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2. Overall Objectives

2.1. Overall Objectives
The TROPICS team studies Automatic Differentiation (AD) of algorithms and programs. We work at the
junction of two research domains:

• AD theory: On the one hand, we study software engineering techniques, to analyze and transform
programs mechanically. Automatic Differentiation (AD) transforms a program P that computes a
function F , into a program P’ that computes analytical derivatives of F . We put emphasis on
the so-called reverse or adjoint mode of AD, a complex transformation that yields gradients for
optimization at a remarkably low cost.

• AD application to Scientific Computing: On the other hand, we study application of the adjoint
mode of AD to e.g. Computational Fluid Dynamics. We adapt the strategies used in Scientific Com-
puting in order to take full advantage of AD. This work is applied to several real-size applications.

Each aspect of our work benefit to the other. We want to produce AD code that can compete with hand-written
sensitivity and adjoint programs that are used in the industry. We implement our algorithms into our tool
TAPENADE, which is now one of the most popular AD tools.

Our research directions are :

• Modern numerical methods for finite elements or finite differences : multigrid methods, mesh
adaptation.

• Optimal shape design or optimal control in fluid dynamics for steady and unsteady simulations.
Higher-order derivatives needed by robust optimization.

• Automatic Differentiation : AD-specific static data-flow analysis, strategies to reduce runtime and
memory consumption of the reverse mode in the case of very large codes. Improved models for
reverse AD, in particular coping with message-passing parallellism.
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3. Scientific Foundations

3.1. Automatic Differentiation
Participants: Laurent Hascoët, Valérie Pascual.

Glossary

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the Partial Derivative Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a
source computer program P that, given a vector argument X ∈ IRn, computes some vector function
Y = F (X) ∈ IRm. The AD tool generates a new source program P ′ that, given the argument X , computes
some derivatives of F . The resulting P ′ reuses the control of P . Therefore, strictly speaking, P ′ evaluates F ′

only piecewise. Experience shows that this is reasonable in most cases. Going further is still an open research
problem.

For any given control, P is equivalent to a sequence of instructions, which is identified with a composition of
vector functions. Thus, if

P is {I1; I2; · · · Ip; },
F = fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the chain rule gives the Jacobian of F

F ′(X) = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically written as a sequence of instructions I ′k. Combining the I ′k with the control of P
yields P ′. This can be generalized to higher level derivatives, Taylor series, etc.

In practice, the Jacobian F ′(X) is often far too expensive to compute and store. Fortunately, most problems
are solved using only some projections of F ′(X). For example, one may need only sensitivities, which are
F ′(X).Ẋ for a given direction Ẋ in the input space. Using equation (2), sensitivity is

F ′(X).Ẋ = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) . Ẋ, (3)

which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of the fundamental tangent mode of AD.

However in optimization, data assimilation [39], adjoint problems [33], or inverse problems, the appropriate
derivative is the gradient F ′∗(X).Y , where F ′ has been transposed. Using equation (2), the gradient is
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F ′∗(X).Y = f ′∗1 (X0).f ′∗2 (X1). · · · .f ′∗p−1(Xp−2).f ′∗p (Xp−1).Y , (4)

which is most efficiently computed from right to left, because matrix×vector products are cheaper than
matrix×matrix products. This is the principle of the reverse mode of AD.

This turns out to make a very efficient program, at least theoretically [36]. The computation time required for
the gradient is only a small multiple of the run-time of P . It is independent from the number of parameters n.
In contrast, notice that computing the same gradient with the tangent mode would require running the tangent
differentiated program n times.

However, we observe that the Xk are required in the inverse of their computation order. If the original program
overwrites a part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore,
the central research problem of the reverse mode is to make the Xk available in reverse order at the cheapest
cost, using strategies that combine storage, repeated forward computation from available previous values, or
even inverted computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel communication. We regularly extend our models
and tools to handle these new constructs.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual.

Glossary

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution, in
which all branches of control switches are taken simultaneously, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as a data
dependence graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.
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The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analysis [25]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular input
programming language. This is generally achieved using language-specific front-ends and back-ends. But one
can go further: as abstraction goes on, the internal representation becomes more language independent, and
semantic constructs can be unified. Analysis can then concentrate on the semantics of a small set of constructs.
We advocate an internal representation composed of three levels.

• At the top level is the call graph, whose nodes are modules and procedures. Arrows relate nodes that
call or import one another. Recursion leads to cycles.

• At the middle level is the flow graph, one per procedure. It captures the control flow between atomic
instructions.

• At the lowest level are abstract syntax trees for the individual atomic instructions. Semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

At each level are associated symbol tables, that are nested to capture the notion of visibility scope.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [27], [37], [26]. But many analyses
are more complex, and better defined on graphs than on trees. This is the case for data-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [28], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [29] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of actual
run-time values. In addition to the very theoretical limit of undecidability, there are practical limitations to how
much information one can infer from programs that use arrays [43], [30] or pointers. In general, conservative
over-approximations are always made that lead to derivative code that is less efficient than possibly achievable.

3.3. Automatic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus.

Glossary

linearization In Scientific Computing, the mathematical model often consists of Partial Derivative
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.
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adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Scientific Computing now provides reliable simulations of very complex systems. For example it is now
possible to simulate the 3D air flow around a plane that captures the physical phenomena of shocks and
turbulence. The next step appears to be optimization. Optimization is one degree higher in complexity, because
it repeatedly simulates, evaluates directions of optimization and applies optimization steps, until an optimum
is reached. We focus on gradient-based optimization. We are aware of the problems due to local minima, which
require more global optimization methods. Still, gradient-based optimization is necessary, even coupled with
global methods, to efficiently reach the bottom of the nearest local minimum.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

• One can write an adjoint system of mathematical equations, then discretize it and program it by hand.
This is mathematically sound [33], but very costly in development time. It also does not produce
an exact gradient of the discrete function, and this can be a problem if using optimization methods
based on descent directions.

• One can apply reverse AD (cf 3.1) on the program that discretizes and solves the direct system.
This gives in fact the adjoint of the discrete function computed by the program. Theoretical results
[32] guarantee convergence of these derivatives when the direct program converges. This approach
is highly mechanizable, but leads to massive use of storage and may require code transformation by
hand [38], [41] to reduce memory usage.

We study approaches between these extremes. If for instance the model is steady, one can use the iterated states
in the direct order [34], or one can use only the fully converged final state. Since these mixed approaches can
also be error-prone, we advocate incorporating them into the AD model and into the AD tools.

4. Application Domains

4.1. Panorama
Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications:

• optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography),

• first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

• mesh adaptation and mesh optimization with gradients or adjoints,

• equation solving with the Newton method,

• sensitivity analysis, propagation of truncation errors.

These applications require an AD tool that differentiates programs written in classical imperative languages,
FORTRAN77, FORTRAN95, C, or C++.
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4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [39] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state is
largely unknown. Only some measures at arbitrary places and times are available. A good initial state is found
by solving a least squares problem between the measures and a guessed initial state which itself must verify
the equations of meteorology. This boils down to solving an adjoint problem, which can be done though AD
[42]. Figure 1 shows an example of a data assimilation exercise using the oceanography code OPA [40] and
its AD adjoint code produced by TAPENADE.

The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is time,
as available measures are distributed over a given assimilation period. Therefore the least squares mechanism
must be applied to a simulation over time that follows the time evolution model. This process gives a much
better estimation of the initial state, because both position and time of measurements are taken into account.
On the other hand, the adjoint problem involved grows in complexity, because it must run (backwards) over
many time steps. This demanding application of AD justifies our efforts in reducing the runtime and memory
costs of AD adjoint codes.

4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This is
sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameters. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. Software

5.1. TAPENADE
Participants: Laurent Hascoët [correspondant], Valérie Pascual.
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Figure 1. Twin experiment using the adjoint of OPA. We add random noise to a simulation of the ocean state
around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model
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• ACM: D.3.4 Compilers, G.1.0 Numerical algorithms, G.1.4 Automatic differentiation, I.1.2 Analysis
of algorithms

• AMS: 65K10, 68N20

• Keywords: automatic differentiation, adjoint, gradient, optimisation, inverse problems, static analy-
sis, data-flow analysis, compilation

• APP registration: IDDN.FR.001.040038.002.S.P.2002.000.10600

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team. TAPENADE implements
the results of our research about models and static analyses for AD. To promote usage of AD in the scientific
computation world, including the industry, we constantly maintain TAPENADE to meet the demands of our end-
users. TAPENADE is writtten in JAVA and can be downloaded and installed on most architectures. Alternatively,
it can be used as a web server. All information is available from the team’s web page
http://www-sop.inria.fr/tropics/

TAPENADE differentiates computer programs according to the model described in section 3.1. It supports three
modes of differentiation: tangent, vector (i.e. multi-directional) tangent, and reverse. Higher-order derivatives
can be obtained through repeated application of tangent AD on tangent and/or reverse AD. TAPENADE
accepts programs written in FORTRAN77, FORTRAN95, and C. Thanks to the language-independent internal
representation of programs, a single TAPENADE kernel is used and every further development in TAPENADE
benefits to differentiation of each input language.

TAPENADE performs sophisticated data-flow analysis on the complete source program to produce an efficient
differentiated code. All these data-flow analysis are both flow-sensitive and context-sensitive. Classical
analysis, not specific to AD, include Type-Checking, Read-Write analysis, and Pointer analysis. AD-specific
analysis include:

• Activity analysis: This detects variables whose derivative is either null or useless. The interest is to
reduce the number of derivative instructions.

• Adjoint Liveness analysis: This detects the source statements that are not needed for the computa-
tion of derivatives. The interest is to reduce the number of source statements that are copied into the
derivative code.

• TBR analysis: In reverse mode, this finds the smallest sets of source variables that need to be
preserved for use in the derivative statements. The interest is to reduce the memory consumption of
the reverse mode.

This year, in addition to the usual debugging activity in response to reports from our end-users, we have
included the following major features:

• A storage-recomputation tradeoff that reduces the memory consumption in reverse mode at the cost
of repeated execution of selected simple statements of the source program.

• A finer control on the checkpointing mechanism, that lets the end-user define portions of procedures
on which checkpointing must be applied.

• The automatic setup by TAPENADE of the machinery for optimal (binomial) checkpointing [35] on
iterative loops.

• (still under development) The taking into account of parallel communication calls along all the chain
of the TAPENADE tool.

TAPENADE is not open-source. Academic usage is free. Industrial or commercial usage require a paying
license, as detailled on the team’s web page. Several industrial companies have purchased and renewed
an industrial license for TAPENADE. This year’s new custommers are Exxon-Mobil, BASF, and UTC. The
software has been downloaded several hundred times, and the web tool served several thousands of true
connections (not robots). The tapenade-users mailing list has reached one hundred registered users.

http://www-sop.inria.fr/tropics/
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6. New Results

6.1. Automatic Differentiation and parallel codes
Participants: Valérie Pascual, Laurent Hascoët, Jean Utke [Argonne National Lab. (Illinois, USA)], Uwe
Naumann [RWTH Aachen University (Germany)].

This research is an ongoing joint work between three teams working on AD. We study differentiation in
reverse mode of programs that contain MPI communication calls. Instead of the commonly used approach that
encapsulates the MPI calls into black-box subroutines that will be differentiated by hand, we are looking for a
native differentiation of the MPI calls by the AD tool.

One issue is to reduce the large variability of the available MPI calls and parameters to a smaller number
of elementary concepts. We then address the basic question of sends and recvs, that may be blocking or
nonblocking, individual or collective, and so on. Essentially the adjoint of a send is a recv, and vice-versa,
but the possibility of nonblocking isend’s and irecv’s requires more subtlety.

This year, we focused on the adaption of the tool’s static analysis to programs with parallel communication. It
requires conceptual development to integrate this communication into our framework of flow-sensitive and
context-sensitive data-flow analysis. As an experiment, we started to implement these new concepts into
TAPENADE’s data-flow analysis. Results are still preliminary, but the approach correctly captures the influence
of communication on the data-flow. In particular, this approach retains a high level of flow-sensitivity.

Consistently with our general choices, we focus on AD tools based on program transformation. Therefore we
adapt the general ideas on differentiation of parallel communication to program transformation, and this is why
we need to adapt the data-flow analysis components. On the other hand, we closely follow the developments
of these general ideas for operator-overloading AD tools, which require a more complex definition of the
overloaded communication primitives [22].

6.2. Combined Storage and Recomputation for Data-Flow reversal
Participant: Laurent Hascoët.

The Data-Flow reversal inherent to the reverse mode of AD is bound to have a cost in memory space or in
duplicate computations.

Last year, we started to implement a practical strategy to replace some Storage with cheap Recomputation.
This strategy only picks some “low-hanging fruit”, as it considers only recomputation that obeys some simple
data-flow properties.

This year, we continued this development. Successive refinements make this strategy more and more complex,
and error-prone. A proof of correction becomes necessary, that takes into account all possible interactions
between this strategy and the data-flow analysis that it uses and influences. We are building such a proof of
correctness, that still needs to be refined and simplified before it is published.

In the future, we plan to lift more limitations of this strategy. One goal is to encompass the extreme
“Recompute-All” strategy that is implemented in the TAF tool [31], with its optimizations (“Efficient
Recomputation Algorithm”). Another goal is to use this strategy as a framework to get closer to an optimum
between storage and recomputation.

6.3. Resolution of linearised systems
Participants: Hubert Alcin, Olivier Allain [Lemma], Anca Belme, Marianna Braza [IMF-Toulouse], Alexan-
dre Carabias, Alain Dervieux, Bruno Koobus [Université Montpellier 2], Carine Moussaed [Université Mont-
pellier 2], Hilde Ouvrard [IMF-Toulouse], Stephen Wornom [Lemma].
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The interaction between the sophisticated solution algorithm inside a program and the Automatic Differentia-
tion of the program is a non-trivial issue. An iterative algorithm generally does not store the successive updates
of the iterated solution vector. Furthermore, a modern iterative solution algorithm involves several nonlinear
processes, like in:

• the evaluation of an optimal step, which results at least from a homographic function of the
unknown,

• the orthonormalisation of the updates (Gram-Schmidt method, Hessenberg method).

Applying reverse AD to the iterative solution algorithm produces a linearised iterative algorithm which is
transposed and therefore follows a reverse order, with exactly the same number of iterations, and needing
exactly each of the iterated state solution vectors. This effect is considerably amplified in the case of the
numerical simulation of unsteady phenomena with implicit numerical schemes. For example, the simulation
of high Reynolds turbulent flows by a Large Eddy Simulation (LES) requires hundreds of thousands time
steps, each of them involving a modern iterative solution algorithm.

In the ECINADS ANR project, we design more efficient solution algorithms and we examine the questions
risen by their reverse differentiation. The application domain is the computation of high Reynolds turbulent
flows with LES and hybrid RANS-LES models. The efficiency will be evaluated through the practical
scalability on a large number of processors. This efficiency criterion also extends to the scalability of the
reverse/adjoint algorithm. ECINADS also addresses the scalable solution of new approximations. ECINADS
associates the university of Montpellier 2, the Institut de Mécanique des fluides de Toulouse and Lemma
company. The kick off meeting of ECINADS was held at end of 2009.

Hubert Alcin started his PhD in october 2009, with advisors Olivier Allain and Alain Dervieux. He is studying
coarse grid methods for domain decomposition for the Poisson solver used in the projection step for an
incompressible model. The ingredients are Deflation or Balancing methods for introducing coarse grids and
an additive Schwarz algorithm. Two approaches are used for building a coarse grid basis, either with the
characteristic functions of the partition or with smoothed version of them. Numerical experiments show that
using the smooth basis produces a better scalability. These results were discussed in a ECINADS seminar
and at the ECINADS period review. Carinne Moussaed et Bruno Koobus in Montpellier started an extension
to models for compressible flows. Alexandre Carabias started the study of higher order numerical advection
schemes, with advisors Oliver Allain and Alain Dervieux. He is extending a scheme introduced by Hilde
Ouvrard and Bruno Koobus.

6.4. Perturbation Methods
Participants: Anca Belme, Massimiliano Martinelli [Universitá di Pavia], Alain Dervieux, Laurent Hascoët,
Régis Duvigneau [OPALE team].

In the context of the European project NODESIM-CFD, the contribution of Tropics involved mainly the
production of second derivative code through repeated application of Automatic Differentiation. Three
strategies can be applied to obtain (elements of) the Hessian matrix, named Tangent-on-Tangent (ToT),
Tangent-on-Reverse (ToR), and Reverse-on-Tangent (RoT). The subject of correction of approximation errors
is also a contribution to NODESIM-CFD and an important application of TAPENADE. We investigated the two
types of correctors, by direct linearisation and Defect Correction, or by the adjoint-based functional correction.
These contribution were reported in the “Guide for Uncertainty Management in CFD” written in collaboration
with NUMECA and Vrije Universiteit Brussels and in [15].

6.5. Control of approximation errors
Participants: Frédéric Alauzet [GAMMA team, INRIA-Rocquencourt], Olivier Allain [Lemma], Anca
Belme, Alain Dervieux, Damien Guegan [Lemma], Adrien Loseille [GAMMA team, INRIA-Rocquencourt].

This is a joint research between INRIA teams GAMMA (Rocquencourt), TROPICS, and PUMAS. Roughly
speaking, GAMMA brings mesh and approximation expertise, TROPICS contributes to adjoint methods, and
CFD applications are developed in the context of PUMAS.
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The resolution of the optimum problem using the innovative approach of an AD-generated adjoint can be used
in a slightly different context than optimal shape design namely, mesh adaptation. This will be possible if
we can map the mesh adaptation problem into a differentiable optimal control problem. To this end, we have
introduced a new methodology that consists in stating the mesh adaptation problem in a purely functional
form: the mesh is reduced to a continuous property of the computational domain: the continuous metric. We
minimize a continuous model of the error resulting from that metric. Thus the problem of searching an adapted
mesh is transformed into the search of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a close formula and gives access
to a complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation, [13]. In the case of adaptation for Partial Differential Equations such as the Euler model,
we need an adjoint state that we obtain with TAPENADE. We end up with a minimisation problem for the
metric which in turn is solved analytically [14], [21], [20]. During 2010, the extension to unsteady problems
has been started, see [18], [19].

7. Dissemination

7.1. Animation of the scientific community
• TROPICS participates in the project EVA-Flo: “Evaluation et Validation Automatique pour le calcul

FLOttant”, which is an ANR project accepted in 2007, and whose main contractor in ENS Lyon
(Nathalie Revol). Laurent Hascoët attended an EVA-Flo project meeting in Perpignan, France (may
20-21).

• Hubert Alcin presented his results on coarse grid methods in CANUM 2010 in Carcans (may) and
at the ECINADS seminar in Sophia-Antipolis (october).

• Laurent Hascoët is on the organizing commitee of the European Workshops on Automatic Differ-
entiation. He attented this year’s workshops in Paderborn, Germany (june 3-4) and Cranfield, UK
(december 9).

• Laurent Hascoët is a member of the internal “CDT” committee at INRIA Sophia-Antipolis (“Comité
Développement Technologique”).

• Anca Belme presented a talk on “Goal-oriented anisotropic mesh adaptation for unsteady flows” at
ECCOMAS 2010, Lisbon.

• Alain Dervieux presented a talk on “Fully anisotropic goal-oriented mesh adaptation: 3D anisotropic
mesh adaptation for functional outputs” at ECCM2010, Paris.

• Alain Dervieux presented a lecture on “ Indicateurs de raffinement et adaptation de maillage en
simulation numérique pour la mécanique des fluides” at Collège Polytechnique.

• Laurent Hascoët presented the team’s research on AD at CNAM Paris (“Conservatoire National des
Arts et Métiers”) (september 22).

• The team hosted a scientific seminar to celebrate the 60th birthday of Andreas Griewank (HU
Berlin) (april 8-9). A smaller seminar was organized with the Tropics team on april 7, with Andreas
Griewank, Jorge Moré (Argonne), R. Baker Kearfott (Louisiana University) and Trond Steihaug
(Bergen University).

• The team organized a workshop of the ECINADS ANR project at INRIA Sophia-Antipolis (october
27-28).

• The team participated in the European STREP project NODESIM (Non-Deterministic Simulation
for CFD-based design methodologies), driven by Numeca (Belgium) ended this year. TROPICS and
OPALE contributed to application of AD to build reduced models using first and second derivatives.
We design robust optimization strategies, and correctors for approximation errors.
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• The team is coordinator of the ANR project ECINADS, with PUMAS team, university Montpellier
2, Institut de mécanique des Fluides de Toulouse and the Lemma company in Sophia-Antipolis.
ECINADS concentrates on solution algorithms for state and adjoint systems in CFD.

• The team’s PhD students organized a joint seminar day with the PhD students of the INRIA team
NACHOS and the CEMEF (Ecole des mines de Paris) (june 7).

• Alain Dervieux was in the PhD jury of Julien Montagnier (Lyon), of Ludovic Martin and Guillaume
Barbut (university of Toulouse).

7.2. Teaching
• Anca Belme gives lectures at Université de Nice on Numerical Algorithms (48 hours)

• Hubert Alcin gives lectures to 3rd year students at Université de Nice.
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