
IN PARTNERSHIP WITH:
CNRS

Université Rennes 1

Activity Report 2011

Project-Team ESPRESSO

Synchronous programming for the trusted
component-based engineering of embedded
systems and mission-critical systems

IN COLLABORATION WITH: Institut de recherche en informatique et systèmes aléatoires (IRISA)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Embedded and Real Time Systems

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Introduction 1
2.2. Context and motivations 2
2.3. The polychronous approach 2
2.4. Highlights 3

3. Scientific Foundations .3
3.1. Introduction 3

3.1.1. A synchronous model of computation 4
3.1.1.1. Composition 4
3.1.1.2. Scheduling 4
3.1.1.3. Structure 5

3.1.2. A declarative design language 5
3.1.3. Compilation of Signal 7

3.1.3.1. Synchronization and scheduling specifications 7
3.1.3.2. Synchronization and scheduling analysis 7
3.1.3.3. Hierarchization 7

3.2. Application domains 8
4. Software . 8

4.1. The Polychrony toolset 8
4.2. The Eclipse interface 9
4.3. Integrated Modular Avionics design using Polychrony 9
4.4. Multi-clocked mode automata 10
4.5. Hyper-text source documentation of Polychrony 11

5. New Results . 11
5.1. Polychrony as open-source toolset 11
5.2. New features of Polychrony 12
5.3. Extensions of the language and the model 13
5.4. Source to source traceability in Polychrony 13
5.5. A simulation infrastructure for CCSL, the timing model of UML MARTE 14
5.6. The CESAR demonstrator and reference technology platform 14
5.7. Modeling AADL in a polychronous model of computation 15
5.8. Composing Simulink and AADL 16
5.9. From affine-related dataflow models to Safety-critical Java 16
5.10. Translation validation of Polychronous Equations with an iLTS Model-checker 17
5.11. PDSs for translation validation: from SIGNAL to C 17
5.12. Synchronous symbolic translation systems for translation validation 18
5.13. An integrated environment for Esterel/Quartz and Polychrony/Signal 18
5.14. Quality assessment and qualification of Polychrony on the open-source Polarsys IWG platform

19
6. Contracts and Grants with Industry . 19

6.1. Artemisia project CESAR 19
6.2. ITEA2 project OPEES 20
6.3. ANR project VERISYNC 20
6.4. FUI project P 20

7. Partnerships and Cooperations . 20
7.1. National Actions 20
7.2. European Actions 21
7.3. International collaborations 21

2 Activity Report INRIA 2011

8. Dissemination . 22
8.1. Invited Lectures 22
8.2. Visits 22
8.3. Conferences 22
8.4. Teaching 23

9. Bibliography .23

Project-Team ESPRESSO

Keywords: Synchronous Languages, Embedded Systems

1. Members
Research Scientists

Thierry Gautier [Researcher, INRIA]
Paul Le Guernic [Senior Researcher, INRIA]
Jean-Pierre Talpin [Team leader, Senior Researcher, INRIA, HdR]

Technical Staff
Loïc Besnard [Research Engineer, CNRS]

PhD Students
Adnan Bouakaz [University of Rennes 1]
Sun Ke [INRIA, since Oct. 1st.]
Chan Ngo [INRIA, since Jan. 1st.]

Post-Doctoral Fellows
Yue Ma [Expert Engineer, INRIA, since Feb. 1st.]
An Phung-Khac [Expert Engineer, INRIA, since Nov. 1st.]
Huafeng Yu [Expert Engineer, INRIA]

Administrative Assistant
Stéphanie Lemaile [Secretary, INRIA]

Other
François Fabre [Junior Engineer, INRIA, until Sep. 1st.]

2. Overall Objectives

2.1. Introduction
The ESPRESSO project-team is interested in the model-based computer-aided design of embedded-software
architectures using formal methods provided with the polychronous model of computation [11]. ESPRESSO
focuses on the system-level modeling and validation of software architecture, during which formal design
and validation technologies can be most benefitial to users in helping to explore key design choices and
validate preliminary user requirements. The research carried out in the project team covers all the necessary
aspects of system-level design by providing a framework called Polychrony. The company Geensoft (now
part of Dassault Systems) has supplied a commercial implementation of Polychrony, RT-Builder (see http://
www.geensoft.com), which has been deployed on large-scale applications with the avionics and automotive
industries.

Polychrony is a computer-aided design toolset that implements the best-suited GALS (globally asynchronous
and locally synchronous) model of computation and communication to semantically capture embedded
architectures. It provides a representation of this model of computation through an Eclipse environment to
facilitate its use and inter-operation with the heterogeneity of languages and diagrams commonly used in the
targeted application domains: aerospace and automotive. The core of Polychrony provides a wide range of
analysis, transformation, verification and synthesis services to assist the engineer with the necessary tasks
leading to the simulation, test, verification and code-generation for software architectures, while providing
guaranteed assurance of traceability and formal correctness. Starting August 1st., the Polychrony toolset is
available under EPL and GPL v2.0 license by INRIA.

http://www.geensoft.com
http://www.geensoft.com

2 Activity Report INRIA 2011

2.2. Context and motivations
The design of embedded software from multiple views and with heterogeneous formalisms is an ubiquitous
practice in the avionics and automotive domains. It is more than common to utilize different high-level
modeling standards for specifying the structure, the hardware and the software components of an embedded
system.

Providing a high-level view of the system (a system-level view) from its composite models is a necessary
but difficult task, allowing to analyze and validate global design choices as early as possible in the system
design flow. Using formal methods at this stage of design requires one to define the suited system-level view
in a model of computation and communication which has the mathematical capability to cross (abstract or
refine) the algebraic boundaries of the specific MoCCs used by each of its constituents : synchronous and
asynchronous models of communication; discrete and continuous models of time.

We believe these requirements to be met with the polychronous model of computation. Historically related
to the synchronous programming paradigm (Esterel, Lustre), the polychronous model of computation im-
plemented with the data-flow language Signal and its Eclipse environment Polychrony stands apart by the
capability to model multi-clocked system. This feature has, in turn, been proved and developed as one ability
to compositionally describe high-level abstractions of GALS architectures.

The research and development performed in the team aim at completely exploiting this singularity and to
implement its practical implications in order to provide the community with all benefits gained from this
property of compositionality.

Our main research results are, first and foremost, to consolidate the unique capability of the polychromous
model of computation to provide a compositional design mathematical framework with formal analysis and
modular code generation techniques implementing true compositionality (i.e. without a global synchronization
artifact as with most synchronous modeling environments).

The most effective demonstrations of these features are found in our recent collaborative projects Spacify,
Opees and Cesar to equip industrial toolset with architecture/functions co-modeling services and provide
flexible and modular code generation services.

Our research perspectives aim at pursuing the research, dissemination, collaboration and technology transfer
results obtained by the team over the past years and, in doing so, further exploit the singularity and benefits of
our model of computation and maximize its impact on the academic and industrial community.

2.3. The polychronous approach
Despite overwhelming advances in embedded systems design, existing techniques and tools merely provide
ad-hoc solutions to the challenging issue of the productivity gap. The pressing demand for design tools
has sometimes hidden the need to lay mathematical foundations below design languages. Many illustrating
examples can be found, e.g. the variety of very different formal semantics found in state-diagram formalisms.
Even though these design languages benefit from decades of programming practice, they still give rise to some
diverging interpretations of their semantics.

The need for higher abstraction-levels and the rise of stronger market constraints now make the need for un-
ambiguous design models more obvious. This challenge requires models and methods to translate a high-level
system specification into a distribution of purely sequential programs and to implement semantics-preserving
transformations and high-level optimizations such as hierarchization (sequentialization) or desynchronization
(protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis” has focused the attention of
many academic and industrial actors. The synchronous paradigm consists of abstracting the non-functional
implementation details of a system and lets one benefit from a focused reasoning on the logics behind the
instants at which the system functionalities should be secured.

Project-Team ESPRESSO 3

With this point of view, synchronous design models and languages provide intuitive models for embedded
systems [5]. This affinity explains the ease of generating systems and architectures and verify their function-
alities using compilers and related tools that implement this approach.

In the relational mathematical model behind the design language Signal, the supportive data-flow notation
of Polychrony, this affinity goes beyond the domain of purely sequential systems and synchronous circuits
and embraces the context of complex architectures consisting of synchronous circuits and desynchronization
protocols: globally asynchronous and locally synchronous architectures (GALS).

This unique feature is obtained thanks to the fundamental notion of polychrony: the capability to describe
systems in which components obey to multiple clock rates. It provides a mathematical foundation to a notion
of refinement: the ability to model a system from the early stages of its requirement specifications (relations,
properties) to the late stages of its synthesis and deployment (functions, automata).

The notion of polychrony goes beyond the usual scope of a programming language, allowing for specifications
and properties to be described. As a result, the Signal design methodology draws a continuum from synchrony
to asynchrony, from specification to implementation, from abstraction to refinement, from interface to
implementation. Signal gives the opportunity to seamlessly model embedded systems at multiple levels of
abstraction while reasoning within a simple and formally defined mathematical model.

The inherent flexibility of the abstract notion of signal handled in Signal invites and favors the design of
correct-by-construction systems by means of well-defined model transformations that preserve the intended
semantics and stated properties of the architecture under design.

2.4. Highlights
The main headline of 2011 is the release of the Polychrony toolset in open-source under GPL v2.0 and EPL
licenses in July. It is the result of a process initiated several years ago and conducted in close collaboration
with INRIA’s DTI in order to precisely define the perimeter of the license and identify the best-suited licensing
terms compatible with its users and potential contributors.

3. Scientific Foundations

3.1. Introduction
Embedded systems are not new, but their pervasive introduction in ordinary-life objects (cars, telephone, home
appliances) brought a new focus onto design methods for such systems. New development techniques are
needed to meet the challenges of productivity in a competitive environment. Synchronous languages rely on
the synchronous hypothesis, which lets computations and behaviors be divided into a discrete sequence of
computation steps which are equivalently called reactions or execution instants. In itself this assumption is
rather common in practical embedded system design.

But the synchronous hypothesis adds to this the fact that, inside each instant, the behavioral propagation
is well-behaved (causal), so that the status of every signal or variable is established and defined prior to
being tested or used. This criterion, which may be seen at first as an isolated technical requirement, is in
fact the key point of the approach. It ensures strong semantic soundness by allowing universally recognized
mathematical models to be used as supporting foundations. In turn, these models give access to a large corpus
of efficient optimization, compilation, and formal verification techniques. The synchronous hypothesis also
guarantees full equivalence between various levels of representation, thereby avoiding altogether the pitfalls
of non-synthesizability of other similar formalisms. In that sense the synchronous hypothesis is, in our view, a
major contribution to the goal of model-based design of embedded systems.

4 Activity Report INRIA 2011

We shall describe the synchronous hypothesis and its mathematical background, together with a range
of design techniques enpowered by the approach. Declarative formalisms implementing the synchronous
hypothesis can be cast into a model of computation [11] consisting of a domain of traces or behaviors and
of semi-lattice structure that renders the synchronous hypothesis using a timing equivalence relation: clock
equivalence. Asynchrony can be superimposed on this model by considering a flow equivalence relation as
well as heterogeneous systems [33] by parameterizing composition with arbitrary timing relations.

3.1.1. A synchronous model of computation
We consider a partially-ordered set of tags t to denote instants seen as symbolic periods in time during which
a reaction takes place. The relation t1 ≤ t2 says that t1 occurs before t2. Its minimum is noted 0. A totally
ordered set of tags C is called a chain and denotes the sampling of a possibly continuous or dense signal over
a countable series of causally related tags. Events, signals, behaviors and processes are defined as follows:

• an event e is a pair consisting of a value v and a tag t,

• a signal s is a function from a chain of tags to a set of values,

• a behavior b is a function from a set of names x to signals,

• a process p is a set of behaviors that have the same domain.

In the remainder, we write tags(s) for the tags of a signal s, vars(b) for the domain of b, b|X for the projection
of a behavior b on a set of names X and b/X for its complementary.

Figure 1 depicts a behavior b over three signals named x, y and z. Two frames depict timing domains
formalized by chains of tags. Signals x and y belong to the same timing domain: x is a down-sampling of
y. Its events are synchronous to odd occurrences of events along y and share the same tags, e.g. t1. Even tags
of y, e.g. t2, are ordered along its chain, e.g. t1 < t2, but absent from x. Signal z belongs to a different timing
domain. Its tags are not ordered with respect to the chain of y.

Figure 1. Behavior b over three signals x, y and z in two clock domains

3.1.1.1. Composition

Synchronous composition is noted p || q and defined by the union b ∪ c of all behaviors b (from p) and c (from
q) which hold the same values at the same tags b|I= c|I for all signal x ∈ I = vars(b) ∩ vars(c) they share.
Figure 2 depicts the synchronous composition (Figure 2, right) of the behaviors b (Figure 2, left) and the
behavior c (Figure 2, middle). The signal y, shared by b and c, carries the same tags and the same values in
both b and c. Hence, b ∪ c defines the synchronous composition of b and c.

3.1.1.2. Scheduling

A scheduling structure is defined to schedule the occurrence of events along signals during an instant t. A
scheduling → is a pre-order relation between dates xt where t represents the time and x the location of the
event. Figure 3 depicts such a relation superimposed to the signals x and y of Figure 1. The relation yt1 → xt1 ,
for instance, requires y to be calculated before x at the instant t1. Naturally, scheduling is contained in time:
if t < t′ then xt →b xt′ for any x and b and if xt →b xt′ then t′¬ < t.

Project-Team ESPRESSO 5

Figure 2. Synchronous composition of b ∈ p and c ∈ q

Figure 3. Scheduling relations between simultaneous events

3.1.1.3. Structure

A synchronous structure is defined by a semi-lattice structure to denote behaviors that have the same timing
structure. The intuition behind this relation is depicted in Figure 4. It is to consider a signal as an elastic with
ordered marks on it (tags). If the elastic is stretched, marks remain in the same relative (partial) order but have
more space (time) between each other. The same holds for a set of elastics: a behavior. If elastics are equally
stretched, the order between marks is unchanged.

In Figure 4, the time scale of x and y changes but the partial timing and scheduling relations are preserved.
Stretching is a partial-order relation which defines clock equivalence. Formally, a behavior c is a stretching
of b of same domain, written b ≤ c, iff there exists an increasing bijection on tags f that preserves the timing
and scheduling relations. If so, c is the image of b by f . Last, the behaviors b and c are said clock-equivalent,
written b ∼ c, iff there exists a behavior d s.t. d ≤ b and d ≤ c.

Figure 4. Relating synchronous behaviors by stretching.

3.1.2. A declarative design language
Signal [6] is a declarative design language expressed within the polychronous model of computation. In Signal,
a process P is an infinite loop that consists of the synchronous composition P ||Q of simultaneous equations
x = y f z over signals named x, y, z. The restriction of a signal name x to a process P is noted P/x.

P,Q ::= x = y f z | P/x | P ||Q

6 Activity Report INRIA 2011

Equations x = y f z in Signal more generally denote processes that define timing relations between input and
output signals. There are four primitive combinators in Signal:

• delay x = y $ init v, initially defines the signal x by the value v and then by the previous value of
the signal y. The signal y and its delayed copy x = y $ init v are synchronous: they share the same
set of tags t1, t2, · · ·. Initially, at t1, the signal x takes the declared value v and then, at tag tn, the
value of y at tag tn−1.

y •t1,v1 •t2,v2 •t3,v3 · · ·
y $ init v •t1,v •t2,v1 •t3,v2 · · ·

• sampling x = y when z, defines x by y when z is true (and both y and z are present); x is present
with the value v2 at t2 only if y is present with v2 at t2 and if z is present at t2 with the value true.
When this is the case, one needs to schedule the calculation of y and z before x, as depicted by
yt2 → xt2 ←− zt2 .

• merge x = y default z, defines x by y when y is present and by z otherwise. If y is absent and z
present with v1 at t1 then x holds (t1, v1). If y is present (at t2 or t3) then x holds its value whether
z is present (at t2) or not (at t3).

y • •t2,v2 · · ·
↓

y when z •t2,v2 · · ·
↑

z • •t1,0 •t2,1 · · ·

y •t2,v2 •t3,v3 · · ·
↓ ↓

y default z •t1,v1 •t2,v2 •t3,v3 · · ·
↑

z •t1,v1 • · · ·

The structuring element of a Signal specification is a process. A process accepts input signals originating
from possibly different clock domains to produce output signals when needed. This allows, for instance, to
specify a counter where the inputs tick and reset and the output value have independent clocks. The body
of counter consists of one equation that defines the output signal value. Upon the event reset, it sets the
count to 0. Otherwise, upon a tick event, it increments the count by referring to the previous value of value
and adding 1 to it. Otherwise, if the count is solicited in the context of the counter process (meaning that its
clock is active), the counter just returns the previous count without having to obtain a value from the tick and
reset signals.

process counter = (? event tick, reset ! integer value)

(| value := (0 when reset)

default ((value$ init 0 + 1) when tick)

default (value$ init 0)

|);

A Signal process is a structuring element akin to a hierarchical block diagram. A process may structurally
contain sub-processes. A process is a generic structuring element that can be specialized to the timing context
of its call. For instance, the definition of a synchronized counter starting from the previous specification
consists of its refinement with synchronization. The input tick and reset clocks expected by the process
counter are sampled from the boolean input signals tick and reset by using the when tick and when

reset†expressions. The count is then synchronized to the inputs by the equation reset ^= tick ^= count.

process synccounter = (? boolean tick, reset ! integer value)

(| value := counter (when tick, when reset)

Project-Team ESPRESSO 7

| reset ^= tick ^= value

|);

3.1.3. Compilation of Signal
Sequential code generation starting from a Signal specification starts with an analysis of its implicit synchro-
nization and scheduling relations. This analysis yields the control and data flow graphs that define the class of
sequentially executable specifications and allow to generate code.

3.1.3.1. Synchronization and scheduling specifications

In Signal, the clock x̂ of a signal x denotes the set of instants at which the signal x is present. It is represented
by a signal that is true when x is present and that is absent otherwise. Clock expressions represent control. The
clock whenx (resp. when notx) represents the time tags at which a boolean signal x is present and true (resp.
false).

The empty clock is written 0 and clock expressions e combined using conjunction, disjunction and symmetric
difference. Clock equationsE are Signal processes: the equation ê= e′ synchronizes the clocks e and e′ while
ê<e′ specifies the containment of e in e′. Explicit scheduling relations x→ y when e allow to schedule the
calculation of signals (e.g. x after y at the clock e).

e ::= x̂ | whenx | notx | ê+ e′ | ê− e′ | ê + e′ | 0 (clock expression)
E ::= () | ê= e′ | ê<e′ | x→ y when e | E ||E′ | E/x (clock relations)

3.1.3.2. Synchronization and scheduling analysis

A Signal process P corresponds to a system of clock and scheduling relations E that denotes its timing
structure. It can be defined by induction on the structure of P using the inference system P : E of Figure 5.

x := y$ init v : ^x ^= ^y

x := y when z : ^x ^= ^y when z | y -> x when z

x := y default z : ^x ^= ^y default ^z | y -> x when ^y | z -> x when ^z ^- ^y

Figure 5. Clock inference system

3.1.3.3. Hierarchization

The clock and scheduling relations E of a process P define the control-flow and data-flow graphs that hold
all necessary information to compile a Signal specification upon satisfaction of the property of endochrony.
A process is said endochronous iff, given a set of input signals and flow-equivalent input behaviors, it has the
capability to reconstruct a unique synchronous behavior up to clock-equivalence: the input and output signals
are ordered in clock-equivalent ways.

Figure 6. Hierarchization of clocks

8 Activity Report INRIA 2011

To determine the order x � y in which signals are processed during the period of a reaction, clock relations
E play an essential role. The process of determining this order is called hierarchization and consists of an
insertion algorithm which hooks elementary control flow graphs (in the form of if-then-else structures) one to
the others. Figure 6, right, let h3 be a clock computed using h1 and h2. Let h be the head of a tree from which
h1 and h2 are computed (an if-then-else), h3 is computed after h1 and h2 and placed under h.

3.2. Application domains
The application domains covered by the Polychrony toolbox are engineering areas where a system design-flow
requires high-level model transformations and verifications to be applied during the development-cycle. The
project-team has focused on developing such integrated design methods in the context of avionics applications,
through the European IST projects Sacres, Syrf, Safeair, Speeds, and through the national ANR projects
Topcased, OpenEmbeDD, Spacify. In this context, Polychrony is seen as a platform on which the architecture
of an embedded system can be specified from the earliest design stages until the late deployment stages through
a number of formally verifiable design refinements.

Along the way, the project adopted the policy proposed with project Topcased and continued with OpenEm-
beDD to make its developments available to a large community in open-source. The Polychrony environment
is now integrated in the OPEES platform and distributed under EPL and GPL v2.0 license for the benefits
of a growing community of users and contributors, among which the most active are Virginia Tech’s Fermat
laboratory and INRIA’s project-teams Aoste, Dart.

4. Software

4.1. The Polychrony toolset
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic.

The Polychrony toolset is an Open Source development environment for critical/embedded systems. It is based
on Signal, a real-time polychronous data-flow language. It provides a unified model-driven environment to
perform design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony. It can
be included in heterogeneous design systems with various input formalisms and output languages.

The Polychrony toolset provides a formal framework:

• to validate a design at different levels, by the way of formal verification and/or simulation,

• to refine descriptions in a top-down approach,

• to abstract properties needed for black-box composition,

• to assemble heterogeneous predefined components (bottom-up with COTS),

• to generate executable code for various architectures.

The Polychrony toolset contains three main components and an experimental interface to GNU Compiler
Collection (GCC):

• The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a
set of program transformations. The Signal toolbox can be installed without the other components.
The Signal toolbox is distributed under GPL V2 license.

• The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to
compiling functionalities). The Signal GUI is distributed under GPL V2 license.

• The SME platform, a front-end to the Signal toolbox in the Eclipse environment. The SME platform
is distributed under EPL license.

• GCCst, a back-end to GCC that generates Signal programs (not yet available for download).

Project-Team ESPRESSO 9

The Polychrony toolset also provides:

• libraries of Signal programs,

• a set of Signal program examples,

• user oriented and implementation documentations,

• facilities to generate new versions.

The Polychrony toolset can be freely downloaded on the following web sites:

• The Polychrony toolset public web site: http://www.irisa.fr/espresso/Polychrony. This
site, intended for users and for developers, contains downloadable executable and source versions of
the software for differents platforms, user documentation, examples, libraries, scientific publications
and implementation documentation. In particular, this is the site for the new open-source distribution
of Polychrony.

• The INRIAGForge: https://gforge.inria.fr. This site, intended for internal developers, con-
tains the whole sources of the environment and their documentation.

• The TOPCASED distribution site: http://www.topcased.org. This site provides the current
reference version of the SME platform, including the executable of the Signal toolbox.

The Polychrony toolset currently runs on Linux, MacOS and Windows systems.

The Geensoft company, now part of Dassault Systèmes, supplies a commercial implementation of Polychrony,
called RT-Builder, used for industrial scale projects (see www.geensoft.com).

4.2. The Eclipse interface
Participants: Loïc Besnard, Yann Glouche, Huafeng Yu, François Fabre, Yue Ma.

We have developed a meta-model and interactive editor of Polychrony in Eclipse. Signal-Meta is the meta-
model of the Signal language implemented with Eclipse/eCore. It describes all syntactic elements specified
in [35]: all Signal operators (e.g. arithmetic, clock synchronization), model (e.g. process frame, module), and
construction (e.g. iteration, type declaration).

The meta-model primarily aims at making the language and services of the Polychrony environment available
to inter-operation and composition with other components (e.g. AADL, Simulink, GeneAuto) within an
Eclipse-based development tool-chain. Polychrony now comprises the capability to directly import and export
eCore models instead of textual Signal programs, in order to facilitate interaction between components within
such a tool-chain.

It also provides a graphical modeling framework allowing to design applications using a component-based
approach. Application architectures can be easily described by just selecting components via drag and drop,
creating some connections between them and specifying their parameters as component attributes. Using the
modeling facilities provided with the Topcased framework, we have created a graphical environment for
Polychrony (see figure 7) called SME (Signal-Meta under Eclipse). To highlight the different parts of the
modeling in Signal, we split the modeling of a Signal process in three diagrams: one to model the interface
of the process, one to model the computation (or dataflow) part, and one to model all explicit clock relations
and dependences. The SME environment is available through the Espresso update site [27], in the current
OpenEmbeDD distribution [26], or in the TopCased distribution [28].

4.3. Integrated Modular Avionics design using Polychrony
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

http://www.irisa.fr/espresso/Polychrony
https://gforge.inria.fr
http://www.topcased.org
http://www.geensoft.com

10 Activity Report INRIA 2011

Figure 7. Eclipse SME Environment.

The Apex interface, defined in the ARINC standard [29], provides an avionics application software with the
set of basic services to access the operating-system and other system-specific resources. Its definition relies on
the Integrated Modular Avionics approach (IMA [30]). A main feature in an IMA architecture is that several
avionics applications (possibly with different critical levels) can be hosted on a single, shared computer system.
Of course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent fault
propagations from one hosted application to another. This is addressed through a functional partitioning of the
applications with respect to available time and memory resources. The allocation unit that results from this
decomposition is the partition.

A partition is composed of processes which represent the executive units (an ARINC partition/process is akin
to a Unix process/task). When a partition is activated, its owned processes run concurrently to perform the
functions associated with the partition. The process scheduling policy is priority preemptive. Each partition
is allocated to a processor for a fixed time window within a major time frame maintained by the operating
system. Suitable mechanisms and devices are provided for communication and synchronization between
processes (e.g. buffer, event, semaphore) and partitions (e.g. ports and channels). The specification of the
ARINC 651-653 services in Signal [7] is now part of the Polychrony distribution and offers a complete
implementation of the Apex communication, synchronization, process management and partitioning services.
Its Signal implementation consists of a library of generic, parameterizable Signal modules.

4.4. Multi-clocked mode automata
Participants: Jean-Pierre Talpin, Thierry Gautier, Christian Brunette.

Gathering advantages of declarative and imperative approaches, mode automata were originally proposed
by Maraninchi et al. to extend the functionality-oriented data-flow paradigm with the capability to model
transition systems easily and provide an additional imperative flavor. Similar variants and extensions of the
same approach to mix multiple programming paradigms or heterogeneous models of computation [36] have
been proposed until recently, the latest advance being the combination of stream functions with automata in
[38]. Nowadays, commercial toolsets such as the Esterel Studio’s Scade or Matlab/Simulink’s Stateflow are
largely inspired from similar concepts.

While the introduction of preemption mechanism in the multi-clocked data-flow formalism Signal was
previously studied by Rutten et al. in [51], no attempt has been made to extend mode automata with the

Project-Team ESPRESSO 11

capability to model multi-clocked systems and multi-rate systems. In [53], we extend Signal-Meta with an
inherited meta-model of multi-clocked mode automata. A salient feature is the simplicity incurred by the
separation of concerns between data-flow (that expresses structure) and control-flow (that expresses a timing
model) that is characteristic to the design methodology of Signal.

While the specification of mode automata in related works requires a primary address on the semantics and on
compilation of control, the use of Signal as a foundation allows to waive this specific issue to its analysis and
code generation engine Polychrony and clearly exposes the semantics and transformation of mode automata in
a much simpler way by making use of clearly separated concerns expressed by guarded commands (data-flow
relations) and by clock equations (control-flow relations).

4.5. Hyper-text source documentation of Polychrony
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic.

As part of its open-source release, the Polychrony toolset not only comprises source code libraries but also
an important corpus of structured documentation, whose aim is not only to document each functionality and
service, but also to help a potential developer to package a subset of these functionalities and services and
adapt them to developing a new application-specific tool: a new language front-end, a new back-end compiler.
This multi-scale, multi-purpose documentation aims to provide different views of the software, from a high-
level structural view to low-level descriptions of basic modules. It supports a distribution of the software “by
apartment” (a functionality or a set of functionalities) intended for developers who would only be interested
by part of the services of the toolset.

A high-level architectural view of the Polychrony toolset is given in Figure 8.

Figure 8. The Polychrony toolset high-level architecture

5. New Results

5.1. Polychrony as open-source toolset
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic.

12 Activity Report INRIA 2011

A major event for us is that the open-source distribution of the Polychrony toolset has been effective since
Summer 2011. The Polychrony toolset is described in Section 4.1. Following the considered part of the
software, the distribution is made with the GPL V2 or EPL license. One of the objectives of this opening
is to make possible a distribution of the software “by apartment” corresponding to a given functionality or to
a group of functionalities, for users or developers that would be interested by only a given part of the whole
software. To make this possible, a deep restructuration of the whole software has been undertaken. This takes
several forms:

• One is related to the polychronous semantics and the transformations that are applied by a compila-
tion process. A typical example is that of the representation type of the Data Control Graph (DCG),
for which different levels of representation are distinguished. Some of them are based on the level
of representation of the clock hierarchy.

– The DCGBasic level is the general type. The DCG represents a program with all depen-
dences set. Clocks are represented as signals of event type.

– The DCGPoly level is the subtype of DCGBasic such that the clock hierarchy in the DCG
is the result of the clock calculus. Specific clocks such as tick are created, but the clock
hierarchy, in the general case, has several roots.

– The DCGEndo level is the subtype of DCGPoly such that the clock hierarchy in the DCG
is a tree (it is provided with a single root which is tick). The program is endochronous.

– The DCGBool level is the subtype of DCGEndo such that all clock expressions are boolean
extractions. Clocks are represented as Boolean signals (no event type is used). Boolean
signals representing clocks have themselves clocks represented as Boolean signals (the
clock hierarchy still exists).

– The DCGSeq level is the subtype of DCGBool such that all nodes of the graph are statically
sorted.

– The DCGFlat level is the subtype of DCGBool such that the clock hierarchy in the DCG
is flat: every boolean clock signal is a direct child of the tick. Moreover, each state variable
(corresponding to delayed signals) is defined at tick.

• Another aspect of the reorganization is the automatic reconstruction of the toolset from basic
components. For that purpose, a new tool, called pKmake, has been developed, that allows the
architect of the software to describe its structure and construction independently of external tools
(such as emacs that was used previously). It is especially useful for portability reasons, considering
the different systems on which the toolset is provided.

• A third aspect that has required special attention is the automatic generation of the documentation
of the source, which is realized using cmake, with an automatic management of cross-references.

In the context of the ITEA2 OPEES project, the Polychrony toolset is being provided as base component of
the open-source toolchain of the Polarsys platform and Industry Working Group of the Eclipse consortium. A
qualification plan will be defined in this context.

5.2. New features of Polychrony
Participants: Loïc Besnard, François Fabre, Thierry Gautier, Paul Le Guernic.

Some new features have been implemented in the Signal toolbox of the Polychrony toolset:

• It is now possible to declare virtual objects (types, constants and process models), which are
distinguished from external objects, though objects declared as external may also be redefined in the
context of declaration. The actual value of an object declared as virtual is provided in the syntactic
context of declaration or in a module. A module provides a context of definition for some of the
objects described as virtual in the model or the module containing the module importation command.
These virtual objects are overridden in this way if they are imported (as corresponding objects with
the same name) from an imported module, or transitively, from a module imported in an imported
module.

Project-Team ESPRESSO 13

• Process models as (static) parameters have been implemented: the formal parameters of the interface
of a process model can contain process model parameters, that appear as a formal name of process
model typed with a process model type. The call of a process model sets up an expansion context in
which an effective process model, designated by its name, is associated with each formal model.

• The connection to the SynDEx tool (http://www.syndex.org/) has been completed as follows.
So far, only the functional part of a given application described in Signal was translated as a corre-
sponding “algorithm” in SynDEx. The multicomponent architecture (typically, processors intercon-
nected through communication medias) and the mapping of the algorithm onto the architecture had
to be provided directly within SynDEx. As the polychronous model may be used as intermediate
common formalism for applications described in languages where these aspects may be specified
(this may be the case in AADL, for instance), they have to be taken into account in the translation.
Thus, required elements of the architecture and distribution constraints are described using specific
“pragmas” in Signal. These features are then translated into the SynDEx formalism. Using all these
information, SynDEx can explore the possible implementations of the algorithm onto the multicom-
ponent.

Moreover, we have redefined the meta-model of Signal in Ecplise, now called SSME (for Signal Syntax meta-
model under Eclipse). The SME meta-model, that was used previously, suffered from several drawbacks. It
was not fully complete in some parts of the language and, due to design choice, required a strict separation
between clock and data flow relations. Thus specific program transformations had to be applied, which did not
facilitate traceability. SSME is a full syntax oriented meta-model of Signal, very close to the abstract syntax
that is used in the Signal toolbox. Compared to SME, this facilitates model transformations and traceability
requirements, which are the primary objectives for its use. The transformation of AADL models into Signal,
for instance, now uses the SSME meta-model.

5.3. Extensions of the language and the model
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The different works on using the polychronous model as semantic median model (which has also a syntactic
instance) for different effective models (AADL, Simulink via GeneAuto, UML via CCSL...) lead us to study
various possible extensions of the semantic model as well as the syntactic one. Some of them have already
been defined while for others, the study is still ongoing. In particular, we plan to add to the Signal language a
new syntax for automata, partly inspired from AADL mode automata and hierarchic automata existing in other
formalisms. An automaton is considered as an instance of a new process model and the “and” composition is
the Signal composition.

A fundamental issue that we wish to address in a new way is that of globally asynchronous, locally
synchronous (GALS), or globally asynchronous, locally polychronous systems. The idea we have is to extend
Signal with a syntactic structure that encapsulates a polychronous (or synchronous) process P in a system, S,
that creates a continuous temporal domain providing a real-time clock presented in different time units (..., fs,
..., ms, ..., sec, mn, ...). Such a real-time clock can be used as a usual “synchronous” signal in the process P
encapsulated in S. Systems S1, ..., Sn may be composed (with the standard composition of Signal) in a same
system S, but the ms of a given system Si is a priori not synchronous with the ms of another system Sj . Then
it is possible to specify standard Signal constraints in the system S on these different signals, to express for
instance some variation limits of different clocks.

We have also started a new work on causality aspects in order to express and operate more elaborate
dependencies than instantaneous dependencies currently computed on the graph of a program. This theoretical
work allows one to express dependencies that cross several instants, in a formal framework of word automata
and graph algebra.

5.4. Source to source traceability in Polychrony
Participants: Loïc Besnard, François Fabre, Thierry Gautier.

http://www.syndex.org/

14 Activity Report INRIA 2011

To fulfill a mandatory requirement for adoption and qualification of Polychrony environment on the open-
source industrial platform of the Polarsys IWG, we have integrated source to source traceability features into
the Polychrony toolset. The implementation of traceability is based on the definition of structures of data and
algorithms allowing to follow the transformation of objects since the Eclipse modeler of the SME Platform
until the generated code. These elements have a direct application with our industrial partners, as, for example,
Geensoft with whom, within the framework of the ANR project Spacify, we implemented a simulator of
embedded software for satellite applications. We have also integrated such a simulator mode in the Polychrony
toolset. Moreover, the error messages from the Signal compiler (Signal Toolbox) are now directly visible on
the SME Graphical User Interface and on the Synoptic model (Synoptic is a satellite domain-specific modeling
language).

5.5. A simulation infrastructure for CCSL, the timing model of UML MARTE
Participants: Huafeng Yu, Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin, Paul Le Guernic.

Clock Constraint Specification Language (CCSL) [32] is defined in an annex of the UML MARTE profile
[48]. We are interested in the analysis, synthesis and code generation of multi-clocked/polychronous systems
specified in CCSL. Timed systems subject to clock expressions or relations can be modeled, specified,
analyzed, and simulated within the software environments, such as SCADE [41], TimeSquare [44] and
Polychrony. However, code generation from a multi-clocked system is far from obvious. For instance,
SCADE always uses a reference or master clock (the fastest); all clocks and all conditions are defined as
a functional sampling of this master clock, from the highest specification down to the lowest generated code.
In TimeSquare, clock constraints are solved using a heuristic algorithm, which is generally non-deterministic.
On the contrary, in Polychrony, a formally defined refinement process yields to the generation of (sequential or
concurrent) code by the addition of control variables to get a deterministic behavior satisfying the constraints
and allowing the desired amount of concurrency.

The motivation of our work, to address the simulation and code generation of polychronous systems, is to
take advantage of the formal framework of Polychrony in the context of a high-level specification formalism,
MARTE CCSL[22]. Yet, our work considers a novel approach with regards to previous approaches: to
generate executable specifications by considering discrete controller synthesis (DCS) [50], [45], [46]. Clock
constraint resolution is addressed by DCS, which does not necessarily require a master clock to address
polychronous clocks. In our approach, polychronous (CCSL) specifications are first partitioned: clock relations
are considered as control objectives, other constraints are considered as the system to be controlled. The all
the constraints are translated into, via SIGNAL, polynomial dynamical systems (PDSs). A PDS represents
the transition system of a specification as well as the constraints (invariants) it must satisfy. The Sigali tool
is then used to generate the controller. Finally, the generated controller, together with the original system, is
composed to complete the code generation for simulation. In our approach, the temporal semantics of CCSL
is mapped onto a polychronous model of computation, on which effective synthesis is carried out to meet
constraint requirements. This approach provides both a useful mapping in theory and a flow, which is practical
in the generation of reactive controllers.

5.6. The CESAR demonstrator and reference technology platform
Participants: Huafeng Yu, Yue Ma, Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin, Paul Le Guernic.

The design of embedded systems from multiple views and heterogeneous models is ubiquitous in avionics
as, in particular, different high-level modeling standards are adopted for specifying the structure, hardware
and software components of a system. The system-level simulation of such composite models is necessary but
difficult task, allowing to validate global design choices as early as possible in the system design flow. Inspired
by the Ptolemy [40], MoBIES [31], SML-Sys [47], etc., we propose an approach to the issue of composing,
integrating and simulating heterogeneous models in a system co-design flow [21]. First, the functional behavior
of an application is modeled with synchronous data-flow and Statechart diagrams using Simulink/Gene-Auto
[54], [55]. The system architecture is modeled in the AADL standard [52]. These high-level, synchronous

Project-Team ESPRESSO 15

and asynchronous, models are then translated into a common model, based on a polychronous model of
computation, allowing for a Globally Asynchronous Locally Synchronous (GALS) interpretation of the
composed models. This translation is implemented as an automatic model transformation within Polychrony.
Simulation, including profiling, value change dump demonstration [24], Syndex adequation [43], etc., is
carried out based on the common model within Polychrony.

Polychrony has been integrated to the Reference Technology Platform (RTP) V2 and V3 of CESAR to serve
as a framework for co-modeling and architecture exploration. ModelBus [49] is used for the integration of
Polychrony into the RTP. ModelBus [25], an integration platform based on Service-Oriented Architecture
(SOA), connects different services offered by tools connected to ModelBus. In the demonstration, we
participated in the pilot application of Sub-Project 3 (SP3), whose aim is to use the RTP to define a complete
software design flow for the doors management system (DMS) of an Airbus A350 in the framework of
ModelBus. In the pilot application of the DMS, functional components are modeled in the synchronous model
of computation of Simulink, whereas the architecture is modeled in the asynchronous model of computation of
AADL[14], [18]. These high-level models are transformed into Signal programs via SME models. Additional
models, which are used in the simulation of a closed system, are coded manually in Signal and synchronously
composed with the Signal programs transformed from Simulink and AADL models. Finally, C or Java code
is generated from Signal programs. Simulation can then be carried out for the purpose of performance
evaluation and VCD (Value Change Dump) based demonstration in RTP V2. In RTP V3, Syndex adequation
is also integrated to demonstrate real-time scheduling and distribution. Our whole model transformation and
simulation chain has been implemented with Galileo Eclipse and attached to ModelBus as a provider of
registered remote service. This demonstration also shows the integration of Polychrony with other tools, such
as OSATE (AADL), Simulink, Gene-Auto, TimeSquare, ATL, Kermeta, etc.

5.7. Modeling AADL in a polychronous model of computation
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin, Huafeng Yu.

Architecture Analysis and Design Language (AADL) is an SAE standard aimed at high level design and
evaluation of architecture of embedded systems. We are interested in the analysis, simulation and verification
of timed systems specified in AADL. Polychrony is well suited for the GALS architecture, and it enables
deterministic specifications and formal analysis for the design of safety-critical systems. In order to benefit
from the advantages provided by Polychrony, a proposition of a methodology for system-level modeling and
validation of embedded systems specified in AADL via the polychronous model of computation is proposed.

By studying the different timing semantics of AADL and Polychrony, we have proposed an approach that
automatically translates AADL models to a polychronous model of computation (SSME model). In the
Polychrony framework, the Signal program can be generated, and an executable model can be obtained. The
systems can be analyzed by tools and technologies associated with Polychrony allowing early simulation,
testing and verification.

We implemented a plug-in for Eclipse framework to perform model transformation from AADL to SSME
(new meta model of Signal). This transformation is implemented in Java. The following new features have
been developed this year:

• Temporal interpretation of AADL model. Due to the different timing semantics between AADL
and Signal, we keep the ideal view of instantaneous computations of polychronous model, moving
computing latencies and communication delays to specific memory process, that introduce delays
and well suited synchronizations. Each component modeled in Polychrony is composed of a behavior
process (which models the functional behaviors) and a property process (which models the temporal
properties).

• Architecture restructures. The architecture of the transformation is optimized. Functional architec-
ture and meta architecture are described to give a global view of the transformation. The translation
is recursive. Each AADL component is separated into a java class. The hierarchy of classes are
reserved.

16 Activity Report INRIA 2011

• Library developments. We define a Signal library containing the Signal process models representing
some basic AADL concepts.

• Documentation. A new technical documentation of the transformation from AADL to SSME has
been developed to accompany its implementation. This document aims to provide a global view of
our implementation, from a high-level structural view to low-level implementation technical details
of components.

• Programming language updates. This version of model transformation uses Java as the programming
language. It avoids the disadvantages of dependent on other model transformation languages, and it
provides more conveniences and flexibility. The new version is integrated as a plug-in in the Eclipse
platform.

• Papers published. Three papers [14], [18], [21] are published this year.

5.8. Composing Simulink and AADL
Participants: An Phung-Khac, Jean-Pierre Talpin, Benoit Combemale, Jean-Marc Jezequel.

The goal of this work is to improve an import function of the Polychrony environment proposed by the
team. Particularly, Polychrony comprises a co-modeling tool supporting the import a high-level Simulink
(functional) and AADL (architectural) specifications [21]. This import function is currently implemented
by two different transformations, namely Simulink-to-Signal, and AADL-to-Signal. To integrate the Signal
programs resulting from these transformations, some Signal interfaces are manually implemented. The
composition of Simulink and AADL models thus depends on system designers who implement the interfaces,
making difficult its maintenance and validation. To deal with this issue, the model composition approach
proposed by the Triskell team, namely ModMap [37], could be used to build a new Simulink and AADL
model composition framework.

In ModMap, model composition is considered as a pair of a mapping and an interpretation. A mapping aligns
concepts of two meta-models, while the interpretation describes the composition goal. As a model mapping
framework, ModMap provides an extensible modeling language supporting the definition of generic mappings
and the definition of interpretations. Together with this language, the ModMap kernel is also implemented as
an extensible set of mapping processing functions. Model composition frameworks are then built by extending
the language and the kernel according to specific composition purposes.

As mentioned above, we intend to apply the ModMap approach to the development of the Simulink and
AADL model composition framework. To this end, we need to extend the ModMap mapping language to
obtain an other one that allows system designers to align elements between Simulink and AADL models
regarding the purpose of co-simulation in Signal. Then, a transformation, namely ModMap-to-Signal, needs
to be implemented by extending the ModMap kernel. This transformation uses mappings provided by system
designers as inputs to generate Signal interfaces. The three transformations (i.e., Simulink-to-Signal, AADL-
to-Signal, and ModMap-to-Signal) form the new model composition framework. Comprared to the previous
one, this framework will more automated. On the other hand, existing transformations will also be reused.

5.9. From affine-related dataflow models to Safety-critical Java
Participants: Adnan Bouakaz, Jean-Pierre Talpin, Jan Vitek.

The objective of this work is to investigate a dataflow concurrency model in order to help specifying, analyzing,
and synthesizing functionally deterministic and schedulable SCJ applications. Indeed, the SCJ shared-memory
concurrency model makes proving functional determinism and schedulability of applications quite hard if not
impossible.

The new model is called the firing related dataflow (FRDF) model in which actors are connected to each
other by means of bounded channels. The operational semantics of this model is based on the notion of firing
relations. Each actor is associated with a firing clock (an infinite set of activation ticks). The proportionality of
the rates of two clocks is expressed by a firing relation. A special and enough expressive case of firing relations
is the class of affine relations. Some results about the canonical form of affine relations are already developed
by the ESPRESSO team.

Project-Team ESPRESSO 17

Our first study was about synthesizing affine relations between firing clocks in such a way that overflow and
underflow exceptions cannot occur during execution. This synthesis is conducted by minimizing the overall
of buffer sizes. It is proven that the operational semantics of the dataflow graph based on the computed affine
relations is equivalent to the Kahn semantics. This implies that functional determinism is guaranteed.

The previous analysis step (called affine relations synthesis) aims to produce an abstract schedule of the
dataflow graph. The computed schedule is abstract in the sense that it is independent from the implementation
code of actors and from the target machine. Executing the graph on a mono-processor system using EDF
scheduling algorithm is investigated in our study. We synthesize the timing characteristics of each actor (i.e.
its period and phase) in such a way the set of tasks is schedulable. In this timing synthesis, we use the worst-
case execution times computed from the Java implementation code of actors.

Our objective is to automatically generate a SCJ application from a dataflow specification. Currently, we work
on increasing the expressivity of the underlying dataflow model together with providing the necessary analysis
tool for generating deterministic and schedulable SCJ code.

5.10. Translation validation of Polychronous Equations with an iLTS
Model-checker
Participants: Van-Chan Ngo, Jean-Pierre Talpin, Loïc Besnard.

Synchronous languages such as SIGNAL have been introduced and used successfully for the design and
implementation of embedded and critical real-time systems. They rely on the fact that programs are modeled
as data-flow equations or finite state machines that allow formal reasoning on designs. In consequence of that,
a full toolset of synchronous languages provides formal transformation, automatic code generation, formal
verification...

In general, the synchronous language’s compiler takes several translations from the source program before
generating the target code (e.g. C/C++ or Java code), thus we present an approach to verify these translations
of synchronous language compiler. Our approach adopts the translation validation notion [49]. The idea of
translation validation is the following: rather than proving in advance that the compiler always produces
correct translations, each individual translation (e.g. every run of the compiler) is followed by a validation
phase which verifies that the final output of this run correctly implements the input source program. This
method avoids the drawback of freezing the potential improvements and/or developments of the compiler of
the traditional compiler verification. For every small change in the compiler, the verification must be redoing
the proof, that is an extremely complex task.

The validation phase is made automated which consists of: (i) Represent both the input source and output
target SIGNAL programs as Polynomial Dynamical Systems - PDSs. (ii) Propose a refinement relation for
the PDS models of the source and target programs. (iii) Use a syntactic simulation-based proof method which
automatically verifies the refinement. This automated proof is done by extending the functionality of the model
checker SIGALI in the Polychrony toolset

5.11. PDSs for translation validation: from SIGNAL to C
Participants: Van-Chan Ngo, Jean-Pierre Talpin, Loïc Besnard.

Synchronous programming languages provide a formal and abstract model of concurrency to facilitate the
implementation of concurrent embedded software by automating the most complex tasks of verification,
validation and code generation. They also guarantee the reliability of the design/implementation of concurrent
embedded software by providing either the proof of compiler’s correction or the validation of each run of
the compiler. Adopting the translation validation approach [49], we provide an automatic process to formally
verify the code C generation task of the SIGNAL’s compiler.

The verification framework will take the SIGNAL program and the generated C code program as the input
and proves whether the generated C code correctly implements the SIGNAL program. It also allows to
automatically generate the refinement and counterexamples of the generated C code.

18 Activity Report INRIA 2011

Polynomial dynamical system - PDS is used as a common semantic framework to model the behavior of
both the SIGNAL program and its generated C code. First, the generated C code is translated into the target
SIGNAL program [34] thanks to the intermediate SSA forms. An appropriate relation called refinement for
PDSs is proposed to represent the correct implementation relation between the SIGNAL program and its
generated C code. The generated code C correctly implements the SIGNAL program if and only if there is a
refinement for their PDSs and we say that the generated C code’s PDS refines the SIGNAL program’s PDS.
A proof method which allows to generate the refinement or counterexamples, and then proposes a refining
process for the generated C code.

5.12. Synchronous symbolic translation systems for translation validation
Participants: Van-Chan Ngo, Jean-Pierre Talpin.

We propose a framework for verification of the correct implementation of the SIGNAL compiler’s generation
code task. In order to present the formal semantics of SIGNAL and generated code programs we introduce
synchronous symbolic transition system (SSTS) which is the computational model of our formal verification
approach. We denote DV =

∏
i∈[1,n]

Dvi as the domain of a set of variables V = (v1, ..., vn). A set of states

P ⊂ DV is defined as a predicate over the set of variables V such that the predicate is held in P . An assignment
A is a function A : DV 7→ DV that the values of the variable set V. A SSTS is a tuple L = (V,Θ,Γ,E) where:

• V = (v1, ..., vn) is a set of variables,

• Θ ⊆ DV is a predicate on V defining the initial condition on the variable set,

• Γ is a finite set of symbolic transitions γ = (Pγ , Aγ) where:

– Pγ ⊆ DV is a predicate on V, which guards γ

– Aγ : DV → DV is the assignment function of γ

• E ⊆ V is a set of externally observable variables.

The generated code correctly implements the SIGNAL program if and only if there is a refinement for their
SSTSs and we say that the generated code’s SSTS refines the SIGNAL program’s SSTS. This framework also
works with SIGNAL programs which is considered as infinite state systems. To obtain the verification results,
we apply abstraction interpretation techniques [39] which provide over-approximations of the refinement
relation between the input SIGNAL program’s model and the output generated code’s model.

5.13. An integrated environment for Esterel/Quartz and Polychrony/Signal
Participants: Jens Brandt, Ke Sun, Jean-Pierre Talpin.

The design of modern embedded software architectures relies on models and programs built and reused
from engineering teams with specific skills and know-how. Each of these skills and backgrounds correspond
to specific tools and processes that help implement the viewpoint under consideration with mathematically
grounded foundations.

It is not uncommon, for instance, that the design of the only functional views of a system may require the
use of tools as heterogeneous and exotic as Catia, Scade, Matlab or Rhapsody. The same holds for design
objectives that may range from that of mapping the functional design on specific hardware architectures to
that of virtual prototyping for simulation or performance or energy usage evaluation.

Co-modeling itself encompasses the variety of engineering activities that cross the border between the
functional and physical views of system design. It is typically the system architects, who will put together
functional components and explore different metrics for an effective and efficient mapping on target systems.

Project-Team ESPRESSO 19

We wish to further and scale the framework and experiments developed within the CESAR and OPEES
projects in that respect, by thinking a new, domain-specific language, built from synchronous modules de-
signed with Quartz, an imperative synchronous programming language, and connected by data-flow networks
described in Signal, the polychronous data-flow language at the core of Polychrony. The combination of view-
points or paradigms offered by these two design environments provides powerful abstractions and easy to use
concepts in order to address two design challenges of utmost importance:

• To provide a natural and dependable specification of elementary synchronous functionalities, most
of them algorithmic and control-intensive, in the imperative framework offered by Quartz.

• To synthesize the scheduling of computations and communications among these functionalities
starting from the multi-clocked synchronous abstractions offered by the Signal data-flow language.

The remaining long-term goal will then be homogenize this programming framework by further extending
it with the capability to control polychromous networks, seen as modes of execution, with a Quartz module,
which would control mode changes.

5.14. Quality assessment and qualification of Polychrony on the open-source
Polarsys IWG platform
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

Since the open-source release of Polychrony and in the context of the ITEA2 OPEES project, we are
collaborating with CS to the integration of Polychrony on the Polarsys platform. This integration proceeds
according to guidelines and requirements under definition within the OPEES project and aims first, at putting
them to the test. The qualification process of Polychrony in Polarsys consists of checking the maturity level of
its implementation and documentation (a standard software engineering assessment) but is also concerned
with its capabilities to be composed, inter-operated and mapped with other components on the platform
to form a application-specific design toolchain, by using model-driven engineering technologies for model
transformation and orchestration. The last phase of this assessment is with regards to its qualifiability, as a
simulation tool, as a verification tool, as a code generation tools, which needs to adhere standards such as
these defined the in DO178 documents. In parallel, the quality assessment of Polychrony is complemented
with a case study, of the APOTA network protocol, whose aim is to document, as a tutorial, the use and
added-value of the toolset for its future users on the Polarsys platform.

6. Contracts and Grants with Industry

6.1. Artemisia project CESAR
Participants: Huafeng Yu, An Phung-Khac, Yue Ma, Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

In the context of CESAR, we have participated to the sub-project 3 demonstrator in order to demonstrate the
usability of Polychrony as a co-simulation tool within the reference technology platform of the project, to
which its open-source release has been integrated. The case-study, implemented in collaborateion with Airbus
and IRIT, consists of co-modeling the doors management system of an Airbus A350 by merging its architecture
description, specified with AADL, with its behavioral description, specified with Simulink.

In this case-study, we demonstrate that the Polychrony toolset can effectively serve as a modeling infrastructure
to compositionally assemble, compile and verify heterogeneous specifications (AADL and Simulink). Our
case study will cover code generation for real-time simulation and test as well as formal verification both
at system-level and in a GALS framework. Based on that case study, we aim at developing further modular
code-generation services, real-time simulation, test and performance evaluation, formal verification as well as
the validation of the generated concurrent and distributed code.

20 Activity Report INRIA 2011

6.2. ITEA2 project OPEES
Participants: Thierry Gautier, Yue Ma, Jean-Pierre Talpin.

The ITEA2 project OPEES is the continuation of the ANR project OPENEMBEDD to provide an open-
source platform for embedded software design. Its outcome will outlive the duration of the project as it is in
the process of becoming an Industrial Working Group of the Eclipse consortium, Polarsys, whose goal will be
to host and maintain the proposed open-source platform and guarantee its long-term availability.

The mission of Opees is to build a community able to ensure durability of innovative engineering technologies
in the domain of critical software-intensive embedded systems. Its main objectives are to secure the industrial
strategy, improve their competitiveness and develop the European software industry.

Our goal in the OPEES project is to deliver the Polychrony toolset on the Polarsys platform as an infrastructure
for the co-simulation and co-verification of embedded architectures. To this end, Polychrony is currently under
a quality assessment performed in collaboration with CS.

6.3. ANR project VERISYNC
Participants: Loïc Besnard, Chan Ngo, Jean-Pierre Talpin.

The Verisync project aims at improving the safety and reliability assessment of code produced for embedded
software using synchronous programming environments developed under the paradigm of Model Driven
Engineering. This is achieved by formally proving the correctness of essential transformations that a source
model undergoes during its compilation into executable code.

Our contribution to Verisync consists of revisiting the seminal work of Pnueli et al. on translation validation
and equip the Polychrony environment with updated verification techniques to scale it to possibly large,
sequential or distributed, C programs generated from the Signal compiler. Our study covers the definition of
simulation and bisimulation equivalence relations capable of assessing the correspondence between a source
Signal specification and the sequential or concurrent code generated from it, as well as both specific abstract
model-checking techniques allowing to accelerate verification and counter-example search techniques, to filter
spurious verification failures obtained from excessive abstracted exploration.

6.4. FUI project P
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Christophe Junke, Jean-Pierre Talpin.

The aim of project P is 1/ to aid industrials to deploy model-driven engineering technology for the development
of safety-critical embedded applications 2/ to contribute on initiatives such as OPEES and CESAR to develop
support for tools inter-operability and 3/ provide state-of-the-art automated code generation techniques from
multiple, heterogeneous, system-levels models. The focus of project P is the development of a code generation
toolchain starting from domain-specific modeling languages for embedded software design and to deliver the
outcome of this development as an open-source distribution, in the aim of gaining an impact similar to GCC for
general-purpose programming, as well as a kit to aid with the qualification of that code generation toolchain.

The contribution of team ESPRESSO in project P is to bring the necessary open-source technology of the
Polychrony environment to allow for the synthesis of symbolic schedulers for software architectures modeled
with P in a manner ensuring global asynchronous deterministic execution.

7. Partnerships and Cooperations

7.1. National Actions
Participants: Jean-Pierre Talpin, Thierry Gautier, Paul Le Guernic.

Project-Team ESPRESSO 21

7.1.1. ONERA/Thales TORRENTS working group
Team Espresso participates to the TORRENTS working group since its inaugural seminar in 2010. TOR-
RENTS is a federates the activities related to time-oriented embedded systems being primarily carried out in
research labs in Toulouse. It is supported by the RTRA STAE foundation. TORRENTS aims at proposing a
methodology for time-based design of embedded aerospace real-time systems.

http://www.irit.fr/torrents

7.2. European Actions
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin, Eric Vecchie.

7.2.1. Network of excellence ARTIST2
The Espresso project-team participates to the Artist2 network of excellence. Detailed presentations on the aim
and scope of the network can be found in the book [1] and the website http://www.artist-embedded.org/FP6 of
the project. In particular, we have contributed to a survey of real-time programming languages edited by Alan
Burns [42].

7.3. International collaborations
Participants: Loïc Besnard, Adnan Bouakaz, Thierry Gautier, Paul Le Guernic, Sun Ke, Jean-Pierre Talpin.

7.3.1. INRIA associate project POLYCORE
In the frame of three consecutive joint NSF-INRIA and INRIA associated project programs, together with
additional funds from INRIA scientific direction, INRIA-Rennes, the University of Rennes, the ARTIST
NoE, we have established a long-lasting and scientifically fruitful collaboration with the Fermat Laboratory
at Virginia Tech (Pr. Sandeep Shukla) and UC San Diego (Pr. Rajesh Gupta). The collaboration started in
2002 and was prolonged until 2009 with the one-year sabbatical of Sandeep Shukla as invited professor.
This collaboration resulted in the joint publication of 10 scientific books and series volumes as well as
22 international journal and conference articles. In the frame of this collaboration, we jointly created the
ACM-IEEE MEMOCODE (http://www.memocode-conference.com) international symposium series as well
as the FMGALS international workshop series. Finally, we jointly organized four tutorials. This series of
collaborations resulted in a technology transfer of the Polychrony toolset with the launch of the project
CodeSyn at Virginia Tech, funded by the US Air Force Research Laboratories (AFRL), and now employs
one of our former post-doctorates, Julien Ouy.

Our collaboration is now been renewed in the frame of the 2011 INRIA Associate Project POLYCORE and
extended to a key additional partner, the Embedded System Group of Pr. Klaus Schneider at TU Kaiserslautern.

Our joint project starts from an observation that can be shared with anyone how experienced with multi-
threaded programming, to acknowledge the difficulty of designing and implementing such software. Re-
solving concurrency, synchronization, and coordination issues, and tackling the non-determinism germane
in multi-threaded software is extremely difficult. Ensuring correctness with respect to the specification and
deterministic behavior is however necessary for safe execution of such code on embedded architectures. It is
therefore desirable to synthesize multi-threaded code from formal specifications using a provably ‘correct-by-
construction’ approach.

In Europe, it has been widely claimed that the embedded software for ’fly-by-wire’ was mostly automatically
generated using tools based on the synchronous programming models. Unfortunately, software generated
in those contexts usually operate in a time-triggered execution model. Such models are simple but way
less efficient than multi-threaded software when run on multi-core processors, just because of the periodic
synchronization overhead.

http://www.irit.fr/torrents
http://www.artist-embedded.org/FP6
http://www.memocode-conference.com

22 Activity Report INRIA 2011

While time-triggered programming model simplifies code generation, our shared intuition is that multi-
rate event driven execution models are much more efficiently adapted to tackle embedded software design
challenges posed by forthcoming heterogeneous multi-core embedded architectures. To this aim, we plan to
develop formal models, methods, algorithms and techniques for generating provably correct multi-threaded
reactive real-time embedded software for mission-critical applications. For scalable modeling of larger
embedded software systems, the specification formalism has to be compositional and hierarchical.

Our proposed formalism entails a model of computation (MoC) based on a multi-rate synchronous data-flow
paradigm: Polychrony. It aims at combining the capabilities of Esterel/Quartz (ESG/TUKL) for correctly pro-
gramming synchronous modules, with the capabilities of Polychrony (INRIA), to give high-level abstractions
of complex multi-clocked networks and yet provide powerful communication and scheduling code synthesis,
all combined in an application-specific modeling and programming environment, design in collaboration with
Virginia Tech and the AFRL (whom we submitted the white-paper of a project proposal for funding in 2012).

8. Dissemination

8.1. Invited Lectures
Jean-Pierre Talpin gave a one day lecture at the 2011 SIAT International Summer School on Embedded
Systems (ISSES’11) on "polychronous systems modeling and automated code generation". Jean-Pierre Talpin
gave an invited talk at the Ecole d’été temps-réel 2011 (ETR’11) on "System-level co-simulation of embedded
software architectures in a polychronous moel of computation".

8.2. Visits
Pr. Kai Hu (Beihang University, Beijing) visited ESPRESSO in summer 2011 with the support of the
University of Rennes 1.

In the context of the associate project Polycore, Jens Brandt (TU Kaiserslautern) visited ESPRESSO in June to
share code generation techniques in Quartz and Signal. Loïc Besnard visited Virginia Tech in June to present
the open-source release of Polychrony and explore possibles uses of Polychrony in the MRCDIF environment
developed at the FLVT. Jean-Pierre Talpin visited Virginia Tech in May and October to prepare our work on
Quartz and Signal and jointly draft a project proposal for the USAFRL.

8.3. Conferences
Jean-Pierre Talpin is a member of the steering committee of the ACM-IEEE conference on methods and
models for co-design (MEMOCODE) and of the editorial board of the EURASIP Journal on Embedded
Systems. He served as technical program committee member for the following conferences

• HLDVT’11 http://www.hldvt.com/11

• SAC’11 http://www.acm.org/conferences/sac/sac2011

• SIES’11 http://www.mrtc.mdh.se/sies2011

Thierry Gautier served as technical program committee member for the conference MEMOCODE’11
http://research.microsoft.com/en-us/um/cambridge/events/memocode2011 and ESLSYN’11 http://www.ecsi.
org/eslsyn.

http://www.hldvt.com/11
http://www.acm.org/conferences/sac/sac2011
http://www.mrtc.mdh.se/sies2011
http://research.microsoft.com/en-us/um/cambridge/events/memocode2011
http://www.ecsi.org/eslsyn
http://www.ecsi.org/eslsyn

Project-Team ESPRESSO 23

8.4. Teaching
• Thierry Gautier taught on formal methods for component and system synthesis at the Master 2

Graduate program of the University of Rennes 1.

9. Bibliography
Major publications by the team in recent years

[1] B. BOUYSSOUNOUSE, J. SIFAKIS (editors). Embedded Systems Design. The ARTIST Roadmap for Research
and Development, Springer, Lecture Notes in Computer Science, Vol. 3436, 2005, Thierry Gautier, contribu-
tor.

[2] A. GAMATIÉ (editor). Designing Embedded Systems with the SIGNAL Programming Language, Springer, 2009,
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4.

[3] T. P. AMAGBEGNON, L. BESNARD, P. LE GUERNIC. Implementation of the Data-flow Synchronous Language
Signal, in "Proceedings of the ACM Symposium on Programming Languages Design and Implementation
(PLDI’95)", ACM, 1995, p. 163–173.

[4] A. BENVENISTE, B. CAILLAUD, P. LE GUERNIC. From synchrony to asynchrony, in "CONCUR’99, Con-
currency Theory, 10th International Conference", J. C. M. BAETEN, S. MAUW (editors), Lecture Notes in
Computer Science, Springer, August 1999, vol. 1664, p. 162–177.

[5] A. BENVENISTE, P. CASPI, S. EDWARDS, N. HALBWACHS, P. LE GUERNIC, R. DE SIMONE. The
Synchronous Languages Twelve Years Later, in "Proceedings of the IEEE Special issue on Modeling and
Design of Embedded Systems", 2003, vol. 91(1).

[6] A. BENVENISTE, P. LE GUERNIC, C. JACQUEMOT. Synchronous programming with events and relations: the
Signal language and its semantics, in "Science of Computer Programming", 1991, vol. 16, p. 103-149.

[7] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Embedded Real-Time
Applications, in "ACM Transactions on Software Engineering and Methodology (TOSEM)", 2007.

[8] T. GAUTIER, P. LE GUERNIC. Code generation in the SACRES project, in "Towards System Safety, Pro-
ceedings of the Safety-critical Systems Symposium, SSS’99", Huntingdon, UK, F. REDMILL, T. ANDERSON
(editors), Springer, February 1999, p. 127–149.

[9] P. LE GUERNIC, T. GAUTIER. Data-Flow to von Neumann: the Signal approach, in "Advanced Topics in
Data-Flow Computing", J. L. GAUDIOT, L. BIC (editors), 1991, p. 413–438.

[10] P. LE GUERNIC, T. GAUTIER, M. LE BORGNE, C. LE MAIRE. Programming Real-Time Applications with
Signal, in "Proceedings of the IEEE", Septembre 1991, vol. 79, no 9, p. 1321–1336.

[11] P. LE GUERNIC, J.-P. TALPIN, J.-C. LE LANN. Polychrony for system design, in "Journal of Circuits, Systems
and Computers, Special Issue on Application Specific Hardware Design", 2003.

http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4

24 Activity Report INRIA 2011

[12] H. MARCHAND, P. BOURNAI, M. LE BORGNE, P. LE GUERNIC. Synthesis of Discrete-Event Controllers
based on the Signal Environment, in "Discrete Event Dynamic System: Theory and Applications", October
2000, vol. 10, no 4, p. 347–368.

[13] J.-P. TALPIN, J. OUY, T. GAUTIER, L. BESNARD, P. LE GUERNIC. Compositional design of isochronous
systems, in "Science of Computer Programming", 2010.

Publications of the year
Articles in International Peer-Reviewed Journal

[14] Y. MA, T. GAUTIER, J.-P. TALPIN, P. LE GUERNIC, H. YU. Modélisation compositionnelle d’architectures
GALS dans un modèle de calcul polychrone, in "Journal Européen des Systèmes Automatisés", November
2011, http://hal.inria.fr/hal-00639589/en/.

[15] D. POTOP-BUTUCARU, Y. SOREL, R. DE SIMONE, L. BESNARD, J.-P. TALPIN. From concurrent multi-
clock programs to concurrent multi-threaded implementations, in "Fundamenta Informaticae", 2011.

International Conferences with Proceedings

[16] A. BOUAKAZ, I. PUAUT, E. ROHOU. Predictable Binary Code Cache: A First Step Towards Reconciling
Predictability and Just-In-Time Compilation, in "The 17th IEEE Real-Time and Embedded Technology
and Applications Symposium", Chicago, United States, Marco Caccamo, April 2011, http://hal.inria.fr/inria-
00589690/en.

[17] J. BRANDT, M. GEMUNDE, K. SCHNEIDER, S. SHUKLA, J.-P. TALPIN. Integrating System Descriptions by
Clocked Guarded Actions, in "Forum on Design Languages", September 2011.

[18] Y. MA, H. YU, T. GAUTIER, J.-P. TALPIN, L. BESNARD, P. LE GUERNIC. System Synthesis from AADL
using Polychrony, in "Electronic System Level Synthesis Conference", June 2011, http://hal.inria.fr/inria-
00594943/PDF/eslsyn11-ma.pdf.

[19] V. PAPAILIOPOULOU, D. POTOP-BUTUCARU, Y. SOREL, R. DE SIMONE, L. BESNARD, J.-P. TALPIN.
From concurrent multi-clock programs to concurrent multi-threaded implementations, in "Electronic Sys-
tem Level Synthesis Conference", San Diego, California, United States, June 2011, http://hal.inria.fr/inria-
00578585/en.

[20] Z. YANG, J.-P. BODEVEIX, L. PI, D. MA, J.-P. TALPIN. Two formal semantics for a subset of the AADL,
in "UML&AADL workshop at the IEEE International Conference on Engineering of Complex Computer
Systems", 2011.

[21] H. YU, Y. MA, Y. GLOUCHE, J.-P. TALPIN, L. BESNARD, T. GAUTIER, P. LE GUERNIC, A. TOOM, O.
LAURENT. System-level Co-simulation of Integrated Avionics Using Polychrony, in "ACM Symposium On
Applied Computing", TaiChung, Taiwan, Province Of China, March 2011, http://hal.inria.fr/inria-00536907/
en.

[22] H. YU, J.-P. TALPIN, L. BESNARD, T. GAUTIER, H. MARCHAND, P. LE GUERNIC. Polychronous Con-
troller Synthesis from MARTE CCSL Timing Specifications, in "ACM/IEEE Ninth International Conference
on Formal Methods and Models for Codesign (MEMOCODE)", Cambridge, United Kingdom, July 2011,
http://hal.inria.fr/inria-00594942/en.

http://hal.inria.fr/hal-00639589/en/
http://hal.inria.fr/inria-00589690/en
http://hal.inria.fr/inria-00589690/en
http://hal.inria.fr/inria-00594943/PDF/eslsyn11-ma.pdf
http://hal.inria.fr/inria-00594943/PDF/eslsyn11-ma.pdf
http://hal.inria.fr/inria-00578585/en
http://hal.inria.fr/inria-00578585/en
http://hal.inria.fr/inria-00536907/en
http://hal.inria.fr/inria-00536907/en
http://hal.inria.fr/inria-00594942/en

Project-Team ESPRESSO 25

Research Reports

[23] V. PAPAILIOPOULOU, D. POTOP-BUTUCARU, Y. SOREL, R. DE SIMONE, L. BESNARD, J.-P. TALPIN.
From concurrent multi-clock programs to concurrent multi-threaded implementations, INRIA, March 2011,
no RR-7577, http://hal.inria.fr/inria-00578585/en.

References in notes

[24] IEEE Standard for Verilog Hardware Description Language (VHDL), 2006, IEEE Std. 1364 - 2005.

[25] ModelBus, http://www.modelbus.org.

[26] OpenEmbeDD website, 2009, http://openembedd.org.

[27] Polychrony Update Site for Eclipse plug-ins, 2009, http://www.irisa.fr/espresso/Polychrony/update/.

[28] TopCased website, 2009, http://www.topcased.org.

[29] AIRLINES ELECTRONIC ENGINEERING COMMITTEE. ARINC Report 651-1: Design Guidance for Integrated
Modular Avionics, Aeronautical radio, Inc., Annapolis, Maryland, 1997.

[30] AIRLINES ELECTRONIC ENGINEERING COMMITTEE. ARINC Specification 653: Avionics Application
Software Standard Interface, Aeronautical radio, Inc., Annapolis, Maryland, 1997.

[31] R. ALUR, T. DANG, J. ESPOSITO, Y. HUR, F. IVANCIC, V. KUMAR, I. LEE, P. MISHRA, G. PAPPAS, O.
SOKOLSKY. Hierarchical modeling and analysis of embedded systems, in "Proc. IEEE", 2003, vol. 91, no 1,
p. 11–28.

[32] C. ANDRÉ, F. MALLET, R. DE SIMONE. Modeling Time(s), in "ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS/UML’07)", TN, USA, LNCS 4735, Springer, October 2007,
p. 559–573.

[33] A. BENVENISTE, P. CASPI, L. CARLONI, A. SANGIOVANNI-VINCENTELLI. Heterogeneous Reactive
Systems Modeling and Correct-by-Construction Deployment, in "Embedded Software Conference (EM-
SOFT’03)", Springer Verlag, 2003.

[34] L. BESNARD, T. GAUTIER, M. MOY, J.-P. TALPIN, K. JOHNSON, F. MARANINCHI. Automatic translation
of C/C++ parallel code into synchronous formalism using an SSA intermediate form, in "In Proceedings of
the 9th Workshop on Automated Verification of Critical Systems", 2009.

[35] L. BESNARD, T. GAUTIER, P. LE GUERNIC. SIGNAL V4-INRIA version: Reference Manual, 2009, http://
www.irisa.fr/espresso/Polychrony.

[36] J. BUCK, S. HA, E. A. LEE, D. G. MESSERSCHMITT. Ptolemy: A Framework for Simulating and Prototyping
Heterogenous Systems, in "Int. Journal in Computer Simulation", 1994, vol. 4, no 2, p. 155-182.

http://hal.inria.fr/inria-00578585/en
http://www.modelbus.org
http://openembedd.org
http://www.irisa.fr/espresso/Polychrony/update/
http://www.topcased.org
http://www.irisa.fr/espresso/Polychrony
http://www.irisa.fr/espresso/Polychrony

26 Activity Report INRIA 2011

[37] M. CLAVREUL, O. BARAIS, J.-M. JÉZÉQUEL. Integrating legacy systems with MDE, in "Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 2", New York, NY, USA, ICSE
’10, ACM, 2010, p. 69–78, http://doi.acm.org/10.1145/1810295.1810306.

[38] J.-L. COLACO, B. PAGANO, M. POUZET. A conservative extension of synchronous data-flow with state
machines, in "In Embedded Software Conference.", ACM Press, 2005.

[39] P. COUSOT, R. COUSOT. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in "In POPL’77", 1977, p. 238-252.

[40] J. EKER, J. JANNECK, E. LEE, J. LIU, J. LUDWIG, S. NEUENDORFFER, S. SACHS, Y. XIONG. Taming
Heterogeneity: the Ptolemy Approach, in "Proc. IEEE", 2003, vol. 91, no 1, p. 127–144.

[41] ESTEREL TECHNOLOGIES. SCADE Suite, http://www.esterel-technologies.com/products/scade-suite/.

[42] T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Real-Time Applications with SIGNAL,
in "ARTIST Survey of Programming Languages", A. BURNS (editor), 2008, http://www.artist-embedded.org/
artist/ARTIST-Survey-of-Programming.html.

[43] INRIA AOSTE TEAM. Syndex, http://www-rocq.inria.fr/syndex/.

[44] INRIA AOSTE TEAM. TimeSquare, http://www-sop.inria.fr/aoste/dev/time_square.

[45] O. MALER, A. PNUELI, J. SIFAKIS. On the Synthesis of Discrete Controllers for timed Systems, in
"Proceedings STACS’95", Lecture Notes in Computer Science, 1995, vol. 900, p. 229–242.

[46] H. MARCHAND, P. BOURNAI, M. LE BORGNE, P. LE GUERNIC. Synthesis of Discrete-Event Controllers
based on the Signal Environment, in "Discrete Event Dynamic System: Theory and Applications", October
2000, vol. 10, no 4, p. 325–346.

[47] D. MATHAIKUTTY, H. PATEL, S. SHUKLA, A. JANTSCH. SML-Sys: a functional framework with multiple
models of computation for modeling heterogeneous system, in "Design Automation for Embedded Systems",
2008, vol. 12, p. 1–30.

[48] OBJECT MANAGEMENT GROUP (OMG). Modeling and Analysis of Real-time and Embedded systems
(MARTE), v1.0, November 2009, Document number: formal/2009-11-02, http://www.omg.org/spec/MARTE/
1.0/PDF/.

[49] A. PNUELI, M. SIEGEL, E. SINGERMAN. Translation validation, in "In Proceedings of TACAS’98", 1998,
p. 151-166.

[50] P. J. RAMADGE, W. M. WONHAM. The Control of Discrete Event Systems, in "Proceedings of the IEEE,
Special issue on Dynamics of Discrete Event Systems", 1989, vol. 77, no 1, p. 81–98.

[51] É. RUTTEN, F. MARTINEZ. Signal GTI: implementing task preemption and time intervals in the synchronous
data flow language Signal, in "Proceedings of the 7th Euromicro Workshop on Real-Time Systems, Odense,
Denmark", IEEE Publ., june 1995.

http://doi.acm.org/10.1145/1810295.1810306
http://www.esterel-technologies.com/products/scade-suite/
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming.html
http://www.artist-embedded.org/artist/ARTIST-Survey-of-Programming.html
http://www-rocq.inria.fr/syndex/
http://www-sop.inria.fr/aoste/dev/time_square
http://www.omg.org/spec/MARTE/1.0/PDF/
http://www.omg.org/spec/MARTE/1.0/PDF/

Project-Team ESPRESSO 27

[52] SOCIETY OF AUTOMOTIVE ENGINEERS (SAE). Architecture Analysis Design Language (AADL,
SAE standard ASS5506), http://www.sae.org.

[53] J.-P. TALPIN, C. BRUNETTE, T. GAUTIER, A. GAMATIÉ. Polychronous mode automata, in "Embedded
Software Conference", ACM Press, September 2006.

[54] THE MATHWORKS. Simulink, http://www.mathworks.com/products/simulink/.

[55] A. TOOM, T. NAKS, M. PANTEL, M. GANDRIAU, I. WATI. Gene-Auto: An Automatic Code Generator for a
Safe Subset of SimuLink/StateFlow and Scicos, in "European Conference on Embedded Real-Time Software
(ERTS’08)", 2008.

http://www.sae.org
http://www.mathworks.com/products/simulink/

