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2. Overall Objectives

2.1. Overall Objectives
VEGAS is a research project of LORIA (Lorraine Research Laboratory in Computer Science and Applica-
tions), a laboratory shared by INRIA (National Institute for Research in Computer Science and Control),
CNRS (National Center for Scientific Research), Université Henri Poincaré Nancy 1, Université Nancy 2, and
INPL (National Engineering Institute of Lorraine).

The main scientific objective of the VEGAS research team is to contribute to the development of an effective
geometric computing dedicated to non-trivial geometric objects. Included among its main tasks are the study
and development of new algorithms for the manipulation of geometric objects, the experimentation of algo-
rithms, the production of high-quality software, and the application of such algorithms and implementations
to research domains that deal with a large amount of geometric data, notably solid modeling and computer
graphics.

Computational geometry has traditionally treated linear objects like line segments and polygons in the plane,
and point sets and polytopes in three-dimensional space, occasionally (and more recently) venturing into the
world of non-linear curves such as circles and ellipses. The methodological experience and the know-how
accumulated over the last thirty years have been enormous.

For many applications, particularly in the fields of computer graphics and solid modeling, it is necessary
to manipulate more general objects such as curves and surfaces given in either implicit or parametric form.
Typically such objects are handled by approximating them by simple objects such as triangles. This approach
is extremely important and it has been used in almost all of the usable software existing in industry today. It
does, however, have some disadvantages. Using a tessellated form in place of its exact geometry may introduce
spurious numerical errors (the famous gap between the wing and the body of the aircraft), not to mention
that thousands if not hundreds of thousands of triangles could be needed to adequately represent the object.
Moreover, the curved objects that we consider are not necessarily everyday three-dimensional objects, but also
abstract mathematical objects that are not linear, that may live in high-dimensional space, and whose geometry
we do not control. For example, the set of lines in 3D (at the core of visibility issues) that are tangent to three
polyhedra span a piecewise ruled quadratic surface and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic hypersurfaces.
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Effectiveness is a key word of our research project. By requiring our algorithms to be effective, we imply that
the algorithms should be robust, efficient, and versatile. By robust we mean algorithms that do not crash on
degenerate inputs and always output topologically consistent data. By efficient we mean algorithms that run
reasonably quickly on realistic data where performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of objects that are general enough to cover
realistic situations and that account for the exact geometry of the objects, in particular when they are curved.

3. Scientific Foundations
3.1. Theory and applications of three-dimensional visibility

The notion of 3D visibility plays a fundamental role in computer graphics. In this field, the determination
of objects visible from a given point, the extraction of shadows or of penumbra boundaries are examples
of visibility computations. In global illumination methods, (e.g. radiosity algorithms), it is necessary to
determine, in a very repetitive manner, if two points of a scene are mutually visible. The computations can
be excessively expensive. For instance, in radiosity, it is not unusual that 50 to 70% of the simulation time is
spent answering visibility queries.

Objects that are far apart may have very complicated and unintuitive visual interactions, and because of this,
visibility queries are intrinsically global. This partially explains that, until now, researchers have primarily
used ad hoc structures, of limited scope, to answer specific queries on-the-fly. Unfortunately, experience has
shown that these structures do not scale up. The lack of a well-defined mathematical foundation and the
non-exploitation of the intrinsic properties of 3D visibility result in structures that are not usable on models
consisting of many hundreds of thousands of primitives, both from the viewpoint of complexity and robustness
(geometric degeneracies, aligned surfaces, etc.).

We have chosen a different approach which consists of computing ahead of time (that is, off-line) a 3D global
visibility structure for which queries can be answered very efficiently on-the-fly (on line). The 3D visibility
complex – essentially a partition of ray space according to visibility – is such a structure, recently introduced
in computational geometry and graphics [42], [49]. We approach 3D global visibility problems from two
directions: we study, on the one hand, the theoretical foundations and, on the other hand, we work on the
practical aspects related to the development of efficient and robust visibility algorithms.

From a theoretical point of view, we study, for example, the problem of computing lines tangent to four
among k polytopes. We have shown much better bounds on the number of these tangents than were previously
known [2]. These results give a measure of the complexity of the vertices (cells of dimension 0) of the visibility
complex of faceted objects, in particular, for triangulated scenes.

From a practical point of view, we have, for example, studied the problem of the complexity for these 3D
global visibility structures, considered by many to be prohibitive. The size of these structures in the worst case
is O(n4), where n is the number of objects in the scene. But we have, in fact, shown that when the objects
are uniformly distributed, the complexity is linear in the size of the input [6]. This probabilistic result does not
prejudice the complexity observed in real scenes where the objects are not uniformly distributed. However,
initial empirical studies show that, even for real scenes, the observed complexity is largely inferior to the
theoretical worst-case complexity, as our probabilistic result appears to indicate.

We are currently working on translating these positive signs into efficient algorithms. We are studying new
algorithms for the construction of the visibility complex, putting the accent on the complexity and the
robustness.

3.2. Reliable geometric computations on curves and surfaces
Simple algebraic surfaces cover a variety of forms sufficient for representing the majority of objects encoun-
tered in the fields of design, architecture and industrial manufacturing. For instance, it has been estimated that
95% of all mechanical pieces can be well modeled by quadric patches (degree 2 surfaces, including planes,
spheres, cylinders and cones) and torii [50]. It is important, then, to be able to process these surfaces in a
robust and efficient manner.
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In comparison with polygonal representations, modeling and manipulating scenes made of curved objects pose
a large variety of new issues and require entirely different tools. It is for instance no longer realistic to assume
that simple operations like intersecting two primitives take constant time. The usual notion of complexity has
to be revised and needs to incorporate the arithmetic complexity of operations.

Geometric computing with curved objects is plagued with robustness issues. The numerical instability of
geometric algorithms is intimately linked to the double nature of geometric objects. Indeed, a geometric
object is two things: a combinatorial structure which encodes the incidence properties between the elements
constituting the object and numerical quantities (coordinates, equations) describing the embedding of the
object in space. Manipulating geometric data, without breaking the consistency constraints that govern the
relation between combinatorial and numerical quantities, is usually hard and has led to the unfolding of the
exact geometric computing paradigm.

The dependence of combinatorial decisions on numerical computations is encapsulated in the notion of
geometric predicates. When working with algebraic objects, evaluating a geometric predicate often means
determining the sign of a polynomial expression in the coefficients of the input. This sign encodes the answer to
simple geometric queries like “are three given points aligned?” or “is a given line tangent to a given surface?”.
The paradigm of exact geometric computing requires the predicates to be evaluated exactly, ensuring that the
branching of the algorithm are correct, that the software will not crash, loop indefinitely or output a wrong
answer, and thus that the topological structure of the output is correct.

In the context of exact geometric computing, we work on key problems involving curved objects, mainly
two-dimensional curves, and low-degree three-dimensional surfaces such as quadrics. For instance, we
study intersections of quadrics both from an algorithmic and an algebraic-geometric point of view. On the
algorithmic side, we work on finding simple and usable parameterizations of the intersection of two arbitrary
quadrics. On the algebraic side, we deal with finding simple (and ideally optimal) geometric predicates for
classifying the intersection pattern and the positional relationship of two quadrics.

We also work on computing arrangements of curved objects, i.e. the partitioning of space induced by the
objects, such as arrangements of curves on a surface, or arrangements of quadrics in 3D space. Note that
intersections of 2 and 3 quadrics are building blocks for the constructions of quadric arrangements. We work
on constructing simpler sub-arrangements, like the BRep (Boundary Representation) of a solid model (CSG).
Exact CSG-to-BRep conversion is a key and long-standing problem in CAGD, where many conventional
modelers work with volumes and rendering software based on the global illumination approach need surface
patches.

Finally, we deal with geometric problems where low-degree surfaces appear indirectly, not in the input but as
intermediate structures. A major problem in this category is the computation of the Voronoi diagram, or medial
axis, of polyhedra in 3D. In particular, we work on the simpler instance where only lines and line segments in
3D are considered, the bisectors of pairs of lines being quadric surfaces.

4. Application Domains

4.1. Computer graphics
Our main application domain is photorealistic rendering in computer graphics. We are especially interested in
the application of our work to virtual prototyping, which refers to the many steps required for the creation of
a realistic virtual representation from a CAD/CAM model.

When designing an automobile, detailed physical mockups of the interior are built to study the design and
evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and
difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and
immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility,
and aesthetics and appeal.
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Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work
on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the
scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the
simulations.

4.2. Solid modeling
Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed
somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms
and deal with many of the same issues. But while the computational geometry community has been mathe-
matically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer
ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the
middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are
of interest to us, let us mention: the description of geometric shapes, the representation of solids, the
conversion between different representations, data structures for graphical rendering of models and robustness
of geometric computations.

5. Software

5.1. QI: Quadrics Intersection
QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of an
algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [10], [39], [40], [41]
and represents the first complete and robust solution to what is perhaps the most basic problem of solid
modeling by implicit curved surfaces.

QI is written in C++ and builds upon the LiDIA computational number theory library [33] bundled with
the GMP multi-precision integer arithmetic [32]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [10] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under the free for non-commercial use INRIA
license and will be distributed under the QPL license in the next release. The implementation can also be
queried via a web interface [34].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.

5.2. Isotop: Topology and Geometry of Planar Algebraic Curves
ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from INRIA Paris - Rocquencourt (SALSA). It is
based on the method described in [16] which incorporates several improvements over previous methods.
In particular, our approach does not require generic position (nor shearing) and avoids the computations of
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sub-resultant sequences. Our preliminary implementation is competitive with other implementations (such
as ALCIX and INSULATE developed at MPII Saarbrücken, Germany and TOP developed at Santander Univ.,
Spain). It performs similarly for small-degree curves and performs significantly better for higher degrees, in
particular when the curves are not in generic position.

5.3. CGAL: Computational Geometry Algorithms Library
Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. we want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, S. Lazard and L. Peñaranda proposed an extension to the already existing Number
Types package. They contributed two new number types Gmpfr and Gmpfi to the CGAL library (see Sections
5.4, 5.7, and 5.9 of [46]); these new types interface the multiple-precision floating-point arithmetic library
MPFR, and corresponding interval arithmetic library MPFI. They also contributed a model of the Univariate
Algebraic Kernel concept for algebraic computations [30] (see Sections 8.2.2 and 8.4). This CGAL package
improves, for instance, the efficiency of the computation of arrangements of polynomial functions in CGAL
[48]. This implementation uses the RS library developed by F. Rouillier at INRIA Paris - Rocquencourt
(SALSA) for isolating real roots of polynomials. All these packages have been reviewed and accepted accepted
by the editorial board of CGAL and have been released this year.

6. New Results

6.1. 3D visibility, theory and applications
In recent years, our activity in the area of 3D visibility focused on three main directions: (i) the computation
and complexity analysis of the 3D visibility complex or skeleton, (ii) the computation and complexity analysis
of the boundary of shadows cast by area light sources, and (iii) the study of some fundamental questions in
geometric transversal theory.

6.1.1. Complexity of sets of free lines and line segments among balls in three dimensions
We presented in [26] two new fundamental lower bounds on the worst-case combinatorial complexity of sets
of free lines and sets of maximal free line segments in the presence of balls in three dimensions.

We first proved that the visibility complex of n disjoint unit balls, or equivalently the set of maximal non-
occluded line segments among n disjoint unit balls, has complexity Ω(n4), which matches the trivial O(n4)
upper bound. This improves the trivial Ω(n2) bound and also the Ω(n3) lower bound for the restricted
setting of arbitrary-size balls, proved by Devillers and Ramos in 2001. This result settles, negatively, the
natural conjecture that this set of line segments, or, equivalently, the visibility complex, has smaller worst-case
complexity for disjoint fat objects than for skinny triangles.

We also proved an Ω(n3) lower bound on the complexity of the set of non-occluded lines among n balls of
arbitrary radii, improving on the trivial Ω(n2) bound. This new bound almost matches the recent O(n3+ε)
upper bound [51].

We submitted the final version of this paper to the journal Discrete and Computational Geometry in a special
issue dedicated to the best papers from the 2010 Symposium on Computational Geometry.

http://www.cgal.org
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6.1.2. Succinct 3D visibility skeleton
The 3D visibility skeleton is a data structure that encodes the global visibility information of a set of 3D
objects. While it is useful in answering global visibility queries, its large size often limits its practical use.
We addressed this issue in [24], [27] by proposing a subset of the visibility skeleton, which is about 25%
to 50% of the whole set. We showed that the rest of the data structure can be recovered from the subset as
needed, partially or completely. Our recovery method is efficient in the sense that it is output-dependent. We
also proved that this subset is minimal for the complexity of our recovery method.

6.1.3. Shadow boundary computation
Computing a geometric description (as opposed to, say, a bitmap rendering) of the boundaries of the shadow
regions in a 3D scene with extended light-sources is a difficult problem. Typical solutions are based on visual
event surfaces, certain patches of ruled surfaces that partition the 3D spaces in regions from which the view
of the scene is invariant. The number of visual event surfaces can be prohibitive, but only a few of them
contribute to defining the shadow boundaries. In his PhD thesis in 2008, Julien Demouth, a former student of
the group, identified a small superset of visual event surfaces that are relevant for this problem and developped
a prototype code that compute the boundaries of shadows cast by extended convex polyhedra. This year, from
January to July, JeongHwan Jang, a master student from KAIST worked on improving the prototype of Julien
Demouth. Specifically, the prototype could only trace the shadows on the “ground” of the 3D world due
to certain simplifying assumptions; JeongHwan lifted these assumptions by, in particular, making a detailed
analysis of the predicates for the intersection of a plane and a visual event suface. The prototype can now trace
the shadow boundaries on the objects themselves. This work is the basis for JeongHwan’s master thesis, to be
defended in December in KAIST.

6.1.4. Lower bounds to Helly numbers of line transversals to disjoint congruent balls
A line ` is a transversal to a family F of convex objects in Rd if it intersects every member of F . We showed
that for every integer d > 2 there exists a family of 2d− 1 pairwise disjoint unit balls in Rd with the property
that every subfamily of size 2d− 2 admits a transversal, yet any line misses at least one member of the family.
This answers a question of Danzer from 1957. This work was accepted for publication in the Israel Journal of
Mathematics [18].

6.1.5. Lines pinning lines
A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member
of F . If, in addition, g is an isolated point of the space of line transversals to F , we say that F is a pinning
of g. We showed that any minimal pinning of a line by convex polytopes such that no face of a polytope is
coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most
six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line. This
work was accepted for publication in a special issue of the journal Discrete & Computational Geometry [14]
devoted to the workshop on Transversal and Helly-type Theorems in Geometry, Combinatorics and Topology,
Banff, 2009.

6.1.6. Pinning a line by balls or ovaloids in R3

We show that if a line ` is an isolated line transversal to a finite family F of (possibly intersecting) balls in
R3 and no two balls are externally tangent on ` , then there is a subfamily G ⊆ F of size at most 12 such
that ` is an isolated line transversal to G. We generalize this result to families of semialgebraic ovaloids. This
work was accepted for publication in a special issue of the journal Discrete & Computational Geometry [20]
devoted to the workshop on Transversal and Helly-type Theorems in Geometry, Combinatorics and Topology,
Banff, 2009.

6.2. Certified geometric computing for curves and surfaces
6.2.1. Topology of real algebraic plane curves
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We revisited in the problem of computing the topology and geometry of a real algebraic plane curve. The
topology is of prime interest but geometric information, such as the position of singular and critical points, is
also relevant. A challenge is to compute efficiently this information for the given coordinate system even if the
curve is not in generic position.

Previous methods based on the cylindrical algebraic decomposition use sub-resultant sequences and compu-
tations with polynomials with algebraic coefficients. A novelty of our approach is to replace these tools by
Gröbner basis computations and isolation with rational univariate representations. This has the advantage of
avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our al-
gorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes.
This decomposition also induces a new approach for computing an arrangement of polylines isotopic to the
input curve. We also present an analysis of the complexity of our algorithm. An implementation of our algo-
rithm demonstrates its efficiency, in particular on high-degree non-generic curves; see Section Software. These
results were presented in Luis Peñaranda’s Ph.D. thesis [13] and published in [16].

6.2.2. Algebraic tools for geometric computing
In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. We want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. We have contributed to the CGAL library a model of the Univariate Algebraic Kernel concept
for algebraic computations [30] (see Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the
efficiency of the computation of arrangements of polynomial functions in CGAL [48]. This implementation
uses the RS library developed by F. Rouillier at INRIA Paris - Rocquencourt (SALSA) for isolating real
roots of polynomials. We have also contributed an extension to the already existing CGAL Number Types
package. We proposed two new number types Gmpfr and Gmpfi to the CGAL library (see Sections 5.4, 5.7,
and 5.9 in [46]); these new types interface the multiple-precision floating-point arithmetic library MPFR, and
corresponding interval arithmetic library MPFI. All these packages have been reviewed and accepted by the
editorial board of CGAL have been released this year. This work was also presented in Luis Peñaranda’s Ph.D.
thesis [13].

6.2.3. Boundary evaluation of quadric-based solids
Few approaches have been proposed for computing exactly and efficiently a representation of the boundary
(BRep) of a solid defined as unions and intersections of elementary solids delimited by quadrics. All of
them assume, in particular, that the objects considered are in “generic position”, therefore bypassing the all-
important issue of degeneracies. Using our algorithm for parameterizing the intersections of two projective
quadrics [7] as a building block, we have presented an algorithm for exactly and robustly extracting the
surface patches appearing on the BRep and giving an explicit representation of their borders. This algorithm
was presented this year in M. Pentcheva’s Ph.D. thesis [12].

It should be stressed that this project, which consists in computing a part of an arrangement of quadrics, has
many applications other than the boundary evaluation of quadric-based solids. For instance, problems such
as computing the convex hull of a set of quadric patches or computing one cell of the Voronoi diagram of
polyhedra can be solved by computing the boundary of a quadric-based solid.

6.2.4. Computing the edge-adjacency graph of an arrangement of quadrics
In [22], we presented a complete, exact and efficient implementation to compute the edge-adjacency graph of
an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation
of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection
curves of two quadrics [7], such that we can compute the exact parameter value for intersection points and
from that the edge-adjacency graph of the arrangement. Our implementation is complete in the sense that it can
handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points. It
is exact in that it always computes the mathematically correct result. It is efficient measured in running times,
i.e. it compares favorably to the only previous implementation.
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6.2.5. Characterizing the intersection pattern of two projective conics
We showed how to efficiently detect the type of the intersection of two arbitrary plane projective conics. The
characterization uses geometric predicates of bidegree (6, 6) in the two input conics, which is optimal. While
we already proved similar results recently (cf. [11]), the approach spelled out here attaches geometric meaning
to the predicates and overall brings substantial geometric insight to the characterization problem, which was
previously treated purely algebraically. The idea is as follows: we first consider a special conic pencil to which
can be attached in a simple way a quartic binary form. We show that the root pattern of the quartic is in one-to-
one correspondence with the intersection pattern of the two conics. Then, following old ideas of Lindemann,
we relate invariants/covariants of any two conics in the special pencil to invariants/covariants of the quartic,
using the symbolic approach to classical invariant theory. We compute the Bezoutian of the quartic and show
that its inertia (as a quadratic form) characterizes the intersection pattern of the two conics. We finally express
it in terms of covariants of the two conics and show that its expression and the properties attached to it extend
to the case of a general conic pencil.

6.2.6. Geometric predicates as arrangements of hypersurfaces
Geometric predicates can be formulated as an arrangement of hypersurfaces (usually algebraic varieties) in
a high-dimensional space, where each cell of the arrangement corresponds to an outcome of the predicate,
and an evaluation of the predicate maps to point-location queries in this arrangement. To do this successfully,
the arrangement has to be decomposed by the aid of subsidiary hypersurfaces, the degree of which plays a
fundamental role in the algebraic complexity of the predicate, with respect to the input coefficients. We show
in [29] that the widely used predicate of root comparison of quadratic polynomials can be mapped to an
arrangement of lines and a parabola. For cubics, it becomes an arrangement of planes and a quartic surface,
when a monic polynomial of degree d is represented as a point in Rd. Minimizing the degree of the subsidiary
equations is an outstanding open problem.

6.2.7. Bounded-curvature shortest paths
We considered the problem of computing shortest paths having curvature at most one almost everywhere and
visiting a sequence of n points in the plane in a given order. This problem arises naturally in path planning for
point car-like robots in the presence of polygonal obstacles, and is also a sub-problem of the Dubins Traveling
Salesman Problem.

We showed in [31] that a shortest bounded-curvature path through a sequence of points p1, ..., pn such that
consecutive points are distance at least 4 apart can be computed by minimizing a function from Rn to R which
is strictly convex over at most 2k convex polyhedra, and realizes its minimum over these polyhedra; each
polyhedron is defined by 4n− 1 inequalities, and k denotes the number of sharp turns, that is, informally, the
number of points pi such that ∠(pi−1, pi, pi+1) is small. The function to be optimized maps (θ1, ..., θn) ∈ Rn

to the length of a shortest curvature-constrained path that visits the points p1, ..., pn in order and whose tangent
in pi makes an angle θi with the x-axis.

We also reveal a connection between the above problem and the question of finding a shortest path of bounded
curvature between two given points in the presence of polygonal obstacles. As a consequence, we obtain that
if the sequence of points where a shortest path touches the obstacles is known then “connecting the dots”
reduces, under certain conditions, to a family of convex optimization problems.

6.3. Other results in computational geometry
6.3.1. Rigid graph

Given an abstract graph and its edge lengths, we considered the problem of counting its embeddings in the
plane. This problem is important in computational geometry [36], [35] and has applications in robot kinematics
[52], [38], [44] and structural biology [47], [45], [43]. We focused on graphs with 11 edges and 7 vertices,
that is the smallest case for which the maximal number of embeddings was unknown. We proved that they can
have at most 56 embeddings and showed an example of such a graph.
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The rigidity of these graphs was captured by a polynomial system derived from Cayley-Menger matrices. The
upper bound were obtained using the theory of mixed-volume for sparse systems. And for the lower bound,
we used stochastic optimisation methods.

Moreover, this result allowed us to slightly improve the lower bound for any n on the number of embeddings
of a n-vertices graph, raising the record obtained by Borcea and Streinu from Ω(2.289n) to Ω(2.300n).

This work has been submitted to IFToMM 2011, one of the major conferences in mechanical design.

6.3.2. Homotopic Fréchet distance between curves
The Fréchet distance between two curves in the plane is the minimum length of a leash that allows a dog and
its owner to walk along their respective curves, from one end to the other, without backtracking. We proposed
in [15] a natural extension of Fréchet distance to more general metric spaces, which requires the leash itself to
move continuously over time. For example, for curves in the punctured plane, the leash cannot pass through or
jump over the obstacles (“trees”). We describe a polynomial-time algorithm to compute the homotopic Fréchet
distance between two given polygonal curves in the plane minus a given set of polygonal obstacles.

6.3.3. Universal sets of n points for one-bend drawings of planar graphs with n vertices
We showed in [19] that any planar graph with n vertices can be point-set embedded with at most one bend
per edge on a universal set of n points in the plane. An implication of this result is that any number of planar
graphs admit a simultaneous embedding without mapping with at most one bend per edge.

6.3.4. Farthest-polygon Voronoi diagrams
Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we
consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest
point on it. We showed in [17] that the complexity of this diagram is O(n), and give an O(n log3 n) time
algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a
Voronoi region may consist of k − 1 connected components, but if one component is bounded, then it is equal
to the entire region.

6.4. International initiatives
6.4.1. Associated Teams and Other International Projects

• KAIST-INRIA associated team. This INRIA program is a joint project between VEGAS and the
Theory of Computation Laboratory of the KAIST University of Daejeon, in Korea, more particularly
the group of Otfried Cheong. It started in 2008, following a 2-years PHC grant. The research
theme is Discrete and Computational Geometry, in general, with a particular emphasis on questions
where both continuous and discrete aspects come into play and interact. In 2010, this collaboration
continued through mutual visits (see below) and a research workshop that we organized in September
2010 to discuss problems on interactions between discrete and algebraic geometry. The projects
on which we collaborate include line geometry [14], [18], combinatorial geometry [37] bounded
curvature path planning [31] and geometric data structures [17].

In 2010, this cooperation was supported for 13 kE by INRIA and for 4 kE by our partners.

• Sylvain Petitjean started a collaboration with Pr. Gert Vegter of the University of Groningen on
“Certified Geometric Approximation”. This collaboration is funded by the Netherlands Organization
for Scientific Research (NWO) - 2008–2012.

6.5. Visiting scientists
Visitors:

• JeongHwan Jang, KAIST, January-July, 6 months.



10 Activity Report INRIA 2010

• Otfried Cheong, KAIST, June, 1 week.

• Hyo-Sil Kim, KAIST, June, 2 weeks.

• Mira Lee, KAIST, July, 10 days.

• Martin Tancer, Charles University (Prague), September 1 week.

• Jae-Soon Ha, KAIST, September, 1 week.

• Christian Knauer, Bayreuth University, September, 1 week.

Visits:

• Xavier Goaoc, Univ. Magdeburg, Germany, 2 days; Charles University, Czech Republic, 2x1 week;
Frankfurt, Germany, 2 days; KAIST, Korea, 2 weeks.

• Laurent Dupont, KAIST, Korea, 2 weeks.

• Sylvain Lazard, Inria Sophia Antipolis, 2 weeks.

7. Dissemination

7.1. Teaching
All of the teaching activities were carried out in Nancy. The research Masters program is a joint degree with
Univ. Nancy 1, Univ. Nancy 2 and the engineering school INPL. These three institutes are jointly known as
University of Nancy.

Several members of the group, in particular the professors, assistant professors and Ph.D. students, actively
teach at Université Nancy 2, Université Henri Poincaré Nancy 1, and INPL. Members of the group also teach
in the Master of Computer Science of Nancy; namely, H. Everett contributed to the module “Modelisation of
geometric data”. Inria researchers also intervene: X. Goaoc teaches computational geometry in the Master’s
program of the geology school at INPL and an “algorithm in C” course in the “formation continue” program at
Nancy University. S. Lazard also teaches the L3 course on “Algorithms and Complexity" at Nancy University.

7.2. Animation of the scientific community
Program and Paper Committee:

• Hazel Everett: Program committee of the ACM Symposium on Computational Geometry 2010
(SoCG’10).

• Sylvain Lazard: Program committee of the European Symposium on Algorithms 2010 (ESA’10)

Editorial responsibilities:

• Hazel Everett: Editor of the Journal of Computational Geometry.

• Xavier Goaoc: Editor of the Journal of Computational Geometry.

• Sylvain Lazard: Guest editor (with L. Gonzalez-Vega, Santander Univ., Spain) of Mathematics
in Computer Science (special issue on Computational Geometry and CAGD) [21]. Guest editor
of Computational Geometry: Theory and Applications (special issue on selected papers from
EuroCG’08) [23].

• Sylvain Petitjean: Editor of Graphical Models.

http://www.univ-nancy2.fr/
http://www.uhp-nancy.fr/
http://www.inpl-nancy.fr/


Project-Team Vegas 11

Workshop organizations:

• Hazel Everett and Sylvain Lazard co-organized with S. Whitesides (Victoria University) the 9th
Workshop on Geometry Problems in Computer Graphics1 (Bellairs Research Institute of McGill
University) in Feb. (1 week workshop on invitation).

• Xavier Goaoc co-organized with Otfried Cheong (KAIST, Korea) and Frank Sottile (TAMU, USA).
the Workshop on Interactions between discrete and algebraic geometry2 (Val d’Ajol) in Sept. (1
week workshop on invitation).

Thesis and habilitation committee:

• Sylvain Lazard: member of the PhD. committee of P. Marin, INPL, Nancy.
• Sylvain Petitjean: member of the PhD. committee of D. Robert, Nancy-Université.

Other responsibilities:

• Hazel Everett: Head of the LORIA laboratory (Jan.-Feb. 2010).
• Sylvain Lazard: Head of the INRIA Nancy-Grand Est PhD and Post-doc hiring committee (since

2009). Member of the Bureau du Département Informatique de Formation Doctorale of the École
Doctorale IAE+M (since 2009).

• Laurent Dupont: Director of the departement Services et réseaux de communication of IUT Charle-
magne, University Nancy 2 (since 2008).

• Xavier Goaoc: Member of the hiring committee for computer science, University Paris 6. Corre-
spondent Europe of INRIA Nancy Grand-Est.

• Sylvain Petitjean: Scientific delegate of INRIA Nancy Grand-Est and chairman of its Project
committee (since 2009). Member of the Executive committee of INRIA Nancy Grand-Est, member
of its Commission des développements technologiques. Member of INRIA’s Evaluation committee.

• Marc Pouget: Member of the CGAL Editorial Board (since 2008).
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