
IN PARTNERSHIP WITH:
CNRS

Ecole normale supérieure de
Paris

Activity Report 2011

Project-Team ABSTRACTION

Abstract Interpretation and Static Analysis

IN COLLABORATION WITH: Laboratoire d’Informatique de l’Ecole Normale Supérieure (LIENS)

RESEARCH CENTER
Paris - Rocquencourt

THEME
Programs, Verification and Proofs

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Overall Objectives 1
2.2. Highlights 2

3. Scientific Foundations .2
3.1. Abstract Interpretation Theory 2
3.2. Formal Verification by Abstract Interpretation 2
3.3. Advanced Introductions to Abstract Interpretation 3

4. Application Domains .3
4.1. Certification of Safety Critical Software 3
4.2. Abstraction of Biological Cell Signaling Networks 4

5. Software . 4
5.1. The Apron Numerical Abstract Domain Library 4
5.2. The Astrée Static Analyzer of Synchronous Software 5
5.3. The AstréeA Static Analyzer of Asynchronous Software 6
5.4. OpenKappa 7
5.5. Translation Validation 7
5.6. Zarith 7

6. New Results . 8
6.1. Abstractions of Functions 8
6.2. Analysis of Biological Pathways 8

6.2.1. Automatic Reduction of Differential Semantics 8
6.2.2. Automatic Reduction of Stochastic Semantics 8

6.3. Automatic Array Content Analysis by Segmentation 9
6.4. Extrapolation operators for combinations of abstract domains 9
6.5. Grammar Semantics, Analysis and Parsing 9
6.6. Information Flow 9

6.6.1. Dependency Analysis and Numerical Invariants 10
6.6.2. Leakage Analysis 10

6.7. Linear Absolute Value Relation Analysis 10
6.8. Probabilistic Analysis 10
6.9. Safety 10
6.10. Security 11
6.11. Shape Analysis 11

6.11.1. Abstracting Calling-Context with Shapes 11
6.11.2. Abstract domains for the analysis of programs manipulating complex data-structures 11
6.11.3. Composite abstract domain for the analysis of dynamic structures 11

6.12. Static Analysis of Parallel Software 12
6.13. Termination 12
6.14. Theories, Solvers and Static Analysis 12
6.15. Underapproximation for Precondition Inference 13
6.16. Verification of spreadsheet programs by abstract interpretation 13

7. Contracts and Grants with Industry . 13
7.1. Contracts with Industry 13

7.1.1. Contracts 13
7.1.2. License agreement 14

7.2. Grants with Industry 14
7.2.1.1. Ascert 14
7.2.1.2. Sardanes 14

2 Activity Report INRIA 2011

8. Partnerships and Cooperations . 15
8.1. National Initiatives 15

8.1.1.1. AbstractCell 15
8.1.1.2. AstréeA 15
8.1.1.3. Verasco 16

8.2. European Initiatives 16
8.2.1.1. MBAT 16
8.2.1.2. MemCad 16

8.3. International Initiatives 17
8.3.1.1. NSFC 17
8.3.1.2. Visiting professors 17
8.3.1.3. Internship 18

9. Dissemination . 18
9.1. Animation of the scientific community 18

9.1.1. Academy Members, Professional Societies 18
9.1.2. Collective Responsibilities 18
9.1.3. Editorial Boards and Program Committees 18
9.1.4. Jury of PhD and Habilitation 19
9.1.5. Participation in Conferences 19
9.1.6. Invitations and Participation in Seminars 20

9.2. Teaching 21
10. Bibliography .22

Project-Team ABSTRACTION

Keywords: Abstract Interpretation, Formal Methods, Proofs Of Programs, Safety, Semantics,
Static Analysis

ABSTRACTION is located at the École normale supérieure, Paris.

1. Members
Research Scientists

Radhia Cousot [Senior Researcher, CNRS, HdR]
Jérôme Feret [Junior Researcher, INRIA Paris–Rocquencourt]
Antoine Miné [Junior Researcher, CNRS]
Xavier Rival [Junior Researcher, INRIA Paris–Rocquencourt, HdR]

Faculty Members
Julien Bertrane [— Aug. 2011]
Patrick Cousot [Team leader, Professor, ENS, HdR]

PhD Students
Mehdi Bouaziz [Nov. 2011 —]
Ferdinanda Camporesi
Vincent Laviron
Cheng Tie [Oct. 2011 —]
Antoine Toubhans [Sep. 2011 —]
Caterina Urban [Dec. 2011 —]
Matteo Zanioli

Post-Doctoral Fellows
Jonathan Hayman [Nov. 2011 —]
Tahina Ramananandro [Sep. 2011 —]
Alessandro Romanel [Jan. 2011 — Nov. 2011]
Pascal Sotin [Oct. 2011 —]

Visiting Scientists
David Delmas [Sep. 2011 —]
Yanjun Wen [Jun. 2011 —]

Administrative Assistants
Joëlle Isnard [Administrative Head DI, ENS]
Marine Meyer [INRIA, Apr. 2011 —]

2. Overall Objectives

2.1. Overall Objectives
Software has known a spectacular development this last decade both in its scope of applicability and its size.
Nevertheless, software design, development and engineering methods remain mostly manual, hence error-
prone. It follows that complex software-based systems are unsafe and insecure, which is not acceptable
in safety-critical or mission-critical applications. Intellectual and computer-based tools must therefore be
developed to cope with the safety and security problems.

The notions of abstraction and approximation, as formalized by the abstract interpretation theory, are
fundamental to design, model, develop, analyze, and verify highly complex systems, from computer-based
to biological ones. They also underlie the design of safety and security verification tools.

2 Activity Report INRIA 2011

2.2. Highlights
The paper “Static Analysis and Verification of Aerospace Software by Abstract Interpretation”, written by the
team [1], has been selected in 2011 by the AIAA Intelligent Systems Technical Committee as the Best Paper
from the AIAA 2010 Infotech@Aerospace Conference.

The MemCAD ERC Starting Grant (“Memory Compositional Abstract Domains”) was started on October,
1st. 2011 (funded by the European Research Counsil “IDEAS” programme).

3. Scientific Foundations

3.1. Abstract Interpretation Theory
The abstract interpretation theory [37], [28], [38], is the main scientific foundation of the work of the
ABSTRACTION project-team. Its main current application is on the safety and security of complex hardware
and software computer systems either sequential [37], [30], or parallel [32] with shared memory [29], [31],
[40] or synchronous message [39] communication.

Abstract interpretation is a theory of sound approximation of mathematical structures, in particular those
involved in the behavior of computer systems. It allows the systematic derivation of sound methods and
algorithms for approximating undecidable or highly complex problems in various areas of computer science
(semantics, verification and proof, model-checking, static analysis, program transformation and optimization,
typing, software steganography, etc...) and system biology (pathways analysis).

3.2. Formal Verification by Abstract Interpretation
The formal verification of a program (and more generally a computer system) consists in proving that its
semantics (describing “what the program executions actually do”) satisfies its specification (describing “what
the program executions are supposed to do”).

Abstract interpretation formalizes the idea that this formal proof can be done at some level of abstraction
where irrelevant details about the semantics and the specification are ignored. This amounts to proving that an
abstract semantics satisfies an abstract specification. An example of abstract semantics is Hoare logic while
examples of abstract specifications are invariance, partial, or total correctness. These examples abstract away
from concrete properties such as execution times.

Abstractions should preferably be sound (no conclusion derived from the abstract semantics is wrong with
respect to the program concrete semantics and specification). Otherwise stated, a proof that the abstract
semantics satisfies the abstract specification should imply that the concrete semantics also satisfies the concrete
specification. Hoare logic is a sound verification method, debugging is not (since some executions are left out),
bounded model checking is not either (since parts of some executions are left out). Unsound abstractions lead
to false negatives (the program may be claimed to be correct/non erroneous with respect to the specification
whereas it is in fact incorrect). Abstract interpretation can be used to design sound semantics and formal
verification methods (thus eliminating all false negatives).

Abstractions should also preferably be complete (no aspect of the semantics relevant to the specification
is left out). So if the concrete semantics satisfies the concrete specification this should be provable in the
abstract. However program proofs (for non-trivial program properties such as safety, liveness, or security) are
undecidable. Nevertheless, we can design tools that address undecidable problems by allowing the tool not to
terminate, to be driven by human intervention, to be unsound (e.g. debugging tools omit possible executions),
or to be incomplete (e.g. static analysis tools may produce false alarms). Incomplete abstractions lead to false
positives or false alarms (the specification is claimed to be potentially violated by some program executions
while it is not). Semantics and formal verification methods designed by abstract interpretation may be complete
(e.g. [35], [36], [44]) or incomplete (e.g. [2]).

Project-Team ABSTRACTION 3

Sound, automatic, terminating and precise tools are difficult to design. Complete automatic tools to solve non-
trivial verification problems cannot exist, by undecidability. However static analysis tools producing very few
or no false alarms have been designed and used in industrial contexts for specific families of properties and
programs [42]. In all cases, abstract interpretation provides a systematic construction method based on the
effective approximation of the concrete semantics, which can be (partly) automated and/or formally verified.

Abstract interpretation aims at:

• providing a basic coherent and conceptual theory for understanding in a unified framework the
multiplicity of ideas, concepts, reasonings, methods, and tools on formal program analysis and
verification [37], [38];

• guiding the correct formal design of abstract semantics [36], [44] and automatic tools for program
analysis (computing an abstract semantics) and program verification (proving that an abstract
semantics satisfies an abstract specification) [33].

Abstract interpretation theory studies semantics (formal models of computer systems), abstractions, their
soundness, and completeness.

In practice, abstract interpretation is used to design analysis, compilation, optimization, and verification tools
which must automatically and statically determine properties about the runtime behavior of programs. For
example the ASTRÉE static analyzer (Section 5.2), which was developed by the team over the last decade, aims
at proving the absence of runtime errors in programs written in the C programming language. It was originally
used in the aerospace industry to verify very large, synchronous, time-triggered, real-time, safety-critical,
embedded software and its scope of application was later broadly widened. ASTRÉE is now industrialized by
AbsInt Angewandte Informatik GmbH and is commercially available.

3.3. Advanced Introductions to Abstract Interpretation
A recent, short, informal, and intuitive introduction to the theory of abstract interpretation can be found in [33],
see also “Abstract Interpretation in a Nutshell” 1 on the web. A more comprehensive introduction is available
online 2. The paper entitled “Basic concepts of abstract interpretation” [34] and an elementary “course on
abstract interpretation” 3 can also be found on the web.

4. Application Domains

4.1. Certification of Safety Critical Software

Safety critical software may incur great damage in case of failure, such as human casualties or huge financial
losses. These include many kinds of embedded software, such as fly-by-wire programs in aircrafts and other
avionic applications, control systems for nuclear power plants, or navigation systems of satellite launchers.
For instance, the failure of the first launch of Ariane 5 (flight Ariane 501) was due to overflows in arithmetic
computations. This failure caused the loss of several satellites, worth up to $ 500 millions.

This development of safe and secure critical software requires formal methods so as to ensure that they do not
go wrong, and will behave as specified. In particular, testing, bug finding methods, checking of models but not
programs do not provide any guarantee that no failure will occur, even of a given type such as runtime errors;
therefore, their scope is limited for certification purposes. For instance, testing can usually not be performed
for all possible inputs due to feasibility and cost reasons, so that it does not prove anything about a large
number of possible executions.

1 www.di.ens.fr/~cousot/AI/IntroAbsInt.html
2 www.di.ens.fr/~cousot/AI/
3 web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/
http://www.absint.com/astree/
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

4 Activity Report INRIA 2011

By contrast, program analysis methods such as abstract-interpretation-based static analysis are not subject
to unsoundness, since they can formally prove the absence of bugs directly on the program, not on a model
that might be erroneous. Yet, these techniques are generally incomplete since the absence of runtime errors is
undecidable. Therefore, in practice, they are prone to false alarms (i.e., they may fail to prove the absence of
runtime errors for a program which is safe). The objective of certification is to ultimately eliminate all false
alarms.

It should be noted that, due to the size of the critical codes (typically from 100 to 1000 kLOCs), only scalable
methods can succeed (in particular, software model checking techniques are subject to state explosion issues).
As a consequence, this domain requires efficient static analyses, where costly abstractions should be used only
parsimoniously.

Furthermore, many families of critical software have similar features, such as the reliance on floating-point
intensive computations for the implementation of control laws, including linear and non-linear control with
feedback, interpolations, and other DSP algorithms. Since we stated that a proof of absence of runtime errors
is required, very precise analyses are required, which should be able to yield no false alarm on wide families
of critical applications. To achieve that goal, significant advantages can be found in the design of domain
specific analyzers, such as ASTRÉE [27], [43], which has been initially designed specifically for synchronous
embedded software.

Last, some specific critical software qualification procedures may require additional properties being proved.
As an example, the DO-178 regulations (which apply to avionics software) require a tight, documented, and
certified relation to be established between each development stage. In particular, compilation of high level
programs into executable binaries should also be certified correct.

The ABSTRACTION project-team has been working on both proof of absence of runtime errors and certified
compilation over the decade, using abstract interpretation techniques. Successful results have been achieved
on industrial applications using the ASTRÉE analyzer. Following this success, ASTRÉE has been licensed to
AbsInt Angewandte Informatik GmbH to be industrialized, and the ABSTRACTION project-team has strong
plans to continue research on this topic.

4.2. Abstraction of Biological Cell Signaling Networks

Protein-protein interactions consist in complexations and post translational modifications such as phospho-
rilation. These interactions enable biological organisms to receive, propagate, and integrate signals that are
expressed as proteins concentrations in order to make decisions (on the choice between cell division and cell
death for instance). Models of such interaction networks suffer from a combinatorial blow up in the number
of species (number of non-isomorphic ways in which some proteins can be connected to each others). This
large number of species makes the design and the analysis of these models a highly difficult task. Moreover
the properties of interest are usually quantitative observations on stochastic or differential trajectories, which
are difficult to compute or abstract.

Contextual graph-rewriting systems allow a concise description of these networks, which leads to a scalable
method for modeling them. Then abstract interpretation allows the abstraction of these systems properties. First
qualitative abstractions (such as over approximation of complexes that can be built) provide both debugging
information in the design phases (of models) and static information that are necessary in order to make
other computations (such as stochastic simulations) scale up. Then qualitative invariants also drive efficient
quantitative abstractions (such as the reduction of ordinary differential semantics).

The work of the ABSTRACTION project-team on biological cell signaling networks ranges from qualitative
abstractions to quantitative abstractions.

5. Software
5.1. The Apron Numerical Abstract Domain Library

Participants: Antoine Miné [correspondent], Bertrand Jeannet [team PopArt, INRIA-RA].

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/

Project-Team ABSTRACTION 5

The APRON library is dedicated to the static analysis of the numerical variables of a program by abstract
interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under a common API for
analysis implementers, encourage the research in numerical abstract domains by providing a platform for
integration and comparison of domains, and provide a teaching and demonstration tool to disseminate
knowledge on abstract interpretation.

The APRON library is not tied to a particular numerical abstraction but instead provides several domains
with various precision versus cost trade-offs (including intervals, octagons, linear equalities and polyhedra). A
specific C API was designed for domain developers to minimize the effort when incorporating a new abstract
domain: only few domain-specific functions need to be implemented while the library provides various generic
services and fallback methods (such as scalar and interval operations for most numerical data-types, parametric
reduced products, and generic transfer functions for non-linear expressions). For the analysis designer, the
APRON library exposes a higher-level API with C, C++, OCaml, and Java bindings. This API is domain-
neutral and supports a rich set of semantic operations, including parallel assignments (useful to analyze
automata), substitutions (useful for backward analysis), non-linear numerical expressions, and IEEE floating-
point arithmetic.

The APRON library is freely available on the web at http://apron.cri.ensmp.fr/library; it is distributed under the
LGPL license and is hosted at INRIAGForge. Packages exist for the Debian and Fedora Linux distributions. In
order to help disseminate the knowledge on abstract interpretation, a simple inter-procedural static analyzer for
a toy language is included. An on-line version is deployed at http://pop-art.inrialpes.fr/interproc/interprocweb.
cgi.

The APRON library is developed since 2006 and currently consists of 130 000 lines of C, C++, OCaml, and
Java.

Current and past external library users include the Constraint team (LINA, Nantes, France), the Proval/Démon
team (LRI Orsay, France), the Analysis of Computer Systems Group (New-York University, USA), the Sierum
software analysis platform (Kansas State University, USA), NEC Labs (Princeton, USA), EADS CCR (Paris,
France), IRIT (Toulouse, France), ONERA (Toulouse, France), CEA LIST (Saclay, France), VERIMAG
(Grenoble, France), ENSMP CRI (Fontainebleau, France), the IBM T.J. Watson Research Center (USA), the
University of Edinburgh (UK).

5.2. The Astrée Static Analyzer of Synchronous Software
Participants: Patrick Cousot [project scientifique leader, correspondent], Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, Xavier Rival.

ASTRÉE is a static analyzer for sequential programs based on abstract interpretation [37], [28], [38], [30].

The ASTRÉE static analyzer [27], [43][1] www.astree.ens.fr aims at proving the absence of runtime errors in
programs written in the C programming language.

ASTRÉE analyzes structured C programs, with complex memory usages, but without dynamic memory
allocation nor recursion. This encompasses many embedded programs as found in earth transportation, nuclear
energy, medical instrumentation, and aerospace applications, in particular synchronous control/command. The
whole analysis process is entirely automatic.

ASTRÉE discovers all runtime errors including:

• undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or
out of bounds array indexing);

• any violation of the implementation-specific behavior as defined in the relevant Application Binary
Interface (such as the size of integers and arithmetic overflows);

• any potentially harmful or incorrect use of C violating optional user-defined programming guidelines
(such as no modular arithmetic for integers, even though this might be the hardware choice);

• failure of user-defined assertions.

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
https://gforge.inria.fr/projects/apron/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://apron.cri.ensmp.fr/library/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

6 Activity Report INRIA 2011

The analyzer performs an abstract interpretation of the programs being analyzed, using a parametric domain
(ASTRÉE is able to choose the right instantiation of the domain for wide families of software). This analysis
produces abstract invariants, which over-approximate the reachable states of the program, so that it is possible
to derive an over-approximation of the dangerous states (defined as states where any runtime error mentioned
above may occur) that the program may reach, and produces alarms for each such possible runtime error. Thus
the analysis is sound (it correctly discovers all runtime errors), yet incomplete, that is it may report false alarms
(i.e., alarms that correspond to no real program execution). However, the design of the analyzer ensures a high
level of precision on domain-specific families of software, which means that the analyzer produces few or no
false alarms on such programs.

In order to achieve this high level of precision, ASTRÉE uses a large number of expressive abstract domains,
which allow expressing and inferring complex properties about the programs being analyzed, such as
numerical properties (digital filters, floating-point computations), Boolean control properties, and properties
based on the history of program executions.

ASTRÉE has achieved the following two unprecedented results:

• A340–300. In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any
RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 MB of memory (and 50mn
on a 64-bit AMD Athlon 64 using 580 MB of memory).

• A380. From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes then in
development and test for the A380 series. The operational application by Airbus France at the end
of 2004 was just in time before the A380 maiden flight on Wednesday, 27 April, 2005.

These research and development successes have led to consider the inclusion of ASTRÉE in the production
of the critical software for the A350. ASTRÉE is currently industrialized by AbsInt Angewandte Informatik
GmbH and is commercially available.

5.3. The AstréeA Static Analyzer of Asynchronous Software
Participants: Patrick Cousot [project scientifique leader, correspondent], Radhia Cousot, Jérôme Feret,
Antoine Miné, Xavier Rival.

ASTRÉEA is a static analyzer prototype for parallel software based on abstract interpretation [39], [40], [32]. It
started with support from THÉSÉE ANR project (2006–2010) and is continuing within the ASTRÉEA project
(2012–2015).

The ASTRÉEA prototype www.astreea.ens.fr is a fork of the ASTRÉE static analyzer (see 5.2) that adds support
for analyzing parallel embedded C software.

ASTRÉEA analyzes C programs composed of a fixed set of threads that communicate through a shared
memory and synchronization primitives (mutexes, FIFOs, blackboards, etc.), but without recursion nor
dynamic creation of memory, threads nor synchronization objects. ASTRÉEA assumes a real-time scheduler,
where thread scheduling strictly obeys the fixed priority of threads. Our model follows the ARINC 653 OS
specification used in embedded industrial aeronautic software. Additionally, ASTRÉEA employs a weakly-
consistent memory semantics to model memory accesses not protected by a mutex, in order to take into
account soundly hardware and compiler-level program transformations (such as optimizations). ASTRÉEA
checks for the same run-time errors as ASTRÉE, with the addition of data-races.

Compared to ASTRÉE, ASTRÉEA features: a new iterator to compute thread interactions, a refined memory
abstraction that takes into account the effect of interfering threads, and a new scheduler partitioning domain.
This last domain allows discovering and exploiting mutual exclusion properties (enforced either explicitly
through synchronization primitives, or implicitly by thread priorities) to achieve a precise analysis.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/
http://www.absint.com/
http://www.absint.com/astree/
http://www.astreea.ens.fr/
http://www.di.ens.fr/~cousot/projets/THESEE/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://www.astree.ens.fr/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astreea.ens.fr/

Project-Team ABSTRACTION 7

ASTRÉEA is currently being applied to analyze a large industrial avionic software: 1.6 MLines of C and 15
threads, completed with a 2,500-line model of the ARINC 653 OS developed for the analysis. The analysis
currently takes 29h on a 2.66 GHz 64-bit intel server using one core and generates around 1,800 alarms. The
low computation time (only a few times larger than the analysis time by ASTRÉE of synchronous programs of a
similar size and structure) shows the scalability of the approach (in particular, we avoid the usual combinatorial
explosion associated to thread interleavings). Precision-wise, the result, while not as impressive as that of
ASTRÉE, is quite encouraging. Improvements were made this year concerning the precision of ASTRÉEA
(from 7,600 alarms in 2010 to 1,800 now) and will continue within the scope of the ASTRÉEA ANR project
(Section 8.1.1.2).

The details of the analysis are described in [22].

5.4. OpenKappa
Participants: Monte Brown [Harvard Medical School], Vincent Danos [University of Edinburgh], Jérôme
Feret [Correspondent], Walter Fontana [Harvard Medical School], Russ Harmer [Harvard Medical School],
Jean Krivine [Paris VII].

OPENKAPPA is a collection of tools to build, debug and run models of biological pathways. It contains a
compiler for the Kappa Language [49], a static analyzer [48] (for debugging models), a simulator [47], a
compression tool for causal traces [46], and a model reduction tool [4], [45], [50].

OPENKAPPA is developed since 2007 and, the OCaml version currently consists of 46 000 lines of OCaml.
Software are available in OCaml and in Java. Moreover, an Eclipse pluggin is available.

OPENKAPPA is freely available on the web at http://kappalanguage.org under the LGPL license. Discussion
groups are also available on line.

Current external users include the Ecole Polytechnique Federale de Lausanne, the UNAM-Genomics Mexico
team. It is used as pedagocical material in graduate lessons at Harvard Medical School, and at the Interdisci-
plinary Approaches to Life science (AIV) Master Program (Université de Médecine Paris-Descartes).

5.5. Translation Validation
Participant: Xavier Rival [correspondent].

The main goal of this software project is to make it possible to certify automatically the compilation of large
safety critical software, by proving that the compiled code is correct with respect to the source code: When the
proof succeeds, this guarantees that no compiler bug did cause incorrect code be generated. Furthermore, this
approach should allow to meet some domain specific software qualification criteria (such as those in DO-178
regulations for avionics software), since it allows proving that successive development levels are correct with
respect to each other i.e., that they implement the same specification. Last, this technique also justifies the use
of source level static analyses, even when an assembly level certification would be required, since it establishes
separately that the source and the compiled code are equivalent.

The compilation certification process is performed automatically, thanks to a prover designed specifically. The
automatic proof is done at a level of abstraction which has been defined so that the result of the proof of
equivalence is strong enough for the goals mentioned above and so that the proof obligations can be solved by
efficient algorithms.

The current software features both a C to Power-PC compilation certifier and an interface for an alternate
source language frontend, which can be provided by an end-user.

5.6. Zarith
Participants: Antoine Miné [Correspondent], Xavier Leroy [INRIA Paris-Rocquencourt], Pascal Cuoq [CEA
LIST].

http://www.astreea.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astreea.ens.fr/
http://www.astreea.ens.fr/
http://kappalanguage.org

8 Activity Report INRIA 2011

ZARITH is a small (10K lines) OCaml library that implements arithmetic and logical operations over arbitrary-
precision integers. It is based on the GNU MP library to efficiently implement arithmetic over big integers.
Special care has been taken to ensure the efficiency of the library also for small integers: small integers are
represented as Caml unboxed integers and use a specific C code path. Moreover, optimized assembly versions
of small integer operations are provided for a few common architectures.

ZARITH is an open-source project hosted at OCamlForge (http://forge.ocamlcore.org/projects/zarith) and
distributed under a modified LGPL license.

ZARITH is currently used in the ASTRÉE analyzer to enable the sound analysis of programs featuring 64-bit (or
larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST and INRIA Saclay.

6. New Results

6.1. Abstractions of Functions
Participants: Patrick Cousot, Radhia Cousot.

The idea of domain segmentation for arrays [18] has been extended to the abstraction of functions [41] by
combination of a partionning of their domain of definition and a functional or relational abstraction of blocks
into their co-domain [17].

6.2. Analysis of Biological Pathways
We have improved our framework to design and analyze biological networks. This framework focused on
protein-protein interaction networks described as graph rewriting systems. Such networks can be used to model
some signaling pathways that control the cell cycle. The task is made difficult due to the combinatorial blow
up in the number of reachable species (i.e., non-isomorphic connected components of proteins).

6.2.1. Automatic Reduction of Differential Semantics
Participants: Ferdinanda Camporesi, Vincent Danos [University of Edinburgh], Jérôme Feret, Walter Fontana
[Harvard Medical School], Russ Harmer [Harvard Medical School], Jean Krivine [Paris VII].

We have developed an abstract interpretation-based framework that enables the reduction of the differential
semantics for protein-protein interaction networks. Results are sound since trajectories in the abstract system
are projections of the trajectories in the concrete system.

The flow of information is a key element in our model reduction framework because it enables the identification
of the correlations which are useless when computing observables of interest. Thus there is a need of providing
good trade-off in the description of the flow of information throughout the biochemical structure of chemical
species.

The notion of symmetries between sites is also important, since knowing that two sites have exactly the same
capabilities of interaction enable exact quotienting (or lumping) of the set of reachable species.

In [13], [14], we have proposed a heterogeneous over-approximation of the flow of information where the
flow that is attached to an agent can depend on its relative position in a chemical species. Moreover, we have
showed how to use symmetries between sites so as to define another model reduction and we have proposed
an algebraic product to combine model reductions, the product of two reduced models being the least abstract
model which is at least as abstract as both model.

6.2.2. Automatic Reduction of Stochastic Semantics
Participants: Ferdinanda Camporesi, Jérôme Feret, Thomas Henzinger [Institute of Science and Technology,
Austria], Heinz Koeppl [ETH Zürich], Tatjana Petrov [ETH Zürich].

http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://www.astree.ens.fr/

Project-Team ABSTRACTION 9

We have proposed an abstract interpretation-based framework for reducing the state-space of stochastic
semantics for protein-protein interaction networks. Our framework ensures that the trace distribution of the
reduced system is the exact projection of the trace distribution of the concrete system. Moreover, when the
abstraction is complete, if any pair of concrete states that have the same abstraction are equipropable at initial
state, any pair of concrete states that share the same abstraction are equiprobable at any time t.

In [12], we have formalized the model reduction framework for the stochastic semantics and we have
established the relationships with the notions of lumpability, and bisimulation is established.

6.3. Automatic Array Content Analysis by Segmentation
Participants: Patrick Cousot, Radhia Cousot, Francesco Logozzo [Microsoft Research (Redmond, USA)].

In [18], we introduce FunArray, a parametric segmentation abstract domain functor for the fully automatic
and scalable analysis of array content properties. The functor enables a natural, painless and efficient lifting
of existing abstract domains for scalar variables to the analysis of uniform compound data-structures such as
arrays and collections (as well as matrices when instantiating the functor on itself). The analysis automatically
and semantically divides arrays into consecutive non-overlapping possibly empty segments. Segments are
delimited by sets of bound symbolic expressions and abstracted uniformly. All bound expressions appearing in
a set are equal in the concrete. The FunArray can be naturally combined via reduced product with any existing
analysis for scalar variables. The bound expressions, the segment abstractions and the reduction operator are
the three parameters of the analysis. Once the functor has been instantiated with fixed parameters, the analysis
is fully automatic.

We first prototyped FunArray in Arrayal to adjust and experiment with the abstractions and the algorithms
to obtain the appropriate precision/ratio cost. Then it was implemented into CCCHECK (formerly CLOUSOT),
an abstract interpretation-based static contract checker for .NET by Francesco Logozzo. The precision and the
performance of the analysis has been empirically validated by running it on the main libraries of .NET and
on its own code. It was able to infer thousands of invariants and to verify the implementation with a modest
overhead (circa 1%). To the best of our knowledge this is the first analysis of this kind applied to such a large
code base, and proven to scale.

6.4. Extrapolation operators for combinations of abstract domains
Participants: Agostino Cortesi [Università Ca’Foscardi di Venizia], Matteo Zanioli.

Extrapolation operators are crucial to ensure the scalability of the analysis to large software systems. In [10],
we set the ground for a systematic design of widening and narrowing operators, by comparing the different
definitions introduced in the literature and by discussing how to tune them in case of domain abstraction and
domains’ combination through Cartesian and reduced products.

6.5. Grammar Semantics, Analysis and Parsing
Participants: Patrick Cousot, Radhia Cousot.

In [11], we study the abstract interpretations of a fixpoint protoderivation semantics defining the maximal
derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is
a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language
semantics and including Knuth grammar problems, classical grammar flow analysis algorithms, and parsing
algorithms.

6.6. Information Flow
The analysis of the flow of information in a program consists in detecting the propagation of sensitive
information through the program points of this program thanks to a dependency analysis.

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/

10 Activity Report INRIA 2011

6.6.1. Dependency Analysis and Numerical Invariants
Participants: Agostino Cortesi [Università Ca’Foscardi di Venizia], Matteo Zanioli.

A new framework has been proposed in [16], that combines variable dependency analysis, based on proposi-
tional formulas, and variables’ value analysis, based on generic numerical domains.

6.6.2. Leakage Analysis
Participants: Matteo Zanioli [Correspondent], Pietro Ferrara [ETH, Zurich], Agostino Cortesi [Università
Ca’ Foscari].

In [24], we present SAILS, a new tool that combines SAMPLE, a generic static analyzer, and a sophisticated
domain for leakage analysis. This tool does not require to modify the original language, since it works with
mainstream languages like JAVA™, and it does not require any manual annotation. SAILS can combine the
information leakage analysis with different heap abstractions, inferring information leakage over programs
with complex data structures. SAILS has been applied to the analysis of the SecuriBench-micro suite. The
experimental results underline the effectiveness of the analysis, since SAILS is in position to analyze several
benchmarks in about 1 second without producing false alarms in more than 90% of the programs.

6.7. Linear Absolute Value Relation Analysis
Participants: Liqian Chen [National Laboratory for Parallel and Distributed Processing, Changsha,
P. R. China], Antoine Miné, Ji Wang [National Laboratory for Parallel and Distributed Processing, Changsha,
P. R. China], Patrick Cousot.

We present in [15] an abstract domain dealing with linear inequalities involving variables together with
their absolute values. It is an extension of the classical linear relation analysis, which permits to deal with
some non convex numerical sets. A first nice result states the equivalence between these “linear absolute
value inequalities” (AVI) and “interval linear inequalities”, and “extended linear complementary inequalities”
(XLCP, pairs of positive solutions whose pairwise components are not both not zero). The key contribution
is the extension of the double-description of polyhedra to XLCP solutions, which is then used to define the
standard operations on AVI. The method has been implemented, and experiments show interesting results,
with reasonable performances with respect to linear relation analysis.

6.8. Probabilistic Analysis
Participants: Patrick Cousot, Michaël Monerau.

The abstract interpretation theory has been widely used in the past decades for verifying properties of computer
systems. We have introduced a new extension of this well-known framework to the case of probabilistic
systems [21].

The probabilistic abstraction framework we propose allows to systematically lift any classical analysis or
verification method to the probabilistic setting by separating in the program semantics the probabilistic
behavior from the (non-)deterministic behavior. This separation provides new insights for designing novel
probabilistic static analyses and verification methods.

We have defined concrete probabilistic semantics and proposed different ways to abstract them. The approach
is expressive and effective. The previous techniques for probabilistic analysis are actually abstractions
expressible in our framework.

6.9. Safety
Participants: Patrick Cousot, Radhia Cousot.

Project-Team ABSTRACTION 11

The abstract interpretation design principle has been applied to the design of new forward and backward proof,
verification and analysis methods for safety [17]. The safety collecting semantics defining the strongest safety
property of programs is first expressed in a constructive fixpoint form. Safety proof and checking/verification
methods then immediately follow by fixpoint induction. Static analysis of abstract safety properties such
as invariance are constructively designed by fixpoint abstraction (or approximation) to (automatically) infer
safety properties.

6.10. Security
Participants: Patrick Cousot, Radhia Cousot.

We have developed, episodically since 2007, an abstract interpretation framework for security and program
securization that is the transformation of a program into a secured program satisfying security criteria defined
by a human or artificial supervisor (this is verification when no transformation is needed). The securization
is based on the notion of responsibility analysis determining which choices in the program (inputs, random
draws, interrupts, schedules, etc.) can definitely cause or avoid desired or menacing events, or have no control
at all on the occurrence of these events. Various securization policies (eager, early or late lazy, etc.) have been
identified to prevent or enforce the occurrence of events.

6.11. Shape Analysis
We have extended the XISA (eXtensible Inductive Shape Analysis) framework, in order to better deal with
low level coding styles and programming languages, and in order to analyze recursive programs in a context
dependent way. We also introduced a classification for semantic memory models.

6.11.1. Abstracting Calling-Context with Shapes
Participants: Bor-Yuh Evan Chang [University of Colorado at Boulder (USA)], Xavier Rival.

Interprocedural program analysis is often performed by computing procedure summaries. While possible,
computing adequate summaries is difficult, particularly in the presence of recursive procedures. In [23], we
propose a complementary framework for interprocedural analysis based on a direct abstraction of the calling
context. Specifically, our approach exploits the inductive structure of a calling context by treating it directly
as a stack of activation records. We built an abstraction based on separation logic with inductive definitions. A
key element of this abstract domain is the use of parameters to refine the meaning of such call stack summaries
and thus express relations across activation records and with the heap. In essence, we define an abstract
interpretation-based analysis framework for recursive programs that permits a fluid per call site abstraction
of the call stack—much like how shape analyzers enable a fluid per program point abstraction of the heap.

6.11.2. Abstract domains for the analysis of programs manipulating complex data-structures
Participant: Xavier Rival.

We proposed a framework for building abstract domains for the static analysis of programs which manipulate
complex* data-structures [8]. Our abstract domain is parametric in the choice of a numerical abstract domain
to represent properties of numeric memory cells and in the choice of a set of inductive definitions to be
used in order to summarize unbounded heap regions. It features standard primitives for the computation of
transfer functions, for the inclusion checking and for the computation of widening iterates. We also proposed
an extension to handle programs that make use of low-level memory addressing, and proposed an extension of
the widening to infer inductive definitions.

6.11.3. Composite abstract domain for the analysis of dynamic structures
Participants: Xavier Rival, Antoine Toubhans.

12 Activity Report INRIA 2011

Reduced product is a general operation to combine abstract domains into more powerful abstract domains,
which has been especially used to construct numerical abstract domains. However, until now, it has not been
applied to memory structures. We proposed an instance of a reduced product operation, which can be applied
on shape abstract domains based on separation logic and on inductive definitions. The advantage of this
construction is that it allows to describe more complex heap dynamic data structures without making the
design of all abstract operation more complex. In the other hand, it incurs a reduction cost, whenever we need
to transport some information from one domain to the other. We showed that optimal reduction cannot be
achieved, and identified the main source of complexity of this operation. A prototype implementation was also
carried out. This work was done as part of Antoine Toubhans Master internship.

6.12. Static Analysis of Parallel Software
Participant: Antoine Miné.

We present in [22] a static analysis by abstract interpretation to check for run-time errors in parallel C
programs. Following our work on ASTRÉE, we focus on embedded critical programs without recursion nor
dynamic memory allocation, but extend the analysis to a static set of threads. Our method iterates a slightly
modified non-parallel analysis over each thread in turn, until thread interferences stabilize. We prove the
soundness of the method with respect to a sequential consistent semantics and a reasonable weakly consistent
memory semantics. We then show how to take into account mutual exclusion and thread priorities through
partitioning over the scheduler state. We present preliminary experimental results analyzing a real program
with our prototype ASTRÉEA (see 5.3) and demonstrate the scalability of our approach.

6.13. Termination
Participants: Patrick Cousot, Radhia Cousot.

In [17], we have introduced an abstract interpretation for termination. Proof, verification and analysis methods
for termination all rely on two induction principles: (1) a variant function or induction on data ensuring
progress towards the end and (2) some form of induction on the program structure.

So far, no clear design principle did exist for termination as is the case for safety so that the existing approaches
are scattered and largely not comparable with each other.

For (1), we show that this design principle applies equally well to potential and definite termination. The trace-
based termination collecting semantics is given a fixpoint definition. Its abstraction yields a fixpoint definition
of the best variant function. By further abstraction of this best variant function, we derive the Floyd/Turing
termination proof method as well as new static analysis methods to effectively compute approximations of this
best variant function.

For (2), we introduce a generalization of the syntactic notion of structural induction (as found in Hoare logic)
into a semantic structural induction based on the new semantic concept of inductive trace cover covering
execution traces by segments, a new basis for formulating program properties. Its abstractions allow for
generalized recursive proof, verification and static analysis methods by induction on both program structure,
control, and data. Examples of particular instances include Floyd’s handling of loop cut-points as well as nested
loops, Burstall’s intermittent assertion total correctness proof method, and Podelski-Rybalchenko transition
invariants.

6.14. Theories, Solvers and Static Analysis
Participants: Patrick Cousot, Radhia Cousot, Laurent Mauborgne [IMDEA Software (Madrid, Spain)].

http://www.astree.ens.fr/
http://www.astreea.ens.fr/

Project-Team ABSTRACTION 13

In [20], we have introduced a reduced product combining algebraic and logical abstractions to design
program correctness verifiers and static analyzers by abstract interpretation. The key new idea is to show
that the Nelson-Oppen procedure for combining theories in SMT-solvers computes a reduced product in an
observational semantics, so that algebraic and logical abstract interpretations can naturally be combined in
a classical way using a reduced product on this observational semantics. The main practical benefit is that
reductions can be performed within the logical abstract domains, within the algebraic abstract domains, and
also between the logical and the algebraic abstract domains, including the case of abstractions evolving during
the analysis.

6.15. Underapproximation for Precondition Inference
Participants: Patrick Cousot, Radhia Cousot, Francesco Logozzo [Microsoft Research (Redmond, USA)],
Manuel Fähndrichh [Microsoft Research (Redmond, USA)].

In the context of program design by contracts, programmers often insert assertions in their code to be
optionally checked at runtime, at least during the debugging phase. These assertions would better be given
as a precondition of the method/procedure in which they appear. Potential errors would be discovered earlier
and, more importantly, the precondition could be used in the context of separate static program analysis as
part of the abstract semantics of the code. However in the case of collections (data structures such as arrays,
lists, etc) checking both the precondition and the assertions at runtime appears superfluous and costly. So
the precondition is often omitted since it is checked anyway at runtime by the assertions. It follows that the
static analysis can be much less precise, a fact that can be difficult to understand since “the precondition and
assertions are equivalent” (i.e. at runtime, up to the time at which warnings are produced, but not statically)
e.g. for separate static analysis. Moreover preconditions are often understood as overapproximations and
thus may exclude good runs which is counter-intuitive for programmers. On the contrary, with considering
underapproximations [37], [28] which exclude no good run, ensures that if the precondition is violated then
a runtime error must definitely be raised later, and if the precondition is not strong enough to catch all errors
they will definitely be captures by a later runtime check.

In [19], we define precisely and formally the contract inference problem from intermittent assertions on scalar
variables and elements of collections inserted in the code by the programmer. Our definition excludes no
good run even when a non-deterministic choice (e.g. an interactive input) could lead to a bad one. We then
introduce new abstract interpretation-based methods to automatically infer both the static contract precondition
of a method/procedure and the code to check it at runtime on scalar and collection variables. It has been
implemented in CCCHECK (formerly CLOUSOT) by Francesco Logozzo and Manuel Fähndrich.

6.16. Verification of spreadsheet programs by abstract interpretation
Participants: Tie Cheng, Xavier Rival.

Spreadsheet tools (Excel, Openoffice) come with powerful languages which can manipulate sheets in various
ways. However, no type discipline is enforced, so that the programs may corrupt spreadsheet contents in many
ways. We proposed an abstraction to describe sets of valid spreadsheet states, and designed a verifier for
invariants expressed in this abstract domain. Our verifier assumes invariants are defined at the head of loops in
the programs (as widening operators for the inference of loop invariants). This work was done as part of Tie
Cheng Master internship.

7. Contracts and Grants with Industry

7.1. Contracts with Industry
7.1.1. Contracts
7.1.1.1. Anastasy

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/

14 Activity Report INRIA 2011

Title: ANASTASY

Type: Industrial contract

Duration: September 2009 - December 2011

Others partners: Airbus France

Abstract: ANASTASY (ANAlyse STAtique aSYnchone) is an industrial project with Airbus France
on the static program analysis of asynchronous programs by abstract interpretation which objective
is determined annually. Patrick Cousot is the principal investigator for this action.

7.1.2. License agreement
7.1.2.1. Astrée

In February 2009 was signed an exploitation license agreement between CNRS, École Normale Supérieure,
and AbsInt Angewandte Informatik GmbH for the industrialization of the ASTRÉE analyzer. ASTRÉE is
commercially available from AbsInt since January 2010. Continuous work goes on to adapt the ASTRÉE
static analyzer to industrial needs, in particular for the automotive industry. Radhia Cousot is the scientific
contact.

7.2. Grants with Industry
7.2.1. FNRAE projects
7.2.1.1. Ascert

Title: Analyses Statiques CERTifiés

Type: 6th call: Verification methods for software and systems

Instrument: FNRAE grant

Duration: April 2009 - March 2012

Coordinator: INRIA (France)

Others partners: INRIA-Bretagne Atlantique, the INRIA Rhône-Alpes, the INRIA Paris-
Rocquencourt, and the ENS.

See also: http://ascert.gforge.inria.fr/

Abstract: Although static analyzers have demonstrated their ability to prove the absence of large
classes of errors in critical software, they are themselves large and complex software, so it is
natural to question their implementation correctness and the validity of their output. The focus of
the ASCERT project is the use of formal methods to ensure the correctness of an analyzer with
respect to the abstraction interpretation theory. Methods to be investigated include the direct proof
of the analyzer, the proof of a verifier for the analyzer result, and the validation of the inductive
invariants generated by the analyzer, using the Coq proof assistant. These methods will be applied
to the certification of several numerical abstract domains, of an abstract interpreter for imperative
programs and its possible extensions to one of the formal semantics of the CompCert verified C
compiler.

7.2.1.2. Sardanes

Title: Sémantique, Analyse et tRansformation Des Applications Numériques Embarqués Syn-
chrones

Type: 6th call: Verification methods for software and systems

Instrument: FNRAE grant

Duration: February 2009 - September 2013

Coordinator: Université de Perpignan

http://www.absint.com/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/astree/
http://www.absint.com/
http://www.astree.ens.fr/
http://ascert.gforge.inria.fr/
http://ascert.gforge.inria.fr/index.html

Project-Team ABSTRACTION 15

Others partners: Université de Perpignan and the ENS.

See also: http://perso.univ-perp.fr/mmartel/sardanes.html

Abstract: SCADE is widely used to write critical embedded software, as a specification and verifica-
tion language. The semantics of SCADE uses real arithmetics whereas it is compiled into a language
that uses floating-point arithmetics. The goal of the SARDANES project is to use expression trans-
formation so as to ensure that the numerical properties of the programs is preserved during the
compilation. Patrick Cousot and Radhia Cousot are the principal investigators for this action.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR projects
8.1.1.1. AbstractCell

Title: Formal abstraction of quantitative semantics for protein-protein interaction cellular network
models

Instrument: ANR-Chair of Excellence (Junior, long term)

Duration: December 2009 - December 2013

Coordinator: INRIA (France)

Others partners: None

See also: http://www.di.ens.fr/ feret/abstractcell

Abstract: The overall goal of this project is to investigate formal foundations and computational
aspects of both the stochastic and differential approximate semantics for rule-based models. We want
to relate these semantics formally, then we want to design sound approximations for each of these
semantics (by abstract interpretation) and investigate scalable algorithms to compute the properties
of both the stochastic and the differential semantics. Jérôme Feret is the principal investigator for
this project.

8.1.1.2. AstréeA

Title: Static Analysis of Embedded Asynchronous Real-Time Software

Type: ANR Ingénierie Numérique Sécurité 2011

Instrument: ANR grant

Duration: January 2012 - December 2015

Coordinator: Airbus France (France)

Others partners: École normale supérieure (France)

See also: http://www.astreea.ens.fr

Abstract: The focus of the ASTRÉEA project is on the development of static analysis by abstract
interpretation to check the safety of large-scale asynchronous embedded software. During the
THÉSÉE ANR project (2006–2010), we developed a concrete and abstract models of the ARINC
653 operating system and its scheduler, and a first analyzer prototype. The gist of the ASTRÉEA
project is the continuation of this effort, following the recipe that made the success of ASTRÉE:
an incremental refinement of the analyzer until reaching the zero false alarm goal. The refinement
concerns: the abstraction of process interactions (relational and history-sensitive abstractions), the
scheduler model (supporting more synchronisation primitives and taking priorities into account),
the memory model (supporting volatile variables), and the abstraction of dynamical data-structures
(linked lists). Patrick Cousot is the principal investigator for this project.

http://perso.univ-perp.fr/mmartel/sardanes.html
http://perso.univ-perp.fr/mmartel/sardanes.html
http://www.di.ens.fr/~feret/abstractcell
http://www.astreea.ens.fr
http://www.astreea.ens.fr/
http://www.di.ens.fr/~cousot/projets/THESEE/
http://www.astreea.ens.fr/
http://www.astree.ens.fr/

16 Activity Report INRIA 2011

8.1.1.3. Verasco

Title: Formally-verified static analyzers and compilers

Type: ANR Ingénierie Numérique Sécurité 2011

Instrument: ANR grant

Duration: Septembre 2011 - September 2015

Coordinator: INRIA (France)

Others partners: Airbus France (France), IRISA (France), INRIA Saclay (France)

See also: http://www.systematic-paris-region.org/fr/projets/verasco

Abstract: The usefulness of verification tools in the development and certification of critical software
is limited by the amount of trust one can have in their results. A first potential issue is unsoundness
of a verification tool: if a verification tool fails (by mistake or by design) to account for all possible
executions of the program under verification, it can conclude that the program is correct while it
actually misbehaves when executed. A second, more insidious, issue is miscompilation: verification
tools generally operate at the level of source code or executable model; a bug in the compilers and
code generators that produce the executable code that actually runs can lead to a wrong executable
being generated from a correct program.

The project VERASCO advocates a mathematically-grounded solution to the issues of formal verify-
ing compilers and verification tools. been mechanically proved to be free of any miscompilation will
be continued. Finally, the tool qualification issues that must be addressed before formally-verified
tools can be used in the aircraft industry, will be investigated.

8.2. European Initiatives
8.2.1. EU Project
8.2.1.1. MBAT

Title: Combined Model-based Analysis & Testing of Embedded Systems

Type: Artemis Call 10

Instrument: FP7 project

Duration: November 2011 - October 2014

Coordinator: Daimler (Germany)

Others partners: 38 partners in Austria, Denmark, Estonia, France, Germany, Italy, Sweden, and
United Kingdom

See also: http://www.artemis-ia.eu/project/index/view/?project=29

Abstract: MBAT will mainly focus on providing a technology platform for effective and cost-
reducing validation and verification of embedded systems, focusing primarily on transportation
domain, but also to be used in further domains. The project involves thirty three European industrial
(large companies and SMEs) and five academic partners. Radhia Cousot is the principal investigator
for this project.

8.2.1.2. MemCad

Title: Memory Compositional Abstract Domains

Type: IDEAS

Instrument: ERC Starting Grant (Starting)

Duration: October 2011 - September 2016

Coordinator: INRIA (France)

http://www.systematic-paris-region.org/fr/projets/verasco
http://www.artemis-ia.eu/project/index/view/?project=29

Project-Team ABSTRACTION 17

Others partners: none

See also: http://www.di.ens.fr/ rival/memcad.html

Abstract: The MemCAD project aims at setting up a library of abstract domains in order to express
and infer complex memory properties. It is based on the abstract interpretation frameworks, which
allows to combine simple abstract domains into complex, composite abstract domains and static
analyzers. While other families of abstract domains (such as numeric abstract domains) can be easily
combined (making the design of very powerful static analyses for numeric intensive applications
possible), current tools for the analysis of programs manipulating complex abstract domains usually
rely on a monolithic design, which makes their design harder, and limits their efficiency. The purpose
of the MemCAD project is to overcome this limitation. Our proposal is based on the observation that
the complex memory properties that need be reasoned about should be decomposed in combinations
of simpler properties. Therefore, in static analysis, a complex memory abstract domain could be
designed by combining many simpler domains, specific to common memory usage patterns. The
benefit of this approach is twofold: first it would make it possible to simplify drastically the design of
complex abstract domains required to reason about complex softwares, hereby allowing certification
of complex memory intensive softwares by automatic static analysis; second, it would enable to split
down and better control the cost of the analyses, thus significantly helping scalability. As part of this
project, we propose to build a static analysis framework for reasoning about memory properties, and
put it to work on important classes of applications, including large softwares.

8.3. International Initiatives
8.3.1. NSFC Project
8.3.1.1. NSFC

Title: Analysis and Verification of Dependable Cyber-Physical Software

Type: National Natural Science Foundation of China (NSFC)

Duration: January 2012 - December 2016

Coordinator: National University of Defense Technology (China)

Others partners: National University of Defense Technology (China), Seoul National University
(Korea)

Abstract: The project addresses analysis and verification issues related to dependability properties
of Cyber Physical Systems (CPS) software: safety (such as the numerical or and memory related
runtime errors), quantitative properties (such as the worst-case execution time, upper bound of
the memory consumption, etc.), stability and robustness (due to intrinsic uncertainty of CPS), as
well as properties of hybrid system (which provides a model for describing the coordination of
computation and physical, discrete and continuous processes). The project is expected to advance
the analysis and verification methodology for dependable CPS software so as to contribute to the
dependability assurance of CPS software in mission critical applications. Patrick Cousot is the
principal investigator for this project.

8.3.1.2. Visiting professors

Yanjun Wen is associate professor at the Department of Computer Science and Technology, College of
Computer, National University of Defense Technology, Changsha, P. R. China. He is visiting the team from
June 2011 to May 2012 and is interested in the static analysis of parallel software by abstract interpretation.

Roberto Giacobazzi, professor at the University of Verona, Italy, visited in spring 2011.

Andreas Podelski, professor at the University of Freiburg, Germany, visited in fall 2011.

http://www.di.ens.fr/~rival/memcad.html
http://www.nsfc.gov.cn/english/

18 Activity Report INRIA 2011

8.3.1.3. Internship

Marie Pelleau is a third year PhD student from the University of Nantes (France) under the supervision of
Frédéric Benhamou, Pascal Van Hentenryck, and Charlotte Truchet. She spent one month (November 2011)
in the team, under the supervision of Antoine Miné, on the application of numerical abstract domains (and in
particular, the Apron library, 5.1) to constraint programming.

David Delmas is an engineer at Airbus France on educational leave to pursue the 2nd year of the Parisian
Master of Research in Computer Science (MPRI) and a visitor in the team from September 2011 to August
2012.

Suzanne Renard is a third year student at École des Mines de Paris (France). She spent six months (September
2010 to February 2011) in the team, under the supervision of Xavier Rival; she was working on the extension
of the XISA shape analysis frameworks in order to express set properties.

9. Dissemination
9.1. Animation of the scientific community
9.1.1. Academy Members, Professional Societies

Patrick Cousot is a member of the Academia Europaea.

Patrick Cousot is member of the IFIP working group WG 2.3 on programming methodology.

Patrick Cousot is a member of the Board of Trustees and of the Scientific Advisory Board of the IMDEA-
Software (Instituto madrileño de estudios avanzados—Research Institute in Software Development Technol-
ogy), Madrid, Spain and of the Asian Association for Foundations of Software (AAFS).

9.1.2. Collective Responsibilities
Patrick Cousot is director of studies in computer science at ENS and member of the commission de spécialistes
(hiring committee) of ENS.

Patrick Cousot, Antoine Miné and Xavier Rival are members of the lab council of the Laboratoire
d’Informatique de l’École Normale Supérieure.

Jérôme Feret was a member of the comité de sélection (hiring committee) to hire an assistant professor at the
Université de Lille 1.

Antoine Miné was a member of the comité de sélection (hiring committee) to hire an assistant professor at the
École normale supérieure de Cachan, antenne de Bretagne (Ker Lann, France).

Xavier Rival was a member of the comité de sélection (hiring committee) to hire an assistant professor at the
Université de Paris 7.

9.1.3. Editorial Boards and Program Committees
— Patrick Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal
(HOSC, Springer) and of the Journal of Computing Science and Engineering (JCSE, Kiise).

Patrick Cousot is member of the steering committees of the Static Analysis Symposium (SAS) and the
Verification, Model-Checking and Abstract Interpretation (VMCAI) international conference.

Patrick Cousot was member of the program committees of the 32th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2011 ERC) , San Jose, CA, USA, June 4-8, 2011; the
12th International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI 2011),
Austin, TX, USA, January 23-25, 2011; the 14th ACM International Conference on Hybrid Systems (HSCC
2011), Chicago, IL, USA, April 11-14, 2011; Verified Software: Theories, Tools and Experiments (VSTTE
2012), Philadelphia, USA, January 28-29, 2012; the 19th International Static Analysis Symposium (SAS’12),
Deauville, France; the 15th ACM International Conference on Hybrid Systems: Computation and Control
(HSCC 2012), Beijing, China, April 17-19, 2012.

http://www.acadeuro.org/
http://www.imdea.org/
http://www.imdea.org/Institutos/Software/tabid/125/Default.aspx
http://www.brics.dk/~hosc/
http://jcse.kiise.org/

Project-Team ABSTRACTION 19

— Radhia Cousot is member of the advisory board of the Higher-Order Symbolic Computation journal
(HOSC, Springer) and the Central European Journal of Computer Science (CEJCS, Versita & Springer).

Radhia Cousot is member of the steering committees of the Static Analysis Symposium (SAS), the Workshop
on Numerical and Symbolic Abstract Domains (NSAD), the Workshop on Static Analysis and Systems
Biology (SASB) and the Workshop on Tools for Automatic Program AnalysiS (TAPAS).

Radhia Cousot is the program committee chair of the 40th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL 2013), Rome, Italy, January 23-25, 2013.

Radhia Cousot was member of the program committees of the 21st European Symposium on Programming
(ESOP 2011), Saarbrücken, Germany, March 26-April 3, 2011; the 18th International Static Analysis Sym-
posium (SAS’11), Venice, Italy, September 14-16, 2011; the 38th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL 2011), Austin, Texas, USA, January 26-28, 2011.

— Jérôme Feret is a member of the editorial board of the Frontiers in Genetics journal.

Jérôme Feret is a member of the steering committee of the Workshop on Static Analysis and Systems Biology
(SASB).

Jérôme Feret was co-program committee chair of the 2nd SASB (2011) and is co-program committee chair of
the 3rd SASB (2012).

Jérôme Feret was member of the program committee of the 2nd International Workshop on Interactions
between Computer Science and Biology (CS2Bio 2011), the 9th International Conference on Computational
Methods in Systems Biology (CMSB 2011), the 9th Asian Symposium on Programming Languages (APLAS
2011), the 4th International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies
(BIOTECHNO 2012). He will be a member of the International Symposium on Foundations of Health
Information Engineering and System (FHIES 2012).

— Antoine Miné was member of the program committee of the 18th International Static Analysis Symposium
(SAS’11), the third Workshop on Numerical and Symbolic Abstract Domains (NSAD’11), and the First
International Workshop on Safety and Security in Cyber-Physical Systems (SSCPS’11).

Antoine Miné will be program committee co-chair and general chair of the 19th International Static Analysis
Symposium (SAS’12), Deauville, France, general chair of the 4th International Workshop on Numerical and
Symbolic Abstract Domains (NSAD’12), the 3rd International Workshop on Static Analysis and Systems Bi-
ology (SASB’12), and the 3rd International Workshop on Tools for Automatic Program AnalysiS (TAPAS’12),
Deauville, France, and member of the program committee of the Second International Workshop on Safety
and Security in Cyber-Physical Systems (SSCPS’12), Gaithersburg, Maryland, USA.

— Xavier Rival was member of the program committee the Conferences on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2011), Saarbrücken, Germany, March 26-April 3, 2011.

Xavier Rival is a member of the program committee the European Symposium On Programming (ESOP 2012).

Xavier Rival is member of the steering committee of the Workshop on Tools for Automatic Program AnalysiS
(TAPAS).

9.1.4. Jury of PhD and Habilitation
— Patrick Cousot was in the jury of the habilitation of Xavier Rival, (ENS, Paris, France, June 24, 2011).

— Jérôme Feret was in the jury of the PhD thesis of Loïc Paulevé (IRCCyn, Nantes, France, October 6, 2011).

— Antoine Miné was in the jury of the PhD thesis of Khalil Ghorbal (CEA, France, July 28, 2011).

9.1.5. Participation in Conferences

CMSB: Ninth International Conference on Computational Methods in Systems Biology (Paris, France,
21–23 September 2011).
Ferdinanda Camporesi, Jérôme Feret, and Alessandro Romanel attended the workshop. Jérôme Feret
chaired a session.

http://www.brics.dk/~hosc/
http://versita.com/cejcs/
http://www.frontiers-in-genetics.org

20 Activity Report INRIA 2011

ESOP: European Symposium on Programming (Saarbrücken, Germany, 30 March – 1st April 2011)
Patrick Cousot, Radhia Cousot, Antoine Miné and Xavier Rival attended the conference. Antoine
Miné gave a talk on the static analysis of parallel programs [22].

FOSSACS: 14th International Conference on Foundations of Software Science and Computation Struc-
tures (Saarbrücken, Germany, 29–31 March 2011)
Patrick Cousot, Radhia Cousot attended the conference. Patrick Cousot gave a talk on the reduced
product of abstract domains and the combination of decision procedures [20].

MecBIC: International Workshop on Membrane Computing and Biologically Inspired Process Calculi
(Fontainebleau, France, 23 August 2011).
Jérôme Feret and Alessandro Romanel attended the workshop.

MFPS: International Conference on Mathematical Foundations of Programming Semantics (Pittsburg,
Pennsylvania, USA, 25–28 May 2011).
Jérôme Feret attended the conference and gave an invited talk on model reduction of differential
models [13].

NSAD: Second International Workshop on Numerical and Symbolic Abstract Domains (Venice, Italy, 13
September 2011).
Antoine Miné, Patrick Cousot, Radhia Cousot, and Xavier Rival attended the workshop.

POPL: ACM Symposium on Principles of Programming Languages (Austin, Texas, USA, 26–28 January
2011).
Patrick Cousot, Radhia Cousot and Xavier Rival attended the conference [18]. Xavier Rival gave a
talk on Calling context abstraction with shapes [23].

RAIM: 4ème Rencontres Arithmétique de l’Informatique Mathématique (Perpignan, France, 7–10 Febru-
ary 2011)
Antoine Miné attended and gave a talk on the static analysis of numerical programs manipulating
floating-point numbers.

SAS: 18th International Static Analysis Symposium (Venice, Italy, 14–16 September 2011).
Ferdinanda Camporesi, Patrick Cousot, Radhia Cousot, Jérôme Feret, Antoine Miné, Xavier Rival,
and Matteo Zanioli attended the conference. Patrick Cousot gave an invited talk on Combining
Algebraic Domains and Logical Theories by the Reduced Product. Jérôme Feret gave an invited
talk on model reduction of differential models [14]. Antoine Miné chaired a session.

SASB: International Workshop on Static Analyis and Systems Biology (Venice, Italy, 13 September
2011).
Ferdinanda Camporesi and Jérôme Feret attended to the workshop. Jérôme Feret co-chaired the
workshop and chaired all the sessions.

TACAS: 17th International Conference on Tools for Automatic Construction and Analysis of Systems
(Saarbrücken, Germany, 29–31 March 2011)
Xavier Rival attended the conference and chaired a session.

TAPAS: Second International Workshop on Tools for Automatic Program Analysis (Venice, Italy, France,
17 September 2011).
Antoine Miné and Xavier Rival attended the workshop.

VMCAI: International Conference on Verification, Model Checking and Abstract Interpretation (Austin,
Texas, USA, 23–25 January 2011).
Patrick Cousot, Radhia Cousot attended the conference. Patrick Cousot gave a talk on precondition
inference from intermittent assertions and application to contracts on collections [19].

9.1.6. Invitations and Participation in Seminars
— Ferdinanda Camporesi gave a talk on model reduction of signaling pathways at the Semantics and
Abstraction Interpretation Seminar (ENS, Paris, France).

Project-Team ABSTRACTION 21

— Patrick Cousot gave a talk on Unifying proof theoretic/logical and algebraic abstractions for inference and
verification, NSF CMACS Meeting, University of Maryland, College Park, MD, USA, April 28-29, 2011;
on Theories, Solvers and Static Analysis by Abstract Interpretation, ASCERT Meeting, ENS Paris, France,
November 30, 2011; on Program verification by abstract interpretation, NSF CMACS Industry Workshop on
Verification of Embedded Control Systems, October 20, 2011, Carnegie Mellon University, Pittsburgh, PA.

— Patrick Cousot and Radhia Cousot gave a talk on Method Refactoring by Abstract Interpretation, MSR
Talk Series, Microsoft Research, Redmond, WA, USA, September 2, 2011; on Theories, Solvers and Static
Analysis by Abstract Interpretation, MSR Talk Series, Microsoft Research, Redmond, WA, USA. August 12th,
2011.

— Jérôme Feret gave a talk on the ASTRÉE analyzer at the Programming Methodology group at ETH Zürich
(Zürich, Switzerland) and some talks on model reduction for signaling pathways at the Bison group at ETH
Zürich (Zürich, Switzerland), at the Focus group at the University of Bologna (Bologna, Italy), at the ANR-
SYMBIOTIC meeting (IBISC, Evry, France), at the SysBio meeting of the Systems Biology of cancer group
at the Institut Curie (Paris, France).

— Antoine Miné gave a talk on the static analysis of parallel programs at the 68NQRT Seminar, IRISA and
INRIA Rennes (France) on the 26 May 2011, at the Semantics and Abstraction Interpretation Seminar, École
normale supérieure (Paris, France) on the 18 November 2011, and at IMDEA-Software (Madrid, Spain) on
the 12 December 2011.

— Xavier Rival was invited to give a talk on Perspective for compiler certification in avionics at the “Compiler
Optimization meets Compiler Verification” Workshop (COCV) at ETAPS 2011, Saarbrücken, Germany,
March 26-April 3, 2011. Xavier Rival gave a talk on Abstract domains for the static analysis of programs
manipulating complex data-structures at Seoul National University (Seoul, Korea), on the 26th August, 2011.

9.2. Teaching
Licence :

• Mathematics, 20h, L1, Licence Frontiers in Life Sciences, Université Paris-Descartes,
France.

• Introduction to static analysis, 8h, L3, École des Mines de Paris, France.

• Introduction to algorithmics, 40h, L2, École Polytechnique, Palaiseau, France.

• Algorithmics and programming, 40h, L3, École Polytechnique, Palaiseau, France.

Master :

• Computational Biology, 6h, M1, Interdisciplinary Approaches to Life Science (AIV)
Master Program, Université Paris-Descartes, France

• Abstract interpretation: application to verification and static analysis, 48h, niveau M2,
Parisian Master of Research in Computer Science (MPRI), École normale supérieure,
France.

• Rule-based modeling and application to biomolecular networks, 8h, M1-M2, Master of
Fundamental Research in Computer Science (MIF), École normale supérieure de Lyon,
France

Doctorat :

• Abstract Interpretation and its Applications, 19h, University of Bologna / University of
Padova, Italy.

• Abstract Interpretation-based Tool Construction for Software Verification, 8th LASER
Summer School on Software Engineering (LASER 2011), Elba Island, Italy, September
4-10, 2011.

http://ascert.gforge.inria.fr/index.html
http://www.astree.ens.fr/

22 Activity Report INRIA 2011

PhD & HdR :

HdR :

• Xavier Rival, Abstract domains for the analysis of programs manipulating complex data-
structures [8], École Normale Supérieure, June, 24th, 2011.

PhD in progress :

• Mehdi Bouaziz, November 2011, Patrick Cousot, École Normale Supérieure.

• Ferdinanda Camporesi, Abstraction of Quantitative Semantics of Rule-based models,
January 2009, Radhia Cousot and Jérôme Feret (co-directed thesis with Maurizio Gabrielli,
University of Bologna).

• Tie Cheng, Static analysis of spreadsheet macros, October 2011, Xavier Rival, École
Polytechnique

• Vincent Laviron, October 2009, Patrick Cousot, École Normale Supérieure.

• Antoine Toubhans, Combination of shape abstract domains, October 2011, Xavier Rival,
École Doctorale de Paris Centre

• Caterina Urban, November 2011, Radhia Cousot, École Normale Supérieure.

• Matteo Zanioli, October 2008, Radhia Cousot (co-directed thesis with Agostino Cortesi,
University of Venezia).

10. Bibliography
Major publications by the team in recent years

[1] J. BERTRANE, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL. Static Analysis
and Verification of Aerospace Software by Abstract Interpretation, in "Proceedings of the American Institue of
Aeronautics and Astronautics (AIAA Infotech@Aerospace 2010)", Atlanta, Georgia, USA, American Institue
of Aeronautics and Astronautics, 2010, http://hal.inria.fr/inria-00528611.

[2] B. BLANCHET, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL.
A Static Analyzer for Large Safety-Critical Software, in "Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI’03)", ACM Press, June 7–14 2003, p. 196–207.

[3] P. COUSOT. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation,
in "Theoretical Computer Science", 2002, vol. 277, no 1–2, p. 47–103.

[4] J. FERET, V. DANOS, J. KRIVINE, R. HARMER, W. FONTANA. Internal coarse-graining of molecular systems,
in "Proceeding of the national academy of sciences", Apr 2009, vol. 106, no 16, http://hal.inria.fr/inria-
00528330.

[5] L. MAUBORGNE, X. RIVAL. Trace Partitioning in Abstract Interpretation Based Static Analyzers, in "Pro-
ceedings of the 14th European Symposium on Programming (ESOP’05)", M. SAGIV (editor), Lecture Notes
in Computer Science, Springer-Verlag, 2005, vol. 3444, p. 5–20.

[6] A. MINÉ. The Octagon Abstract Domain, in "Higher-Order and Symbolic Computation", 2006, vol. 19, p.
31–100.

http://hal.inria.fr/inria-00528611
http://hal.inria.fr/inria-00528330
http://hal.inria.fr/inria-00528330

Project-Team ABSTRACTION 23

[7] X. RIVAL. Symbolic Transfer Functions-based Approaches to Certified Compilation, in "Conference Record
of the 31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages", ACM
Press, New York, United States, 2004, p. 1–13.

Publications of the year
Doctoral Dissertations and Habilitation Theses

[8] X. RIVAL. Abstract domains for the analysis of programs manipulating complex data-structures, École Normale
Supérieure, June 2011, Habilitation à Diriger des Recherches.

Articles in International Peer-Reviewed Journal

[9] J. BERTRANE, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, X. RIVAL. Static analysis
by abstract interpretation of embedded critical software, in "ACM SIGSOFT Software Engineering Notes",
2011, vol. 36, no 1, p. 1-8.

[10] A. CORTESI, M. ZANIOLI. Widening and narrowing operators for abstract interpretation, in "Computer
Languages, Systems and Structures", 2011, vol. 37, no 1, p. 24 - 42, http://dx.doi.org/10.1016/j.cl.2010.09.
001.

[11] P. COUSOT, R. COUSOT. Grammar semantics, analysis and parsing by abstract interpretation, in "Theoretical
Computer Science", 2011, vol. 412, no 44, p. 6135-6192.

[12] J. FERET, T. HENZINGER, H. KOEPPL, T. PETROV. Lumpability Abstractions of Rule-based Systems, in
"Theorerical Computer Science", 2012, to appear, http://dx.doi.org/10.1016/j.tcs.2011.12.059.

Invited Conferences

[13] F. CAMPORESI, J. FERET. Formal reduction for rule-based models, in "Post-proceedings of the the 27th Con-
ference on the Mathematical Foundations of Programming Semantics - (MFPS’11)", Pittsburgh, United States,
M. MISLOVE, J. OUAKNINE (editors), Electronic Notes in Theoretical Computer Science, Elsevier, Septem-
ber 2011, vol. 276, p. 29-59 [DOI : 10.1016/J.ENTCS.2011.09.014], http://hal.inria.fr/inria-00636850/en.

[14] J. FERET. Formal Model Reduction, in "Proceedings of the 18th International Static Analysis Symposium
(SAS’11)", Venice, Italy, E. YAHAV (editor), Lecture Notes in Computer Science, 2011, vol. 6887, p. 6–6
[DOI : 10.1007/978-3-642-23702-7_5], http://hal.inria.fr/inria-00626640/en.

International Conferences with Proceedings

[15] L. CHEN, A. MINÉ, J. WANG, P. COUSOT. Linear Absolute Value Relation Analysis, in "Proceedings of the
20th European Symposium on Programming (ESOP’11)", G. BARTHE (editor), Lecture Notes in Computer
Science, Springer, 2011, vol. 6602, p. 156–175, http://hal.inria.fr/hal-00648039/.

[16] A. CORTESI, M. ZANIOLI. Information Leakage Analysis by Abstract Interpretation, in "Proceedings of
the 37th International Conference on Current Trends in Theory and Practice of Computer Science", Novy
Smokovec Slovakia, Lecture Notes in Computer Science, Springer, 2011, vol. 6543, p. 545–557.

[17] P. COUSOT, R. COUSOT. An Abstract Interpretation Framework for Termination, in "Proceedings of the 39th
Annual ACM Symposium on Principles Of Programming Languages (POPL’12)", Philadelphia, PA, ACM
Press, January 25–27 2012.

http://dx.doi.org/10.1016/j.cl.2010.09.001
http://dx.doi.org/10.1016/j.cl.2010.09.001
http://dx.doi.org/10.1016/j.tcs.2011.12.059
http://hal.inria.fr/inria-00636850/en
http://hal.inria.fr/inria-00626640/en
http://hal.inria.fr/hal-00648039/

24 Activity Report INRIA 2011

[18] P. COUSOT, R. COUSOT, F. LOGOZZO. A Parametric Segmentation Functor for Fully Automatic and Scalable
Array Content Analysis, in "Proceedings of the 38th Annual ACM Symposium on Principles Of Programming
Languages (POPL’11)", Austin, Texas, United States, ACM Press, 2011, http://hal.inria.fr/inria-00543874/en.

[19] P. COUSOT, R. COUSOT, F. LOGOZZO. Precondition Inference from Intermittent Assertions and Application
to Contracts on Collections, in "Proceedings of the 12th Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’11)", Austin, Texas, United States, R. JHALA, D. SCHMIDT (editors),
Springer-Verlag, 2011, http://hal.inria.fr/inria-00543881/en.

[20] P. COUSOT, R. COUSOT, L. MAUBORGNE. The Reduced Product of Abstract Domains and the Combination
of Decision Procedures, in "Proceedings of Foundations of Software Science and Computational Structures -
14th International Conference, FOSSACS 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011", Saarbrücken, Germany, M. HOFMANN (editor), Lecture Notes in
Computer Science, Springer, March-April 2011, vol. 6604, p. 456-472.

[21] P. COUSOT, M. MONERAU. Probabilistic Abstract Interpretation, in "Proceedings of the 21th European
Symposium on Programming (ESOP’12)", H. SEIDL (editor), Lecture Notes in Computer Science, Springer,
March 2012, to appear.

[22] A. MINÉ. Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs, in "Proceedings of
the 20th European Symposium on Programming (ESOP’11)", G. BARTHE (editor), Lecture Notes in Computer
Science, Springer, 2011, vol. 6602, p. 398–418, http://hal.inria.fr/hal-00648038.

[23] X. RIVAL, B.-Y. E. CHANG. Calling Contexts Abstraction with Shapes, in "Proceedings of the 38th Annual
ACM Symposium on Principles Of Programming Languages (POPL’10)", Austin, Texas, ACM Press, January
26–28, 2011.

[24] M. ZANIOLI, P. FERRARA, A. CORTESI. SAILS: static analysis of information leakage with Sample, in
"Proceedings of the 27th ACM Symposium on Applied Computing (SAC’12)", Riva del Garda, Italy, ACM
Press, 2012, to appear.

Scientific Books (or Scientific Book chapters)

[25] J. BERTRANE, J. FERET, P. COUSOT, R. COUSOT, A. MINÉ, X. RIVAL, L. MAUBORGNE. L’analyseur
statique Astrée, in "Utilisations industrielles des techniques formelles : interprétation abstraite", J.-L.
BOULANGER (editor), Hermes-Lavoisier, June 2011, p. 67–113, http://hal.inria.fr/inria-00636877/en.

Books or Proceedings Editing

[26] J. FERET, A. LEVCHENKO (editors). Static Analysis and Systems Biology – 1st International Workshop, SASB
2010, Perpignan, France, September 13, 2010. PostProceedings, Electronic Notes in Theoretical Computer
Science, Elsevier, 2011, vol. 272.

References in notes

[27] P. COUSOT. Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code, invited tutorial, in "Pro-
ceedings of the Seventh ACM & IEEE International Conference on Embedded Software, EMSOFT’2007", C.
M. KIRSCH, R. WILHELM (editors), ACM Press, New York, USA, 2007, p. 7–9.

http://hal.inria.fr/inria-00543874/en
http://hal.inria.fr/inria-00543881/en
http://hal.inria.fr/hal-00648038
http://hal.inria.fr/inria-00636877/en

Project-Team ABSTRACTION 25

[28] P. COUSOT. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique de programmes (in French), Université scientifique et médicale de Greno-
ble, Grenoble, France, 21 March 1978.

[29] R. COUSOT. Reasoning about program invariance proof methods, Centre de Recherche en Informatique de
Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy, France, July 1980, no CRIN-80-P050.

[30] P. COUSOT. Semantic Foundations of Program Analysis, in "Program Flow Analysis: Theory and Applica-
tions", S. S. MUCHNICK, N. D. JONES (editors), Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981,
chap. 10, p. 303–342.

[31] R. COUSOT. Proving invariance properties of parallel programs by backward induction, University Paul
Verlaine, Metz, France, March 1981, no LRIM-82-02.

[32] R. COUSOT. Fondements des méthodes de preuve d’invariance et de fatalité de programmes parallèles (in
French), Institut National Polytechnique de Lorraine, Nancy, France, 21 November 1985.

[33] P. COUSOT. The Calculational Design of a Generic Abstract Interpreter, invited chapter, in "Calculational
System Design", M. BROY, R. STEINBRÜGGEN (editors), NATO Science Series, Series F: Computer and
Systems Sciences. IOS Press, Amsterdam, The Netherlands, 1999, vol. 173, p. 421–505.

[34] P. COUSOT, R. COUSOT. Basic Concepts of Abstract Interpretation, invited chapter, in "Building the
Information Society", R. JACQUART (editor), Kluwer Academic Publishers, Dordrecht, The Netherlands,
2004, chap. 4, p. 359–366.

[35] P. COUSOT, R. COUSOT. Grammar Analysis and Parsing by Abstract Interpretation, invited chapter, in
"Program Analysis and Compilation, Theory and Practice: Essays dedicated to Reinhard Wilhelm on the
Occasion of his 60th Birthday", T. W. REPS, M. SAGIV, J. BAUER (editors), Lecture Notes in Computer
Science, Springer, Berlin, Germany, 2007, vol. 4444.

[36] P. COUSOT, R. COUSOT. Bi-inductive structural semantics, in "Information and Computation", 2009, vol.
207, no 2, p. 258–283.

[37] P. COUSOT, R. COUSOT. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in "Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages", ACM Press, New York, United States, 1977,
p. 238–252.

[38] P. COUSOT, R. COUSOT. Systematic design of program analysis frameworks, in "Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages", San Antonio,
Texas, ACM Press, New York, NY, USA, 1979, p. 269–282.

[39] P. COUSOT, R. COUSOT. Semantic analysis of communicating sequential processes, in "Seventh International
Colloquium on Automata, Languages and Programming", J. W. DE BAKKER, J. VAN LEEUWEN (editors),
Lecture Notes in Computer Science 85, Springer-Verlag, Berlin, Germany, July 1980, p. 119–133.

[40] P. COUSOT, R. COUSOT. Invariance Proof Methods and Analysis Techniques For Parallel Programs, in
"Automatic Program Construction Techniques", A. W. BIERMANN, G. GUIHO, Y. KODRATOFF (editors),
Macmillan, New York, New York, United States, 1984, chap. 12, p. 243–271.

26 Activity Report INRIA 2011

[41] P. COUSOT, R. COUSOT. Higher-Order Abstract Interpretation (and Application to Comportment Analysis
Generalizing Strictness, Termination, Projection and PER Analysis of Functional Languages), invited paper,
in "Proceedings of the 1994 International Conference on Computer Languages", Toulouse, France, IEEE
Computer Society Press, Los Alamitos, California, 16–19 May 1994, p. 95–112.

[42] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. The ASTRÉE
analyser, in "Proceedings of the Fourteenth European Symposium on Programming Languages and Systems,
ESOP’2005, Edinburg, Scotland", M. SAGIV (editor), Lecture Notes in Computer Science, Springer, Berlin,
Germany, 2–10 April 2005, vol. 3444, p. 21–30.

[43] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. Varieties
of Static Analyzers: A Comparison with ASTRÉE, invited paper, in "Proceedings of the First IEEE & IFIP
International Symposium on Theoretical Aspects of Software Engineering, TASE’07", Shanghai, China, M.
HINCHEY, J. HE, J. SANDERS (editors), IEEE Computer Society Press, Los Alamitos, California, USA, 6–8
June 2007.

[44] P. COUSOT, R. COUSOT, R. GIACOBAZZI. Abstract Interpretation of Resolution-Based Semantics, in
"Theoretical Computer Science", Nov. 2009, vol. 410, no 46.

[45] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Abstracting the differential semantics of rule-
based models: exact and automated model reduction, in "Proceedings of Logic in Computer Science (LICS
2010), Edinburgh, UK", J.-P. JOUANNAUD (editor), 2010, p. 362–381, http://hal.inria.fr/hal-00520112, http://
hal.inria.fr/hal-00520112.

[46] V. DANOS, J. FERET, W. FONTANA, R. HARMER, J. KRIVINE. Rule-based modelling of cellular signalling,
in "Proceedings of the 18th International Conference on Concurrency Theory (CONCUR’07)", Portugal,
September 2007, vol. 4703, p. 17–41, http://hal.archives-ouvertes.fr/hal-00164297/en/.

[47] V. DANOS, J. FERET, W. FONTANA, J. KRIVINE. Scalable Simulation of Cellular Signaling Networks, in
"Proceedings of the 5th Asian Symposium on Programming Languages and Systems - APLAS’07", Z. SHAO
(editor), Lecture Notes in Computer Science, Springer, 2007, vol. 4807, p. 139-157 [DOI : 10.1.1.139.5120],
http://hal.inria.fr/inria-00528409/en/.

[48] V. DANOS, J. FERET, W. FONTANA, J. KRIVINE. Abstract Interpretation of Cellular Signalling Networks, in
"Proceedings of the 9th International Conference on Verification, Model Checking and Abstract Interpretation
- VMCAI’08", F. LOGOZZO, D. A. PELED, L. D. ZUCK (editors), Lecture Notes in Computer Science,
Springer, 2008, vol. 4905, p. 83-97 [DOI : 10.1007/978-3-540-78163-9_11], http://hal.inria.fr/inria-
00528352/en/.

[49] V. DANOS, C. LANEVE. Formal Molecular Biology, in "Theoretical Computer Science", 10 2004, vol. 325,
no 1, p. 69-110 [DOI : 10.1016/J.TCS.2004.03.065], http://hal.archives-ouvertes.fr/hal-00164591/en/.

[50] R. HARMER, V. DANOS, J. FERET, J. KRIVINE, W. FONTANA. Intrinsic Information carriers in combina-
torial dynamical systems, in "Chaos", 2010, vol. 20, no 3, 037108, http://hal.inria.fr/hal-00520128, http://hal.
inria.fr/hal-00520128.

http://hal.inria.fr/hal-00520112
http://hal.inria.fr/hal-00520112
http://hal.inria.fr/hal-00520112
http://hal.archives-ouvertes.fr/hal-00164297/en/
http://hal.inria.fr/inria-00528409/en/
http://hal.inria.fr/inria-00528352/en/
http://hal.inria.fr/inria-00528352/en/
http://hal.archives-ouvertes.fr/hal-00164591/en/
http://hal.inria.fr/hal-00520128
http://hal.inria.fr/hal-00520128
http://hal.inria.fr/hal-00520128

