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  [bookmark: uid3] Section: 
      Overall Objectives
Main topics
TANC is located in the Laboratoire d'Informatique de
l'École polytechnique (LIX). The project was created on 2003-03-10.




The aim of the TANC project is to promote the study, implementation
and use of robust and verifiable asymmetric cryptosystems based on
algorithmic number theory.

It is clear from this statement that we combine high-level mathematics
and efficient programming. Our main area of competence and interest is
that of algebraic curves over finite fields, and most notably the
computational aspects of these objects, which appear as a substitute
for modular arithmetic in new analogues of old-fashioned cryptography.
One reason for this change is that we can achieve an equivalent security
level with a much smaller key size.
Our research contributes to the effort to find a diverse range of
secure substitutes for the famous RSA (Rivest–Shamir–Adleman) cryptosystem,
in case some attack appears and destroys the products that use it.

Whenever possible, we produce certificates (proofs) of validity for
the objects and systems we build. For instance, an elliptic curve has
many invariants, and their values need to be proved, since they
may be difficult to (re-)compute.

Our research area includes:


	[bookmark: uid4] Fundamental number theoretic algorithms:
We are interested in
primality proving algorithms based on elliptic curves, integer
factorization, and the computation of discrete logarithms over finite
fields. These problems lie at the heart of the security of arithmetic
based cryptosystems.



	[bookmark: uid5] Algebraic curves over finite fields:
We tackle algorithmic problems involving efficiently
computing group laws on Jacobians of curves, evaluating the
cardinality of these objects, and studying the security of the
discrete logarithm problem in such groups.
These topics are crucial to the applicability of these objects
in real crypto products.



	[bookmark: uid6] Complex multiplication:
The theory of Complex Multiplication is
a meeting point of algebra, complex analysis and algebraic
geometry. Its applications range from primality proving to the
efficient construction of elliptic and hyperelliptic curve-based cryptosystems.



	[bookmark: uid7] List Decoding of Algebraic codes Using List
Decoding, one can fight adversarial noise, at the same level as
Shannon limit for stochatsic noise. Daniel Augot defended his
habilitation on this topic.



	[bookmark: uid8] Decoding algorithms for Algebraic Geometric codes:
The algorithmic knowledge of TANC will be used to
accelerate decoding algorithms, be they the classical one (up to
half to the minimum distance), or new ones which decode many more
errors.





[bookmark: uid9] Section: 
      Overall Objectives
Exploratory topics

As described in the name of our project, we aim to provide robust
primitives for asymmetric cryptography.
In recent years, we have made
several attempts at applying our knowledge to real life protocols.
We also aim
to promote the use of curve-based cryptography in new environments,
such as ad hoc networks. We will also try to promote
the use of AG codes, which are the coding-theoretic analogue
of elliptic curves in cryptology.


[bookmark: uid10] Section: 
      Overall Objectives
Highlights

FMorain has improved its own primality proving record on ordinary
numbers (more than 25000 decimal digits), a record announced during
ECC2010.

Jean-François Biasse defended his PhD thesis, “Algorithmes
sous-exponentiels pour les corps de nombres” on 20/09/2010. He is
currently working with the MAGMA group in Sydney.

Luca De Feo successfully defended his PhD thesis, “Fast algorithms
for towers of finite fields and isogenies”, on 13/12/2010. He is now
working as a postdoctoral researcher at Rennes.
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  [bookmark: uid12] Section: 
      Scientific Foundations
General overview

Once considered beautiful but useless,
arithmetic has proven
a spectacular success in the creation of a new paradigm in cryptography.
Classical cryptography was mainly concerned with
symmetric techniques: two parties wishing to communicate
secretly had to share a common secret (the “key”) beforehand,
and this same secret key
was used both for encrypting the message and for decrypting it.
This
mode of communication is efficient enough when traffic is low,
or when the parties can meet prior to communication.

However, modern networks are simply too large for the classical paradigm
to remain efficient any longer. Hence the need for cryptography without prior
contact. In theory, this is easy: find two algorithms E and D that are
reciprocal (that is, D(E(m)) = m) and such that the knowledge of
E does not help in computing D. Then E is dubbed a public key,
available to anyone, and D is the secret key, reserved to a single
user. When Alice wants to send an email message m to Bob,
she uses his public
key E to send him the encrypted message E(m),
which he can decrypt with the secret key D:
we have thus achieved secret communication without a common secret key.
(Of course, everything has to be presented in the modern language of
complexity theory: E and D must be computable in polynomial
time, while finding D from E alone without some secret knowledge
should be possible only in, say, exponential time.)
This simplified and somewhat idealized example
is at the heart of asymmetric cryptology.
Modern asymmetric cryptography provides not only secure communication channels
but also solutions to the signature problem,
as well as some solutions for identifying all parties in protocols,
thus enabling products to be usable on the Internet (such as ssh and ssl/tls).

Now, where do the hard problems behind encryption and decryption come from?
Mostly from arithmetic, where we
find problems such as the integer factorization
and the discrete logarithm problem.
It appears to be important to vary the groups
which act as settings for concrete instances of the abstract hard problems,
since this provides some bio-diversity which is key to
resisting crypto-analytic attacks.
The groups proposed include
finite fields, modular integers, algebraic curves, and class groups.
All of these now form cryptographic primitives that need to be
assembled in protocols, and finally in commercial products.

Our activity is concerned with the beginning of this process: we
are interested in difficult problems arising in computational
number theory, and the efficient construction of these primitives.
TANC concentrates on modular arithmetic, finite fields
and algebraic curves.

We have a strong, well-known reputation for breaking records,
whatever the subject is: constructing systems or breaking them.
We have world-record computations in areas including
primality proving, class polynomials, modular equations,
computing cardinalities of algebraic curves, and discrete logarithms.
This means writing programs and putting in all the work needed to
support calculations that run for weeks or months.
An important part of our task is now to
transform record-breaking programs into programs to solve everyday
cryptographic problems for current parameter sizes.

Certificates are another of our major concerns.
By certificates,
we mean efficiently verifiable proofs of the properties
of the objects we build.
While these certificates might be difficult to build,
they are easy to check (by customers, for example).
The traditional example is certificates for primality of prime numbers,
introduced by Pratt in 1974.
We know how to construct certificates for the important properties
of elliptic curves, with
the aim of establishing what we call an identity card for a curve
(including its cardinality, together with the proof of its
factorization, its group structure with proven generators,
its discriminant with proven factorization,
and the class number of the associated order).
The theory is ready for this, and the algorithms are not out of reach.
This approach
must be extended to other curves; the theory is
almost ready in several cases, but algorithms are still to be found. This is
one of the main problems facing TANC.

The mathematics used in cryptology is becoming more and more complex
(for example, consider recent algorithms based on p-adic cohomology).
The new, more mathematically complex algorithms
will remain mere theoretical curiosities if we do not implement them.
For implementations,
we need more and more evolved algorithmic primitives;
currently, these may be available
in very rare mathematical systems such as Magma.
Once our algorithms work in Magma, it is
customary to rewrite them in C or C++ to gain speed. Along the same
lines, some of our C programs developed for our research (an
old version of ECPP, some parts of discrete log computations,
cardinality of curves) are now included in the Magma system,
as a result of our collaboration with the Sydney group.


[bookmark: uid13] Section: 
      Scientific Foundations
Algebraic curves over finite
fields

One of the most common cryptographic protocols is
Diffie–Hellman Key Exchange, which enables
Alice and Bob to exchange secret information over an insecure
channel. Given a publicly known cyclic group G of generator g, Alice
sends ga for a random a to Bob, and Bob responds with a random
gb. Both Alice and Bob can now compute gab,
and this is henceforth their common secret.
Of course, this a schematic presentation; real-life
protocols based on this need more security properties.
Being unable to
recover a from ga (the Discrete Log Problem, or DLP) is
fundamental to the security of the scheme, and groups for which the
DLP is hard must be favored.
Therefore, the choice of group G is crucial;
TANC concentrates on groups derived from algebraic curves.
These groups offer a very interesting alternative to finite fields:
the DLP in a finite field can be broken by subexponential algorithms,
while exponential time is required for an elliptic curve over the same field.
Smaller keys can therefore be used in curve-based cryptosystems;
this is very interesting
from the point of view of limited-power devices.

In order to build a cryptosystem based on an algebraic curve over a
finite field, one needs to efficiently compute the group law (and hence
have a nice representation for elements of the Jacobian of the curve).
Next, one must compute the cardinality of the Jacobian,
so that we can find generators of the group.
Once the curve is built, one
needs to test its security, for example by determining the hardness of
the DLP in its Jacobian.

[bookmark: id19427] Effective group laws

The curves that interest us are typically defined over a finite field
 GF (pn), where p is the (prime) characteristic of the field.
The points of an elliptic curve E (of equation y2 = x3 + ax + b,
say) form an abelian group, that was thoroughly studied over the
preceding millennium. Adding two points is usually done using the
so-called chord-and-tangent formulæ. When dealing with a genus
g curve (the elliptic curve case being g = 1), the associated group is the
Jacobian (set of g-tuples of points modulo an equivalence relation),
an object of dimension g. Points are replaced by polynomial
ideals. This requires the help of tools from effective commutative
algebra, such as Gröbner bases or Hermite normal forms.

The great catalog of usable curves is now complete,
as a result of the work of TANC,
notably in two ACI (cryptocourbes and cryptologie p-adique)
that are now completed.


[bookmark: id19622] Cardinality

Once the group law is tractable, one has to find means of computing the
cardinality of the group: this is not an easy task in general. Of
course, this has to be done as fast as possible, if changing the group
very frequently in applications is imperative.

Two parameters enter the scene: the genus g of the curve, and the
characteristic p of the underlying finite field. When g = 1 and p
is large, the only currently known algorithm for computing the number of
points of an elliptic curve over  GF (p) is the
Schoof–Elkies–Atkin algorithm. Thanks
to the work of the project, widespread implementations are able
to build cryptographically strong curves in less than one minute on a
standard PC.
Recent improvements were made by F. Morain and P. Gaudry (CACAO) (see
[64] ). The current record for SEA was established by
F. Morain in 2007 for a prime p of 2500 decimal digits
(compared to 500dd back in 1995), using the work in
[3]  and in [10] , in
which a new approach to eigenvalue computation is described and
proven.

When p is small (one of the most interesting cases for hardware
implementation in smart cards being p = 2) the best current methods
use p-adic numbers, following the breakthrough of T. Satoh with a
method working for [image: Im1 ${p\#8805 5}$]. The first version of this algorithm for
p = 2 was proposed independently by M. Fouquet, P. Gaudry and
R. Harley and by B. Skjernaa. J. -F. Mestre has designed the current
fastest algorithm, based on the arithmetic-geometric mean (AGM).
Developed by R. Harley and P. Gaudry, it led to new world
records. Then, P. Gaudry combined this method with other
approaches to make it competitive for cryptographic sizes [63] .

When g>1 and p is large, polynomial time algorithms exist, but
their implementation is not an easy task. P. Gaudry and É. Schost
have modified the best existing algorithm so as to make it more
efficient. They were able to build the first random cryptographically
strong genus 2 curves defined over a large prime field [65] .
To get one step further, one needs to use genus 2 analogues of modular
equations. After a theoretical study [66] , they are now
investigating the practical use of these equations.

When p = 2, p-adic algorithms led to striking new results. First,
the AGM approach extends to the case g = 2 and is competitive in
practice (only three times slower than in the case g = 1). In another
direction, Kedlaya has introduced a new approach, based on
Monsky–Washnitzer cohomology. His algorithm was originally designed for p>2.
P. Gaudry and N. Gürel implemented this algorithm and
extended it to superelliptic curves, thus adding
these curves to the list of those usable in cryptography.

Closing the gap between small and large characteristic leads to
pushing the p-adic methods as far as possible. In this spirit, P. Gaudry and
N. Gürel have adapted Kedlaya's algorithm and exhibited a linear
complexity in p, making it possible to reach a characteristic of around
1000 (see [61] ).
For larger p's, one can use the Cartier–Manin
operator. Recently, A. Bostan, P. Gaudry and É. Schost have found
a much faster algorithm than currently known ones
[47] . Primes p around 109 are now doable.


[bookmark: id20118] Computing isogenies

The core of the Schoof–Elkies–Atkin (SEA) algorithm for computing
cardinality of elliptic curves over large-characteristic finite fields
consists in using
the theory of isogenies to find small factors of division
polynomials.

Isogenies are also a tool for understanding the difficulty of the Discrete
Log problem among classes of elliptic curves [75] .
Recently, there appeared suggestions to use isogenies in a
cryptographic context, replacing the multiplication on curves by
composition of isogenies [85] , [83] .

Algorithms for computing isogenies are very well known and widely used in the
large characteristic case. When the characteristic is small, three
algorithms exist:
two due to Couveignes [51] , [52] , [79] ,
and one due to Lercier [78] .


[bookmark: id20242] The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP) is one of the major difficult problems
upon which we build secure cryptosystems. It has essentially been
proven equivalent to the computational Diffie–Hellman problem, which
corresponds more closely to the actual security of many protocols.
For an arbitrary group of prime order N,
the DLP can be solved by a generic, exponential
algorithm in [image: Im2 ${\#920 (\sqrt N)}$] group operations.
For elliptic curves (setting aside some rare and easily avoidable instances),
no faster algorithms are known.

For higher genus curves, the algorithms with the best complexity create
relations as smooth principal divisors on the curve and use linear
algebra to deduce discrete logarithms, similarly to the quadratic
sieve for factoring. The first such algorithm for high genus
hyperelliptic curves with a heuristic complexity analysis is given in
[45] , and A. Enge developed the first algorithm with a
proven subexponential run time of L(1/2) in
[57] . Generalisations to other groups proposed for
cryptography (in particular ideal class groups of imaginary quadratic
number fields) are obtained by A. Enge and P. Gaudry in
[6]  and [56] .
Proofs for arbitrary curves of large genus are
given by J.-M. Couveignes [50] 
and F. Heß [72] .

The existence of subexponential algorithms shows that high genus
curves are less secure than low-genus curves (including elliptic curves)
in cryptography.
By analyzing the same algorithms differently, concrete recommendations
for key lengths can be obtained, an approach introduced by P. Gaudry
in [62]  and pursued in [67] . It turns out that
elliptic curves and hyperelliptic curves of genus 2 are not
affected, while the key lengths have to be increased in higher genus,
for instance by 12 % in genus 3.

Using similar algorithms to those analyzed in [6] ,
C. Diem has shown in [53]  that non-hyperelliptic curves
(of genus at least 3) are even less secure than hyperelliptic ones of
the same genus. This effectively leaves only elliptic and low genus
hyperelliptic curves as potential sources for public-key cryptosystems.


[bookmark: uid14] Section: 
      Scientific Foundations
Complex multiplication

[bookmark: id20513] Genus 1

Despite the achievements described above, random curves are sometimes
difficult to use, since their cardinality is not easy to compute or
some useful properties are too rare to occur (suitability for pairings,
for instance). In some cases, curves with special properties can be
used. For example, curves with complex multiplication (in brief
CM), have easily-computable cardinalities. For example, the elliptic
curve by the equation y2 = x3 + x over GF(p) has cardinality
p + 1-2u, when p = u2 + v2, and computing this u is easy.

The CM theory for genus 1 is well known, dating back to the middle
of the nineteenth century (Kronecker, Weber, etc.). Its algorithmic
aspects are also well understood; recently more work was done, largely
by TANC. Twenty years ago, this theory
was applied by Atkin to the primality proving of arbitrary integers,
yielding the ECPP algorithm developed since then by F. Morain.
Though the decision problem isPrime? was shown
to be in P (by the work of Agrawal, Kayal, and Saxena in 2002), practical
primality proving for large random numbers is still done only with ECPP.

These CM curves enabled A. Enge, R. Dupont and F. Morain to give an
algorithm for building good curves for use in Identity Based
Cryptosystems [55] .

CM curves are defined by algebraic integers, whose minimal polynomials
have to be computed exactly, the coefficients being exact integers. The
fastest algorithm to perform these computations requires a floating
point evaluation of the roots of the polynomial to a high precision.
F. Morain on one hand, and A. Enge (together with R. Schertz) on
the other, have developed the use of new class invariants
characterizing CM curves. The union
of these two families is currently the state of the art in the field
(see [8] ). More recently, F. Morain and A. Enge have
designed a fast method for the computation of the roots of this
polynomial over a finite field using Galois theory [58] .
These invariants, together with this new algorithm, are incorporated
in the working version of the program ECPP.

F. Morain analyzed a fast variant of ECPP, called fastECPP,
which led him to gain one order of magnitude in the complexity of the
problem (see [13]  [81] ), reaching
heuristically O((logN)4 + ϵ) (compared to O((logN)5 + ϵ) for the basic version).
By comparison, the best proven version of Agrawal–Kayal–Saxena
[77]  has complexity O((logN)6 + ϵ),
and has not been implemented so far; the best randomized version
[46]  reaches the same O((logN)4 + ϵ)
bound but suffers from memory problems, and is not yet competitive.
F. Morain implemented fastECPP, and was able to
prove the primality of 10, 000 decimal digit numbers [13] ,
as opposed to 5, 000 for the basic (historical) version. Continual
improvements to this algorithm led to
new records in primality proving, some of which were obtained with his
co-authors J. Franke, T. Kleinjung and T. Wirth [60]  who
developed their own programs. F. Morain set the current world record
to 20,562 decimal digits in early June 2006 (compared to 15,071 two
years earlier). This record was made possible by using an updated MPI-based
implementation of the algorithm, and distributing the process on a
cluster of 64-bit bi-processors (AMD Opteron(tm) Processor 250 at 2.39
GHz). In 2007, another large number was proven to be prime, namely
(242737 + 1)/3 with 12, 865 decimal digits.

In his thesis, R. Dupont investigated the complexity of the
evaluation of some modular functions and forms (such as the elliptic
modular function j and the Dedekind eta function).
High precision evaluation of such functions is at
the core of algorithms to compute class polynomials (used in complex
multiplication) or modular polynomials (used in the SEA elliptic curve point
counting algorithm).

Exploiting the deep connection between the arithmetic-geometric mean (AGM)
and a special kind of modular forms known as theta constants, he devised an
algorithm based on Newton iterations and the AGM that has
quasi-optimal linear
complexity. In order to certify the correctness of the result to a specified
precision, a fine analysis of the algorithm and its complexity was
necessary [22] .

Using similar techniques, he has given a proven
algorithm for the evaluation of the logarithm of complex numbers with
quasi-optimal time complexity.

A. Enge has been able to analyse precisely the complexity of class polynomial
computations via complex floating point approximations [5] .
Using techniques from fast symbolic computation
(multievaluation of polynomials) and results from R. Dupont's PhD thesis
[54] , he has obtained two algorithms which are quasi-linear
(up to logarithmic factors) in the output size. The second algorithm has
been used for a record computation of a class polynomial of degree 100,000,
the largest coefficient of which has almost 250,000 bits.
The implementation is based on GMP, mpfr, mpc and mpfrcx
(see Section 5); the only limiting factor for going further has
become the memory requirements of the final result.

Alternative algorithms use p-adic approximations or the Chinese
remainder theorem to compute class polynomials over the integers.
A. Enge and his coauthors have presented an optimized algorithm based
on Chinese remaindering in [2]  and improved the
number theoretic bounds underlying the complexity analysis. They have
shown that all three different approaches have a quasi-linear complexity,
while the the floating point algorithm appeared to be the fastest one in
practice.

Inspired by [2] , A. Sutherland has come up with a new
implementation of the Chinese remainder based algorithm that has led to
new record computations [84] . Unlike the other
algorithms, this approach does not need to hold the complete
polynomial in main memory, but essentially only one coefficient at a
time, which enables it to go much further. The
main bottleneck is currently an extension of the algorithm to
class invariants, which is work in progress by A. Enge.


[bookmark: id21274] Genus 2

The theory of Complex Multiplication also exists for non-elliptic curves,
but is more intricate, and only recently can we dream to use
them. Some of the recent results occurred as the work of R. Dupont
(former member of TANC) in his thesis.

R. Dupont has worked on adapting his algorithm to genus 2, which induces
great theoretical and technical difficulties. He has studied
a generalization of the AGM known as Borchardt sequences, proven the
convergence of these sequences in a general setting, and determined the
set of limits of such sequences in genus 2.
In particular, he proved a theorem parametrizing the set of all possible limits of Borchardt sequences starting with a fixed 4-tuple.
He developed an algorithm for the fast evaluation of theta constants
in genus 2, and as a byproduct
obtained an algorithm to compute the Riemann matrix of a given hyperelliptic
curve: given the equation of such a curve, it computes a lattice L such
that the Jacobian of the curve is isomorphic to [image: Im3 ${\#8450 /L}$]. These
algorithms are both quasi-linear, and have been implemented (in C,
using the multiprecision package GMP – see http://gmplib.org/ ).

Using these implementations, R. Dupont has began computing modular polynomials
for groups of the form Γ0(p) in genus 2
(these polynomials link the genus 2 j-invariants of
p-isogenous curves). He computed the modular polynomials for p = 2, which had
never been done before, and did
some partial computations for p = 3 (results are available
at http://www.lix.polytechnique.fr/Labo/Regis.Dupont ).


[bookmark: uid15] Section: 
      Scientific Foundations
Algebraic Geometry codes

There are many other applications of algorithmic methods for algebraic
curves besides asymmetric cryptography. Daniel Augot plans to develop a new
activity around algebraic geometry (AG) codes,
a very powerful family of codes that often beat records for their
parameters: they often offer the best correction capacity. The main
topic of research is to accelerate the decoding algorithms of these
codes, which have a slightly expensive cost [73] .
A reference implementation would be of major interest,
to help people compare AG codes with Reed–Solomon codes.

Guruswami and Sudan have obtained a breakthrough [70] 
for decoding AG codes with many errors.
Still, there is no implementation available yet, even for the most
simple AG codes (which are the Hermitian codes). In this domain too, an
objective is to produce a publicly available reference implementation.
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  [bookmark: uid17] Section: 
      Application Domains
Communications

Clearly, our main field of applications is telecommunications.
We participate in the protection of information. We are proficient on
a theoretical level, and ready to develop applications using
modern cryptographic techniques, with a main focus on elliptic curve
cryptography and codes based on algebraic curves. One potential
application is cryptosystems in environments with limited resources
as smart cards, mobile phones, and ad hoc networks.
For coding, we envisage developing algebraic codes
for the erasure channel or distributed storage.
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  [bookmark: uid19] Section: 
      Software
ECPP

F. Morain has been continuously improving his primality proving
algorithm called ECPP, originally developed in the early 1990s.
Binaries for version 6.4.5 have been available since 2001 on his web page.
Proving the primality of a 512 bit number requires less than a
second on an average PC.
His personal record is around 25, 000 decimal digits,
with the fast version he started developing in 2003.
All of the code is written in C, and based on the GMP package.


[bookmark: uid20] Section: 
      Software
TIFA

In late 2005, we hired J. Milan as ingénieur associé to help us in
developing and cleaning our programs. He first spent some time making a tour
of publicly available implementations of the IEEE P-1363 cryptography
standards. Following this study, it did not appear worthwhile to develop
our own framework when others were approaching maturity and almost complete.
He therefore switched to one of our other themes, namely writing integer
factorization software for which the results can be certified.

However, besides this quite daunting task, we have a more pragmatic,
twofold-interest in fast factorization implementations for small numbers.


	[bookmark: uid21] Our first motivation is directly related to the ANR CADO project
[44]  we are involved in, together with other teams including
the INRIA project-team CACAO.
The objective of the CADO project is to implement an optimized and distributed
implementation of the Number Field Sieve (NFS), which is asymptotically
the fastest currently known integer factorization algorithm.
This algorithm needs to factor a lot of much smaller
integers (about 80 bits for current factorization records). Since a recursive
application of the NFS would be totally inefficient in practice, there is
indeed a need for routines better suited to factor this wealth of smaller
by-products.



	[bookmark: uid22] Our second motivation lies in our long-term commitment to producing
identity cards for elliptic curves, in order to select curves with
the properties needed for cryptographic use. An identity card
requires the knowledge of the factorization of the order of the curve
(about 200 bits for cryptographic use).




Hence, J. Milan began the development of the so-called TIFA library (short
for Tools for Integer FActorization) in 2006. TIFA is made up of a base
library written in C99 using the GMP library, together with stand-alone
factorization programs and a basic benchmarking framework to assess the
performance of the relative algorithms.

TIFA has been continuously improved during the last few years. As of
november 2009, TIFA includes the following algorithms :


	[bookmark: uid23] CFRAC (Continued FRACtion factorization [82] )



	[bookmark: uid24] ECM (Elliptic Curve Method)



	[bookmark: uid25] Fermat (McKee's “fast” variant of Fermat's algorithm [80] )



	[bookmark: uid26] SIQS (Self-Initializing Quadratic Sieve [49] )



	[bookmark: uid27] SQUFOF (SQUare FOrm Factorization [69] )






In early 2009, disappointing comparisons to other factorization tools
(such as the ones provided by PARI/GP) prompted J. Milan to undertake a
major rewrite of his SIQS implementation. Together with other optimizations
throughout the code base, this effort led to dramatic improvements, making
TIFA's SIQS more than twice as fast as PARI/GP's version. TIFA's SQUFOF and
SIQS are now amongst the fastest available implementations. For tiny numbers
(say between 100 to 160 bits), TIFA's SIQS may even be the fastest.

J. Milan still plans to maintain and improve the library, particularly its
ECM implementation which is, now, the only significant part of the software
which is really behind the competition.

So far, TIFA has been kept internal to the TANC team and CADO project.
Recently, we have received several requests from the community asking for
access to this library. Consequently, we are in the process of making it
public under an open source license (most probably the Lesser General
Public License version 2.1 or higher). We plan to have it available before
the end of the year, or at worst, in early 2010.


[bookmark: uid28] Section: 
      Software
FAAST

The FAAST library is developed in C++ by L. De Feo and makes use of
the NTL library. It implements the algorithms presented in
[4] , plus other algorithms needed by the author for his
research on explicit isogenies.

Version 0.2.0, released on July 11 2009, is available at
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/ .
The source code is distributed under the General Public License
version 2 or higher.

FAAST is a very efficient library for lattices of extensions of finite
fields. Our aim is to add support for arbitrary finite fields, making
it an essential building block for efficient computer algebra systems.
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  [bookmark: uid30] Section: 
      New Results
Algebraic curves over finite fields

[bookmark: id21943] Isogenies and Point Counting
Participants :
      François Morain, Luca De Feo, Benjamin Smith, Sorina Ionica.


Together with A. Bostan,
B. Salvy (from projet ALGO), and É. Schost, F. Morain gave
quasi-linear algorithms for computing the explicit form of an
isogeny between two elliptic curves, another important block in the
SEA algorithm [3] . This article contains a survey of
previous methods, all applicable in the large characteristic case.
Joux and Lercier recently announced a p-adic approach for
computing isogenies in all characteristic with the same complexity,
based on our work.

For the small case, the old algorithms of Couveignes and Lercier were
studied from scratch, and Lercier's algorithm reimplemented in NTL by
F. Morain, as a benchmark for other methods. In 2009 L. De Feo and
É. Schost gave new asymptotically fast algorithms for arithmetic in
Artin–Schreier towers [4] . The algorithms have been packaged
in the C++ library FAAST and served as a basis for a new efficient
implementation of Couveignes' algorithm. Integration with F. Morain's
implementation of SEA is in progress. An article is in preparation
giving the details of the implementation and the improvements to the
original algorithm.

Recently, B. Smith has given a series of new constructions of
families of isogenies of Jacobians of high-genus curves;
the existence of these families is remarkable.
An article exhibiting twelve families of higher-genus
hyperelliptic curves appeared in the proceedings of AGCT 12
[29] .
An article describing six infinite series of
hyperelliptic and non-hyperelliptic families
(each giving isogenies in arbitrarily high dimension)
has been accepted for publication
[43] .

A collaboration between B. Smith, P. Gaudry (CARAMEL), and D. Kohel (Marseille)
has resulted in computations smashing the previous records
for point counting on certain genus 2 curves in large characteristic.
The prior state of the art computed cardinalities of a 127-bit Jacobian
in around one CPU month; we can now compute a kilobit Jacobian with the
same effort.
This work renders cardinality computations for genus 2 curves
over cryptographic-sized prime fields truly practical for the first time.
We announced these results at a number of workshops and seminars this year,
including the “Counting points: theory, algorithms, and practice” meeting
at the CRM, Université de Montréal, in April 2010;
an article describing the new algorithm, and families of applicable curves,
is in preparation.


[bookmark: id22079] Discrete logarithms on curves
Participants :
      Jean-François Biasse, Benjamin Smith.


An extended version of B. Smith's 2008 work on polynomial-time
reductions of discrete logarithm problem instances from a large class
of hyperelliptic curves of genus 3 to non-hyperelliptic curves of
genus 3 (where Diem's algorithm [53]  can solve the
discrete logarithm problem in time [image: Im4 ${\mover O\#732 {(q)}}$], a significant
improvement over the previous best known [image: Im5 ${\mover O\#732 {(q^{4/3})}}$]
algorithm for solving hyperelliptic genus 3 discrete logarithms due to
P. Gaudry, E. Thomé, N. Thériault, and
C. Diem  [67] ) has now appeared in the Journal of
Cryptology [14] .


[bookmark: uid31] Section: 
      New Results
Complex multiplication
Participant :
      François Morain.


Morain and Enge have contributed to the study of generalized Weber
functions, enabing a partial classification for some
cases [41] .

Morain has been investigating (with É. Brier) the properties of modular
curves X0(N) to be able to introduce new optimal class
invariants. This led him to begin the classification of such important
curves and to compute new modular equations [42] .


[bookmark: uid32] Section: 
      New Results
Algebraic codes
Participants :
      Daniel Augot, Morgan Barbier.


[bookmark: uid33] List decoding of Reed–Solomon codes

This is a new activity of the TANC project-team, whose aim is to
accelerate decoding algorithms for Reed–Solomon codes (with the
Guruswami–Sudan algorithm), and of Algebraic Geometric codes. With
Alexander Zeh, Daniel has found a relation between so-called key
equations, which are the standard tool for decoding algebraic codes,
and the new interpolation based algorithms [17] . The
connection is established, and the next step is to use efficient
algorithms, that are used for key equations, in the context of the
Guruswami–Sudan algorithm.


[bookmark: uid34] List decoding of Algebraic Geometry codes

This is also a new activity for the TANC project team, started with
the arrival of Guillaume Quintin, a new PhD student, supervised by
Daniel Augot and Grégoire Lecerf (from the university of Versailles
Saint-Quentin). These AG codes are a generalization of Reed–Solomon
codes. G. Quintin did a first implementation of the factorisation step in
Magma, to understand the algorithms and the needed material. He
is starting to rewrite the algorithm within the mathemagix
framework.


[bookmark: uid35] List decoding of binary codes

Another new topic that began with the arrival of Morgan Barbier is to
study list decoding algorithms for codes defined over small
alphabets. It was a challenging open problem until the publication of
Wu  [86] , which achieves a high decoding radius for BCH
codes, which are subfield subcodes of Reed–Solomon codes. This opens a
new field of applications of these algorithms; we intend to
apply Wu's algorithm in steganography, using the ideas of Fontaine
and Galand [59] . They used Reed–Solomon codes, and it seems
very natural to use the same ideas with BCH codes.
Implementing Wu's algorithm and applying it to steganography is the
plan of Barbier's thesis.

If the number of errors in a received word is less than the code's
error correction capacity, the decoding algorithm is guaranteed to
return a single codeword. This property led to the term
unique decoding, which has been (and still mostly is) the standard
decoding method. However, in the last decade much attention has
been given to so-called list decoding methods which can
correct far more errors, at the expense of losing the uniqueness
of the decoded word.

While the concept of list decoding code dates back to the 1950s,
the first interesting algorithm only appeared in 1995, when Madhu Sudan
introduced a list decoding algorithm for Reed–Solomon codes
that could correct up to [image: Im6 ${1-\sqrt {2R}}$] errors,
where [image: Im7 ${R=\mfrac kn}$] is the code rate.
Building upon this work, Sudan and his student Venkatesan Guruswami then
designed an improvement to Sudan's algorithm correcting [image: Im8 ${1-\sqrt R}$] errors.
Since then, a few other algorithms were proposed but Guruswami–Sudan is
still considered to be the reference for list decoding.

As previously mentioned, list decoding trades the uniqueness of the corrected
codeword for larger correction capabilities. Needless to say, if more
errors are allowed, the list of returned codeword candidates will be
larger. An important bound in list decoding is due to Johnson. Basically,
if the number ne of errors allowed is less than the Johnson bound
Jq(n, d), then the size of the candidate list will grow polynomially with
ne.
For a linear code [image: Im9 $\#119966 $] defined over [image: Im10 $\#120125 _q$], of length n,
dimension k and minimal distance d, the Johnson bound is given by

[image: Im11 ${J_q{(n,d)}=n\mfrac {q-1}q\mfenced o=( c=) 1-\sqrt {1-\mfrac q{q-1}\mfrac dn}.}$]


Traditionally, we distinguish the binary codes, defined over [image: Im12 $\#120125 _2$],
from the general case. For binary codes, the Johnson bound takes the
simpler form

[image: Im13 ${J_2{(n,d)}=\mfrac n2-\mfrac n2\sqrt {1-\mfrac {2d}n}.}$]


In the general case, provided [image: Im14 ${q/(q-1)\#8776 1}$], we approximate Jq(n, d)
by

[image: Im15 ${J{(n,d)}=n-n\sqrt {1-\mfrac dn}.}$]


The Johnson bound for binary curves is more interesting, since we are
able to correct more errors for a given length and distance than in
the general case.

Daniel Augot, Morgan Barbier and Alain Couvreur reach such a bound,
better than Bernstein's [32] , for the
classical Goppa codes.


[bookmark: uid36] Homomorphic encryption

Gentry's breakthrough paper  [68]  has realized
fully homomorphic encryption, albeit in a quite theoretical way.
The defining property of these schemes is that operations on the ciphertexts
correspond to the same operations on the plaintext. This enables
powerful applications, including querying encrypted databases.
But Gentry's scheme, although widely publicised, appears to be
quite unpractical, since it implies huge ciphertexts.

Daniel Augot, Ludovic Perret, and Frederik Armknecht have devised a
code-based homomorphic encryption scheme based on evaluation codes, which has
been given a particular instance with q-ary Reed–Muller codes.
Although our scheme is secret-key, it still enables the
desirable applications envisioned by Gentry, and is much more
efficient with respect to ciphertext size and
computional complexity of encryption operations. A paper has been
submitted to the FSE 2011 conference [24] .


[bookmark: uid37] Section: 
      New Results
Number fields
Participant :
      Jean-François Biasse.


Jean-François Biasse has made practical improvements to the sieving-based algorithm of Jacobson [74]  for computing the group structure of the ideal class group of an imaginary quadratic number field.
These improvements, based on the use of large prime variants combined with proper structured gaussian elimination, led to the computation of the structure of a class group corresponding to a number field with a 110-digit discriminant (whereas older techniques were limited to 90-digit discriminants).
This work has now appeared
in the journal Advances In Mathematics of Communications [19] .

Biasse has also determined a class of number fields
for which the ideal class group, the regulator, and a system of fundamental
units of the maximal order can be computed in subexponential time L(1/3, O(1))
(whereas the best previously known algorithms have complexity L(1/2, O(1))).
This class of number fields is analogous to the class of curves
described in [7]  (cf. 
	6.1  above).
The article [33]  has been submitted to
Mathematics of Computation.

In collaboration with Jacobson, Biasse described in [25] 
improvements to the sieving methods for ideal class group, regulator and
fundamental unit computation. These improvements lead to a significant
speed-up over the previous state of the art, and the computation of the
regulator of a number field of a 110 digit discriminant, whereas the
previous record was 100 digits.

In collaboration with Jacobson and Sylvester [26] , Biasse
improved the algorithms for sloving the discrete logarithm problem and the
principal ideal problem which are involved in the design of the
cryptosystems based on number fields. They assessed the impact of these
improvements on the security of theses cryptosystems and provided
estimates on the size of the keys required to ensure a level of security
equivalent to the recommendations of the NIST.


[bookmark: uid38] Section: 
      New Results
Automatic transposition of programs
Participant :
      Luca De Feo.


The transposition principle roughly says that any matrix-vector
product can be computed using the same number of operations as the
corresponding transposed matrix-vector product. The application of
this principle to computer programs is a topic of active research in
computer algebra
[76] , [71] , [48] . Luca
De Feo and Éric Schost [21]  have shown
that automatic transposition of suitably annotated multilinear
programs is possible, and are now implementing a compiler for a domain
specific language called transalpyne .
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  [bookmark: uid40] Section: 
      Contracts and Grants with Industry
Contracts with Industry


	[bookmark: uid41] A GEMPLUS contract corresponds to É. Brier's thesis on the use of
(hyper-)elliptic curves in cryptology.



	[bookmark: uid42] Daniel Augot is in discussion with MassiveRand, an SME providing
random bits at high rate, in order to provide Rabin's
HyperEncryption, which is provably secure.
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  [bookmark: uid44] Section: 
      Other Grants and Activities
Regional Initiatives


	[bookmark: uid45] Digiteo have contributed the operational funding
for the project AMIGA
(Advanced Methods for Isogeny Graph Analysis),
with B. Smith as the scientific leader of the project.
On a national level, the DGA have contributed
a postdoctoral salary to the project (see National Initiatives).





[bookmark: uid46] Section: 
      Other Grants and Activities
National Initiatives


	[bookmark: uid47] The DGA have funded a postdoctoral researcher's salary
for Sorina Ionica,
allowing her to join TANC
for one year as a postdoctoral researcher
within the project AMIGA.



	[bookmark: uid48] A short one-year teamwork between the INRIA Saclay
project-teams TANC and Hipercom@LIX was initiated in January
2008 as part of the so-called Cryptonet OMT (Opération de
Maturation Technologique). The goal of this joint effort,
mainly financed by the Digiteo foundation, was to present a
proof-of-concept of an hardened, more robust OLSRv2 ad hoc
network protocol. In early 2010, T. Clausen, U. Herberg and
J. Milan submitted an article as a follow-up to this Cryptonet
project. This paper was accepted and presented by H. Herberg
at the iTAP 2010 conference [27] .





[bookmark: uid49] Section: 
      Other Grants and Activities
European Initiatives


	[bookmark: uid50] Procope PCH Hubert Curien with Ulm Universität.






    Dissemination

    
      	Dissemination	[bookmark: uid52]Animation of the scientific community
	[bookmark: uid55]Teaching
	[bookmark: uid56]Seminars and talks
	[bookmark: uid69]Vulgarization and Summer schools
	[bookmark: uid73]Program Committees
	[bookmark: uid76]Thesis committees
	[bookmark: uid86]Research administration



    

  [bookmark: uid52] Section: 
      Dissemination
Animation of the scientific community


	[bookmark: uid53] Daniel Augot is Membre du comité scientifique du séminaire CCA.



	[bookmark: uid54] Benjamin Smith organised the poster session at ANTS-X
(10th international Algorithmic Number Theory Symposium)
in Nancy (July 19-23, 2010).





[bookmark: uid55] Section: 
      Dissemination
Teaching

François Morain is in charge of the MPRI 2.12.2 course
Algorithmes arithmétiques pour la cryptologie,
and gave 5 lectures in it in 2010.

Daniel Augot gave lectures (24h00) on algebraic coding theory in the
MPRI at the Master 2 level.

Benjamin Smith taught the module on elliptic curve cryptography and pairings
in the MPRI Master 2 course Cryptologie,
and took TDs for the course “Les bases de la programmation et de l'algorithmique” at the École polytechnique.

Luca De Feo was TA for the course “Programmation Web” in the first
year of the Licence d'Informatique at Paris VII.

Jean-François Biasse was TA for the courses “Introduction to C++”, “Numerical Analysis”, and “Probability” at the École polytechnique.


[bookmark: uid56] Section: 
      Dissemination
Seminars and talks


	[bookmark: uid57] B. Smith presented an accelerated point-counting algorithm for
genus 2 curves with explicit endomorphisms in the “Counting points:
theory, algorithms, and practice” meeting at the CRM, Université
de Montréal, in April 2010, and also at Téécom ParisTech.



	[bookmark: uid58] B. Smith gave a talk on cryptographic aspects of genus 2 curves
in the CCA seminar (Codage, Cryptologie, Algorithmes) in April 2010.



	[bookmark: uid59] B. Smith gave a talk on families of explicitly isogenous Jacobians
of high genus curves in the Algebra and Number Theory Seminar at the
Université de Franche-Comté, Besançon, in February 2010.



	[bookmark: uid60] Daniel Augot gave a one hour talk « Vers de bons codes sur le
corps à deux éléments », at « journées de la SMF »,
June 2010, Paris.



	[bookmark: uid61] Daniel Augot gave a talk on decoding for the Lee metric at the
Shannon Institute, Dublin, and also at Télécom ParisTech.



	[bookmark: uid62] François Morain was invited speaker in the ECC2010
conference celebrating the 25th anniversary of elliptic curve in
cryptology, at MSR (Redmond, October 18-22).



	[bookmark: uid63] Morgan Barbier made a presentation entitled “Introduction to the
list decoding” at the University of Toulon at January 26th.



	[bookmark: uid64] Morgan Barbier made a presentation entitled “A new list
decoding for the Reed-Solomon and BCH codes” at the University of
Toulon (January 26).



	[bookmark: uid65] Morgan Barbier made a presentation entitled “On linear codes
for the syndrome coding problem” at the Soria Summer school (July 14).



	[bookmark: uid66] Morgan Barbier gave a talk on “A new class of codes for the
maximum-likelihood decoding
problem”[30]  at YACC (Yet Another
Conference on Cryptography) (October 6).



	[bookmark: uid67] Guillaume Quintin gave a talk on “List decoding of algebraic
geometric codes” at the Soria Summer school (July 12).



	[bookmark: uid68] Luca De Feo presented the paper “transalpyne : a
language for automatic transposition” at the PLMSS conference (part
of the CICM joint conference in CNAM, Paris) in July.





[bookmark: uid69] Section: 
      Dissemination
Vulgarization and Summer schools


	[bookmark: uid70] F. Morain was invited to the Festival PariScience in October 2010,
to participate in a debate following a movie on the Riemann Hypothesis.



	[bookmark: uid71] Daniel Augot gave three hours of lectures on algebraic codes at
the Journées Nationales du Calcul Formel in Luminy, and produced
notes [23] .



	[bookmark: uid72] Daniel Augot gave a popular science seminar on Coding
Cryptography and Steganography for Versailles High School Math
Teachers, and also for Polytechnique's students.





[bookmark: uid73] Section: 
      Dissemination
Program Committees


	[bookmark: uid74] Daniel Augot is member of the program committee of PQ Crypto 2010,
of WAIFI 2010, and of PASCO 2010.



	[bookmark: uid75] François Morain was co-head of the ANTS-IX conference (together
with G. Hanrot), which took place in Nancy (July 19-23, 2010); this
led to the Springer Volume [31] .





[bookmark: uid76] Section: 
      Dissemination
Thesis committees


	[bookmark: uid77] Daniel Augot was reviewer of Thomas Roche's PhD Thesis
“Dimensionnement et intégration d'un chiffre symétrique dans le
contexte d'un système d'information distribué de grande taille”,
defended in Grenoble on January 29th, 2010.



	[bookmark: uid78] Daniel Augot was reviewer (with Caroline Fontaine) of Cyril
Bazin's PhD Thesis “Tatouage de données géographiques et
généralisation aux données devant préserver des
contraintes”, defended in Caen on January 19th, 2010.



	[bookmark: uid79] Daniel Augot was reviewer of Alexander Soro's PhD thesis
“Mécanismes de fiabilisation pro-actifs”, defended in
Toulouse on December 3rd, 2010.



	[bookmark: uid80] Daniel Augot was reviewer of Amine Bouabdallah's PhD thesis
“Contributions à la fiabilisation du transport video”, defended in
Toulouse on December 3rd, 2010.



	[bookmark: uid81] Daniel Augot was reviewer of Kristian Brander's PhD Thesis
“Interpolation and List Decoding of Algebraic Codes”, defended
in Denmark, March 24th 2010.



	[bookmark: uid82] Daniel Augot was member of the thesis committees for
Bhaskar Biswas (10/01/2010), Stéphane Manuel
(11/23/2010), Maxime Côte (03/12/2010), Lionel Chaussade (11/22/2010)
Thesis Committee (03/22/2010).



	[bookmark: uid83] Daniel Augot was a member of Françoise Lévy-dit-Véhel's HdR
Committee, defended on September 10th, 2010.



	[bookmark: uid84] Benjamin Smith was a member of Sorina Ionica's Ph.D. thesis committee,
defended on May 14th, 2010.



	[bookmark: uid85] F. Morain was the president of the defense committee for D. Robert
(21/07/2010).





[bookmark: uid86] Section: 
      Dissemination
Research administration


	[bookmark: uid87] Daniel Augot is Responsable du suivi doctoral du CRI Saclay
Île-de-France.



	[bookmark: uid88] Daniel Augot is Membre de la commission scientifique du CRI
Saclay Île-de-France.



	[bookmark: uid89] Daniel Augot was Membre du comité de sélection de Paris
6 (deux postes).
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