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2. Overall Objectives

2.1. Introduction
The Arénaire project aims at elaborating and consolidating knowledge in the field of Computer Arithmetic,
which studies how a machine deals with numbers. Reliability, accuracy, and performance are the major goals
that drive our research. We study basic arithmetic operators such as adders, dividers, etc. We work on new
operators for the evaluation of elementary and special functions (log, cos, erf , etc.), and also consider the
composition of previous operators. In addition to these studies on the arithmetic operators themselves, our
research focuses on specific application domains (cryptography, signal processing, linear algebra, algorithms
for Euclidean lattice, etc.) for a better understanding of the impact of the arithmetic choices on solving methods
in scientific computing.

We contribute to the improvement of the available arithmetic on computers, processors, dedicated or embedded
chips, etc., both at the hardware level and at the software level. Improving computing does not necessarily
mean getting more accurate results or getting them faster: we also take into account other constraints such as
power consumption, code size, or the reliability of numerical software. All branches of the project focus on
algorithmic research and on the development and the diffusion of corresponding libraries, either in hardware
or in software. Some distinctive features of our libraries are numerical quality, reliability, and performance.

The study of number systems and, more generally, of data representations is a first topic of uttermost
importance in the project. Typical examples are: the redundant number systems used inside multipliers and
dividers; alternatives to floating-point representation for special purpose systems; finite field representations
with a strong impact on cryptographic hardware circuits; the performance of an interval arithmetic that heavily
depends on the underlying real arithmetic.

Another general objective of the project is to improve the validation of computed data, we mean to provide
more guarantees on the quality of the results. For a few years we have been handling those validation aspects
in the following three complementary ways: through better qualitative properties and specifications (correct
rounding, error bound representation, and portability in floating-point arithmetic); by proposing a development
methodology focused on the proven quality of the code; by studying and allowing the cooperation of various
kinds of arithmetics such as constant precision, intervals, arbitrary precision and exact numbers.

These goals may be organized in four directions: hardware arithmetic, software arithmetic for algebraic and
elementary functions, validation and automation, and arithmetics and algorithms for scientific computing.
These directions are not independent and have strong interactions. For example, elementary functions are also
studied for hardware targets, and scientific computing aspects concern most of the components of Arénaire.

• Hardware Arithmetic. From the mobile phone to the supercomputer, every computing system relies
on a small set of computing primitives implemented in hardware. Our goal is to study the design of
such arithmetic primitives, from basic operations such as the addition and the multiplication to more
complex ones such as the division, the square root, cryptographic primitives, and even elementary
functions. Arithmetic operators are relatively small hardware blocks at the scale of an integrated
circuit, and are best described in a structural manner: a large operator is assembled from smaller ones,
down to the granularity of the bit. This study requires knowledge of the hardware targets (ASICs,
FPGAs), their metrics (area, delay, power), their constraints, and their specific language and tools.
The input and output number systems are typically given (integer, fixed-point, or floating-point), but
internally, non-standard number systems may be successfully used.



Project-Team ARENAIRE 3

• Algebraic and Elementary Functions. Computer designers still have to implement the basic arith-
metic functions for a medium-size precision. Addition and multiplication have been much studied
but their performance may remain critical (silicon area or speed). Division and square root are less
critical, however there is still room for improvement (e.g. for division, when one of the inputs is
constant). Research on new algorithms and architectures for elementary functions is also very ac-
tive. Arénaire has a strong reputation in these domains and will keep contributing to their expansion.
Thanks to past and recent efforts, the semantics of floating-point arithmetic has much improved.
The adoption of the IEEE-754 standard for floating-point arithmetic has represented a key point for
improving numerical reliability. Standardization is also related to properties of floating-point arith-
metic (invariants that operators or sequences of operators may satisfy). Our goal is to establish and
handle new properties in our developments (correct rounding, error bounds, etc.) and then to have
those results integrated into the future computer arithmetic standards.

• Validation and Automation. Validation corresponds to some guarantee on the quality of the eval-
uation. Several directions are considered, for instance the full error (approximation plus rounding
errors) between the exact mathematical value and the computed floating-point result, or some guar-
antee on the range of a function. Validation also comprises a proof of this guarantee that can be
checked by a proof checker. Automation is crucial since most development steps require specific
expertise in floating-point computing that can neither be required from code developers nor be mo-
bilized manually for every problem.

• Arithmetics and Algorithms. When conventional floating-point arithmetic does not suffice, we use
other kinds of arithmetics. Especially in the matter of error bounds, we work on interval arithmetic
libraries, including arbitrary precision intervals. Here a main domain of application is global
optimization. Original algorithms dedicated to this type of arithmetic must be designed in order
to get accurate solutions, or sometimes simply to avoid divergence (e.g., infinite intervals). We also
investigate exact arithmetics for computing in algebraic domains such as finite fields, unlimited
precision integers, and polynomials. A main objective is a better understanding of the influence
of the output specification (approximate within a fixed interval, correctly rounded, exact, etc.) on
the complexity estimates for the problems considered. Those problems mainly come from two
application domains: exact linear algebra and lattice basis reduction.

Our work in Arénaire since its creation in 1998, and especially since 2002, provides us a strong expertise in
computer arithmetic. This knowledge, together with the technology progress both in software and hardware,
draws the evolution of our objectives towards the synthesis of validated algorithms.

2.2. Highlights
BEST PAPER AWARD :
[45] Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE International
Conference on. F. DE DINECHIN, J.-M. MULLER, B. PASCA, A. PLESCO.

3. Scientific Foundations

3.1. Introduction
As stated above, four major directions in Arénaire are hardware arithmetic, algebraic and elementary
functions, validation and automation, and arithmetics and algorithms. For each of those interrelated topics,
we describe below the tools and methodologies on which it relies.



4 Activity Report INRIA 2011

3.2. Hardware Arithmetic
A given computing application may be implemented using different technologies, with a large range of trade-
offs between the various aspects of performance, unit cost, and non-recurring costs (including development
effort):

• A software implementation, targeting off-the-shelf microprocessors, is easy to develop and repro-
duce, but will not always provide the best performance.

• For cost or performance reasons, some applications will be implemented as application specific
integrated circuits (ASICs). An ASIC provides the best possible performance and may have a very
low unit cost, at the expense of a very high development cost.

• An intermediate approach is the use of reconfigurable circuits, or field-programmable gate arrays
(FPGAs).

In each case, the computation is broken down into elementary operations, executed by elementary hardware
elements, or arithmetic operators. In the software approach, the operators used are those provided by the
microprocessor. In the ASIC or FPGA approaches, these operators have to be built by the designer, or taken
from libraries. Our goals include studying operators for inclusion in microprocessors and developing hardware
libraries for ASICs or FPGAs.

Operators under study. Research is active on algorithms for the following operations:

• Basic operations (addition, subtraction, multiplication), and their variations (multiplication and
accumulation, multiplication or division by constants, etc.);

• Algebraic functions (division, inverse, and square root, and in general, powering to an integer, and
polynomials);

• Elementary functions (sine, cosine, exponential, etc.);

• Combinations of the previous operations (norm, for instance).

A hardware implementation may lead to better performance than a software implementation for two main
reasons: parallelism and specialization. The second factor, from the arithmetic point of view, means that
specific data types and specific operators, which would require costly emulation on a processor, may be
used. For example, some cryptography applications are based on modular arithmetic and bit permutations,
for which efficient specific operators can be designed. Other examples include standard representations with
non-standard sizes, and specific operations such as multiplication by constants.

Hardware-oriented algorithms. Many algorithms are available for the implementation of elementary oper-
ators (see for instance [68]). For example, there are two classes of division algorithms: digit-recurrence and
function iteration. The choice of an algorithm for the implementation of an operation depends on, and some-
times imposes, the choice of a number representation. Besides, there are usually technological constraints such
as the area and power budget, and the available low-level libraries.

The choice of the number systems used for the intermediate results is crucial. For example, a redundant system,
in which a number may have several encodings, will allow for more design freedom and more parallelism,
hence faster designs. However, the hardware cost can be higher. As another example, the power consumption
of a circuit depends, among other parameters, on its activity, which in turn depends on the distribution of the
values of the inputs, hence again on the number system.

Alternatives exist at many levels in this algorithm exploration. For instance, an intermediate result may be
either computed, or recovered from a precomputed table.
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Parameter exploration. Once an algorithm is chosen, optimizing its implementation for area, delay, accuracy,
or energy consumption is the next challenge. The best solution depends on the requirements of the application
and on the target technology. Parameters which may vary include the radix of the number representations, the
granularity of the iterations (between many simple iterations, or fewer coarser ones), the internal accuracies
used, the size of the tables (see [69] for an illustration), etc.

The parameter space quickly becomes huge, and the expertise of the designer has to be automated. Indeed, we
do not design operators, but operator generators, programs that take a specification and some constraints as
input, and output a synthesizable description of an operator.

3.3. Algebraic and Elementary Functions
Elementary Functions and Correct Rounding. Many libraries for elementary functions are currently
available. We refer to [68] for a general insight into the domain. The functions in question are typically those
defined by the C99 and LIA-2 standards, and are offered by vendors of processors, compilers or operating
systems.

Though the 1985 version of the IEEE-754 standard does not deal with these functions, there is some attempt
to reproduce some of their mathematical properties, in particular symmetries. For instance, monotonicity can
be obtained for some functions in some intervals as a direct consequence of accurate internal computations
or numerical properties of the chosen algorithm to evaluate the function; otherwise it may be very difficult
to guarantee, and the general solution is to provide it through correct rounding. Preserving the range (e.g.,
atan(x) ∈ [−π/2, π/2]) may also be a goal though it may conflict with correct rounding (when supported).

Concerning the correct rounding of the result, it was not required by the IEEE-754-1985 standard: during the
elaboration of this standard, it was considered that correctly rounded elementary functions were impossible
to obtain at a reasonable cost, because of the so-called Table Maker’s Dilemma: an elementary function is
evaluated to some internal accuracy (usually higher than the target precision), and then rounded to the target
precision. What is the minimum accuracy necessary to ensure that rounding this evaluation is equivalent to
rounding the exact result, for all possible inputs? This question could not be answered in a simple manner,
meaning that correctly rounding elementary functions may require arbitrary precision, which is very slow and
resource-consuming.

Indeed, correctly rounded libraries already exist, such as GNU MPFR (http://www.mpfr.org/), the Accurate
Portable Library released by IBM in 2002, or the libmcr library, released by Sun Microsystems in late
2004. However they have worst-case execution time and memory consumption up to 10,000 worse than usual
libraries, which is the main obstacle to their generalized use.

We have focused in the previous years on computing bounds on the intermediate precision required for
correctly rounding some elementary functions in IEEE-754 double precision. This allows us to design
algorithms using a tight precision. That makes it possible to offer the correct rounding with an acceptable
overhead: we have experimental code where the cost of correct rounding is negligible in average, and less than
a factor 10 in the worst case. These performances led the IEEE-754 revision committee to recommend (yet
not request) correct rounding for some mathematical functions. It also enables to prove the correct-rounding
property, and to show bounds on the worst-case performance of our functions. Such worst-case bounds may
be needed in safety critical applications as well as a strict proof of the correct rounding property. Concurrent
libraries by IBM and Sun can neither offer a complete proof for correct rounding nor bound the timing because
of the lack of worst-case accuracy information. Our work actually shows a posteriori that their overestimates
for the needed accuracy before rounding are however sufficient. IBM and Sun for themselves could not provide
this information. See also §3.4 concerning the proofs for our library.

Approximation and Evaluation. The design of a library with correct rounding also requires the study of
algorithms in large (but not arbitrary) precision, as well as the study of more general methods for the three
stages of the evaluation of elementary functions: argument reduction, approximation, and reconstruction of
the result.

http://www.mpfr.org/
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When evaluating an elementary function for instance, the first step consists in reducing this evaluation to
the one of a possibly different function on a small real interval. Then, this last function is replaced by an
approximant, which can be a polynomial or a rational fraction. Being able to perform those processes in a very
cheap way while keeping the best possible accuracy is a key issue [2]. The kind of approximants we can work
with is very specific: the coefficients must fulfill some constraints imposed by the targeted application, such as
some limits on their size in bits. The usual methods (such as Remez algorithm) do not apply in that situation
and we have to design new processes to obtain good approximants with the required form. Regarding the
approximation step, there are currently two main challenges for us. The first one is the computation of excellent
approximations that will be stored in hardware or in software and that should be called thousands or millions
of times. The second one is the target of automation of computation of good approximants when the function
is only known at compile time. A third question concerns the evaluation of such good approximants. To
find a best compromise between speed and accuracy, we combine various approaches ranging from numerical
analysis (tools like backward and forward error analysis, conditioning, stabilization of algorithms) to computer
arithmetic (properties like error-free subtraction, exactly-computable error bounds, etc.). The structure of the
approximants must further be taken into account, as well as the degree of parallelism offered by the processor
targeted for the implementation.

Adequacy Algorithm/Architecture. Some special-purpose processors, like DSP cores, may not have floating-
point units, mainly for cost reasons. For such integer or fixed-point processors, it is thus desirable to have
software support for floating-point functions, starting with the basic operations. To facilitate the development
or porting of numerical applications on such processors, the emulation in software of floating-point arithmetic
should be compliant with the IEEE-754 standard; it should also be very fast. To achieve this twofold goal, a
solution is to exploit as much as possible the characteristics of the target processor (instruction set, parallelism,
etc.) when designing algorithms for floating-point operations.

So far, we have successfully applied this “algorithm/architecture adequacy” approach to some VLIW processor
cores from STMicroelectronics, in particular the ST231; the ST231 cores have integer units only, but for their
applications (namely, multimedia applications), being able to perform basic floating-point arithmetic very
efficiently was necessary. When various architectures are targeted, this approach should further be (at least
partly) automated. The problem now is not only to write some fast and accurate code for one given architecture,
but to have this optimized code generated automatically according to various constraints (hardware resources,
speed and accuracy requirements).

3.4. Validation and Automation
Validating a code, or generating a validated code, means being able to prove that the specifications are met. To
increase the level of reliability, the proof should be checkable by a formal proof checker.

Specifications of qualitative aspects of floating-point codes. A first issue is to get a better formalism and
specifications for floating-point computations, especially concerning the following qualitative aspects:

• specification: typically, this will mean a proven error bound between the value computed by the
program and a mathematical value specified by the user in some high-level format;

• tight error bound computation;

• floating-point issues: regarding the use of floating-point arithmetic, a frequent concern is the
portability of code, and thus the reproducibility of computations; problems can be due to successive
roundings (with different intermediate precisions) or the occurrence of underflows or overflows;

• precision: the choice of the method (compensated algorithm versus double-double versus quadruple
precision for instance) that will yield the required accuracy at given or limited cost must be studied;

• input domains and output ranges: the determination of input domain or output range also constitutes
a specification/guarantee of a computation;
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• other arithmetics, dedicated techniques and algorithms for increased precision: for studying the
quality of the results, most of conception phases will require multiple-precision or exact solutions to
various algebraic problems.

Certification of numerical codes using formal proof. Certifying a numerical code is error-prone. The use of
a proof assistant will ensure the code correctly follows its specification. This certification work, however, is
usually a long and tedious work, even for experts. Moreover, it is not adapted to an incremental development,
as a small change to the algorithm may invalidate the whole formal proof. A promising approach is the use of
automatic tools to generate the formal proofs of numerical codes with little help from the user.

Instead of writing code in some programming language and trying to prove it, we can design our own
language, well-suited to proofs (e.g., close to a mathematical point of view, and allowing metadata related to
the underlying arithmetics such as error bounds, ranges, and so on), and write tools to generate code. Targets
can be a programming language without extensions, a programming language with some given library (e.g.,
MPFR if one needs a well-specified multiple-precision arithmetic), or a language internal to some compiler:
the proof may be useful to give the compiler some knowledge, thus helping it to do particular optimizations.
Of course, the same proof can hold for several targets.

We worked in particular also on the way of giving a formal proof for our correctly rounded elementary function
library. We have always been concerned by a precise proof of our implementations that covers also details of
the numerical techniques used. Such proof concern is mostly absent in IBM’s and Sun’s libraries. In fact,
many misroundings were found in their implementations. They seem to be mainly due to coding mistakes that
could have been avoided with a formal proof in mind. In CRlibm we have replaced more and more hand-
written paper proofs by Gappa (http://gappa.gforge.inria.fr/) verified proof scripts that are partially generated
automatically by other scripts. Human error is better prevented.

Integrated and interoperable automatic tools. Various automatic components have been independently
introduced above, see §3.2 and §3.3. One of our main objectives is to provide an entire automatic approach
taking in input an expression to evaluate (with possible annotations), and returning an executable validated
code. The complete automation with optimal or at least good resulting performance seems to be far beyond
the current knowledge. However, we see our objective as a major step for prototyping future compilers. We
thus aim at developing a piece of software that automates the steps described in the previous pages. The result
should be an easy-to-use integrated environment.

3.5. Arithmetics and Algorithms

When computing a solution to a numerical problem, an obvious question is that of the quality of the produced
numbers. One may also require a certain level of quality, such as: approximate with a given error bound,
correctly rounded, or –if possible– exact. The question thus becomes twofold: how to produce such a well-
specified output and at what cost? To answer it, we focus on polynomial and integer matrix operations,
Euclidean lattices and global optimization, and study the following directions:

• We investigate new ways of producing well-specified results by resorting to various arithmetics
(intervals, Taylor models, multi-precision floating-point, exact). A first approach is to combine some
of them: for example, guaranteed enclosures can be obtained by mixing Taylor model arithmetic
with floating-point arithmetic [9]. Another approach is to adapt the precision or even change the
arithmetic during the course of a computation. Typical examples are iterative refinement techniques
or exact results obtained via floating-point basic operations. This often requires arithmetics with
very-well specified properties (like the IEEE-754 standard for floating-point arithmetic).

http://gappa.gforge.inria.fr/
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• We also study the impact of certification on algorithmic complexity. A first approach there is to
augment existing algorithms with validated error bounds (and not only error estimates). This leads
us to study the (im)possibility of computing such bounds on the fly at a negligible cost. A second
approach is to study the algorithmic changes needed to achieve a higher level of quality without, if
possible, sacrificing for speed. In exact linear algebra, for example, the fast algorithms recently
obtained in the bit complexity model are far from those obtained decades ago in the algebraic
complexity model.

Numerical Algorithms using Arbitrary Precision Interval Arithmetic. When validated results are needed,
interval arithmetic can be used. New problems can be solved with this arithmetic, which provides sets instead
of numbers. In particular, we target the global optimization of continuous functions. A solution to obviate the
frequent overestimation of results is to increase the precision of computations.

Our work is twofold. On the one hand, efficient software for arbitrary precision interval arithmetic is
developed, along with a library of algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and compared.

To reduce the overestimation of results, variants of interval arithmetic have been developed, such as Taylor
models arithmetic or affine arithmetic. These arithmetics can also benefit from arbitrary precision computa-
tions.

Algorithms for Exact Linear Algebra and Lattice Basis Reduction. The techniques for exactly solving
linear algebra problems have been evolving rapidly in the last few years, substantially reducing the complexity
of several algorithms (see for instance [6] for an essentially optimal result, or [67]). Our main focus is on
matrices whose entries are integers or univariate polynomials over a field. For such matrices, our main interest
is how to relate the size of the data (integer bit lengths or polynomial degrees) to the cost of solving the problem
exactly. A first goal is to design asymptotically faster algorithms, to reduce problems to matrix multiplication
in a systematic way, and to relate bit complexity to algebraic complexity. Another direction is to make these
algorithms fast in practice as well, especially since applications yield very large matrices that are either sparse
or structured. Within the LinBox international project, we work on a software library that corresponds to our
algorithmic research on matrices. LinBox is a generic library that allows to plug external components in a
plug-and-play fashion. The library is devoted to sparse or structured exact linear algebra and its applications.

We recently started a direction around lattice basis reduction. Euclidean lattices provide powerful tools in
various algorithmic domains. In particular, we investigate applications in computer arithmetic, cryptology,
algorithmic number theory and communications theory. We work on improving the complexity estimates
of lattice basis reduction algorithms and providing better implementations of them, and on obtaining more
reduced bases. The above recent progress in linear algebra may provide new insights.

Certified Computing. Most of the algorithmic complexity questions that we investigate concern algebraic
or bit-complexity models for exact computations. Much less seems to be known in approximate computing,
especially for the complexity of computing (certified) error bounds, and for establishing bridges between exact,
interval, and constant precision complexity estimates. We are developing this direction both for a theoretical
impact, and for the design and implementation of algorithm synthesis tools for arithmetic operators, and
mathematical expression evaluation.

4. Application Domains

4.1. Application Domains
Our expertise covers application domains for which the quality, such as the efficiency or safety, of the
arithmetic operators is an issue. On the one hand, it can be applied to hardware oriented developments, for
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example to the design of arithmetic primitives which are specifically optimized for the target application and
support. On the other hand, it can also be applied to software programs, when numerical reliability issues
arise: these issues can consist in improving the numerical stability of an algorithm, computing guaranteed
results (either exact results or certified enclosures) or certifying numerical programs.

• The application domains of hardware arithmetic operators are digital signal processing, image
processing, embedded applications, reconfigurable computing, and cryptography.

• The development of correctly rounded elementary functions is critical to the reproducibility
of floating-point computations. Exponentials and logarithms, for instance, are routinely used in
accounting systems for interest calculation, where roundoff errors have a financial meaning. Our
current focus is on bounding the worst-case time for such computations, which is required to allow
their use in safety critical applications, and in proving the correct rounding property for a complete
implementation.

• Certifying a numerical application usually requires bounds on rounding errors and ranges of
variables. Some of the tools we develop compute or verify such bounds. For increased confidence in
the numerical applications, they may also generate formal proofs of the arithmetic properties. These
proofs can then be machine-checked by proof assistants like Coq.

• Arbitrary precision interval arithmetic can be used in two ways to validate a numerical result.
To quickly check the accuracy of a result, one can replace the floating-point arithmetic of the
numerical software that computed this result by high-precision interval arithmetic and measure the
width of the interval result: a tight result corresponds to good accuracy. When getting a guaranteed
enclosure of the solution is an issue, then more sophisticated procedures, such as those we develop,
must be employed: this is the case of global optimization problems.

• The design of faster algorithms for matrix polynomials provides faster solutions to various problems
in control theory, especially those involving multivariable linear systems.

• Lattice reduction algorithms have direct applications in public-key cryptography. They also naturally
arise in computer algebra. A new and promising field of applications is communications theory.

5. Software

5.1. Introduction
Arénaire proposes various software and hardware realizations that are accessible from the web page http://
www.ens-lyon.fr/LIP/Arenaire/Ware/. We describe below only those which progressed in 2011.

5.2. FloPoCo
Participants: Florent Dinechin [correspondant], Bogdan Pasca, Laurent-Stéphane Didier.

The purpose of the FloPoCo project is to explore the many ways in which the flexibility of the FPGA target
can be exploited in the arithmetic realm. FloPoCo is a generator of operators written in C++ and outputting
synthesizable VHDL automatically pipelined to an arbitrary frequency.

In 2011, FloPoCo was turned into a library which can be used as a back-end to high-level synthesis tools. An
expression parser that generates a complete pipeline was also added for this context. The integer multiplier and
floating-point adder were rewritten, and several new operators were added, including a floating-point power
operator, and novel operators for integer and floating-point division by a constant.

Versions 2.2.0, 2.2.1, and 2.3.0 were released in 2011.

Among the known users of FloPoCo are U. Cape Town, U.T. Cluj-Napoca, Imperial College, U. Essex, U.
Madrid, U. P. Milano, T.U. Muenchen, T. U. Kaiserslautern, U. Paderborn, CalTech, U. Pernambuco, U.
Perpignan, U. Tokyo, Virginia Tech U. and several companies.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/
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Figure 1. Relationships between some Arénaire developments.

URL: http://flopoco.gforge.inria.fr/

• Version: 2.3.0 (december 2011)

• APP: IDDN.FR.001.400014.000.S.C.2010.000.20600 (version 2.0.0)

• License: specific, GPL-like.

• Type of human computer interaction: command-line interface, synthesisable VHDL output.

• OS/Middelware: Linux, Windows/Cygwin.

• Required library or software: MPFR, flex, Sollya.

• Programming language: C++.

• Documentation: online and command-line help, API in doxygen format, articles.

5.3. GNU MPFR
Participants: Vincent Lefèvre [correspondant], Paul Zimmermann.

GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying
the good ideas from the IEEE-754 standard), in particular correct rounding in 5 rounding modes. GNU MPFR
provides about 80 mathematical functions, in addition to utility functions (assignments, conversions...). Special
data (Not a Number, infinities, signed zeros) are handled like in the IEEE-754 standard.

MPFR was one of the main pieces of software developed by the old SPACES team at Loria. Since late 2006,
with the departure of Vincent Lefèvre to Lyon, it has become a joint project between the Caramel (formerly
SPACES then CACAO) and the Arénaire project-teams. MPFR has been a GNU package since 26 January
2009. GNU MPFR 3.0.1 was released on 4 April 2011 and GNU MPFR 3.1.0 was released on 3 October
2011.

The main improvements are the generic tests in a reduced exponent range, the possibility to include the mpfr.h
header file several times while still supporting optional functions, and, for the developers, the choice of the
native type for the exponent (and various corrections related to these features).

http://flopoco.gforge.inria.fr/
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URL: http://www.mpfr.org/

• ACM: D.2.2 (Software libraries), G.1.0 (Multiple precision arithmetic), G.4 (Mathematical soft-
ware).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.
• APP: no longer applicable (copyright transferred to the Free Software Foundation).
• License: LGPL version 3 or later.
• Type of human computer interaction: C library, callable from C or other languages via third-party

interfaces.
• OS/Middleware: any OS, as long as a C compiler is available.
• Required library or software: GMP.
• Programming language: C.
• Documentation: API in texinfo format (and other formats via conversion); algorithms are also

described in a separate document.

5.4. Exhaustive Tests for the Correct Rounding of Mathematical Functions
Participant: Vincent Lefèvre.

The search for the worst cases for the correct rounding (hardest-to-round cases) of mathematical functions
(exp, log, sin, cos, etc.) in a fixed precision (mainly double precision) using Lefèvre’s algorithm is imple-
mented by a set of utilities written in Perl, with calls to Maple/intpakX for computations on intervals and with
C code generation for fast computations. It also includes a client-server system for the distribution of intervals
to be tested and for tracking the status of intervals (fully tested, being tested, aborted).

These programs are run on the LIP network via Grid Engine (SGE). In June 2011, the SGE configuration was
changed by the system administrator so that SIGSTOP/SIGCONT signals are sent to the jobs, allowing several
users to use SGE at the same time. These signals make Maple crash (segmentation fault), and the Perl scripts
needed to be improved to handle these crashes gracefully (by restarting the computations when need be, etc.).
This SGE change made other problems appear, such as when the client is first stopped by SGE and is then
killed by SGE (without being woke up by SGE), it cannot do its usual clean-up; workarounds were tried, but
without success.

The above problems also made an inconsistency in the client-server protocol appear. The validity of the results
was not affected, but the protocol had to be redesigned.

5.5. CGPE: Code Generation for Polynomial Evaluation
Participants: Christophe Mouilleron, Claude-Pierre Jeannerod.

The CGPE project, developed with Guillaume Revy (DALI research team, Université de Perpignan and
LIRMM laboratory), aims at generating C codes for fast and certified polynomial evaluation, given various
accuracy and architectural constraints. Several improvements for this tool, based on the addition of constraints
in the first step of the generation process, were proposed in the PhD thesis of Ch. Mouilleron [12]. These
improvements have been implemented, thus allowing us to reduce the whole generation time by about 50% on
average.

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software).
• Recommended library or software: MPFI or Gappa.
• License: CeCiLL
• Type of human computer interaction: command-line interface
• OS/Middelware: Unix
• Required library or software: Xerces-C++ XML Parser library and MPFR
• Programming Language: C++
• Status: beta
• Documentation: available in html format on URL: http://cgpe.gforge.inria.fr/

http://www.mpfr.org/
http://gmplib.org/
http://cgpe.gforge.inria.fr/
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5.6. FLIP: Floating-point Library for Integer Processors
Participants: Claude-Pierre Jeannerod, Jingyan Jourdan-Lu.

FLIP is a C library for the efficient software support of binary32 IEEE 754-2008 floating-point arithmetic on
processors without floating-point hardware units, such as VLIW or DSP processors for embedded applications.
The current target architecture is the VLIW ST200 family from STMicroelectronics (especially the ST231
cores). This year, we have mostly worked on improving the design and implementation of the following
operators with correct rounding “to nearest even”: DP2 (fused dot product in dimension two) and sum of
two squares. The impact of the DP2 operator has been evaluated on the UTDSP benchmark, and on some
kernels speed-ups of 1.46 have been observed. On the other hand, specializing DP2 to a sum of squares brings
a speed-up of 2.

URL: http://flip.gforge.inria.fr/

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software)

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.

• APP: IDDN.FR.001.230018.S.A.2010.000.10000

• License: CeCILL v2

• Type of human computer interaction: C library callable, from any C program.

• OS/Middleware: any, as long as a C compiler is available.

• Required library or software: none.

• Programming language: C

5.7. SIPE: Small Integer Plus Exponent
Participant: Vincent Lefèvre.

SIPE (Small Integer Plus Exponent) is a C header file providing a fast floating-point arithmetic with
correct rounding to the nearest in very small precision. Implemented operations are the addition, subtraction,
multiplication, FMA, and minimum/maximum/comparison functions (of the signed numbers or in magnitude).
SIPE has been written for exhaustive tests of simple algorithms in small precision in order to prove results
or find conjectures (which could then be proved). In 2011, a research report was written about SIPE [62],
including documentation and proof of the implementation; some bugs were fixed at the same time.

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.

• License: LGPL version 2.1 or later.

• Type of human computer interaction: C header file.

• OS/Middleware: any OS.

• Required library or software: GCC compiler.

• Programming language: C.

• Documentation: Research report RR-7832. [62]

• URL: http://www.vinc17.net/software/sipe.h

6. New Results

6.1. Hardware Arithmetic and Architecture
Participants: Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca, Honoré Takeugming, Álvaro Vázquez
Álvarez, Nicolas Brunie, Sylvain Collange.

http://flip.gforge.inria.fr/
http://www.vinc17.net/software/sipe.h
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6.1.1. FPGA-specific arithmetic
Reconfigurable computing has the opportunity of using exotic operators that would not make sense in a
general-purpose microprocessor [43], for instance the constant dividers studied in 6.1.2. Such operators must
be also be matched to the precision and performance needed by applications. F. de Dinechin and B. Pasca
described the FloPoCo framework that assists the construction of correct pipelines and the automatic testing
of such operators [28]. For this context, B. Pasca, with H. D. Nguyen, now at U.C. Berkeley, and T. Preusser,
from T. U. Darmstadt, described improved architectures for short-latency adders on modern FPGAs [39]. With
Ch. Alias and A. Plesco (Compsys project-team), he studied the integration in of deeply pipelined arithmetic
datapath in high-level synthesis tools [51].

6.1.2. Multiplication by Rational Constants versus Division by a Constant
Motivated by the division by 3 or by 9 appearing in some stencil kernels, F. de Dinechin investigated how
the periodicity of the binary representation of a rational constant could be exploited to design an architecture
multiplying by this constant [26]. With L. S. Didier, this approach was then compared to a specialisation of
divider architectures to the division by small integer constants, which is shown to match well the fine structure
of FPGAs [44].

6.1.3. Elementary Functions
A. Vázquez worked with J. Bruguera, from U. Santiago de Compostella, on hardware architectures for
evaluating q-th roots [66]. Their solution composes digit-recurrence operators for reciprocal, logarithm,
multiplication and exponential.

6.1.4. Extensions of the fused-multiply-and-add operator
With B. de Dinechin, from Kalray, N. Brunie and F. de Dinechin proposed to extend the classical fused-
multiply-and-add operator with a larger addend and result. This enables higher-precision computation of sums
of products at a cost that remains close to that of the classical FMA [56].

6.1.5. Emerging throughput-oriented architecture
On massively multi-threaded processors like GPUs, neighbor threads are likely to operate on similar data.
S. Collange showed with A. Kouyoumdjian how it is possible to take advantage of this inter-thread value
correlation at the hardware level with a hardware cache-compression technique on GPUs [59]. With D.
Sampaio, R. Martins, and F. Magno Quintão Pereira (U. Minas Gerais), he then addressed this question also
at the compiler level using a compiler stage to identify statically data patterns in GPGPU programs [65].

Current GPU architectures require specific instruction sets with control-flow reconvergence annotations, and
only support a limited number of control-flow constructs. S. Collange and N. Brunie, with G. Diamos
(NVIDIA) generalized dynamic vectorization to arbitrary control flow on standard instruction sets with no
compiler involvment [46], [57], [54]. In addition, this technique allows divergent branches to be executed in
parallel, as a way to increase the throughput of parallel architectures [55].

6.2. Efficient Floating-Point Arithmetic and Applications
Participants: Nicolas Brisebarre, Claude-Pierre Jeannerod, Mioara Joldeş, Jingyan Jourdan-Lu, Vincent
Lefèvre, Nicolas Louvet, Érik Martin-Dorel, Christophe Mouilleron, Jean-Michel Muller, Adrien Panhaleux.

6.2.1. Correctly Rounded Sums
P. Kornerup (Odense Univ., Denmark), V. Lefèvre, N. Louvet and J.-M. Muller have given a study of some
basic blocks needed in the design of floating-point summation algorithms. In particular, in radix-2 floating-
point arithmetic, they have shown that among the set of the algorithms with no comparisons performing only
floating-point additions/subtractions, the 2Sum algorithm introduced by Knuth is minimal, both in terms of
number of operations and depth of the dependency graph. They have investigated the possible use of another
algorithm, Dekker’s Fast2Sum algorithm, in radix-10 arithmetic. Under reasonable conditions, they have
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also proven that no algorithms performing only round-to-nearest additions/subtractions exist to compute the
round-to-nearest sum of at least three floating-point numbers. Starting from an algorithm due to Boldo and
Melquiond, they have also presented new results about the computation of the correctly-rounded sum of three
floating-point numbers [21].

6.2.2. Error of an FMA
The fused multiply-add (FMA) instruction, specified by the IEEE 754-2008 Standard for Floating-Point
Arithmetic, eases some calculations, and is already available on some current processors such as the Power
PC or the Itanium. S. Boldo (EPI Proval) and J.-M. Muller first extended an earlier work on the computation
of the exact error of an FMA (by giving more general conditions and providing a formal proof). Then, they
presented a new algorithm that computes an approximation to the error of an FMA, and provide error bounds
and a formal proof for that algorithm [16].

6.2.3. Accurate computation of ad− bc with an FMA
C.-P. Jeannerod, N. Louvet, and J.-M. Muller have provided in [60] a detailed rounding error analysis of
Kahan’s FMA-based algorithm for the computation of expressions of the form ad− bc. They showed that
Kahan’s algorithm is always highly accurate, and under mild assumptions on the radix and the precision gave
an optimal bound on the absolute error and an asymptotically optimal bound on the relative error. They also
studied how the relative error varies as a function of the relative order of magnitude of the two products ad and
bc. Finally, they investigated whether the error bounds can be improved in special cases like sums of squares
and discriminants.

6.2.4. Performing Arithmetic Operations on Round-to-Nearest Operations
During any composite computation, there is a constant need for rounding intermediate results before they
can participate in further processing. Recently, a class of number representations denoted RN-Codings were
introduced, allowing an unbiased rounding-to-nearest to take place by a simple truncation, with the property
that problems with double-roundings are avoided. P. Kornerup (Odense Univ., Denmark), J.-M. Muller and
A. Panhaleux first investigate a particular encoding of the binary representation. This encoding is generalized
to any radix and digit set; however, radix complement representations for even values of the radix turn out
to be particularly feasible. The encoding is essentially an ordinary radix complement representation with
an appended round-bit, but still allowing rounding-to-nearest by truncation, and thus avoiding problems
with double-roundings. Conversions from radix complement to these round-to-nearest representations can be
performed in constant time, whereas conversion the other way, in general, takes at least logarithmic time. Not
only is rounding-to-nearest a constant time operation, but so is also sign inversion, both of which are at best
log-time operations on ordinary two’s complement representations. Addition and multiplication on such fixed-
point representations are first analyzed and defined in such a way that rounding information can be carried
along in a meaningful way, at minimal cost. The analysis is carried through for a compact (canonical) encoding
using two’s complement representation, supplied with a round-bit. Based on the fixed-point encoding, it is
shown possible to define floating-point representations, and a sketch of the implementation of an FPU is
presented [22].

6.2.5. Augmented Precision Square Roots, 2-D Norms, and Discussion on Correctly Rounding√
x2 + y2

Define an “augmented precision” algorithm as an algorithm that returns, in precision-p floating-point arith-
metic, its result as the unevaluated sum of two floating-point numbers, with a relative error of the order of
2−2p. Assuming an FMA instruction is available, N. Brisebarre, M. Joldeş, P. Kornerup (Odense University,
Denmark), E. Martin-Dorel and J.-M. Muller perform a tight error analysis of an augmented precision algo-
rithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm√
x2 + y2. Then they give tight lower bounds on the minimum distance (in ulps) between

√
x2 + y2 and a

midpoint when
√
x2 + y2 is not itself a midpoint. This allows them to determine cases when their algorithms

make it possible to return correctly-rounded 2D-norms [30].
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6.2.6. Midpoints and exact points of some algebraic functions in floating-point arithmetic
When implementing a function f in floating-point arithmetic, if we wish correct rounding and good perfor-
mance, it is important to know if there are input floating-point values x such that f(x) is either the middle of
two consecutive floating-point numbers (assuming rounded-to-nearest arithmetic), or a floating-point number
(assuming rounded toward ±∞ or toward 0 arithmetic). In the first case f(x) is a midpoint, and in the second
case it is an exact point. In [20] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux have studied
whether such midpoints and exact points exist for some usual algebraic functions and various floating-point
formats. When midpoints or exact points exist, they have been characterized or, when possible, listed exhaus-
tively. The results and the techniques presented in this paper can be used in particular to deal with both the
binary and the decimal formats defined in the IEEE 754-2008 standard for floating-point arithmetic.

6.3. Correct Rounding of Elementary Functions
Participants: Florent de Dinechin, Vincent Lefèvre, Jean-Michel Muller, Bogdan Pasca, Serge Torres.

6.3.1. FPGA Acceleration of the Search For Hardest-to-Round Cases
The IEEE 754-2008 standard for floating-point arithmetic recommends (yet does not dictate) that some
elementary functions should be correctly rounded. That is, given a rounding function ◦, (e.g., round to nearest
even, or round to ±∞), when evaluating function f at the floating-point number x, the system should always
return ◦(f(x)).
Building a fast correctly rounded library for some target floating-point (FP) format requires preliminarily
solving a problem called the table maker’s dilemma. This requires very large computations which may use
environments and formats totally different from the target environment and format. F. de Dinechin, V. Lefèvre,
J.-M. Muller, B. Pasca and A. Plesco suggest performing these computations on an FPGA. Their paper [45]
won the best paper award at the ASAP2011 conference.

6.3.2. Hierarchical Polynomial Approximation of a Function by Polynomials
Algorithms used to search for the hardest-to-round cases of a function requires the approximation of the
function by small-degree polynomials on small intervals. This can be done efficiently by a hierarchical
polynomial approximation. Work is being done to improve this method by replacing interval arithmetic (as
partly used in the current tools) by static error bounds. This will allow us to better control the precision needed
to compute the coefficient of the polynomials. The implementation will also be simpler.

6.4. Validation and Automation
Participants: Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Mioara
Joldeş, Vincent Lefèvre, Nicolas Louvet, Christophe Mouilleron, Hong Diep Nguyen, David Pfannholzer,
Nathalie Revol, Philippe Théveny, Gilles Villard.

6.4.1. Efficient Implementation of Algorithms for Interval Linear Algebra
H.-D. Nguyen and N. Revol proposed an algorithm to solve linear systems with interval coefficients. The same
approach can be used to verify the solution of a linear system with floating-point coefficients, i.e. to compute
an interval enclosing the error between the exact solution and an approximate solution. The goal is twofold: on
the one hand the accuracy of the solution is desired up to the last bit of the floating-point solution, on the other
hand the efficiency of the implementation is obtained through the use of optimized BLAS3 routines [48]. The
PhD thesis of H.-D. Nguyen [13] contains in particular the algorithm [24] and its properties. Its complexity
has been established [47] and its potential use for symbolic-numeric computations has been discussed [50].

6.4.2. Standardization of Interval Arithmetic
We contributed to the creation, and now chair, the IEEE 1788 working group on the standardization of
interval arithmetic http://grouper.ieee.org/groups/1788/. The main discussion topics of this working group
[49], for the year 2011, were exception handling (via decorations). An emerging topic is the repeatibility and
reproducibility of interval computations. on the same platform or across different platforms.

http://grouper.ieee.org/groups/1788/
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6.4.3. Formal Proofs of the Arithmetic on Polynomial Models
Using as starting point [9], the calculus with polynomial models, such as Taylor models, based on floating-
point coefficients and floating-point operations, has been formalized and checked in Coq [18]. This calculus
is at the core of Ariadne, an environment for the study of hybrid systems: the idea is to prove the environment
itself, instead of using model-checking on the systems.

6.4.4. Formal Proof Generation for Elementary functions
The proof of the correct rounding property for an elementary function requires tight bounds on the error
involved in the function code. F. de Dinechin, with Ch. Lauter (LIP6) and G. Melquiond (INRIA Proval) have
described the use of the Gappa proof assistant to compute such tight bounds rigorously [27].

6.4.5. Code Generation for Polynomial Evaluation
A given arithmetic expression may be evaluated on a computer in several ways, depending on the parenthe-
sization and the ordering of terms in use. Among all the possible evaluations, one may want to choose one
that is as fast and accurate as possible. In [12] Ch. Mouilleron introduced a set of algorithms in order to gen-
erate all these possible evaluations, to count them, and to find an optimal or nearly optimal one according to a
given criteria. Thanks to this work, several sequences related to numbers of evaluations have been discovered
and added to Sloane’s on-line encyclopedia of integer sequences (OEIS). Moreover, this allowed to show ex-
perimentally that an algorithm by Paterson and Stockmeyer for the evaluation of a polynomial p at a matrix
point is optimal for small degrees of p. Finally, this work has led to the revamping of the software tool CGPE
presented in [38] (see also §5.5).

6.5. Arithmetic and Algorithms
Participants: Guillaume Hanrot, Claude-Pierre Jeannerod, Adeline Langlois, Ivan Morel, Christophe
Mouilleron, Andrew Novocin, Xavier Pujol, Damien Stehlé, Gilles Villard.

6.5.1. Faster Lattice Reduction
Andrew Novocin, Damien Stehlé and Gilles Villard [40] designed an algorithm, L̃1, with the following
specifications: It takes as input an arbitrary basis B in Zd×d of a lattice L; It computes a basis of L
which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time
Õ(d5β + dω+1β) where β = log ‖B‖ (and ω is a valid exponent for matrix multiplication). This is the first
LLL-reducing algorithm with a time complexity that is quasi-linear in the bit-length beta of the entries and
polynomial in the dimension d. A critical ingredient for achieving this result was the study of the effect of
small perturbations on the LLL-reducedness of a lattice basis [17].

6.5.2. Computing Short Lattice Vectors
Among all known lattice reduction algorithms, BKZ provides the best trade-off between run-time and
smallness of the computed lattice basis. Guillaume Hanrot, Xavier Pujol and Damien Stehlé [32] showed
that BKZ can be terminated long before its completion, while still providing bases of excellent quality. More
precisely, if it is terminated within a polynomial number of calls to a lower-dimensial Shortest Vector Problem
solver, then the bounds on the output quality are as close as desired to the bounds that can be obtained by
letting BKZ run until completion.

Guillaume Hanrot, Xavier Pujol and Damien Stehlé also surveyed the known algorithms for solving the
Shortest Vector Problem [31].

6.5.3. Lattice-Based Cryptography
NTRUEncrypt is the fastest known lattice-based encryption scheme. Its moderate key-sizes, excellent asymp-
totic performance and conjectured resistance to quantum computers could make it a desirable alternative to
factorisation and discrete-log based encryption schemes. Damien Stehlé and Ron Steinfeld [41] showed how to
modify NTRUEncrypt to make it provably resistance to Chosen Plaintext Attacks, under the assumed quantum
hardness of standard worst-case lattice problems restricted to a family of lattices related to some cyclotomic
fields.
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6.5.4. Lattices and Communication Theory
Cong Ling, Shuiyin Liu, Laura Luzzi and Damien Stehlé studied and optimized lattice algorithms that are
relevant for MIMO communications [23], [37]. These algorithms tackle the Bounded Distance Decoding
Problem: Given a point within a small prescribed distance to a given lattice, find the lattice vector closest
to it.

6.5.5. Other Applications of Lattice Reduction Algorithms
In [35] Jürgen Klüners, Mark van Hoeij, and Andrew Novocin showed how to use the LLL lattice reduction
algorithm for computing a compact representation of the set of all subfields of any given number field.
William Hart (Warwick Mathematics Institute, UK), Mark van Hoeij (Florida State University, USA) and
Andrew Novocin exploited the very latest progress in lattice reduction to propose a fine-tuned cutting-edge
implementation of a polynomial factorization algorithm.

6.5.6. Polynomial Arithmetic
With William Hart and Mark van Hoeij, A. Novocin proposed in [33] a state of the art algorithm for factoring
polynomials in Z[x] . The algorithm is fast in practice, saving in a large class of common examples, without
sacrificing performance on worst-case polynomials. The presented algorithm is structured along the lines of
algorithms with the best theoretical complexity. In [34] William Hart and A. Novocin proposed an efficient
algorithm for computing the composition of two univariate polynomials. Their work builds upon the Brent-
Kung algorithm.

6.5.7. Exact Linear Algebra
Transforming a matrix over a field to echelon form, or decomposing the matrix as a product of structured
matrices that reveal the rank profile, is a fundamental building block of computational exact linear algebra.
For such tasks the best algorithms available so far were either rank sensitive (i.e., of complexity expressed
in terms of the exponent of matrix multiplication and the rank of the input matrix) or in place (i.e., using
essentially no more memory that what is needed for matrix multiplication). In [61] C.-P. Jeannerod, Clément
Pernet (U. Joseph Fourier, Grenoble), and Arne Storjohann (U. Waterloo, Canada) have proposed algorithms
that are both rank sensitive and in place. These algorithms are based on a new matrix factorization, namely
A = CUP withC a column echelon form revealing the row rank profile ofA, U a unit upper triangular matrix,
and P a permutation matrix.

7. Contracts and Grants with Industry

7.1. Contracts with Industry
One contract with STMicroelectronics and one contract with Kalray, in the context of two PhD CIFRE grants;
see §7.2.

7.2. Grants with Industry
7.2.1. STMicroelectronics CIFRE PhD Grant

Participants: Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Jean-Michel Muller.

Jingyan Jourdan-Lu is supported by a CIFRE PhD grant (from March 2009 to September 2012) from
STMicroelectronics (Compilation Expertise Center, Grenoble) on the theme of floating-point arithmetic code
generation and specialization for embedded processors. Advisors: Claude-Pierre Jeannerod and Jean-Michel
Muller (Arénaire), Christophe Monat (STMicroelectronics). A contract between STMicroelectronics and
INRIA (duration: 36 months; amount: 36,000 euros; signature: fall 2010) aims at supporting the developments
done in the context of this PhD.
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7.2.2. Mediacom Project with STMicroelectronics
Participants: Florent de Dinechin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Jean-Michel Muller, David
Pfannholzer, Nathalie Revol.

We have been involved in Mediacom since September 1, 2009. Mediacom is a 40-month joint project with
the Compiler Expertise Center (STMicroelectronics Grenoble) and INRIA project-teams Alchemy, Alf, and
Compsys, and a Nano 2012 partner project. For Arénaire, it funds in particular the 3-year MEFI PhD grant
of David Pfannholzer. The development this year is the generation of some elementary functions, focusing on
the pre-processing (argument reduction, exception handling) and post-processing (argument reconstruction).
Our long-term goal with this project is the design and implementation of a dynamic code generation tool, for
numerical kernels typical of intensive mediaprocessing, and that could be integrated into production compilers.

7.2.3. STMicroelectronics CIFRE PhD Grant
Nicolas Brunie is supported by a CIFRE PhD grant (from 15/04/2011 to 14/04/2014) from Kalray. Its purpose
is the study of a tightly-coupled reconfigurable accelerator to be embedded in the Kalray multicore processor.
Advisors: Florent de Dinechin (Arénaire) and B. de Dinechin (Kalray). The support contract between Kalray
and Inria amounts to 76,000 euros on three years.

7.2.4. Altera hardware donation
Altera donated to the team an FPGA-based acceleration card (Altera DK-DEV-4SGX530N) worth 8000 euros
for the Table-Maker’s Dilemma acceleration project.

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Cible Grant from Région Rhône-Alpes

Participants: Nicolas Brisebarre, Claude-Pierre Jeannerod, Mioara Joldeş, Jingyan Jourdan-Lu, Jean-Michel
Muller, Nathalie Revol, Gilles Villard.

Since October 2008, we have obtained a 3-year grant from Région Rhône-Alpes. That grant has funded a
PhD student, Mioara Joldeş, who defended her PhD thesis on September 26, 2011. The project consists
in automating as much as possible the generation of code for approximating functions. Instead of calling
functions from libraries, we wish to elaborate approximations at compile-time, in order to be able to
directly approximate compound functions, or to take into account some information (typically, input range
information) that might be available at that time. In this project, we collaborate with the STMicroelectronics’
Compilation Expertise Center in Grenoble (C. Bertin, H. Knochel, and C. Monat). STMicroelectronics is
funding another PhD grant on these themes.

8.2. National Initiatives
8.2.1. ANR HPAC Project

Participants: Claude-Pierre Jeannerod, Nicolas Louvet, Nathalie Revol, Damien Stehlé, Philippe Théveny,
Gilles Villard.

“High-performance Algebraic Computing” (HPAC) is a four year ANR project that will start in January 2012.
HPAC is headed by Jean-Guillaume Dumas (CASYS team, LJK laboratory, Grenoble); it involves Arénaire as
well as the INRIA project-team MOAIS (LIG, Grenoble), the INRIA project-team SALSA (LIP6 lab., Paris),
the ARITH group (LIRMM laboratory, Montpellier), and the HPC Project company.
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The overall ambition of HPAC is to provide international reference high-performance libraries for exact
linear algebra and algebraic systems on multi-processor architecture and to influence parallel programming
approaches for algebraic computing. The central goal is to extend the efficiency of the LinBox and FGb
libraries to new trend parallel architectures such as clusters of multi-processor systems and graphics processing
units in order to tackle a broader class of problems in lattice cryptography and algebraic cryptanalysis. HPAC
will conduct researches along three axes:
- A domain specific parallel language (DSL) adapted to high-performance algebraic computations;
- Parallel linear algebra kernels and higher-level mathematical algorithms and library modules;
- Library composition and innovative high performance solutions for cryptology challenges.

8.2.2. ANR TaMaDi Project
Participants: Nicolas Brisebarre, Florent de Dinechin, Guillaume Hanrot, Vincent Lefèvre, Érik Martin-
Dorel, Micaela Mayero, Jean-Michel Muller, Andrew Novocin, Ioana Pasca, Damien Stehlé, Serge Torres.

The TaMaDi project (Table Maker’s Dilemma, 2010-2013) is funded by the ANR and headed by Jean-Michel
Muller. It was submitted in January 2010, accepted in June, and started in October 2010. The other French
teams involved in the project are the MARELLE team-project of INRIA Sophia Antipolis-Méditerranée, and
the PEQUAN team of LIP6 lab., Paris.

The aim of the project is to find “hardest to round” (HR) cases for the most common functions and floating-
point formats. In floating-point (FP) arithmetic having fully-specified “atomic” operations is a key-requirement
for portable, predictable and provable numerical software. Since 1985, the four arithmetic operations and
the square root are IEEE specified (it is required that they should be correctly rounded: the system must
always return the floating-point number nearest the exact result of the operation). This is not fully the case
for the basic mathematical functions (sine, cosine, exponential, etc.). Indeed, the same function, on the same
argument value, with the same format, may return significantly different results depending on the environment.
As a consequence, numerical programs using these functions suffer from various problems. The lack of
specification is due to a problem called the Table Maker’s Dilemma (TMD). To compute f(x) in a given
format, where x is a FP number, we must first compute an approximation to f(x) with a given precision, which
we round to the nearest FP number in the considered format. The problem is the following: finding what the
accuracy of the approximation must be to ensure that the obtained result is always equal to the “exact” f(x)
rounded to the nearest FP number. In the last years, our team-project and the CACAO team-project of INRIA
Nancy-Grand Est designed algorithms for finding hardest-to-round cases. These algorithms do not allow to
tackle with large formats. The TaMaDi project mainly focuses on three aspects:

• big precisions: we must get new algorithms for dealing with precisions larger than double precision.
Such precisions will become more and more important (even if double precision may be thought as
more than enough for a final result, it may not be sufficient for the intermediate results of long or
critical calculations);

• formal proof: we must provide formal proofs of the critical parts of our methods. Another possibility
is to have our programs generating certificates that show the validity of their results. We should then
focus on proving the certificates;

• aggressive computing: the methods we have designed for generating HR points in double precision
require weeks of computation on hundreds of PCs. Even if we design faster algorithms, we must
massively parallelize our methods, and study various ways of doing that.

There was a meeting in Sophia-Antipolis in February 2011, and two other ones in Lyon in June and December
2011. The various documents can be found at http://tamadiwiki.ens-lyon.fr/tamadiwiki/index.php/Main_Page.

8.2.3. ANR TCHATER Project
Participants: Florent de Dinechin, Honoré Takeugming, Gilles Villard.

http://tamadiwiki.ens-lyon.fr/tamadiwiki/index.php/Main_Page


20 Activity Report INRIA 2011

The TCHATER project (Terminal Cohérent Hétérodyne Adaptatif TEmps Réel, 2008-2010) is a collabora-
tion between Alcatel-Lucent France, E2V Semiconductors, GET-ENST and the INRIA Arénaire and ASPI
project/teams. Its purpose is to demonstrate a coherent terminal operating at 40Gb/s using real-time digital
signal processing and efficient polarization division multiplexing. In Lyon, we studied the FPGA implementa-
tion of specific algorithms for polarization demultiplexing and forward error correction with soft decoding.

TCHATER was extended by the ANR until 9/06/2011, which allowed us to finalize the demonstrator.

8.2.4. ANR LaRedA Project
Participants: Fabien Laguillaumie, Adeline Langlois, Ivan Morel, Xavier Pujol, Damien Stehlé.

The LaRedA project (Lattice Reduction Algorithms, 2008-2011) is funded by the ANR and headed by Brigitte
Vallée (CNRS/GREYC) and Valérie Berthé (CNRS/LIRMM). The aim of the project is to finely analyze lattice
reduction algorithms such as LLL, by using experiments, probabilistic tools and dynamic analysis. Among the
major goals are the average-case analysis of LLL and its output distribution. In Lyon, we concentrate on the
experimental side of the project (by using fpLLL and MAGMA) and the applications of lattice reduction
algorithms to cryptography.

8.3. European Initiatives
8.3.1. Other European Initiatives

• Guillaume Hanrot and Damien Stehlé collaborate with Cong Ling (Imperial College London, UK)
on lattices and communication theory. The collaboration is jointly funded by the CNRS and the
Royal Society, from January 2011 to December 2012.

8.4. International Initiatives
8.4.1. INRIA International Partners

• Nathalie Revol chairs the IEEE 1788 working group on the standardization of interval arithmetic, cf.
http://grouper.ieee.org/groups/1788/.

8.4.2. Visits of International Scientists

• San Ling (Nanyang Technological University, Singapore) visited for two months (March and April),
for collaborating on lattice-based cryptography. Visit partly funded by NTU and Inria Rhône-Alpes
(invited researcher).

• Xiao-Wen Chang (McGill University, Canada) visited for one month (July), for collaborating on the
numerical aspects of lattice reduction algorithms. Visit funded by ENS de Lyon (invited professor).

• Ron Steinfeld (Macquarie University, Australia) visited for one month (August), for collaborating
on lattice-based cryptography. Visit funded by the French Embassy in Australia.

8.4.3. Participation In International Programs

• Guillaume Hanrot and Damien Stehlé participate in the LaBaCry project (Lattice-Based Cryptog-
raphy), with San Ling and Huaxiong Wang (Cryptography and Coding group of Nanyang Techno-
logical University, Singapore). Project jointly funded by NTU and the MERLION program from the
French Embassy in Singapore.

• Damien Stehlé is a Partner Investigator in the Australian Research Council Discovery Grant Lattices
as a Constructive and Destructive Tool in Cryptography, with Christophe Doche, Igor Shparlinski
and Ron Steinfeld (Macquarie University).

• Florent de Dinechin was invited 4 months by Nizhniy Novgorod State University (Russia).

http://grouper.ieee.org/groups/1788/
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9. Dissemination

9.1. Animation of the scientific community
• Florent de Dinechin was in the program committee of HEART 2011 (Highly Efficient Acceler-

ators for Reconfigurable Computing), FPL 2011 (Field-Programmable Logic), FPT 2011 (Field-
Programmable Technologies) and ARC 2011 (Applied Reconfigurable Computing). He was a re-
viewer for the thesis of Pedro Echeverria (U. Madrid) and the habilitation thesis of Steven Derrien
(U. Rennes 1). He gave talks in the Radiophysics department of Nizhniy Novgorod State University
and in the Intel Russian Summer School.

• Claude-Pierre Jeannerod was in the program committee of SNC 2011 (Fourth International Work-
shop on Symbolic-Numeric Computation).

• Jean-Michel Muller was in the program committee of ARITH’20 (20th IEEE Symposium on Com-
puter Arithmetic) and ASAP’2011 (Application-Specific Systems, Architectures and Processors).
He was a reviewer of the Habilitation thesis of D. Ménard (U. Rennes 1) and chaired the board of
examiners for the PhD defense of M. Mezzarobba (École Polytechnique). He was a member (un-
til December 2011) of the Scientific Council of Grenoble INP, and is a member of the Scientific
Councils of Ecole Normale Supérieure de Lyon and CERFACS.

• Nathalie Revol was in the program committee of NSV 11 (Fourth International Workshop on Numer-
ical Software Verification) and of MACIS 2011 (Fourth International Conference on Mathematical
Aspects of Computer and Information Sciences).

• Damien Stehlé was in the program committees of ACISP 2011 (16th Australasian Conference on In-
formation Security and Privacy), PQCRYPTO 2011 (4th International Conference on Post-Quantum
Cryptography), CANS 2011 (10th International Conference on Cryptography and Network Security)
and INDOCRYPT 2011 (12th International Conference on Cryptology in India). He was in the pro-
gram committee of C2 (National Workshop on Coding and Cryptography, Oléron). He gave invited
talks at the RAIM workshop (Rencontres Arithmétiques de l’Informatique Mathématique, Perpig-
nan), at the NUS/NTU Workshop on Coding, Cryptology and Combinatorial Design (Singapore),
at the International Workshop on Coding and Cryptology (IWCC 2011, Qingdao, China) and at the
Magic@LIX workshop (Palaiseau).

• Vincent Lefèvre gave a talk at the Dagstuhl Seminar 11371 on Uncertainty modeling and analysis
with intervals: Foundations, tools, applications. [29]

• Gilles Villard is chair of the LIP laboratory since January 2009.

9.2. Teaching
Licence : Computer Architecture, 71h, L2, U. Claude Bernard, taught by Nicolas Louvet.

Licence : Operating Systems, 35h, L3, U. Claude Bernard, taught by Nicolas Louvet.

Licence : Algorithms and Data Structures, 32h, L3, U. Claude Bernard, taught by Nicolas Louvet.

Master: Arithmetic Algorithms, 24h, M1, École normale supérieure de Lyon, taught by Eleonora
Guerrini, Guillaume Hanrot, and Claude-Pierre Jeannerod (autumn 2011).

Master: Reconfigurable Computing, 24h, M2, École normale supérieure de Lyon, taught by Florent
de Dinechin (autumn 2011).

Master: Cryptology: new primitives and applications, 24h, M2, École normale supérieure de Lyon,
taught by Guillaume Hanrot and Damien Stehlé (autumn 2011).

Master: Algorithms for Verified Linear Algebra, 24h, M2, École normale supérieure de Lyon, taught
by Claude-Pierre Jeannerod, Nicolas Louvet, and Nathalie Revol (autumn 2011).
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Master: Numerical Algorithms, 36h, M2, U. Claude Bernard, taught by Claude-Pierre Jeannerod and
Nicolas Louvet.

Master: Computer Arithmetic, 28h, M2, U. Claude Bernard, taught by Vincent Lefèvre.

Doctorate: Floating-Point Arithmetic, 12h, Nizhniy Novgorod State University, taught by Florent de
Dinechin (spring 2011).

PhD & HdR:

HdR: Damien Stehlé, Euclidean lattices: algorithms and cryptography [15], ENS de Lyon - Univer-
sité de Lyon, defended on October 14, 2011.

HdR: Fabien Laguillaumie, Public-Key Cryptography: Design and Algorithmic, Université de Caen,
defended on December 12, 2011.

PhD: Mioara Joldes, Rigorous Polynomial Approximations and Applications [11], ENS de Lyon -
Université de Lyon, defended on September 26, 2011. Supervisors: Nicolas Brisebarre and Jean-
Michel Muller.

PhD: Christophe Mouilleron, Efficient computation with structured matrices and arithmetic expres-
sions [12], ENS de Lyon - Université de Lyon, defended on November 4, 2011. Supervisors: Claude-
Pierre Jeannerod and Gilles Villard.

PhD: Hong Diep Nguyen, Efficient algorithms for verified scientific computing: Numerical linear
algebra using interval arithmetic [24], ENS de Lyon - Université de Lyon, defended on January 18,
2011. Supervisors: Nathalie Revol and Gilles Villard.

PhD: Bogdan Pasca, High-performance floating-point computing on reconfigurable circuits [14],
ENS de Lyon - Université de Lyon, defended on September 21, 2011. Supervisor: Florent de
Dinechin.

PhD in progress: Nicolas Brunie, Embedding a tightly-coupled reconfigurable accelerator in multi-
core processor, started in december 2010. Supervisor: Florent de Dinechin.

PhD in progress: Jingyan Jourdan-Lu, Floating-point arithmetic and compilation for embedded pro-
cessors, started in March 2009. Supervisors: Claude-Pierre Jeannerod, Christophe Monat (STMicro-
electronics Compilation Expertise Center), and Jean-Michel Muller. Jingyan has been on maternity
leave from November 2010 to May 2011.

PhD in progress: Adeline Langlois, Cryptography based on ideal lattices, started in September 2011.
Supervisors: Guillaume Hanrot and Damien Stehlé.

PhD in progress: Érik Martin-Dorel, Contributions to the elaboration of arithmetic algorithms with
their formal proof, started in October 2009. Supervisors: Micaela Mayero and Jean-Michel Muller.

PhD in progress: Adrien Panhaleux, Floating-point arithmetic algorithms, started in September
2008. Supervisors: Nicolas Louvet and Jean-Michel Muller.

PhD in progress: David Pfannholzer, Generation of specialized numerical codes, started in Novem-
ber 2009, until October 2011. Supervisors: Florent de Dinechin and Nathalie Revol.

PhD in progress: Xavier Pujol, Efficient lattice reduction algorithms, started in September 2009.
Supervisors: Guillaume Hanrot and Damien Stehlé.

PhD in progress: Philippe Théveny, Numerical quality and high performance in scientific computing
on emerging architectures, started in October 2011. Supervisor: Nathalie Revol.

PhD in progress: Serge Torres, Some tools for the design of efficient and reliable function evaluation
libraries, started in September 2010. Supervisors: Nicolas Brisebarre and Jean-Michel Muller.
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Other teaching:

Nathalie Revol gave conferences at “Lycée Lalande” (Bourg-en-Bresse), “Collège Jean Zay” (Brig-
nais), “Collège Eugénie de Pomey” (Amplepuis) and “Collège Pablo Picasso” (Bron).

Jean-Michel Muller gave an introductory talk on Floating-Point Arithmetic at the “Journées nationals
de l’association des professeurs de Mathématiques de l’enseignement Public”, Grenoble, Oct. 2011.

Damien Stehlé gave introductory talks on lattice-based cryptography at ENS de Casablanca and
ENSA de SAFI (Morocco) .

Vincent Lefèvre gave a presentation of GNU MPFR at the GNU Hackers Meeting in Paris, Aug.
2011.
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