
IN PARTNERSHIP WITH:
CNRS

Université de Lorraine

Activity Report 2011

Project-Team BIGS

Biology, genetics and statistics

IN COLLABORATION WITH: Institut Elie Cartan Nancy (IECN)

RESEARCH CENTER
Nancy - Grand Est

THEME
Observation, Modeling, and Control
for Life Sciences





Table of contents

1. Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Overall Objectives 1
2.2. Highlights 2

3. Scientific Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
3.1. Online data analysis 2
3.2. Local regression techniques 2
3.3. Stochastic modeling for complex and biological systems 3
3.4. Parameter identifiability and estimation 4

4. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4.1. Data analysis and local regression 5
4.2. Estimation for complex and biological systems 5

5. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.1. Modern methods of data analysis 7
6.2. Local linear estimator of the conditional distribution function 8
6.3. Markovian models for tumor growth 8
6.4. A stochastic model for bacteriophage therapies 9
6.5. Convergence of stochastic gene networks 10
6.6. Inference for Gaussian systems 11
6.7. Local self-similarity properties and stable or Gaussian random fields 12

7. Contracts and Grants with Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1. Contracts with Industry 13
7.2. Grants with Industry 13

8. Partnerships and Cooperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.1. Regional Initiatives 13
8.2. National Initiatives 13
8.3. European Initiatives 14

8.3.1. Collaborations in European Programs, except FP7 14
8.3.2. Major European Organizations with which Bigs has followed Collaborations 14

8.4. International Initiatives 14
8.5. Teaching 14

9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15





Project-Team BIGS

Keywords: Computational Biology, Data Analysis, Identification, Statistical Methods, Stochas-
tic Modeling

1. Members
Faculty Members

Samy Tindel [Team leader, Professor, Université Nancy 1, HdR]
Thierry Bastogne [Associate Professor, Université Nancy 1, HdR]
Sandie Ferrigno [Associate Professor, INPL]
Céline Lacaux [Associate Professor, INPL]
Aurélie Muller [Associate Professor, INPL]
Jean-Marie Monnez [Professor, Université Nancy 2, HdR]
Pierre Vallois [Professor, Université Nancy 1, HdR]
Sophie Wantz [Associate Professor, Université Nancy 2]

Administrative Assistant
Sophie Drouot [shared with Corida, Tosca]

2. Overall Objectives

2.1. Overall Objectives
BIGS is a team labeled by INRIA, by CNRS and by University Henri Poincaré, via the Institut Élie Cartan
of Nancy (UMR 7502 CNRS-INRIA-UHP-INPL-University of Nancy 2). Our research is mainly focused on
statistics and stochastic processes techniques aiming at a better understanding of biological systems. A special
attention is devoted to online data analysis, local regression techniques and identification of complex biological
systems. Our investigations encompass both theoretical aspects and concrete applications of the issues alluded
to above. To be more specific, we focus on the following topics:
• Online Factorial Analysis: High dimensional data are often obtained online, and cannot be stored integrally
in a computer memory. One of the recent challenges in data analysis is then to be able to perform an accurate
classification or clustering by taking advantage of the possibility of updating the information. This has to be
done, of course, in a rather simple and efficient way, allowing real time analysis. To this aim, we use techniques
based on some sophisticated tools coming from stochastic approximation.
• Local Regression Techniques: The main issue here is the construction of a procedure allowing to assess,
in quite a general framework, whether a given model fits a data set regarding most assumptions made in
elaborating the model. This is based on a generalization of the Cramer-Von Mises statistics and involves a
non parametric estimate of the conditional distribution of the response variable. A detailed analysis of the
procedure, including rate of convergence and asymptotic properties, is being performed. The strategy is then
implemented for a study concerning fetal biometry.
• Photodynamic therapy: Since 1988, some control system scientists and biologists at the Centre de Recherche
en Automatique de Nancy (CRAN in short) have worked together to develop the photodynamic therapy (PDT),
an alternative treatment for cancer, by means of a model-based approach. The global aim in this direction is
to use statistical as well as mechanistic models in order to (i) improve the response reproducibility, (ii) help
biologists and chemists in the design of new photosensitizing agents and (iii) provide insight into complex
phenomena associated with oncogenesis, tumor angiogenesis and interactions with the treatment. This heavily
relies on the production of accurate and simple enough models involving various type of stochastic processes,
such as Markov chains, branching processes and stochastic differential equations. The main questions here
concern generally identification or estimation properties, but simulation issues can be important too.
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• Estimation for complex biological systems: Numerous biological systems are accurately described by multi-
dimensional noisy differential equations driven by Gaussian processes (beyond the realm of Brownian motion)
or by fractional fields, for which asymptotic properties and parameter estimation are fruitful informations. We
are thus be interested in studying this kind of systems, having in mind 3 specific applications of interest for us:
(i) Bacteriophage systems (ii) Random fluctuation of nanoparticles. (iii) Automatic detection of osteoporosis.

2.2. Highlights
For 2011 we stress the following noticeable events:

• PhD defense of Aurélien Deya (supervisor: Samy Tindel).
• PhD defense of Roukaya Keinj (supervisors: Thierry Bastogne and Pierre Vallois).

3. Scientific Foundations
3.1. Online data analysis

Participants: J-M. Monnez, R. Bar, P. Vallois. Generally speaking, there exists an overwhelming amount of
articles dealing with the analysis of high dimensional data. Indeed, this is one of the major challenges in
statistics today, motivated by internet or biostatistics applications. Within this global picture, the problem
of classification or dimension reduction of online data can be traced back at least to a seminal paper by
Mac Queen [56], in which the k-means algorithm is introduced. This popular algorithm, constructed for
classification purposes, consists in a stepwise updating of the centers of some classes according to a stream of
data entering into the system. The literature on the topic has been growing then rapidly since the beginning of
the 90’s.

Our point of view on the topic relies on the so-called french data analysis school, and more specifically
on Factorial Analysis tools. In this context, it was then rapidly seen that stochastic approximation was an
essential tool (see Lebart’s paper [52]), which allows to approximate eigenvectors in a stepwise manner. A
systematic study of Principal Component and Factorial Analysis has then been leaded by Monnez in the series
of papers [59], [57], [58], in which many aspects of convergences of online processes are analyzed thanks to
the stochastic approximation techniques.

3.2. Local regression techniques
Participants: S. Ferrigno, A. Muller. In the context where a response variable Y is to be related to a set of
regressors X , one of the general goals of Statistics is to provide the end user with a model which turns out to
be useful in predicting Y for various values of X . Except for the simplest situations, the determination of a
good model involves many steps. For example, for the task of predicting the value of Y as a function of the
covariate X , statisticians have elaborated models such as the regression model with random regressors:

Y = g(X, θ) + σ(X)ε.

Many assumptions must be made to reach it as a possible model. Some require much thinking, as for example,
those related to the functional form of g(·, θ). Some are made more casually, as often those related to
the functional form of σ(·) or those concerning the distribution of the random error term ε. Finally, some
assumptions are made for commodity. Thus the need for methods that can assess if a model is concordant with
the data it is supposed to adjust. The methods fall under the banner of goodness of fit tests. Most existing tests
are directional, in the sense that they can detect departures from only one or a few aspects of a null model. For
example, many tests have been proposed in the literature to assess the validity of an entertained structural part
g(·, θ). Some authors have also proposed tests about the variance term σ(·) (cf. [54]). Procedures testing the
normality of the εi are given, but for other assumptions much less work has been done. Therefore the need of
a global test which can evaluate the validity of a global structure emerges quite naturally.



Project-Team BIGS 3

With these preliminaries in mind, let us observe that one quantity which embodies all the information about
the joint behavior of (X,Y ) is the cumulative conditional distribution function, defined by

F (y|x) = P (Y ≤ y|X = x).

The (nonparametric) estimation of this function is thus of primary importance. To this aim, notice that modern
estimators are usually based on the local polynomial approach, which has been recognized as superior to
classical estimates based on the Nadaraya-Watson approach, and are as good as the recent versions based on
spline and other methods. In some recent works [43], [44], we address the following questions:

• Construction of a global test by means of Cramer-von Mises statistic.

• Optimal bandwidth of the kernel used for approximation purposes.

3.3. Stochastic modeling for complex and biological systems
In most biological contexts, mathematics turn out to be useful in producing accurate models with dual
objectives: they should be simple enough and meaningful for the biologist on the one hand, and they should
provide some insight on the biological phenomenon at stake on the other hand. We have focused on this kind
of issue in various contexts that we shall summarize below.
Photodynamic Therapy: Photodynamic therapy induces a huge demand of interconnected mathematical
systems, among which we have studied recently the following ones:
• The tumor growth model is of crucial importance in order to understand the behavior of the whole therapy.
We have considered the tumor growth as a stochastic equation, for which we have handled the problem
uncertainties on the measure times [26] as well as mixed effects for parameter estimation.
• Another important aspect to quantify for PDT calibration is the response to radiotherapy treatments. There
are several valid mathematical ways to describe this process, among which we distinguish the so-called hit
model. This model assumes that whenever a group of sensitive targets (chromosomes, membrane) in the cell
are reached by a sufficient number of radiations, then the cell is inactivated and dies. We have elaborated on
this scheme in order to take into account two additional facts: (i) The reduction of the cell situation to a two-
state model might be an oversimplification. (ii) Several doses of radiations are inoculated as time passes. These
observations have leaded us to introduce a new model based on multi-state Markov chains arguments [3], in
which cell proliferation can be incorporated.
Bacteriophage therapy: Let us mention a starting collaboration between BIGS and the Genetics and Microbi-
ology department at the Universitat Autònoma de Barcelona, on the modeling of bacteriophage therapies. The
main objective here is to describe how a certain family of benign viruses is able to weaken a bacterium induced
disease, which naturally leads to the introduction of a noisy predator-prey system of equations. It should be
mentioned that some similar problems have been treated (in a rather informal way, invoking a linearization
procedure) by Carletti in [34]. These tools cannot be applied directly to our system, and our methods are based
on concentration and large deviations techniques (on which we already had an expertise [60], [63]) in order
to combine convergence to equilibrium for the deterministic system and deviations of the stochastic system.
Notice that A. Muller is also working with A. Debussche and O. Radulescu on a related topic [38], namely
the convergence of a model of cellular biochemical reactions.
Gaussian signals: Nature provides us with many examples of systems such that the observed signal has a given
Hölder regularity, which does not correspond to the one we might expect from a system driven by ordinary
Brownian motion. This situation is commonly handled by noisy equations driven by Gaussian processes such
as fractional Brownian motion or (in higher dimensions of the parameter) fractional fields.

The basic aspects of differential equations driven by a fractional Brownian motion (fBm) and other Gaussian
processes are now well understood, mainly thanks to the so-called rough paths tools [55], but also invoking
the Russo-Vallois integration techniques [62]. The specific issue of Volterra equations driven by fBm, which
is central for the subdiffusion within proteins problem, is addressed in [40].
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Fractional fields are very often used to model irregular phenomena which exhibit a scale invariance property,
fractional Brownian motion being the historical fractional model. Nevertheless, its isotropy property is a
serious drawback for instance in hydrology or in medecine (see [33]). Moreover, the fractional Brownian
motion cannot be used to model some phenomena for which the regularity varies with time. Hence, many
generalization (gaussian or not) of this model has been recently proposed, see for instance [27] for some
Gaussian locally self-similar fields, [48] for some non-Gaussian models, [31] for anisotropic models.

Our team has thus contributed [36], [49], [48], [50], [61] and still contributes [30], [32], [31], [51], [45] to
this theoretical study: Hölder continuity, fractal dimensions, existence and uniqueness results for differential
equations, study of the laws to quote a few examples. As we shall see below, this line of investigation also has
some impact in terms of applications: we shall discuss how we plan to apply our results to osteoporosis on the
one hand and to fluctuations within protein molecules on the other hand.

3.4. Parameter identifiability and estimation
When one desires to confront theoretical probabilistic models with real data, statistical tools are obviously
crucial. We have focused on two of them: parameter identifiability and parameter estimation.

Parameter identifiability [65] deals with the possibility to give a unique value to each parameter of a math-
ematical model structure in inverse problems. There are many methods for testing models for identifiability:
Laplace transform, similarity transform, Taylor series, local state isomorphism or elimination theory. Most of
the current approaches are devoted to a priori identifiability and are based on algebraic techniques. We are
particularly concerned with a posteriori identifiability, i.e. after experiments or in a constrained experimental
framework and the link with experimental design techniques. Our approach is based on statistical techniques
through the use of variance-based methods. These techniques are strongly connected with global sensitivity
approaches and Monte Carlo methods.

The parameter estimation for a family of probability laws has a very long story in statistics, and we refer
to [28] for an elegant overview of the topic. Moving to the references more closely related to our specific
projects, let us recall first that the mathematical description of photodynamic therapy can be split up into three
parametric models : the uptake model (pharmacokinetics of the photosensitizing drug into cancer cells), the
photoreaction model and the tumor growth model. (i) Several papers have been reported for the application of
system identification techniques to pharmacokinetics modeling problems. But two issues were ignored in these
previous works: presence of timing noise and identification from longitudinal data. In [26], we have proposed a
bounded-error estimation algorithm based on interval analysis to solve the parameter estimation problem while
taking into consideration uncertainty on observation time instants. Statistical inference from longitudinal data
based on mixed effects models can be performed by the Monolix software (http://www.monolix.org) developed
the Monolix group chaired by Marc Lavielle and France Mentré, and supported by INRIA. In the recent past,
we have used this tool for tumor growth modeling. (ii) According to what we know so far, no parameter
estimation study has been reported about the photoreaction model in photodynamic therapy. A photoreaction
model, composed of six stochastic differential equations, is proposed in [41]. The main open problem is
to access to data. We currently build on an experimental platform which aims at overcoming this technical
issue. Moreover, an identifiability study coupled to a global sensitivity analysis of the photoreaction model
are currently in progress. (iii) Tumor growth is generally described by population dynamics models or by cell
cycle models. Faced with this wide variety of descriptions, one of the main open problems is to identify the
suitable model structure. As mentioned above, we currently investigate alternative representations based on
branching processes and Markov chains, with a model selection procedure in mind.

A few words should be said about the existing literature on statistical inference for diffusion or related
processes, a topic which will be at the heart of three of our projects (namely photodynamic and bacteriophage
therapies, as well as fluctuations within molecules). The monograph [47] is a good reference on the basic
estimation techniques for diffusion processes. The problem of estimating diffusions observed at discrete times,
of crucial importance for applications, has been addressed mainly since the mid 90s. The maximum likelihood
techniques, which are also classical for parameter estimation, are well represented by the contributions [42].

http://www.monolix.org
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Some attention has been paid recently to the estimation of the coefficients of fractional or multifractional
Brownian motion according to a set of observations. Let us quote for instance the nice surveys [25], [35].
On the other hand, the inference problem for diffusions driven by a fractional Brownian motion is still in its
infancy. A good reference on the question is [64], dealing with some very particular families of equations,
which do not cover the cases of interest for us.

4. Application Domains

4.1. Data analysis and local regression
Our expertise in data analysis and advanced statistics methods has given raise no a wide number of interdisci-
plinary collaborations. Among those, here are the most challenging at a scientific level:
(i) Peanut allergy: In the recent past, a direct application of factorial analysis techniques has been concerned
with a study about allergic patients. This project was focusing on allergies to peanut, and aimed at predicting
the level of an allergic crisis according to some biological parameters. In this context, no rigorous discriminant
analysis had been performed before, and the article [2] has been considered as an achievement in this direction.
(ii) Fetal pathology: An ongoing work concerning local regression techniques is related to Fetal Biometry,
an investigation line suggested by a collaboration between our team and the Centre de Placentologie et
Foetopathologie de la Maternité Régionale de Nancy, under the direction of Professor Bernard Foliguet. The
methods involved in Fetal Biometry are usually based on the comparison of some measured values with the
predicted values derived from reference charts or equations in a normal population. However, it happens that
maternal and pregnancy characteristics have a significant influence on in-utero Fetal Biometry. We will thus
produce some models allowing to construct customized fetal biometric size charts. In order to evaluate them,
classical and polynomial regression can be used, but they are not the most appropriate to the kind data we have
to handle. Hence, we plan to use local regression estimation in order to perform such an evaluation.
(iii) Cohorts analysis: Some medical teams in Nancy are faced with an overwhelming amount of data, for
which a serious statistical assessment is needed. Among those let us mention the Stanislas cohort handled at
the Centre Alexis Vautrin, which provides a huge amount of data potentially enabling a sharp identification
of the biological characters involved in cardiovascular deceases. As in many instances in Biostatistics, one
is then faced with a very high dimensional data, from which we hope to extract a reduced number of
significant variables allowing to predict the cardiovascular risk accurately. Moreover, these characters should
be meaningful to practitioners. The objective for us is thus to design an appropriate variable selection, plus a
classification procedure in this demanding context.

Let also mention the starting collaboration with the INSERM team of Pr. Jean-Louis Guéant and the
INRIA team Orpailleur (particularly with Marie-Dominique Desvignes and Malika Smail). The goal of this
collaboration is to extract biological markers for different diseases (cognitive decline; inflammatory intestinal
diseases; liver cancer). To this aim, the INSERM team provides us with several data cohorts with a high
number of variables and subjects. As in the Stanislas cohort, the objective for us is to design an appropriate
variable selection, plus a classification procedure in this demanding context. This work has the originality to
combine our own techniques with those developed by the Orpailleur team, based on symbolic tools. We hope
that this experience will enrich both points of view and give raise to new methods of data analysis.

4.2. Estimation for complex and biological systems
Our main application for this line of investigation is the photodynamic therapy developed by T. Bastogne. We
shall also focus on bacteriophage therapies and subdiffusion within molecules.
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(i) Photodynamic therapy. One of the main application we have in mind for our identification problems is to
model photodynamic therapy. This promising cancer treatment involves selective uptake and retention of a
photosensitive drug in a tumor, followed by irradiation with light at an appropriate wavelength. Photosensitiz-
ers are photoactive compounds such as for instance porphyrins and chlorins. The activated photosensitizer is
thought to produce singlet oxygen at high doses and thereby to initiate apoptotic and necrotic death of tumor.
Due to the lack of response reproducibility, the complexity of interactions between physical, chemical and
biological aspects and the high cost of experiments, there is a real demand in good mathematical and physical
models which might help to better control and understand PDT responses. We are particularly concerned with
modeling the drug uptake into cancer cells, the photoreactions induced by light exposition and tumor growth
kinetics.
(ii) Bacteriophage systems. A collaboration between our team, the Mathematics and the Genetics and
Microbiology Departments at the Universitat Autònoma de Barcelona (UAB) is being set up, focusing on
probabilistic aspects of bacteriophage therapies for animal diseases like hemorrhagic septicemia in cattle or
atrophic rhinitis in swine. This kind of therapy consists in inoculating a (benign) virus to animals in order to
kill the bacteria known to be responsible of the disease. It was in use in the Soviet Union until the 80s, and is
now re-emerging, still at an experimental level, due to the progressive slowdown in antibiotic efficiency.

Within this context, our analysis of a noisy predator-prey competition modeling the treatment helps to calibrate
and to understand better the behavior of the system in terms of fluctuations around an equilibrium. Note that
our preliminary contacts with the Genetics and Microbiology Departments at UAB also open the way to a
particle model in order to represent the couple bacteria/virus living on a surface.
(iii) Subdiffusion into molecules. Our purpose here is a better understanding of the phenomena observed in
nanoscale Biophysics, as explained in the series of papers [46]. The technological advances in nanoscale tech-
nologies allow the observation of single molecules, and thus the description of newly observed phenomenon. A
typical example of this new kind of observation is given by the fluctuations in the folding of a protein-enzyme
compound called Fre, which is involved in the DNA synthesis of the (canonical) bacterium E. Coli.

More specifically, the paper [46] advocates for modeling this folding fluctuations by means of a Volterra type
equation driven by a fractional Brownian motion. This convincing model is based on some experimental and
physical evidences, and have also been observed in a wide number of recent biological experiments. However,
the model exhibited in [46] also raises some unsolved questions: some stochastic equations appearing in the
models are not properly defined and their long time behavior is still mysterious. The lack of a method in
order to simulate and estimate coefficients of these equations on a solid mathematical ground should also be
mentioned. This is the kind of topic we wish to address, for which a preliminary contact with S. Kou and N.
Pillai (Princeton University, USA) has been established.
(iv) Osteoporosis. During the year 2010-2011, C. Lacaux has been visiting the MAP 5 (Paris Descartes
University) laboratory and joined the ANR Project MATAIM (Modèles Anisotropes de Textures. Applications
à l’Imagerie Médicale). This project, which involves both mathematicians and practitioners, is in particular
interested in the osteoporosis diagnostic. The paper [29] is a first step in the direction of modeling trabecular
bone x-ray images by some operator scaling fields. Actually the estimation of the matrix, which characterizes
the anisotropy of the model, is crucial for practical purposes. Hermine Biermé (Paris Descartes Univesity)
and Céline Lacaux are working on this problem using quadratic variations. Once the problem of estimation is
solved, they plan a comparison of the theoretical model with real data provided by our Biologist colleagues
of the MATAIM project. If the model corresponds to real data (as suggested in [29]), this approach may help
for the diagnostic of osteoporosis: a numerical study has to be performed in order to find the parameter value
which characterizes osteoporosis.
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5. Software

5.1. Identification of biological systems
We are currently considering the possibility to implement our Matlab algorithms into the Matlab toolbox
Contsid, developed by the System Identification team of the CRAN (http://www.iris.cran.uhp-nancy.fr/contsid/
).

6. New Results

6.1. Modern methods of data analysis
Participants: H. Cardot, P. Cénac, O. Collignon, J-M. Monnez, P. Vallois.

In 2011, our contributions to data analysis in a Biological context are twofold:

• At a theoretical level, we have kept on working on the so-called online data analysis alluded to at
the Scientific Foundations Section. Specifically, we have carried on the construction of a fast and
recursive algorithm for clustering large data sets with the k-medians methods.

• At a practical level, our efforts have focused on an interesting study concerning peanuts allergy, for
which our expertise in data analysis allows for a good prediction of allergy severity by means of
rigorous methods.

Let us now describe more precisely our articles:
(i) A fast and recursive algorithm for clustering large data sets with k-medians. Clustering with fast algorithms
large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas
from MacQueen [56], who introduced a sequential version of the k-means algorithm, a new class of recursive
stochastic gradient algorithms designed for the k-medians loss criterion is proposed in [16], [17]. By their
recursive nature, these algorithms are very fast and well adapted to deal with large samples of data that are
allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to
the set of stationary points of the underlying criterion. A particular attention is paid to the averaged versions,
which are known to have better performances, and a data-driven procedure that allows automatic selection of
the value of the descent step is proposed. The performance of the averaged sequential estimator is compared
on a simulation study, both in terms of computation speed and accuracy of the estimations, with more classical
partitioning techniques such as k-means, trimmed k-means and PAM (partitioning around medoids). Finally,
this new on-line clustering technique is illustrated on determining television audience profiles with a sample
of more than 5000 individual television audience measured every minute over a period of 24 hours.
(ii) Discriminant analyses of peanut allergy severity scores. Peanut allergy is one of the most prevalent
food allergies. The possibility of a lethal accidental exposure and the persistence of the disease make it a
public health problem. Evaluating the intensity of symptoms is accomplished with a double blind placebo-
controlled food challenge (DBPCFC), which scores the severity of reactions and measures the dose of
peanut that elicits the first reaction. Since DBPCFC can result in life-threatening responses, we propose
in [2] an alternate procedure with the long-term goal of replacing invasive allergy tests. Discriminant
analysis of DBPCFC score, the eliciting dose and the first accidental exposure score were performed
in 76 allergic patients using 6 immunoassays and 28 skin prick tests. A multiple factorial analysis was
performed to assign equal weights to both groups of variables, and predictive models were built by cross-
validation with linear discriminant analysis, k-nearest neighbors, classification and regression trees, penalized
support vector machine, stepwise logistic regression and Adaboost methods. We developed an algorithm for
simultaneously clustering eliciting doses and selecting discriminant variables. Our main conclusion is that
antibody measurements offer information on the allergy severity, especially those directed against rAra-h1
and rAra-h3. Further independent validation of these results and the use of new predictors will help extend
this study to clinical practices.

http://www.iris.cran.uhp-nancy.fr/contsid/
http://www.iris.cran.uhp-nancy.fr/contsid/
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6.2. Local linear estimator of the conditional distribution function
Participants: S. Ferrigno, M. Maumy, A. Muller.

Consider (X,Y ), a random vector defined in R× R. Here Y is the variable of interest and X the concomitant
variable. As usual in the statistics literature, we work under the assumption that a sample {(Xi, Yi)1≤i≤n} of
independent and identically replica of (X,Y ) is available.

In order to explain the relationship between the variable of interest Y and the factor X , the standard way is
to rely on the regression function E(Y |X = x). Because of numerous applications, the problem of estimating
the regression function has been the subject of considerable interest during the last decades. However, it can
be easily argued that the function x 7→ E(Y |X = x) alone does not capture the complexity of the relations
between X and Y .

In order to go one step further in this direction, we have chosen to work with another function. Namely, we
study the conditional distribution function F (y|X = x) = P (Y ≤ y|X = x) and a nonparametric estimator
associated to this quantity. The distribution function has the advantage of completely characterizing the law
of the random variable at stake, allowing to obtain the regression function, the density function, the moments
and the quantile function. It should also be noticed that conditional distribution functions are used for the
estimation of references curves in medical applications.

At a more technical level, our study is based on a local linear nonparametric estimator of the conditional
distribution function instead of the widely spread Nadaraya-Watson estimator. Indeed, it is a well-known fact
that the asymptotic bias of the Nadaraya-Watson estimator behaves somehow badly. Observe however that
local polynomial techniques are good alternatives. Based on these techniques, here are the steps we have
focused on in 2010-2011 :

• Our main result is the uniform law of the logarithm concerning the local linear estimator of the
conditional distribution function (see [21]). We investigate convergence in probability and almost
sure convergence results.

• The uniform law of the logarithm has then been used to construct uniform asymptotic certainty bands
for the conditional distribution function.

• The certainty bands alluded to above have been applied to simulated data.

• A variant of the test has been introduced in [20].

Let us also mention that applications of these theoretical results to survival analysis are currently the object of
active research.

6.3. Markovian models for tumor growth
Participants: T. Bastogne, R. Keinj, P. Vallois.

Our research in this direction includes two contributions in 2011:

• A multinomial model for cell growth allowing to calibrate radiotherapies given in [3].

• A study of tumor growth based on the lifespan of each cell (see [13]).

More specifically, our two contributions can be summarized as follows:
(i) Hit and target models of tumor growth typically assume that all surviving cells have a constant and
homogeneous sensitivity during the radiotherapy period. In [3], we propose a multinomial model based
on a discrete-time Markov chain, able to take into account cell repair, cell damage heterogeneity and cell
proliferation. The proposed model relies on the ’Hit paradigm’ and ’Target’ theory in radiobiology and
assumes that a cancer cell containsm targets which must be all deactivated to produce cell death. The surviving
cell population is then split up into m categories to introduce the variation of cancer cell radio-sensitivity
according to their damage states. Two other parameters have been introduced : the probability q for a target
to be deactivated by radiation and the probability r for an inactive target in an alive cell to be reactivated.
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The parameter q is related to the radiation dose u0 through the intrinsic sensitivity of a target to radiation.
Moreover, the multinomial model is a generalization of typical hit models. Based on the multinomial model,
new expressions of the TCP (Tumor Control Probability) and NTCP (Normal Tissue Complication Probability)
have been proposed for nonuniform radiations which permits to deduce the optimal total dose to be delivered.
We point out the important influence of the repair parameter r which could lead to reduce both the total
radiation dose to be delivered and the risk of side effects.
(ii) We have proposed in [13] an original approach that expresses the probability distribution of the cancer and
normal cells lifespans in terms of the number of dose fractions in radiotherapy. Conversely to previous models
that examines the number of surviving cells in the treated population at fixed time instants, our modeling
approach better reveals the dynamics of the tumor response.

We start by considering the lifespan of a single cancer cell that behaves as described in [3]. We study this
random time by calculating its mean, variance and cumulative distribution function. We then assume that
a tumor is a group of independent cells. This allows to define the lifespan of the tumor as the maximum
of individual lifespans. When the initial number n0 of cancer cells is not too large, then we can explicitly
calculate the mean, variance and the cumulative distribution function of the tumor lifespan. When n0 is large,
the previous parameters are no longer calculable. However, we are able to show that, under some assumptions,
the mean lifespan of the tumor behaves as a logarithmic function of the initial number n0. The second
goal is to show that TCP and NTCP can be completely formulated with respect to the tumor and normal
tissue lifespans. These expressions of TCP and NTCP are finally used to propose a ROC curve, called ECT
(Efficiency-Complication Trade-off), suited to the determination of the appropriate treatment schedule. This
synthetic representation summarizes both efficiency and complication of the treatment. Moreover, it allows
several possibilities of choice for the radiotherapist : treatment efficiency, priority to safety of normal tissue,
or a trade-off between them.

6.4. A stochastic model for bacteriophage therapies
Participants: X. Bardina, D. Bascompte, C. Rovira, S. Tindel.

In the last years Bacteriophage therapies are attracting the attention of several scientific studies. They can be
a new and powerful tool to treat bacterial infections or to prevent them applying the treatment to animals such
as poultry or swine. Very roughly speaking, they consist in inoculating a (benign) virus in order to kill the
bacteria known to be responsible of a certain disease. This kind of treatment is known since the beginning
of the 20th century, but has been in disuse in the Western world, erased by antibiotic therapies. However, a
small activity in this domain has survived in the USSR, and it is now re-emerging (at least at an experimental
level). Among the reasons of this re-emersion we can find the progressive slowdown in antibiotic efficiency
(antibiotic resistance). Reported recent experiments include animal diseases like hemorrhagic septicemia in
cattle or atrophic rhinitis in swine, and a need for suitable mathematical models is now expressed by the
community.

Let us be a little more specific about the (lytic) bacteriophage mechanism: after attachment, the virus’ genetic
material penetrates into the bacteria and use the host’s replication mechanism to self-replicate. Once this is
done, the bacteria is completely spoiled while new viruses are released, ready to attack other bacteria. It should
be noticed at this point that among the advantages expected from the therapy is the fact that it focuses on one
specific bacteria, while antibiotics also attack autochthonous microbiota. Roughly speaking, it is also believed
that viruses are likely to adapt themselves to mutations of their host bacteria.

At a mathematical level, whenever the mobility of the different biological actors is high enough, bacteriophage
systems can be modeled by a kind of predator-prey equation. Namely, set St (resp. Qt) for the bacteria (resp.
bacteriophages) concentration at time t. Then a model for the evolution of the couple (S,Q) is as follows:{

dSt = [α− k Qt]Stdt+ ε St dW
1
t

dQt =
[
d−mQt − k Qt St + k b e−µζ Qt−ζ St−ζ

]
dt+ εQt dW

2
t ,

(1)
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where α is the reproducing rate of the bacteria and k is the adsorption rate. In equation (1), d also stands for
the quantity of bacteriophages inoculated per unit of time, m is their death rate, we denote by b the number
of bacteriophages which is released after replication within the bacteria cell, ζ is the delay necessary to the
reproduction of bacteriophages (called latency time) and the coefficient e−µζ represents an attenuation in the
release of bacteriophages (given by the expected number of bacteria cell’s deaths during the latency time,
where µ is the bacteria’s death rate). A given initial condition (S0, Q0) is also specified, and the term ε dWt

takes into account a small external noise standing for both uncertainties on the measures and the experiment
conditions (for similar modeling see e.g. [34]). One should be aware of the fact that the latency time ζ (which
can be seen as the reproduction time of the bacteriophages within the bacteria) cannot be neglected, and is
generally of the same order (about 20mn) as the experiment length (about 60mn).

With this model in hand, our main results in this direction (see [15]) have been the following:

• Quantification of the exponential convergence to a bacteria-free equilibrium of equation (1) when d
is large enough.

• Use of the previous result plus concentration inequalities in order to study the convergence of the
noisy system to equilibrium in a reasonable time range.

• Simulation of the stochastic processes at stake in order to observe the convergence to equilibrium.

6.5. Convergence of stochastic gene networks
Participants: A. Crudu, A. Debussche, A. Muller, Aurélie, O. Radulescu.

We propose simplified models for the stochastic dynamics of gene network models arising in molecular
biology. Those gene networks are classically modeled by Markov jump processes, which are extremely time
consuming. To overcome this drawback, we study the asymptotic behavior of multiscale stochastic gene
networks using weak limits of Markov jump processes.

We consider a set of chemical reactions Rr, r ∈ R; R is supposed to be finite. These reactions involve species
indexed by a set S = 1, · · · ,M , the number of molecules of the species i is denoted by ni and X ∈ NM is
the vector consisting of the ni’s. Each reaction Rr has a rate λr(X) which depends on the state of the system,
described by X and corresponds to a change X → X + γr, γr ∈ ZM .

Mathematically, this evolution can be described by the following Markov jump process. It is based on a
sequence (τk)k≥1 of random waiting times with exponential distribution. Setting T0 = 0, Ti = τ1 + · · ·+ τi,
X is constant on [Ti−1, Ti) and has a jump at Ti. The parameter of τi is given by

∑
r∈R λr(X(Ti−1)):

P(τi > t) = exp

(
−
∑
r∈R

λr(X(Ti−1))t

)
.

At time Ti, a reaction r ∈ R is chosen with probability λr(X(Ti−1))/
∑
r∈R λr(X(Ti−1)) and the state

changes according to X → X + γr: X(Ti) = X(Ti−1) + γr. This Markov process has the following gen-
erator:

Af(X) =
∑
r∈R

[f(X + γr)− f(X)]λr(X).

In the applications we have in mind, the numbers of molecules have different scales. Some of the molecules
are in small numbers and some are in large numbers. Accordingly, we split the set of species into two sets
C and D with cardinals MC and MD. This induces the decomposition X = (XC , XD), γr = (γCr , γ

D
r ). For

i ∈ D, ni is of order 1 while for i ∈ C, ni is proportional to N where N is a large number. For i ∈ C, setting
ñi = ni/N , ñi is of order 1. We define xC = XC/N and x = (xC , XD).
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For this kind of system, we are able to give in [18] some relevant information on the asymptotic regime
N →∞ when different type of reactions are involved. Depending on the time and concentration scales of the
system we distinguish four types of limits:

• Continuous piecewise deterministic processes (PDP) with switching.

• PDP with jumps in the continuous variables.

• Averaged PDP.

• PDP with singular switching.

We justify rigorously the convergence for the four types of limits.

6.6. Inference for Gaussian systems
Participants: F. Baudoin, A. Chronopoulou, S. Cohen, F. Gamboa, Y. Hu, M. Jolis, C. Lacaux, J-M. Loubes,
A. Neuenkirch, D. Nualart, C. Ouyang.
(i) LAN property for fractional Brownian motion. Local asymptotic normality (LAN) property is a fundamental
concept in asymptotic statistics, which gives the asymptotic normality of certain estimators such as the
maximum likelihood estimator for instance (see [66] for details on this property). In [11], we focus on the
LAN property for the model where we observe a sample of n observations Xn = (X1, ..., Xn) of a Gaussian
stationary sequence. The sequence (Xn)n∈N, whose spectral density fθ is indexed by a parameter θ, can admit
antipersitence, long memory or short memory and be noninvertible. To be more specific, our main assumption
is:

fθ(x) ∼x→0 |x|−α(θ)Lθ(x)

withLθ a slowly varying function andα(θ) ∈ (−∞, 1). We prove the LAN property by studying an asymptotic
expansion of the log likelihood and using some results on Toeplitz matrices (see [39], [53]). In particular,
our assumptions are fulfilled by fractional Gaussian noises and autoregressive fractionally integrated moving
average processes (ARFIMA(p, d, q)). We also obtain the LAN property for fractional Brownian motion.
(ii) Inference for dynamical systems driven by Gaussian noises. As mentioned at the Scientific Foundations
Section, the problem of estimating the coefficients of a general differential equation driven by a Gaussian
process is still largely unsolved. To be more specific, the most general (R-valued) equation handled up to now
as far as parameter estimation is concerned (see [64]) is of the form:

Xθ
t = a+ θ

∫ t

0

b(Xu) du+Bt,

where θ is the unknown parameter, b is a smooth enough coefficient and B is a one-dimensional fractional
Brownian motion. In contrast with this simple situation, our applications of interest (see the Application
Domains Section) require the analysis of the following Rn-valued equation:

Xθ
t = a+

∫ t

0

b(θ;Xu) du+

∫ t

0

σ(θ;Xu) dBt, (2)

where θ enters non linearly in the coefficient, where σ is a non-trivial diffusion term and B is a d-dimensional
fractional Brownian motion. We have thus decided to tackle this important scientific challenge first.
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To this aim, here are the steps we have focused on in 2011:

• A better understanding of the underlying rough path structure for equation (2), carried out in [4], [5].
This step allows a proper definition of our equation of interest in a wide range of contexts.

• Gaussian type bounds for equations driven by a fractional Brownian motion, obtained in [9]. This is
an important preliminary step for likelihood estimates for stochastic processes.

• Numerical aspects of a maximum likelihood type procedure for an equation of the form (2),
expressed in terms of Malliavin calculus tools (see [10]).

• Convergence of a least square type estimator for an equation of the form (2) where the noise enters
additively, handled in [14]. This is the first occurrence of a converging estimator for a general
coefficient b(θ, ·).

6.7. Local self-similarity properties and stable or Gaussian random fields
Participants: Hermine Biermé, Jacques Istas, Céline Lacaux, Renaud Marty, Hans-Peter Scheffler.
• Recently, an important class of anisotropic random fields called operator scaling random fields has been
studied in [30]. To be more specific, the classical self-similarity property is replaced in [30] by the following
operator scaling property:

∀c > 0,
(
X(cEx)

)
x∈Rd

(d)
= c (X(x))x∈Rd , where cE := exp (E ln(c)) .

The Hölder regularity properties of operator scaling Gaussian or stable harmonizable random fields have been
studied in [30] and can be expressed in terms of the matrix E. In particular, they do not vary along the
trajectories, which can be too restrictive for some applications (see our osteoporosis project at the Application
Domains Section). In order to obtain some anisotropic random fields whose Hölder regularity properties are
allowed to vary, we introduce in [1] a local version of the operator scaling property (similar to the local version
of the classical self-similarity property defined in [27]). This local property is illustrated in [1], where we also
define and study harmonizable multi-operator scaling stable randoms fields. For such a multi-operator random
field, we obtain an accurate upper bound of both the modulus of continuity and global and directional Hölder
regularities at any point x. As expected, the Hölder regularity properties vary along the trajectories.
• In [24], we study the sample paths properties of an anisotropic random field, which is defined as limit of an
invariance principle and is of the same type as a multifractional Brownian sheet. Our first aim was to generalize
[37], that is to obtain some multifractional random fields indexed by Rd with d ≥ 2 and to allow Hurst indices
to be lower than 1/2. To overcome the problem of the values of the Hurst indices which characterize the
limit field, we focus on stationary sequences (Xn(H))n∈N, where H ∈ (0, 1)

d, defined by an harmonizable
representation. Then, our limit field Sh is defined as the limit of

SNh =


[Nt1]∑
n1=1

...

[Ntd]∑
nd=1

Xn(h
N
n )

NrNn
; t ∈ [0,+∞)

d


for some suitable families (hNn )n,N and (rNn )n,N . We then study the sample paths property of this limit field.
In particular, we obtain some local self-similarity properties for its increments of order k and its pointwise
global and directional Hölder exponents. We also define (and obtain) some pointwise multi-Hölder exponents
which characterize the Hölder property satisfied by the increments of order d of Sh.
•We are also interested in self-similar processes indexed by manifolds in [23]. This study is motivated by the
fact various spatial data are indexed by a manifold and not by the Euclidean space Rd in practical situations
such as image analysis.
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7. Contracts and Grants with Industry

7.1. Contracts with Industry
Start-up project by T. Bastogne:

Industrial partner: CyberBio (Biocybernetics for Cancerology & Nanomedicine).

Status: in incubation.

7.2. Grants with Industry
CIFRE PhD grant supervised by P. Vallois:

Industrial partner: Caisse Mutuelle du Crédit Agricole.

Title: Claim reserving for insurance.

PhD thesis of M. Geoffray Nichil.

PEPS project (Mathematics-Industry Interactions) leaded by A. Muller:

Industrial partner: Sport4Spirit (start-up).

Title: Computation of profit probabilities in sports gambling.

Two Internships involved.

8. Partnerships and Cooperations

8.1. Regional Initiatives
Co-direction of a PhD thesis by J-M. Monnez:

Partner: Ecole de Hautes Etudes en Santé Publique (Nancy).

Title: Influence of socio-economic and environmental characteristics on infant mortality.

PhD thesis of M. Lalloué.

Regional project leaded by T. Bastogne:

Partners: Contrat de Projets Etat-Région, MISN (Modélisation, Information et Système Numérique),
Thème AOC (Analyse, Optimisation et Contrôle).

Title: EMC2 (Experimental design, Modeling and Control in Cancerology).

8.2. National Initiatives
• C. Lacaux is member of the MATAIM (Modèles Anisotropes de Textures. Applications à l’Imagerie
Médicale) ANR project, leaded by F. Richard (University of Provence).

• S. Tindel is co-leader the ECRU (Exploration des Chemins Rugueux) ANR project, jointly with M. Gubinelli
(University of Paris Dauphine).

• P. Vallois is member of the MASTERIE (Malliavin Stein Random Irregular Equation) ANR project, leaded
by F. Russo (ENSTA, Paris).

• T. Bastogne is leader of the MOCOBIO (MOdeling and COntrol of heterogeneous systems in systems
BIOlogy) CNRS-PEPS project.

• T. Bastogne is member of the PDTX (Active Nanoplatforms for Photodynamic Therapy) ANR project,
leaded by M. Verelst (Université Paul Sabatier, Toulouse)
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• T. Bastogne is member of the Nano-VTP (Nanoparticles for Imaging and Vascular Photodynamic Treatment
of Brain Tumors) ANR project, leaded by M. Barberi-Heyob (Centre de Recherche en Automatique de Nancy,
Centre Alexis Vautrin).

8.3. European Initiatives
8.3.1. Collaborations in European Programs, except FP7

Program: UGR (Université de la Grande Région)

Project acronym: I-DERBI

Project title: I-DERBI

Duration: January 2010 - April 2012

Coordinator: C. Carlberg (Luxembourg)

Other partners: Université du Luxembourg, Université de Liège (Belgium) , Saarland University
(Germany)

Abstract: We stand at the brink of a fundamental change in how medicine will be practiced in the
next 5-20 years. This change will require the unprecedented integration of biology, medicine, tech-
nology and computation as well as societal issues of major importance: ethical, regulatory, pub-
lic policy, economic, and others. These needs have encouraged the emergence of a biology-based
inter-disciplinary study field, systems biology, which focuses on the modeling of complex biological
systems. Systems biology covers a large spectrum of applications: biomedicine, bioprocesses engi-
neering, environmental science and pharmaceutical discovery. The ambition of the I-DERBI pilot
project is to initiate and develop synergy of education and research in Systems Biology within the
Grande Région.

8.3.2. Major European Organizations with which Bigs has followed Collaborations

Partner: Universitat Autònoma de Barcelona, Departament de Matemàtiques (Spain).

Subject: Stochastic model for bacteriophage systems.

Partner: TU Kaiserslautern, Department of Mathematics.

Subject: Parameter estimation for differential systems driven by Gaussian processes.

8.4. International Initiatives
8.4.1. Internships

Yosra Chemli

Subject: Statistical Emulation of High Dimensional Biological Dynamic Models

Institution: Ecole Polytechnique de Tunisie (Tunisia)

Raouf Souabni

Subject: Simulation of the light propagation in biological tissues. Application to interstitial
photodynamic therapy.

Institution: Université de Tunis El Manar - Faculté des Sciences (FST) (Tunisia)

8.5. Teaching
BIGS is a team whose composition includes University staff only. All members teach numerous courses,
ranging from L1 to M2 levels.
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PhD & HdR:

PhD : A. Deya, Etude de systèmes différentiels fractionnaires, Universté de Nancy 1, 18/10/2010,
Advisor: S. Tindel.

PhD : R. Keijn, Modélisation de la croissance d’une tumeur après traitement par radiothérapie,
Universté de Nancy 1, 2/12/2011, Advisors: T. Bastogne, P. Vallois.

PhD in progress: R. Bar, Analyse de données en ligne, from 01/09/2010. Advisor: J-M. Monnez.

PhD in progress: B. Lalloué: Analyse des données dans l’étude de l’influence de caractéristiques
socio-spatiales sur des événements de santé, from 01/09/2010. Advisor: J-M. Monnez.

PhD in progress: R. Bonidal: Analyse des systèmes discriminants multi-classes à grande marge,
from 01/09/2009. Advisors: Y. Guermeur, S. Tindel.

PhD in progress: G. Nichil, Claim reserving for insurance, from 01/09/2010. Advisors: S. Herrmann
(University of Dijon), P. Vallois.
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