Ryabko.

6.5.1. Clustering time series data
6.5.1.1. Theory

We have applied [39] the approach to statistical analysis of time series, described in section 6.3.2, to the
problem of clustering time series samples. Thus, we have considered the problem of clustering for the case
when each data point is a sample generated by a stationary ergodic process. We proposed a very natural
asymptotic notion of consistency, and showed that simple consistent algorithms exist, under most general non-
parametric assumptions. The notion of consistency is as follows: two samples should be put into the same
cluster if and only if they were generated by the same distribution. With this notion of consistency, clustering
generalizes such classical statistical problems as homogeneity testing and process classification. We showed
that, for the case of a known number of clusters, consistency can be achieved under the only assumption that the
joint distribution of the data is stationary ergodic (no parametric or Markovian assumptions, no assumptions
of independence, neither between nor within the samples). If the number of clusters is unknown, consistency
can be achieved under appropriate assumptions on the mixing rates of the processes. (again, no parametric or
independence assumptions). In both cases we give examples of simple (at most quadratic in each argument)
algorithms which are consistent.
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6.5.1.2. Implementation

An implementation of the “magic distance” of Daniil Ryabko (the empirical estimate of distributional distance)
has been made by Jérémie Mary. The clustering process works well on some artificial ergodic data, and we are
looking for some real ergodic data (ideally non-Markovian and continuous) to test the developed algorithm
on.

6.6. Sensors Networks: Tracking, Localization and Communication
Participants: Emmanuel Delande, Emmanuel Duflos, Philippe Vanheeghe, Nicolas Viandier, Nouha Jaoua.

6.6.1. The sensor management problem
The aim of this work is to manage a set of sensors to track vehicles or groups of people in land applications.
Our work focuses on sensor management in the frame of the random finite sets where the Probability
Hypothesis Density (PHD) is a well-known method for single-sensor multi-target tracking problems in a
Bayesian framework, but the extension to the multi-sensor case seems to remain a challenge. We have proposed
an extension of Mahler’s work to the multi-sensor case by providing an expression of the true PHD multi-
sensor data update equation. Then, based on the configuration of the sensors’ fields of view (FOVs), a joint
partitioning of both the sensors and the state space provides an equivalent yet more practical expression of
the data update equation, allowing a more effective implementation in specific FOV configurations ([47]).
This work is done in collaboration with Thales Communications. Beside this main point we have finalized the
optimization of the detection step of a radar ( [82]).

6.6.2. Sequential learning of sensors localization: application to civil engineering
This work is done in collaboration with Prof Carl Haas of the University of Waterloo (Canada) and is a
continuation of previous research : how can we automatically track the building materials on a construction
site? This is a real problem because a lot of time (hence of money) is lost to find these materials that have
often been moved away. The ability to detect dislocations automatically for tens of thousands of items can
ultimately improve project performance significantly. The proposed solution is to equip each piece with a
RFID tag and each people working on the construction site with a RFID receiver, a GPS for the localization,
and a transmitter. We have obtained a PICS (International Project for Scientific Cooperation) from the CNRS
in 2008 for 3 years to work on this. During the two past years, we have developed a belief functions based
method to track the materials. In 2010 we have focused on dislocation detection performances by tuning the
basic belief masses. ROC curves obtained on experimental data show a real improvement for the low false
alarm rate ([21]).

6.6.3. Accurate Localization using Satellites in Urban Canyons
Today, Global Navigation Satellite Systems (GNSS) have penetrated the transport field through applications
such as monitoring of containers. These applications do not necessarily request a high availability, integrity and
accuracy of the positioning system. For safety applications (as complete guidance of autonomous vehicles),
performances require to be more stringent. For, sensors may deliver very erroneous measurements because
of such hard external conditions which reduce significantly the possibilities to receive direct signals. The
consequences of environmental obstructions are unavailability of the service and reception of reflected signals
that degrades in particular the accuracy of the positioning. Indeed, NLOS (Non Line Of Sight) signals, i.e.
signals received after reflections on the surrounding obstacles, frequently occur in dense environments and
degrade localization accuracy because of the delays observed on the propagation time measurement creating
additional error on pseudorange estimation. In the previous years we have proposed new algorithms to improve
the localization precision. This algorithm are based on two principles : a jump multimodel approach and a joint
state - noise density estimation. We have focused this year on an approach using Dirichlet Process Mixture
to track the noise density in urban canyon while estimating the position of the vehicle. Algorithm have been
validated on real data ([38], [37], [43], [44]).
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6.6.4. Internet of Things
The term "Internet of Things" has come to describe a number of technologies and research disciplines that
enable the Internet to reach out into the real world of physical objects. Technologies like RFID, short-range
wireless communications, real-time localization and sensor networks are now becoming increasingly common,
bringing the Internet of Things into commercial use. In such applications the data sent by a thing to another
may generate an impulse noise in the reception channel of objects in the neighborhood. The noise appearing
in such applications can be considered as α-stable. In this context, we’ve tackled the problem of interference
mitigation in ad hoc networks. In such context, the multiple access interference (MAI) is known to be of an
impulsive nature. Therefore, the conventional Gaussian assumption can not be considered to model this type
of interference. Contrariwise, it can be accurately modeled by stable distributions. Here, this issue is addressed
within an Orthogonal Frequency Division Multiplexing (OFDM) transmission link assuming a symmetric α-
stable model for the signal distortion due to MAI. We have proposed a method for the joint estimation of the
transmitted multicarrier signal and the noise parameters.Based on sequential Monte Carlo (SMC) methods,
the proposed scheme allows the online estimation using a Raoblackwellized particle filter. These results have
been submitted to the ICASSP Conference at the day of the writing of this report.

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
7.1.1. Addressing Business

Participants: Sertan Girgin, Philippe Preux.

A contracted, and funded, collaboration has begun this Fall between SequeL and a company (SME) named
“Addressing Business” located in Roubaix. The aim of this contract is to design and implement a software
prototype. For confidentiality and competitiveness reasons, we will not detail this collaboration further than
mentioning that it is related to recommendation systems, however in a far from academic setting (data are
large and complex, there is a sequential aspect in the data, ...).

7.1.2. Orange Labs
Participants: Sertan Girgin, Jérémie Mary, Philippe Preux, Christophe Salperwyck.

Two contracts are living with Orange Labs.

First, there is an on-going CIFRE contract, funding a PhD on sequential supervised learning (Ch. Salperwyck,
2009-2012).

Second, there is a one-year CRE (externalized research contract) that has been negotiated and signed in the
late 2010. This contract deals with the study of sequential machine learning under constraints, with application
to the ad selection problem.

7.1.3. Inquest
The work of last year of Jeremie Mary about adaptive quizz has been polished and is now used in production.

7.1.4. Effigenie
Participant: Jérémie Mary.

http://www.orange.com
http://ralyx.inria.fr/2009/Raweb/sequel/uid104.html
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Effigenie is a future start up (should be created in January 2011), which plans to sell a solution to optimize
thermal control of a building with respect to their planned utilization and the weather. Some preliminary tests
on real building during winter 2010 allow us to expect around 20% of energetic consumption. The approach
used needs a good thermal modelling of the building. This is a problem as having such a modelling is time
consuming and needs a human expert. So Jeremie Mary conducted a work based on the optimization day after
day of a rough model. Using this kind of approach we were able to optimize models and to reach an error of
prediction 40% lower than a hand-made model. The model is quite hard to optimize because there is more than
one hundred variables and each evaluation needs several seconds. For next year we plan to have again better
optimization making some more local adjustments and to test the new model in winter. Another promising
development is to use RL methods in order to control the building without having to build a model. Such a
solution would be a fast and very low-cost method to have better efficiency over thermal control.

7.1.5. Unbalance Corporation
Participant: Rémi Coulom.

Unbalance Corporation is a Japanese company who bought a license of Crazy Stone (see section 5.1.1) in
2010. Unbalance is specialized in selling games.

7.1.6. Pôle de Compétitivité “Industries du commerce”
Participants: Sertan Girgin, Jérémie Mary, Philippe Preux.

SEQUEL is taking part in a project named “Ubiquitous Virtual Seller” (VVU) of the Pôle de Compétitivité
“Industrie du Commerce” (PICOM). See more details in Section 8.1.1.

8. Other Grants and Activities

8.1. Regional Initiatives
8.1.1. Pôle de Compétitivité “Industries du commerce”

Participants: Sertan Girgin, Jérémie Mary, Philippe Preux.

SEQUEL is taking part in a project named “Ubiquitous Virtual Seller” (VVU) of the Pôle de Compétitivité
“Industrie du Commerce” (PICOM). This project has begun on Sep. 1st, 2009 and will last 2 years. The
VVU project involves three computer science laboratories (Laboratoire d’Informatique Fondamentale de Lille,
INRIA Lille Nord Europe, and Mines de Douai), a marketing school (Skema-Lille), and private companies
(Becquet, Oxylane, France Telecom, Artificial Solutions, Nextstage). In this project, we are funded by the
Région-Nord Pas de Calais, and the FEDER; funding is mostly for a post-doc over a period of 18 months.
The work involves a close collaboration with other computer science teams at the Laboratoire d’Informatique
Fondamentale de Lille, and the Mines de Douai. See sec. 6.2.3.1 for more details about 2010 activities on this
contract.

8.2. National Initiatives
8.2.1. ANR Lampada

Participants: Mohammad Ghavamzadeh, Jérémie Mary, Olivier Nicol, Philippe Preux, Daniil Ryabko.

This was the first year of this ANR project. In participating to this project, our goal is at least two-fold:
getting acquainted with the management of large datasets, both at the fundamental level, and at the technical
level; getting acquainted with working or more complex data than mere real vectors, or real functions, such
as qualitative data, and data such as trees, or graphs. The underlying assumption is also that data comes as a
flow. Noteworthy, our work on ad selection with Orange labs led us to handle very large web log files, which
goes along the same line of work of very large streams of data. The aforementioned contract with Addressing
Business (see Sec. 7.1.1) is also perfectly compatible with this policy.

http://www.unbalance.co.jp/english/
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Olivier Nicol is beginning his PhD in this context. Furthermore, Ph. Preux is co-advising Gabriel Arnold-
Dulac who begins his PhD in the Malire team of the LIP’6, under P. Gallinari and L. Denoyer’s supervision
(both participate to the Lampada project).

8.2.2. DGA/Thales
Participants: Emmanuel Delande, Emmanuel Duflos.

The work on sensor management went on this year, focusing on the extension to the multisensor case of the
PHD filter. This work is realized in the frame of the thesis of Emmanuel Delande (Grant DGA/CNRS) in
collaboration with Thales Communication.

8.2.3. ARC MaBI
Participants: Emmanuel Duflos, Rémi Munos, Daniil Ryabko, Philippe Vanheeghe.

MaBI stands for “Machine Learning for Brain Computer Interfaces”; the scientific coordinator of this ARC
project is Stéphane Canu. Members of SequeL involved: Rémi Munos, Daniil Ryabko, Philippe Vanheeghe,
and Emmanuel Duflos. The ARC MaBI started in 2010 for 2 years.

8.2.4. ANR EXPLO-RA
Participants: Sébastien Bubeck, Alexandra Carpentier, Mohammad Ghavamzadeh, Jean-François Hren,
Alessandro Lazaric, Odalric-Ambrym Maillard, Rémi Munos, Daniil Ryabko.

EXPLO-RA, acronym for EXPLOration - EXPLOitation for efficient Resource Allocation with Applications
to optimization, control, learning, and games, is an ongoing, 3 years ANR-funded project which started in
2009. This is a collaboration between 2 INRIA project teams (SequeL and TAO), HEC Paris (GREGHEC),
Les Ponts (CERTIS), Paris 5 (CRIP5), and the Université Paris Dauphine (LAMSADE). Rémi Munos is the
coordinator.

8.2.5. ANR CO-ADAPT
Brain computer co-adaptation for better interfaces project, which started in the end of 2009 (for 4 years).
This is in collaboration with the INRIA Odyssee project (Maureen Clerc), the INSERM U821 team (Olivier
Bertrand), the Laboratory of Neurobiology of Cognition (CNRS) (Boris Burle) and the laboratory of Analysis,
topology and probabilities (CNRS and University of Provence) (Bruno Torresani). Rémi Munos is the SequeL
coordinator.

8.2.6. LITIS : Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes
Participants: Emmanuel Duflos, Hachem Kadri.

Emmanuel Duflos and Hachem Kadri are collaborating with Pr. Stéphane Canu on Functional RKHS.

8.3. European Initiatives
Participants: Mohammad Ghavamzadeh, Alessandro Lazaric, Rémi Munos, Philippe Preux, Daniil Ryabko.

8.3.1. PASCAL2 Network of excellence
In 2009, SEQUEL has joined the Pascal-2 European network of excellence dedicated to machine learning.
SEQUEL has created a new node of this NoE in collaboration with the EPI Mostrare, and Stéphane Canu’s
group in Rouen. R. Munos is the head of this node.

8.3.2. PASCAL2 Pump Priming Programme
Participants: Mohammad Ghavamzadeh, Rémi Munos.

Sparse Reinforcement Learning in High Dimensions, with Shie Mannor (Technion, Israel), Mohammad
Ghavamzadeh and Rémi Munos. This is a 2 year project that started in November 2009.
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8.4. International Initiatives
8.4.1. INRIA Associate Team with University of Alberta, Canada

The title of the joint team is Decision-making under Uncertainty with Applications to Reinforcement Learning,
Control, and Games. The coordinators from INRIA side are Mohammad Ghavamzadeh and Rémi Munos. The
coordinator from University of Alberta side is Csaba Szepesvári. Other collaborators in University of Alberta
are Prof. Richard Sutton and Amir-massoud Farahmand.

8.4.2. Programme Interdisciplinaire de Coopération Scientifique
A “Programme Interdisciplinaire de Coopération Scientifique” (PICS) is running over the period 2008–2010
which concerns Ph. Vanheeghe, and E. Duflos, in relation with the Centre for Pavement and Transportation
Technology (CPATT), headed by prof. Carl Haas at the University of Waterloo, Canada.

The optimal use of the data provided by the sensors must necessarily lie within a dynamic process suitable
to control the acquisition of information. This project proposes to define principles and methods for the
management of multisensor systems in the frame of civil engineering. This work, requires the development
of specific methodological tools. These tools will be tested on a real civil engineering application, the
characterization of new materials for highway pavement. Multisensor management being integrated in this
Canadian, very ambitious, civil engineering project. The Canadian team will carry out the instrumentation
and the validation, whereas the definition of the tools and method will be carried out in tight partnership and
controlled by the French team.

8.4.3. Haifa, Israel
Mohammad Ghavamzadeh collaborates with Yaakov Engel on the topic of regularized reinforcement learning
over the last four years. This year, we have two journal papers on this topic that will be submitted soon [52],
[53].

Mohammad Ghavamzadeh has been also working with Prof. Shie Mannor, on the topic of Bayesian rein-
forcement learning for the last five years, on the topic of regularized reinforcement learning for the last three
years, and on the topic of reinforcement learning in high dimensions in the last year. On the first topic, we
have a journal paper (survey) in preparation [57] this year. On the second topic, we have two journal papers
in preparation [52], [53] this year. Finally, on the third topic, we are Co-PI’s of a PASCAL2 pump-priming
program.

8.4.4. University of Waterloo, Waterloo, Ontario, Canada
Prof. Pascal Poupart and Mohammad Ghavamzadeh have been collaborating on the topic of Bayesian
reinforcement learning in the last four years. This year, we have a journal paper in preparation [57] on this
topic.

Emmanuel Duflos and Philippe Vanheeghe have visited twice Prof. Carl Hass at the University of Waterloo
(Canada) from September 5th to September 10th and from December 4th to December 10th.

8.4.5. National Taiwan Normal University
Rémi Coulom has been working with Shih-Chieh Huang, a PhD student from the Department of Computer
Science and Information Engineering, National Taiwan Normal University. Shih-Chieh Huang’s main advisor
is Professor Shun-Shii Lin, and he is co-advised by Rémi Coulom. In 2010 they worked on simulation
balancing [26] and time management [27]. Shih-Chieh Huang also won the gold medal of the Computer
Olympiad (see award section).

8.4.6. Warsaw University
Rémi Coulom has been working with Łukasz Lew is a PhD student at the Warsaw University, in Poland.
Łukasz’s main advisor is Professor Krzysztof Diks. Łukasz visited Sequel for one month in April. During his
visit, he wrote a paper with Rémi Coulom about Monte-Carlo search of combinatorial games [32].

http://www.ualberta.ca/
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9. Dissemination

9.1. Animation of the scientific community
• Awards:

– Sébastien Bubeck’s Ph.D. thesis, entitled “Bandits Games and Clustering Foundations”
[11] has been awarded a Gilles Kahn 2010 prize, ranking second. This is a prize awarded by
Specif to the best Ph.D. theses in Computer Science, in France (patronized by the Academy
of Science). The thesis supervisor was Rémi Munos.

– Gold medal at the Computer Olympiad: The Go-program developed by Shih-Chieh Huang
under the supervision of Rémi Coulom, Erica, won the gold medal in the 2010 Computer
Olympiad in Kanazawa, Japan. The Computer Olympiad is regarded as the most important
international computer-Go tournament. All the major commercial and academic programs
participated.

– 2008 ICGA Journal Award. This award is given every year by the ICGA (International
Computer Games Association) for the best paper of a first-time author, published in the
ICGA Journal. The award for year 2008 was given in 2010 to a paper by Rémi Coulom
[68] (that was actually published in the December 2007 issue).

– Victor Gabillon, Jeremie Mary and Philippe Preux have received a best paper award at the
conference “Extraction et Gestion des Connaissances” for their work [23] on ad selection
problem on Internet portals.

• Alessandro Lazaric gives a tutorial at AAMAS 2010: Reinforcement Learning and Beyond

• participation to the program committees of international conferences:

– R. Coulom: CG’2010: International Conference on Computers and Games, Kanazawa,
Japan

– R. Coulom: TAAI’2010: Technologies and Applications of Artificial Intelligence, Taipei,
Taiwan

– E. Duflos and Ph. Vanheeghe: Fusion’2010 workshop on the Theory of Belief Function
(Brest, April 1-2, 2010),

– E. Duflos: workshop on the Theory of Belief Function (Brest, April 1-2, 2010),

– M. Ghavamzadeh: European Conference on Machine Learning (ECML 2010), Interna-
tional Conference on Machine Learning (ICML 2010)

– R. Munos: Area chair for NIPS 2010

– Ph. Preux: ICML 2010, CAP 2010, EGC 2010.

– D. Ryabko: UAI 2010.

• GDR ISIS : following a request of Jean-Yves Tourneret (in charge of theme A in the GDR ISIS),
Emmanuel Duflos organized a one-day workshop in June 2010 : Advances in Signal Processing
and Data Fusion for Localisation. 68 researchers attended to this workshop. This workshop was
co-organized with the GT2 of the GDR Robotics (with Roland Chapuis : lASMEA).

• Invited talks:

– R. Munos is Invited speaker in (in addition to the conferences) Journées MAS 2010
(Modélisation Aléatoire et Statistique), SMILE 2010 (Statistical Machine Learning in
Paris), NIPS 2010 Workshop (Learning and planning from batch time series data).

– O. Maillard is Invited speaker in GDR ISIS "Apprentissage et parcimonie".
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– M. Ghavamzadeh gives an invited talk at University of Alberta - AI Seminar, Host : Prof.
Csaba Szepesvári (2010).

– D. Ryabko gives an invited talk at GdR ISIS workshop “Journée spéciale Stéganographie
et Stéganalyse”.

– Jeremie Mary has given an invited talk at Bilab (ENST Paris) and SMILE 2010 (Statistical
Machine Learning in Paris).

• international journal and conference reviewing activities (in addition to the conferences in which we
belong to the PC):

– E. Duflos: IEEE Transaction on Signal Processing, International Journal of Approximate
Reasonning, Information Fusion.

– M. Ghavamzadeh: Annual Conference on Neural Information Processing Systems (NIPS
2010), Neurocomputing, Machine Learning Journal (MLJ), Journal of Machine Learning
Research (JMLR), Journal of Artificial Intelligence Research (JAIR),

– R. Munos: Machine Learning, IEEE Transactions on Automatic Control, Revue
d’Intelligence Artificielle, ALT 2010, ICML 2010.

– Ph. Preux: NIPS 2010, STACS 2010, ECML 2010

– D. Ryabko: IEEE Trans. Inf. Th., NIPS 2010.

• Evaluation activities, expertise

– E. Duflos and Ph. Vanheeghe have reviewed proposals for the ANR programs

– Ph. Preux has reviewed project proposals for the ECOS-Sud program (France), ANRT
(France), and the IWT (Belgium)

– Ph. Preux is expert for the AERES. He expertized masters in computer science, as well as
a laboratory.

– Ph. Preux is member of the “Gilles Kahn”/Specif jury which elects an outstanding PhD in
computer science of the year.

– Ph. Preux served as president of the committee of an INRIA-Université de Lille 3 chair in
computer science/statistical learning (Spring 2010), the committee to recruit an assistant
professor in statistical learning (Fall 2010), and member of the committee to recruit 4
assistant professors in computer science at the Université d’Artois (Spring 2010).

– R. Munos has been a member of the following committees:

* Membre jury de recrutement DR2 INRIA, 2010

* Membre jury de recrutement CR2 INRIA Lille, 2010

* Scientific organizer of the INRIA evaluation seminar, theme Optimisation, ap-
prentissage et méthodes statistiques, March 2010.

* Membre du Comité d’animation du domaine thématique INRIA, Mathématiques
appliquées, calcul et simulation.

* Délégué (titre Commission d’Evaluation) pour la création des projets INRIA:
CLASSIC, SIERRA

* Recommendation letter for promotion of a Senior Lecturer position (kept anony-
mous) in Technion, Israel

* Referee in PASCAL2 Programme Pump Priming programme

• participation to PhD and HDR jurys:
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– R. Munos was a Rapporteur for PhD thesis of: Jia Yuan Yu (Mc Gill University), Olga
Kozlova (Université Paris 6), Christophe Thiery (INRIA Nancy), Sarah Philippi (Telecom
ParisTech).

– R. Munos was a Member of HDR Committee: Jean-Yves Audibert (Ecole Nationale des
Ponts et Chaussées).

– Emmanuel Duflos was rapporteur for the for PhD thesis of Gregory Mallet (INSA Rouen)
and Adrien Chen (ENAC)

9.2. Teaching
We list the classes that are related to the research activities in SEQUEL that were going on in 2010.

• Rémi Munos teaches a class in reinforcement learning in the M2 “Mathematics-Vision-Learning”
(MVA) at the ENS-Cachan.

• Philippe Preux teaches:

– in the Master 2 MIASHS (Maths and computer science for humanities): 2 data mining
classes (data mining, and web mining)

– in a Master 2 of psychology (neuro-cognitive processes), and in a Master 1 of psychology
(analysis of behavior): machine learning, reinforcement learning, models of adaptive
behavior, models of learning in animal (incl. human beings).

• Jérémie Mary is head of the speciality “Informatique et Documents” of the Master MIASHS.

• Jérémie Mary has followed 4 M2 students and 2 M1 in their internship in external societies.

Otherwise, each of the 4 professors and assistant professors of the SEQUEL team teaches 192 hours per year.
Taught classes include machine learning, data mining, and signal processing classes.
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