
Activity Report 2011

Team FORMES

FORmal Methods for Embedded Systems

RESEARCH CENTER
Paris - Rocquencourt

THEME
Programs, Verification and Proofs

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Scientific Foundations .3

3.1. Historical context 3
3.2. Simulation 3
3.3. Formal proofs 5
3.4. Verification 6
3.5. Decision Procedures 8
3.6. Trustworthy software 9

4. Application Domains .9
5. Software . 9

5.1. aCiNO 9
5.2. CoLoR and Rainbow 9
5.3. EDOLA 10
5.4. Moca 10
5.5. SimSoC 11
5.6. SimSoC-Cert 11

6. New Results . 12
6.1. Simulation 12

6.1.1. Simulation of vector architecture 12
6.1.2. Native translation using LLVM 12
6.1.3. Trace Analysis 12
6.1.4. Generation of simulators from vendor specification 13
6.1.5. First steps towards the certification of an ARM simulator 13

6.2. Type and rewriting theory 13
6.2.1. A type theory for Coq 13
6.2.2. Confluence by decreasing diagrams 14
6.2.3. Confluence of normal rewriting 14
6.2.4. Argument filterings and usable rules in higher-order rewrite systems 14

6.3. Decision procedures 15
6.3.1. A certificate framework for DPLL(T) 15
6.3.2. Automated verification of termination certificates 15
6.3.3. Proving computational geometry algorithms in TLA+2 15

6.4. Compositional verification 15
6.4.1. BDD-based assume-guarantee reasoning through implicit learning 15
6.4.2. Predicate generation for learning-based loop invariant inference 16
6.4.3. Thread-modular model checking with iterative refinement 16

6.5. Specification and verification of TLA+ and PLC systems 16
6.5.1. Formal semantics of PLC programming languages 16
6.5.2. Formalization and verification of PLCs 16
6.5.3. Synthesis of PLC programs 17
6.5.4. Domain-driven probabilistic analysis of PLCs 17
6.5.5. Edola: a domain modeling and verification language for PLCs 17

6.6. Distributed algorithms 17
7. Contracts and Grants with Industry . 18

7.1. Schneider Electric 18
7.2. Orange IT Labs 18

8. Partnerships and Cooperations . 18
8.1. National Initiatives 18

2 Activity Report INRIA 2011

8.2. International Initiatives 18
8.2.1. Visits of International Scientists 18

8.2.1.1. Long-term visitors 18
8.2.1.2. Short-term visitors 19

8.2.2. Participation In International Programs 19
9. Dissemination . 20

9.1. Animation of the scientific community 20
9.2. Teaching 20

10. Bibliography .20

Team FORMES

Keywords: Interactive Theorem Proving, Formal Methods, Safety

FORMES 1 is one of the projects of the LIAMA consortium2. It is funded by CNRS, INRIA and Tsinghua
University3, and located at Tsinghua University, Beijing, China. It was created on September 2008 by
extending with formal methods Vania Joloboff’s DeviceWare project on system-on-chip simulation started
in 2007.

1. Members
Research Scientists

Frédéric Blanqui [CR1 INRIA]
Ming Gu [Tsinghua professor, HdR]
Fei He [Tsinghua assistant professor]
Vania Joloboff [DR INRIA]
Jean-Pierre Jouannaud [DR INRIA and Tsinghua software chair, team leader, HdR]
Jean-François Monin [DR CNRS, HdR]

PhD Students
Hui Kong [Tsinghua]
Jiaxiang Liu [Tsinghua since September 1]
Kim-Quyen Ly [UJF Grenoble]
Xiaomu Shi [UJF Grenoble]
Hai Wan [Tsinghua until January 31]
Qian Wang [Tsinghua and École Polytechnique]
Rui Wang [Tsinghua]
Liangze Yin [Tsinghua]
Lianyi Zhang [Tsinghua]
Min Zhou [Tsinghua]
Litian Xiao [Tsinghua]

Post-Doctoral Fellows
Jianqi Li [Tsinghua]
Guillaume Merle [INRIA]
Hai Wan [Tsinghua since February 1]
Sidi Ould Biha [INRIA until July 31]
Hehua Zhang [Tsinghua]

Visiting Scientist
Bow-Yaw Wang [INRIA visiting professor and Tsinghua invited professor until July 31]

Administrative Assistants
Lin Cui [Tsinghua, part time]
Mei Zhang [LIAMA, part time]

Others
Meixian Chen [Master Shanghai Jiaotong]
Xiaowei Gao [Master Tsinghua]
Sen Guo [Master Guangxi until February 28]
Yu Jiang [Master Tsinghua]
William Kilque [Master CPE Lyon until September 4]

1http://formes.asia
2http://liama.ia.ac.cn
3http://www.tsinghua.edu.cn

http://formes.asia
http://liama.ia.ac.cn
http://www.tsinghua.edu.cn

2 Activity Report INRIA 2011

Jiaxiang Liu [Master Tsinghua until August 31]
Mengqi Liu [Master Tsinghua since September 1]
Shengpeng Liu [Master Tsinghua since September 1]
Wenrui Meng [Master Tsinghua]
Lifan Su [Master Tsinghua since September 1]
Xia Wu [Master Tsinghua since September 1]
Huiying Luo [Master Tsinghua until June 30]
Peng Shan [Master Guangxi until February 28]
Frédéric Tuong [Master Paris 7 until October 10]
Shenpeng Wang [Master Tsinghua]
Yuhui Wang [Master Tsinghua until July 31]
Yang Yu [Master Guangxi]
Xuke Zhang [Master Tsinghua]
Zuyu Zhang [Master Harbin]
Xinlei Zhou [Master Beihang]
Lei Zhu [Master Tsinghua]

2. Overall Objectives

2.1. Overall Objectives
FORMES stands for FORmal Methods for Embedded Systems. FORMES is aiming at making research advances
towards the development of safe and reliable embedded systems, by exploiting synergies between two different
approaches, namely (real time) hardware simulation and formal proofs development.

Embedded systems have become ubiquitous in our everyday life, ranging from simple sensors to complex
systems such as mobile phones, network routers, airplane, aerospace and defense apparatus. As embedded
devices include increasingly sophisticated hardware and software, the development of combined hardware
and software has become a key to economic success.

The development of embedded systems uses hardware with increasing capacities. As embedded devices
include increasingly sophisticated hardware running complex functions, the development of software for
embedded systems is becoming a critical issue for the industry. There are often stringent time to market
and quality requirements for embedded systems manufacturers. Safety and security requirements are satisfied
by using strong validation tools and some form of formal methods, accompanied with certification processes
such as DO178 or Common Criteria certification. These requirements for quality of service, safety and security
imply to have formally proved the required properties of the system before it is deployed.

Within the context described above, the FORMES project aims at addressing the challenges of embedded
systems design with a new approach, combining fast hardware simulation techniques with advanced formal
methods, in order to formally prove qualitative and quantitative properties of the final system. This approach
requires the construction of a simulation environment and tools for the analysis of simulation outputs and
proofs of properties of the simulated system. We therefore need to connect simulation tools with code-
analyzers and easy-to-use theorem provers for achieving the following tasks:

• Enhance the hardware simulation technologies with new techniques to improve simulation speed,
and produce program representations that are adequate for formal analysis and proofs of the
simulated programs ;

• Connect validation tools that can be used in conjunction with simulation outputs that can be exploited
using formal methods ;

• Extend and improve the theorem proving technologies and tools to support the application to
embedded software simulation.

Team FORMES 3

A main novelty of the project, besides improving the existing technologies and tools, relies in the application
itself: to combine simulation technologies with formal methods in order to cut down the development time for
embedded software and scale up its reliability. Apart from being a novelty, this combination is also a necessity:
proving very large code is unrealistic and will remain so for quite some time; and relying only on simulation
for assessing critical properties of embedded systems is unrealistic as well.

We assume that these properties can be localized in critical, but small, parts of the code, or dedicated hardware
models. This nevertheless requires scaling up the proof activity by an order of magnitude with respect to the
size of codes and the proof development time. We expect that it is realistic to rely on both combined. We plan
to rely on formal proofs for assessing properties of small, critical components of the embedded system that
can be analyzed independently of the environment. We plan to rely on formal proofs as well for assessing
correctness of the elaboration of program representation abstractions from object code. We plan to rely on
simulations for testing the whole embedded system, and to formal proofs to verify the completeness of test
sets. We finally plan to rely on formal proofs again for verifying the correct functioning of our tools. Proving
properties of these various abstractions requires using a certified, interactive theorem prover.

3. Scientific Foundations

3.1. Historical context
The project FORMES was created in September 2008, by union of three different smaller groups which origin
and interests were somewhat different : a group working on simulation of embedded systems at CASIA
since march 2007 under the leadership of Vania Joloboff; a second group working on user-assisted theorem
proving under the leadership of Jean-Pierre Jouannaud originated from the INRIA project-teams LOGICAL
at INRIA-Saclay-Île-de-France and PROTHEO at INRIA-Lorraine; and a group working on model-checking
and trustworthy computing at Tsinghua University under the leadership of Gu Ming. The second group moved
from France to Beijing in September 2008. A previous 4 weeks visit of Jean-Pierre Jouannaud and Frédéric
Blanqui in March 2008 had been used to define the new project FORMES, and prepare its installation at
Tsinghua university.

FORMES is the acronym for FORmal Methods for Embedded Systems, and indeed we aim at combining in
this project formal methods of very different origins for analyzing embedded systems. We develop a software
(SimSoC) for simulating embedded systems, but we also develop other techniques and tools in order to analyze
and predict their behavior, and that of the software running on such systems. These techniques themselves are
of different origin, and are usually developed in different teams around the world. Verification techniques based
on model checking have been extensively and successfully used in the past to analyze hardware systems.
Decisions procedures, like SAT, are now common place to analyze specific software applications, such as
scheduling. Proof assistants are more and more employed to carry out formal proofs of correctness of security
protocols and more generally non-trivial pieces of software. One originality of our project is to COMBINE
all these techniques in order to achieve our goal : to design methods and tools allowing one to build reliable
software, also called trustworthy computing.

In the next sections, we describe in more details these five areas, and their relationship to FORMES.

3.2. Simulation
The development of complex embedded systems platforms requires putting together many hardware compo-
nents, processor cores, application specific co-processors, bus architectures, peripherals, etc. The hardware
platform of a project is seldom entirely new. In fact, in most cases, 80 percent of the hardware components
are re-used from previous projects or simply are COTS (Commercial Off-The-Shelf) components. There is no
need to simulate in great detail these already proven components, whereas there is a need to run fast simulation
of the software using these components.

4 Activity Report INRIA 2011

These requirements call for an integrated, modular simulation environment where already proven components
can be simulated quickly, (possibly including real hardware in the loop), new components under design can be
tested more thoroughly, and the software can be tested on the complete platform with reasonable speed.

Modularity and fast prototyping also have become important aspects of simulation frameworks, for investigat-
ing alternative designs with easier re-use and integration of third party components.

The project aims at developing such a rapid prototyping, modular simulation platform, combining new
hardware components modeling, verification techniques, fast software simulation for proven components,
capable of running the real embedded software application without any change.

To fully simulate a complete hardware platform, one must simulate the processors, the co-processors,
together with the peripherals such as network controllers, graphics controllers, USB controllers, etc. A
commonly used solution is the combination of some ISS (Instruction Set Simulator) connected to a Hardware
Description Language (HDL) simulator which can be implemented by software or by using a FPGA [63]
simulator. These solutions tend to present slow iteration design cycles and implementing the FPGA means
the hardware has already been designed at low level, which comes normally late in the project and become
very costly when using large FPGA platforms. Others have implemented a co-simulation environment, using
two separate technologies, typically one using a HDL and another one using an ISS [48], [50], [69]. Some
communication and synchronization must be designed and maintained between the two using some inter-
process communication (IPC), which slows down the process.

The idea we pursue is to combine hardware modeling and fast simulation into a fully integrated, software
based (not using FPGA) simulation environment named SimSoC, which uses a single simulation loop thanks
to Transaction Level Modeling (TLM) [38], [30] combined with a new ISS technology designed specifically
to fit within the TLM environment.

The most challenging way to enhance simulation speed is to simulate the processors. Processor simulation is
achieved with Instruction Set Simulation (ISS). There are several alternatives to achieve such simulation. In
interpretive simulation, each instruction of the target program is fetched from memory, decoded, and executed.
This method is flexible and easy to implement, but the simulation speed is slow as it wastes a lot of time in
decoding. Interpretive simulation is used in Simplescalar [37]. Another technique to implement a fast ISS is
dynamic translation [41], [68], [45] which has been favored by many [66], [45], [67], [68] in the past decade.

With dynamic translation, the binary target instructions are fetched from memory at run-time, like in
interpretive simulation. They are decoded on the first execution and the simulator translates these instructions
into another representation which is stored into a cache. On further execution of the same instructions, the
translated cached version is used. Dynamic translation introduces a translation time phase as part of the overall
simulation time. But as the resulting cached code is re-used, the translation time is amortized over time. If the
code is modified during run-time, the simulator must invalidate the cached representation. Dynamic translation
provides much faster simulation while keeping the advantage of interpretive simulation as it supports the
simulation of programs that have either dynamic loading or self-modifying code.

There are many ways of translating binary code into cached data, which each come at a price, with different
trade-offs between the translation time and the obtained speed up on cache execution. Also, simulation speed-
ups usually don’t come for free : most of time there is a trade-off between accuracy and speed.

There are two well known variants of the dynamic translation technology: the target code is translated either
directly into machine code for the simulation host, or into an intermediate representation, independent from
the host machine, that makes it possible to execute the code with faster speed. Both have pros and cons.

Processor simulation is also achieved in Virtual Machines such as QEMU [34] and GXEMUL [49] that emulate
to a large extent the behavior of a particular hardware platform. The technique used in QEMU is a form of
dynamic translation. The target code is translated directly into machine code using some pre-determined code
patterns that have been pre-compiled with the C compiler. Both QEMU and GXEMUL include many device
models of open-source C code, but this code is hard to reuse. The functions that emulate device accesses do not
have the same profile. The scheduling process of the parallel hardware entities is not specified well enough to

Team FORMES 5

guarantee the compatibility between several emulators or re-usability of third-party models using the standards
from the electronics industry (e.g. IEEE 1666).

A challenge in the development of high performance simulators is to maintain simultaneously fast speed and
simulation accuracy. In the FORMES project, we expect to develop a dynamic translation technology satisfying
the following additional objectives:

• provide different levels of translation with different degrees of accuracy so that users can choose
between accurate and slow (for debugging) or less accurate but fast simulation.

• to take advantage of multi-processor simulation hosts to parallelize the simulation;

• to define intermediate representations of programs that optimize the simulation speed and possibly
provide a more convenient format for studying properties of the simulated programs.

Another objective of the FORMES simulation is to extract information from the simulated applications to
prove properties. Running a simulation is exercising a test case. In most cases, if a test is failing, a bug has
been found. One can use model checking tools to generate tests that can be run on the simulator to check
whether the test fails or not on the real application. It is also a goal of FORMES simulation activity to use such
formal methods tools to detect bugs, either by generating tests, or by using formal methods tools to analyze
the results of simulation sessions.

3.3. Formal proofs
Coq [44] is one of the most popular proof assistant, in the academia and in the industry. Based on the Calculus
of Inductive Constructions, Coq has three kinds of basic entities: objects are used for computations (data,
programs, proofs are objects); types express properties of objects; kinds categorize types by their logical
structure. Coq’s type checker can decide whether a given object satisfies a given type, and if a given type
has a logical structure expressed by a given kind. Because it is possible to (uniformly) define inductive types
such as lists, dependent types such as lists-of-length-n, parametric types such as lists-of-something, inductive
properties such as (even n) for some natural number n, etc, writing small specifications in Coq is an easy
task. Writing proofs is a harder (non-automatable) task that must be done by the user with the help of tactics.
Automating proofs when possible is a necessary step for dissemination of these techniques, as is scaling up.
These are the problems we are interested in.

Modeling in Coq is not always as easy as argued. In Coq, a powerful, very useful mechanism identifies
expressions up to computation. For example, identifying two lists of identical content but respective lengths
m+ n and n+m is no problem if m and n are given integers, but does not work if m and n are unknowns,
since n+m = m+ n is a valid theorem of arithmetic which cannot be proved by mere computation. It follows
that the statement reverse(l :: l′) = reverse(l′) :: reverse(l) is not typable, :: standing for appending two
lists. This problem that seemingly innocent statements cannot be written in Coq because they do not type-check
has been considered a major open problem for years. Blanqui, Jouannaud and Strub have recently introduced
a new paradigm named Coq modulo Theories, in which computations do not operate only on closed terms
(as are 1 + 2 and 2 + 1) but on open expressions of a decidable theory (as is n+m = m+ n in Presburger
arithmetic). This work started with the PhD thesis of Pierre-Yves Strub4 [72]. It addresses three problems at
once: decidable goals become solved automatically by a program taken from the shelves; writing specifications
and proofs becomes easier and closer to the mathematical practice; assuming that calls to a decision procedure
return a proof certificate in case of success, the correctness of a Coq proof now results from type checking
the proof as well as the various certificates generated along the proof. Trusting Coq becomes incremental,
resulting from trusting each certificate checker when added in turn to Coq’s kernel. The development of this
new paradigm is our first research challenge here.

4The thesis was supported by the “Fondation EADS”

6 Activity Report INRIA 2011

Scaling up is yet another challenge. Modeling a large, complex software is a hard task which has been
addressed within the Coq community in two different ways. By developing a module system for Coq in
the OCaml style, which makes it possible to modularize proof developments and hence to develop modular
libraries. By developing a methodology for modeling real programs and proving their properties with Coq. This
methodology allows to translate a JavaCard (tool Krakatoa5) or C (tool FRAMA-C6) program into an ML-like
program. The correctness of this first step is ensured by proving in Coq verification conditions generated along
the translation. The correctness of the ML-like program annotated by the user is then done by Coq via another
tool called Why7. This methodology and the associated tools are developed by the INRIA project PROVAL in
association with CEA. Part of our second challenge is to reuse these tools to prove properties at the source code
level of programs used in an embedded application. As part of this effort, we are interested in the development
of termination tools and automatic provers, in particular an SMT prover which is indeed complementary of
our first challenge. The second part of the challenge is to ensure that these properties are still satisfied by the
machine code executed on the embedded CPU. Here, we are going to rely on a different technology, certified
compilers, and reuse the certified compilers from CLight (a well-chosen subset of C) to ARM or PowerPC
developed in the COMPCERT INRIA project8. We will be left with the development of certified compilers
from source languages which are frequently used for developing embedded applications into CLight. These
languages are either variants of C, or languages for the description of automata with timers in the case of
Programmable Logic Controllers.

Our last challenge is to rely on certified tools only. In particular, we decided to certify in Coq all extensions of
Coq developed in the project: the core logic of CoqMT (a Calculus of Inductive Constructions incorporating
Presburger arithmetic) has been certified with Coq. Of course, Coq itself cannot be reduced to CIC anymore,
which makes the certification of the real logic of CoqMT a major challenge. The most critical parts of the
simulator will also be certified. As for compilers, there are two ways to certify tools: either, the code is proved
correct, or it outputs a certificate that can be checked. The second approach demands less man-power, and has
the other advantage to be compatible with the use of tools taken from the shelves, provided these tools are
open-source since they must be equipped with a mechanism for generating certificates. This is the approach
we will favor for the theories to be used in CoqMT, as well as for the SMT prover to be developed. For the
simulator SimSoC itself, we shall probably combine both approaches.

Some of these challenges require expertise in both rewriting and type theory. To maintain this combined
expertise in FORMES, we also carry out theoretical activities in these areas, even if they may sometimes
appear remotely connected to the mainstream of our work on the verification of embedded systems. First and
higher-order rewriting deal with relations on sets (abstract rewriting), term algebras (first-order rewriting),
and binding algebras (higher-order rewriting), which are generated by a (usually finite) set of pairs. Important
problems are few: termination (also called strong normalization) is the property of non-existence of infinite
computations; confluence is the property that rewriting computations, although non-deterministic, return a
unique result, hence define functions; Subject reduction is the property that computations preserve types.
Since the third is usually easy to check, we are mostly interested in confluence and termination.

3.4. Verification
Model checking is an automatic formal verification technique [40]. In order to apply the technique, users
have to formally specify desired properties on an abstract model of the system under verification. Model
checkers will check whether the abstract model satisfies the given properties. If model checkers are able
to prove or disprove the properties on the abstract model, they report the result and terminate. In practice,
however, abstract models can be extremely complicated, model checkers may not conclude with reasonable
computational resources.

5http://why.lri.fr
6http://frama-c.com
7http://why.lri.fr
8http://compcert.inria.fr

http://why.lri.fr
http://frama-c.com
http://why.lri.fr
http://compcert.inria.fr

Team FORMES 7

Compositional reasoning is a way to ameliorate the complexity in abstract models [77]. Compositional
reasoning tries to prove global properties on abstract models by establishing local properties on their
components. If local properties on components are easier to verify, compositional reasoning can improve
the capacity of model checking by local reasoning. Experiences however suggest that local reasoning may not
suffice to establish global properties. It is rare that a global property can be established without considering
their interactions. In assume-guarantee reasoning, model checkers try to verify local properties under a
contextual assumption of each component. If contextual assumptions faithfully capture interactions among
components, model checkers can conclude the verification of global properties.

Finding contextual assumptions however is difficult and may require clairvoyance. Interestingly, a fully au-
tomated technique for computing contextual assumptions was proposed in [43]. The automated technique
formalizes the contextual assumption generation problem as a learning problem. If properties and abstract
models are formalized as finite automata, then a contextual assumption is nothing but an unknown finite au-
tomaton that characterizes the environment. Applying a learning algorithm for finite automata, the automated
technique will generate contextual assumptions for assume-guarantee reasoning. Experimental results show
that the automated technique can outperform a monolithic and explicit verification algorithm.

The success of the learning-based assume-guarantee reasoning is however not satisfactory. Most verification
tools are using implicit algorithms. In fact, implicit representations such as Binary Decision Diagrams can
improve the capacity of model checking algorithms in several order of magnitudes. Early learning-based
techniques, on the other hand, are based on the L∗ learning algorithm using explicit representations. If
a contextual assumption requires hundreds of states, the learning algorithm will take too much time to
infer an assumption. Subsequently, early learning-based techniques cannot compete with monolithic implicit
verification [42].

Recently, we propose assume-guarantee reasoning with implicit learning [39]. Our idea is to adopt an
implicit representation used in the learning-based framework. Instead of enumerating states of contextual
assumptions explicitly, our new technique computes transition relations as an implicit representation of
contextual assumptions. Using a learning algorithm for Boolean functions, the new technique can easily
compute contextual assumptions with thousands of states. Our preliminary experimental results show that the
implicit learning technique can outperform interpolation-based monolithic implicit model checking in several
parametrized test cases such as synchronous bus arbiters and the MSI cache coherence protocol.

Learning Boolean functions can also be applied to loop invariant inference [56], [57]. Suppose that a
programmer annotates a loop with pre- and post-conditions. We would like to compute a loop invariant to
verify that the annotated loop conforms to its specification. Finding loop invariants manually is very tedious.
One makes a first guess and then iteratively refines the guess by examining the loop body. This process is in
fact very similar to learning an unknown formula. Applying predicate abstraction and decision procedures,
a learning algorithm for Boolean functions can infer loop invariants generated by a given set of atomic
predicates. Preliminary experimental results show that the learning-based technique is effective for annotated
loops extracted from source codes of Linux and SPEC2000 benchmarks.

Although implicit learning techniques have been developed for assume-guarantee reasoning and loop invariant
inference successfully, challenges still remain. Currently, the learning algorithm is able to infer Boolean
functions over tens of Boolean variables. Contextual assumptions over tens of Boolean variables are not
enough. Ideally, one would like to have contextual assumptions over hundreds (even thousands) of Boolean
variables. On the other hand, it is known that learning arbitrary Boolean functions is infeasible. The scalability
of implicit learning techniques cannot be improved satisfactorily by tuning the learning algorithm alone.
Combining implicit learning with abstraction will be essential to improve its scalability.

Our second challenge is to extend learning-based techniques to other computation models. In addition to
finite automata, probabilistic automata and timed automata are also widely used to specify abstract models.
Their verification problems are much more difficult than those for finite automata. Compositional reasoning
thus can improve the capacity of model checkers more significantly. Recently, the L∗ algorithm is applied in
assume-guarantee reasoning for probabilistic automata [47]. The new technique is unfortunately incomplete.

8 Activity Report INRIA 2011

Developing a complete learning-based assume-guarantee reasoning technique for probabilistic automata and
timed automata will be very useful to their verification.

Through predicate abstraction, learning Boolean functions can be very useful in program analysis. We have
successfully applied algorithmic learning to infer both quantified and quantifier-free loop invariants for
annotated loops. Applying algorithmic learning to static analysis or program testing will be our last challenge.
In the context of program analysis, scalability of the learning algorithm is less of an issue. Formulas over
tens of atomic predicates usually suffice to characterize relation among program variables. On the other hand,
learning algorithms require oracles to answer queries or generate samples. Designing such oracles necessarily
requires information extracted from program texts. How to extract information will be essential to applying
algorithmic learning in static analysis or program testing.

3.5. Decision Procedures
Decision procedures are of utmost importance for us, since they are at the heart of theorem proving and
verification. Research in decision procedures started several decades ago, and are now commonly used both in
the academia and industry. A decision procedure [58] is an algorithm which returns a correct yes/no answer to
a given input decision problem. Many real-world problems can be reduced to the decision problems, making
this technique very practical. For example, Intel and AMD are developing solvers for their circuit verification
tools, while Microsoft is developing decision procedures for their code analysis tools.

Mathematical logic is the appropriate tool to formulate a decision problem. Most decision problems are
formulated as a decidable fragment of a first-order logic interpreted in some specific domain. On such, easy
and popular fragment, is propositional (or Boolean) logic, which corresponding decision procedure is called
SAT. Representing real problems in SAT often results in awkward encodings that destroy the logical structure
of the original problem.

A very popular, effective recent trend is Satisfiability Modulo Theories (SMT) [76], a general technique to
solve decision problems formulated as propositional formulas operating on atoms in a given background
theory, for example linear real arithmetic. Existing approaches for solving SMT problems can be classified into
two categories: lazy method [70], and eager method [71]. The eager method encodes an SMT problem into
an equi-satisfiable SAT problem, while the lazy method employs different theory solvers for each theory and
coordinates them appropriately. The eager method does allow the user to express her problem in a natural way,
but does not exploit its logical structure to speed up the computation. The lazy approach is more appealing,
and has prompted much interest in algorithms for the various background theories important in practice.

Our SMT solver aCiNO is based on the lazy approach. So far, it provides with two (popular) theories only:
linear real arithmetic (LRA) and uninterpreted functions (UF). For efficiency consideration, the solver is
implemented in an incremental way. It also invokes an online SAT solver, which is now a modified DPLL
procedure, so that recovery from conflicts is possible. Our challenge here is twofold: first, to add other theories
of interest for the project, we are currently working on fragments of the theory of arrays [64], [36]. The theory
of arrays is important because of its use for expressing loop invariants in programs with arrays, but its full first-
order theory is undecidable. We are also interested in the theory of bit vectors, very much used for hardware
verification.

Theory solvers implement state-of-the-art algorithms which sophistication makes their correct implementation
a delicate task. Moreover, SMT solvers themselves employ a quite complex machinery, making them error
prone as well9 We therefore strongly believe that decision procedures, and SMT provers, should come along
with a formal assessment of their correctness. As usual, there are two ways: ensure the correctness of an
arbitrary output by proving the code, or deliver for each input a certificate ensuring the correctness of
the corresponding output when the checker says so. Developing concise certificates together with efficient
certificate checkers for the various decision procedures of interest and their combination with SMT is yet
another challenge which is at the heart of the project FORMES.

9It took almost 20 years to have a correct implementation of a correct version of Shostak’s algorithm for combining decision procedures,
which can be seen as an ancestor of SMT.

Team FORMES 9

3.6. Trustworthy software
Since the early days of software development, computer scientists have been interested in designing methods
for improving software quality. Formal methods based on model checking, correctness proofs, common
criteria certification, all address this issue in their own way. None of these methods, however, considers the
trustworthiness of a given software system as a system-level property, requiring to grasp a given software
within its environment of execution.

The major challenge we want to address here is to provide a framework in which to formalize the notion of
trustworthiness, to evaluate the trustworthiness of a given software, and if necessary improve it.

To make trustworthiness a fruitful concept, our vision is to formalize it via a hierarchy of observability and
controllability degrees: the more the software is observable and controllable, the more its behaviors can be
trusted by users. On the other hand, users from different application domains have different expectations from
the software they use. For example, aerospace embedded software should be safety-critical while e-commerce
software should be insensitive to attacks. As a result, trustworthiness should be domain-specific.

A main challenge is the evaluation of trustworthiness. We believe that users should be responsible for
describing the level of trustworthiness they need, in the form of formal requirements that the software should
satisfy. A major issue is to come up with some predefined levels of trustworthiness for the major applicative
areas. Another is to use stepwise refinement techniques to achieve the appropriate level of trustworthiness.
These levels would then drive the design and implementation of a software system: the objective would be to
design a model with enough details (observability) to make it possible to check all requirements of that level.

The other challenge is the effective integration of results obtained from different verification methods.
There are many verification techniques, like simulation, testing, model checking and theorem proving. These
methods may operate on different models of the software to be then executed, while trustworthiness should
measure our trust in the real software running in its real execution environment. There are also monitoring and
analysis techniques to capture the characteristics of actual executions of the system. Integrating all the analysis
in order to decide the trustworthiness level of a software is quite a hard task.

4. Application Domains

4.1. Application domains
Simulation is relevant to most areas where complex embedded systems are used, not only to the semiconductor
industry for System-on-Chip modeling, but also to any application where a complex hardware platform must
be assembled to run the application software. It has applications for example in industry automation, digital
TV, telecommunications and transportation.

5. Software

5.1. aCiNO
Participants: Fei He [correspondant], Min Zhou.

aCiNO is an SMT (Satisfiability Modulo Theory) solver based on a Nelson-Oppen [65] architecture, and
written in C++. Currently, two popular theories are considered: linear real arithmetic (LRA) and uninterpreted
functions (UF). A lazy approach is used for solving SMT problem. For efficiency consideration, the solver is
implemented in an incremental way. It also invokes an online SAT solver, which is now a modified MiniSAT,
so that recovery from conflict is possible.

5.2. CoLoR and Rainbow
Participants: Frédéric Blanqui [correspondant], Kim-Quyen Ly, Sidi Ould Biha.

10 Activity Report INRIA 2011

CoLoR is a Coq [44] library on rewriting theory and termination of nearly 70,000 lines of code [11]. it provides
definitions and theorems for:

• Mathematical structures: relations, (ordered) semi-rings.

• Data structures: lists, vectors, polynomials with multiple variables, finite multisets, matrices.

• Term structures: strings, algebraic terms with symbols of fixed arity, algebraic terms with varyadic
symbols, simply typed lambda-terms.

• Transformation techniques: conversion from strings to algebraic terms, conversion from algebraic to
varyadic terms, arguments filtering, rule elimination, dependency pairs, dependency graph decom-
position, semantic labelling.

• Termination criteria: polynomial interpretations, multiset ordering, lexicographic ordering, first and
higher order recursive path ordering, matrix interpretations.

Rainbow is a tool for automatically certifying termination certificates expressed in the CPF XML format [29]
used in the termination competition on termination [32]. Termination certificates are translated and checked in
Coq by using the CoLoR library.

CoLoR and Rainbow are distributed under the CeCILL license on http://color.inria.fr/. Various people
participated to its development (see the website for more information).

5.3. EDOLA
Participants: Hehua Zhang [correspondant], Ming Gu, Hui Kong, Yu Jiang.

Joint work with Jiaguang Sun (Tsinghua University, China).

EDOLA [26] is an integrated tool for domain-specific modeling and verification of PLC applications [74]. It
is based on a domain-specific modeling language to describe system models. It supports both model checking
and automatic theorem proving techniques for verification. The goal of this tool is to possess both the usability
in domain modeling, the reusability in its architecture and the capability of automatic verification.

For the moment, we have developed a prototype of the EDOLA language, which can easily describe the
features of PLC applications like the scan cycle mechanism, the pattern of environment model, time constraints
and five property patterns. TLA+ [59] was chosen as the intermediate language to implement the automatic
verification of EDOLA models. A prototype of EDOLA has also been developed, which comes along with an
editor to help writing EDOLA models. To automatically verify properties on EDOLA models, it provides the
interface for both a model checker TLC [59] and a first-order theorem prover SPASS [75].

5.4. Moca
Participant: Frédéric Blanqui [correspondant].

Joint work with Pierre Weis (INRIA Rocquencourt) and Richard Bonichon (CEA).

Moca is a construction functions generator for OCaml [60] data types with invariants.

It allows the high-level definition and automatic management of complex invariants for data types. In addition,
it provides the automatic generation of maximally shared values, independently or in conjunction with the
declared invariants.

A relational data type is a concrete data type that declares invariants or relations that are verified by its
constructors. For each relational data type definition, Moca compiles a set of construction functions that
implements the declared relations.

Moca supports two kinds of relations:

• predefined algebraic relations (such as associativity or commutativity of a binary constructor),

• user-defined rewrite rules that map some pattern of constructors and variables to some arbitrary
user’s define expression.

http://color.inria.fr/

Team FORMES 11

The properties that user-defined rules should satisfy (completeness, termination, and confluence of the
resulting term rewriting system) must be verified by a programmer’s proof before compilation. For the
predefined relations, Moca generates construction functions that allow each equivalence class to be uniquely
represented by their canonical value.

Moca is distributed under QPL on http://moca.inria.fr/.

5.5. SimSoC
Participant: Vania Joloboff [correspondant].

SimSoC is an infrastructure to run simulation models which comes along with a library of simulation models.
SimSoC allows its users to experiment various system architectures, study hardware/software partition, and
develop embedded software in a co-design environment before the hardware is ready to be used. SimSoC
aims at providing high performance, yet accurate simulation, and provide tools to evaluate performance and
functional or non functional properties of the simulated system.

SimSoC is based on SystemC standard and uses Transaction Level Modeling for interactions between the
simulation models. The current version of SimSoC is based on the open source libraries from the OSCI
Consortium: SystemC version 2.2 and TLM 2.0.1 [54], [33]. Hardware components are modeled as TLM
models, and since TLM is itself based on SystemC, the simulation is driven by the SystemC kernel. We use
standard, unmodified, SystemC (version 2.2), hence the simulator has a single simulation loop.

The second open source version of SimSoC, SimSoC v0.7.1, has been released in November 2010. It contains
a full simulator for ARM V5 and PowerPC both running at an average speed of about 80 Millions instructions
per second in, and a simulator for the MIPS architecture with an average speed of 20 Mips in mode DT1. It
represents about 70,000 lines of source code and includes:

• Instruction Set Simulators. The ARM Version 5 architecture has been implemented with DT0,
DT1, DT2 mode. The ARM and PowerPC 600 architecture with DT0 and DT1 mode. For both
architectures, complete simulation models of the processor and MMU are provided, making it
possible to run operating systems of the simulated platform. MIPS architecture in DT0 mode is
under development.

• A dynamic translator from binary programs to an internal representation. For the ARM architecture
a compiler has been developed that generates the C++ translated code (for DT2), using parametrized
specialization options.

• Peripheral models including a serial line controller, a flash memory controller, an interrupt con-
troller.

• A utility to generate permanent storage for flash memory simulation; a compiler tool to generate
instruction binary decoder.

• Examples illustrating the use of the library and infrastructure.

SimSoC is distributed under LGPL on https://gforge.inria.fr/projects/simsoc.

5.6. SimSoC-Cert
Participants: Frédéric Blanqui, Vania Joloboff, Jean-François Monin [correspondant], Xiaomu Shi.

SimSoC-Cert is a set of tools that can automatically generate in various target languages (Coq and C) the
decoding functions and the state transition functions of each instruction and addressing mode of the ARMv6
architecture manual [28] (implemented by the ARM11 processor family) but the Thumb and coprocessor
instructions. The input of SimSoC-Cert is the ARMv6 architecture manual itself.

Based on this, we first developed simlight (8000 generated lines of C, plus 1500 hand-written lines of C), a
simulator for ARMv6 programs using no peripheral and no coprocessor. Next, we developed simlight2, a fast
ARMv6 simulator integrated inside a SystemC/TLM module, now part of SimSoC v0.7.

http://moca.inria.fr/
https://gforge.inria.fr/projects/simsoc

12 Activity Report INRIA 2011

We can also generate similar programs for SH4 [31] but this is still under test.

6. New Results

6.1. Simulation
6.1.1. Simulation of vector architecture

Participants: Vania Joloboff, Yang Yu.

Many architectures including PowerPC and ARM now have vectorized instructions, that is, instructions that
can execute on several data items in parallel (e.g 8 simultaneous additions) on specific vector data.

We have implemented the ALTIVEC extension of the PowerPC to support the vector instructions.

6.1.2. Native translation using LLVM
Participants: Vania Joloboff, Xinlei Zhou, Zuyu Zhang.

We have started to implement a new technique of dynamic translation. This new method consists in decompil-
ing the binary object code into an abstract representation and recompiling it to native host code.

The decompilation of the program amounts to reconstructing the simulated program Control Flow Graph using
an intermediate representation. We have chosen LLVM (Low Level Virtual Machine), defined by University
of Illinois, and now widely adopted in many projects, as our representation format. Using LLVM allows us to
directly use the LLVM Intel code generator.

The SimSoC binary decoder has been modified to identify basic blocks (blocks of sequential instructions
ending with a branch instruction). After instructions have been grouped into basic blocks, they are translated
into an LLVM representation and finally the LLVM compiler is called to generate native code.

A first version of this technique has been implemented for both the ARM and Power Architecture. We have
reach a considerable speed improvement in the generated code, with the execution speed multiplied by factor
of 2 to 8. However the translation time from binary to LLVM and from LLVM to native code is significant
(translation speed is roughly 1000 instructions per second). Consequently the overall speed is improved by
only a factor of 20 to 50 percent when the simulation are relatively short test programs [20].

In order to reach still higher simulation speed we need to use a more sophisticated analysis of the control flow
graph. The idea is to do an edge profiling analysis of the basic blocks in order to identify larger blocks. This
work is under development.

Another idea is to use multi-processor hosts machine to parallelize translation from LLVM to native code.
This is also under investigation.

6.1.3. Trace Analysis
Participants: Guillaume Merle, Vania Joloboff.

Simulation sessions produce huge trace files, sometimes now in hundreds of gigabytes, that are hard to analyze
with a quick response time. This comes down to two sub-problems:

• The trace file size. Trace files are huge because they include lots of information. But when looking
for a specific problem, one does not need all of this information. To search one given defect, one
may ignore a large amount of the data in the trace file. One would like the trace file to contain only
relevant information to the concerned problem.

• The expressive power of the language to analyze the trace, and its usability. If the language is limited
to expression search, it is easy to use but hard to construct sophisticated formulas. If the language
used is Linear Temporal Logic (LTL), there is a lot of expressive power but many engineers are
unable to write a LTL formula and to maintain it over time.

Team FORMES 13

We would like to build a trace analysis tool that includes a language which allows expression of time-related
formulas but is simple to formulate expressions. When this language is compiled, ideally the compiler is smart
enough to identify independent formulae, the search of which can be parallelized, and it is also smart enough
to generate "filter scripts".

When compiling one trace language input file, it would generate, from one input file, N filter scripts and N
analyzers. Then during the simulation, the huge raw trace file is actually split into N smaller trace files, each
relevant to one problem only, filtering out all unnecessary data. Hence trace files sizes would be considerably
reduced.

We have started to design a trace language and a compiler, and extended the SimSoC simulator to support
generation of trace files with a filter.

A first version of the trace language compiler has been coded in OCAML.

In the current version under development, the filters are not generated but coded manually, and filters are not
parallelized.

6.1.4. Generation of simulators from vendor specification
Participants: Frédéric Blanqui, Vania Joloboff, Jean-François Monin, Xiaomu Shi, Frédéric Tuong.

Starting last year, we undertook the task of generating automatically an instruction set simulator (ISS) from
the vendor specification in a PDF file. In order to generate the C code of the simulator, it is assumed such
vendor specification contains at least some formal definitions of the instruction set that can be analyzed. It is
the case to a wide extent for the ARM, the PowerPC and the SH architectures.

The process of generating the simulator consists of 4 major steps, first eliminating from the PDF file irrelevant
information, next construct from the relevant data an abstract syntax representation of the instruction set, then
to generate the C code of the simulator, using some additional data provided manually to complete the vendor
specification.

This work was completed last year for the ARM architecture with the documentation form ARM corporation
[35]. This year, we did similar work for the SH architecture from specification from RENESAS corporation.

We have indeed generated a simulator for the SH4 architecture [31], which has not been fully tested yet.

However, this works has proved that the abstract syntax we have defined is powerful enough to describe two
different architectures with significant differences in the way they are described by the vendor.

6.1.5. First steps towards the certification of an ARM simulator
Participants: Frédéric Blanqui, Jean-François Monin, Xiaomu Shi, Frédéric Tuong.

The simulation of Systems-on-Chip (SoC) is nowadays a hot topic because, beyond providing many debugging
facilities, it allows the development of dedicated software before the hardware is available. Low-consumption
CPUs such as ARM play a central role in SoC. However, the effectiveness of simulation depends on the
faithfulness of the simulator. To this effect, in [24], we propose here to prove significant parts of such a
simulator, SimSoC. Basically, on one hand, we develop a Coq formal model of the ARM architecture while on
the other hand, we consider a version of the simulator including components written in Compcert-C [61]. Then
we prove that the simulation of ARM operations, according to Compcert-C formal semantics, conforms to the
expected formal model of ARM. Size issues are partly dealt with using automatic generation of significant
parts of the Coq model and of SimSoC from the official textual definition of ARM. However, this is still a long-
term project. We report here the current stage of our efforts and discuss in particular the use of Compcert-C in
this framework.

6.2. Type and rewriting theory
6.2.1. A type theory for Coq

Participants: Jean-Pierre Jouannaud, Qian Wang.

14 Activity Report INRIA 2011

In this joint work with Bruno Barras and Pierre-Yves Strub [17], we describe an abstract model of CoqMT
[73] called CoqMTU, which puts together the Calculus of Inductive Constructions, decidable first-order
theories, and an infinite hierarchy of universes which are all predicative but the first impredicative universe
of propositions. We have shown its consistency, strong normalization and decidability of type checking in
presence of weak elimination (and absence of strong elimination). An important feature of this work is that the
first-order theory is abstract, characterized by the three natural axioms that (i) it is non-degenerated (its models
have at least two elements), (ii) constructors are free, and (iii) defined symbols are completely defined. On the
theoretical side, this allows us to give an abstract elimination principle for such non-canonical theories. On
the practical side, this justifies the implementation of CoqMT in which decidable theories can be dynamically
dowloaded. It should be noticed that these proofs are done in Coq, except for the strong normalization part.
Qian Wang is now continuing this work at Ecole Polytechnique with Bruno Barras and Pierre-Yves Strub, the
target being strong normalization.

6.2.2. Confluence by decreasing diagrams
Participants: Jean-Pierre Jouannaud, Huiying Luo, Jiaxiang Liu.

Invented by Vincent Van Oostrom, decreasing diagrams capture both kinds of diagrams arising from New-
mann’s Lemma and Hindley’s Lemma: they indeed allow to reduce all known confluence methods to critical
pairs computations, and a search of decreasing diagrams for them all, where decreasingness is measured by a
well-founded order on proof steps.

In [55], we give a new simple proof of Van Oostrom’s main theorem, and extend the method of decreasing
diagrams to rewrite relations on a term algebra. We prove that the union of a terminating left-linear systems,
and a non-terminating linear system is confluent provided the various critical pairs existing in in their
combination have decreasing diagrams (with respect to some order built from the respective orders of both
systems).

During this year, we have further simplified and generalized these results in order to get rid of the left-
linearity assumption for the first system, and of the right-linearity assumption for the second. This yields a
true generalization of the well-known Knuth-Bendix-Huet confluence result for terminating systems, and at
the same time of various critical-pair based results found in the literature for non-terminating systems.

6.2.3. Confluence of normal rewriting
Participants: Jean-Pierre Jouannaud, Jianqi Li.

Confluence results for first-order and higher-order rewriting differ in many ways: by the rewriting relation
used, and by the strong normalization assumption made. We believe that these differences hide the strong
similarities of these (and other) kinds of rewriting.

In this work, we introduce a new notion of rewriting, normal rewriting, which aims at capturing all known
results reducing confluence to critical (and extension) pair computations in presence of some termination
assumption.

We achieve this goal in the following way. First, we consider theories made of a set R of rules, a set S of
simplifiers, and a set E of equations. Rewriting operates on terms in S modulo E normal forms, and uses
S ∪ E-pattern matching for firing the rules in R, before to normalize the result with respect to S modulo E.
Termination is assumed for the union of S modulo E and R modulo S ∪ E. Second, we introduce relations
on an abstract set of terms, and an abstract, well-founded set of positions, and reduce the Church-Rosser
property of abstract normal rewriting to abstract notions of critical pairs and extensions. We can then apply
this result to first-order rewriting, as well as to various forms of higher-order rewriting. These results capture
plain rewriting (S ∪ E = ∅), Stickel’s rewriting modulo (S = ∅), Nipkow’s higher-order reswriting (S is
made of beta-reduction and eta-expansion, and E is alpha-conversion), and allow to describe new forms of
first and higher-order rewriting relations.

6.2.4. Argument filterings and usable rules in higher-order rewrite systems
Participant: Frédéric Blanqui.

Team FORMES 15

Joint work with Keiichirou Kusakari and Sho Suzuki from Nagoya University, Japan.

The static dependency pair method is a method for proving the termination of higher-order rewrite systems
à la Nipkow [62]. It combines the dependency pair method introduced for first-order rewrite systems with
the notion of strong computability introduced for typed lambda-calculi [52]. Argument filterings and usable
rules are two important methods of the dependency pair framework used by current state-of-the-art first-order
automated termination provers [51], [53]. In [12], we extend the class of higher-order systems on which the
static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-
order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite
systems.

6.3. Decision procedures
6.3.1. A certificate framework for DPLL(T)

Participants: Min Zhou, Fei He, Bow-Yaw Wang, Wenrui Meng.

Satisfiability Modulo Theories (SMT) techniques are widely used nowadays. SMT solvers are used to decide
the satisfiability of first-order formulas. When an SMT solver is invoked, it is important to ensure correctness
of the result. For this purpose, we proposed a certificate framework based on DPLL(T), including genera-
tion of certificates and verification of certificates. Some properties are discussed and proved theoretically. The
certificate is easy to generate because it only needs minor modification to the existing SMT solvers. Experi-
ment results show that the overhead for certificates generation is only 10%. Moreover, verifying the certificate
requires few memory and time, which outperforms other approaches.

6.3.2. Automated verification of termination certificates
Participants: Frédéric Blanqui, Kim-Quyen Ly, Sidi Ould Biha.

The research community on rewriting developed a grammar for termination certificates called CPF [29] (given
by a XML Schema file). Our goal is to develop a safe, modular and efficient termination certificate verifier
based on the formal library of mathematical results on termination called CoLoR that has been developed for
the proof assistant Coq [11].

Because the CPF format is regularly modified and extended with new features, it is useful to have a tool that
can automatically generate data structures, parsers and pretty-printers for that format. Hence, we developed a
first version of such a tool in OCaml.

Once we got a representation of termination certificates in Coq, we could start defining a boolean function
checking the correctness of a certificate, and formally prove its correctness. For the moment, we only
considered the case of polynomial interpretations on integers. The proof is almost finished. To do so, we
had to modify some of the CoLoR files to be able to use its results (transformation of modules into records
that are first-class objects). The use of dependent types in CoLoR makes also definitions and proofs much
more difficult.

6.3.3. Proving computational geometry algorithms in TLA+2
Participants: Hui Kong, Hehua Zhang, Ming Gu.

Geometric algorithms are widely used in many scientific fields like computer vision, computer graphics. To
guarantee the correctness of these algorithms, it is important to apply formal method to them. In this work, we
propose an approach to proving the correctness of geometric algorithms [22]. The main contribution is that a
set of proof decomposition rules is proposed which can help improve the automation of the proof of geometric
algorithms. We choose TLA+2, a structural specification and proof language, as our experiment environment.
The case study on a classical convex hull algorithm shows the usability of the method.

6.4. Compositional verification
6.4.1. BDD-based assume-guarantee reasoning through implicit learning

Participants: Fei He, Bow-Yaw Wang, Lei Zhu.

16 Activity Report INRIA 2011

We present a purely BDD-based assume-guarantee reasoning technique to improve the scalability of symbolic
model checking. The new technique adopts a BDD learning algorithm to generate BDD’s as contextual
assumptions. A new witness analysis algorithm is proposed to exploit the multitude of traces returned by
symbolic model checkers. Using the classification tree-based BDD learning algorithm to generate contextual
assumptions, we compare assume-guarantee reasoning with monolithic symbolic model checking. The new
technique always infers smaller contextual assumptions than contexts in our experiments.

6.4.2. Predicate generation for learning-based loop invariant inference
Participant: Bow-Yaw Wang.

We address the predicate generation problem in the context of loop invariant inference. Motivated by
the interpolation-based abstraction refinement technique, we apply the interpolation theorem to synthesize
predicates implicitly implied by program texts. Our technique is able to improve the effectiveness and
efficiency of the learning-based loop invariant inference algorithm in [21]. Experiments excerpted from Linux,
SPEC2000, and Tar source codes are reported.

This is a joint work with Yungbum Jung, Wonchan Lee, and Kwangkuen Yi of Seoul National University,
South Korea.

6.4.3. Thread-modular model checking with iterative refinement
Participants: Wenrui Meng, Fei He, Bow-Yaw Wang.

Thread-modular analysis is an incomplete compositional technique for verifying concurrent systems. The
heuristic works rather well when there is limited interaction among system components. In this project, we
develop a refinement algorithm that makes thread-modular model checking complete. Our algorithm refines
abstract reachable states by exposing local information through auxiliary variables. The experiments show
that our complete thread-modular model checking can outperform other complete compositional reasoning
techniques.

6.5. Specification and verification of TLA+ and PLC systems
6.5.1. Formal semantics of PLC programming languages

Participants: Sidi Ould Biha, Litian Xiao, Ming Gu.

We formalized a semantics of the Instruction List (IL) language, one of the five programing languages defined
in the IEC 61131-3 standard for PLC programing [23]. This semantics support a significant subset of the IL
language that includes on-delay timers. This semantics was used in a join work to with Jan Olaf Blech from
Fortiss (Germany) to prove some safety properties for a real industrial example of PLC program [18].

A second widely used language for programming PLC is the graphical language Ladder Diagrams (LD). We
defined a formal semantics of LD in the proof assistant Coq. Based on this semantics and the IL one, we
developed a translation function from LD to IL. We also proved a semantic preservation property for this
translation function. We have now a certified compilation function from the graphical language LD to IL. This
work opens the way for the development of a certified compilation chain for PLC. A journal paper about this
work and others aspects of PLC certification is under reviewing.

In [16], [15], we study the definition of denotational semantics on PLC program language, which is convenient
to PLC programs modeling and model checking. The purpose of the work is the correctness verification
on PLC programs by formal methods. Based on the extended λ-calculus definition, this work has defined
the configuration of PLC program architecture, denotational semantics of PLC programs and functions of
denotational semantics. It is the basis of model checking and theorem proving.

6.5.2. Formalization and verification of PLCs
Participants: Hai Wan, Litian Xiao, Ming Gu.

Team FORMES 17

PLCs are widely used in embedded systems. Timers play a pivotal role in PLC real-time applications. The
formalization of timers is of great importance. In [13], we present a formalization of PLC timers in the theorem
proving system Coq, in which the behaviors of timers are characterized by a set of axioms at an abstract level.
The authors discuss how to model timers at a proper and sound abstract level. PLC programs with timers are
modeled. As a case study, a quiz machine problem with a timer is investigated. This work demonstrates the
complexity of formal timer modeling.

In [25], we modeled kernel data type and basic statements and and the denotational semantics of PLC program
in Coq. It has given the correctness proof of PLC program based on theorem proving, i.e. based on semantics
function the relationship of configuration between the before codes execution and the after is proved. The main
purpose is to prove whether a PLC program satisfies certain nature within a scan period.

6.5.3. Synthesis of PLC programs
Participants: Rui Wang, Ming Gu.

PLCs are complex cyber-physical systems which are widely used in industry. In [14], we present a robust
approach to design and implement PLC-based embedded systems. Timed automata are used to model the
controller and its environment. We validate the design model with resort to model checking techniques.
We propose an algorithm to generate PLC code from timed automata and implement this algorithm with
a prototype tool. This method can condense the developing process and guarantee the correctness of PLC
programs. A case study demonstrates the effectiveness of the method.

6.5.4. Domain-driven probabilistic analysis of PLCs
Participants: Hehua Zhang, Yu Jiang, Ming Gu.

Programmable Logic Controllers are widely used in industry. Reliable PLCs are vital to many critical
applications. We present a novel symbolic approach for analysis of PLC systems [27]. The main components
of the approach consists of: (1) calculating the uncertainty characterization of the PLC systems, (2) abstracting
the PLC system as a Hidden Markov Model, (3) solving the Hidden Markov Model using domain knowledge,
(4) integrating the solved Hidden Markov Model and the uncertainty characterization to form an integrated
(regular) Markov Model, and (5) harnessing probabilistic model checking to analyze properties on the resultant
Markov Model. The framework provides expected performance measures of the PLC systems by automated
analytical means without expensive simulations. Case studies on an industrial automated system are performed
to demonstrate the effectiveness of our approach.

6.5.5. Edola: a domain modeling and verification language for PLCs
Participants: Hehua Zhang, Ming Gu.

Formal modeling and verification of PLC systems become paramount in engineering applications. The work
presents a novel PLC domain-specific modeling language Edola [26]. Important characteristics of PLC
embedded systems, such as reactivity, scan cycling, real-time and property patterns, are embodied in the
language design. Formal verification methods, such as model checking and automatic theorem proving, are
supported in Edola modeling. The TLA+ specification language constitutes an intermediate language layer
between Edola and the verification tools, enhancing a large degree of reusability. A prototype IDE for Edola
and its seamless integration of a model checker TLC and an automatic theorem prover Spass are implemented.
A case study illustrates and validates the applicability of the language.

6.6. Distributed algorithms
6.6.1. Formal model and proofs for Netlog protocols

Participants: Meixian Chen, Jean-François Monin.

Joint work with Yuxin Deng (Jiaotong University, Shanghai) and Stéphane Grumbach (LIAMA/Netquest).

18 Activity Report INRIA 2011

Netlog is a language designed and implemented in the Netquest project for describing protocols. Netlog has a
precise semantics, provides a high level of abstraction thanks to its Datalog flavor and benefits from an efficient
implementation. This makes it a very interesting target language for proofs of protocols. Netlog comes with
two possible semantics: a synchronous semantics, better suited to tightly coupled parallel systems and an
asynchronous semantics, better suited to distributed systems.

We designed a formal model of Netlog in Coq, where the two possible semantics are derived from common
basic blocks. In a fully certified framework, a formal proof of the Netlog engine (running on each node) would
be required. We don’t attack this part at the moment: we assume that the implementation respects the general
properties stated in our model and focus on the issues raised by the distributed model of computation provided
by Netlog.

As a proof of concept, we applied in 2010 this framework to an algorithm constructing a Breadth-First
Search Spanning Tree (BFS) in a distributed system [46]. This work has been slightly improved this year
and published in [19].

Moreover, we generalized the model in order to take the removal of datalog facts into account, and started
to use this feature for more complicated protocols. In main one under study is Prim’s algorithm (publication
under submission), and we target next GHS, which still resists to palatable proof techniques.

7. Contracts and Grants with Industry

7.1. Schneider Electric
The goal of this project contracted with Schneider Electric China is to develop a full system simulator for a
System-on-Chip used by Schneider Electric in their automation product line.

7.2. Orange IT Labs
The goal of this project is to complete the PowerPC simulator and compare its performance with another
simulator used internally by Orange IT Labs.

8. Partnerships and Cooperations

8.1. National Initiatives
• FORMES is part of the working group LTP on Languages, Types and Proofs of the GDR GPL10, the

French research network on software engineering.

• FORMES is part of the working group LAC on Logic, Algebra and Calculus of the GDR IM11, the
French research network on mathematics and computer science.

8.2. International Initiatives
8.2.1. Visits of International Scientists
8.2.1.1. Long-term visitors

• Jean-Jacques Lévy (INRIA, France), director of the MSR-INRIA Joint Center, visited FORMES from
September 26 to November 18, gave lectures on reductions and causality.

• Pierre-Louis Curien (PPS, CNRS and University Paris 7) visited FORMES in April and May, and
co-organized a working group on rewriting theory and algebra.

10http://gdr-gpl.cnrs.fr/
11http://www.gdr-im.fr/

http://gdr-gpl.cnrs.fr/
http://www.gdr-im.fr/

Team FORMES 19

• Joseph Sifakis (VERIMAG, France) visited FORMES in March and October and participated to
various working groups.

8.2.1.2. Short-term visitors

• Zhang Min (JAIST, Japan) gave a talk on December 20 on algebraic-based verification of a dynamic
software updating system.

• Vladimir Voevodsky (IAS Princeton, USA), Fields Medal 2002, gave a talk on December 12 on
univalent semantics of constructive type theories.

• Jianhua Gao (ISCAS, China) gave a talk on November 25 on the clausal presentation of theories in
deduction modulo.

• Iddo Tzameret (ITCS, Tsinghua University) gave a talk on November 18 on short propositional
refutations for dense random 3-CNF formulas.

• Eric Madelaine (INRIA, France) gave a talk on November 11 at Shenzhen SIAT on specification,
model generation and verification of distributed applications.

• Jean-Raymond Abrial (ETH, Switzerland) gave a talk on September 9 on modeling, refining and
proving with Event-B.

• Graham Steel (LSV, ENS Cachan, France) gave lectures on the security of APIs at Tsinghua
University and Nokia from August 22 to August 25.

• Thomas Anberree (Nottingham University at Ningbo, China) gave a talk on June 22 on definable
quotients in type theory.

• Hsu-Chun Yen (National Taiwan University) gave a talk on May 20 on two-way transducers and
parametrized machines.

• Lijun Zhang (Denmark Technical University) gave a talk on May 13 on ODEs in probabilistic model
checking.

• Flemming Nielson (Denmark Technical University) gave a talk on May 13 on model checking as
static analysis of modal logic.

• Christian Urban (TU Munich, Germany) gave a talk on April 29 on verifying a regular expression
matcher and formal language theory.

• Zhaohui Luo (University of London, UK) visited FORMES in April and gave lectures on type theory
from April 13 to April 19.

• On April 11, for the 1st Tsinghua Software Day organized by the FORMES team, we had the fol-
lowing talks: A journey into the semantics of programming languages, by Pierre-Louis Curien; type
theory and its application, by Zhaohui Luo; advances towards the formal proof of the classification
of finite groups, by Georges Gonthier; from boolean to quantitative theories of software, by Tom
Henzinger.

• Joseph Sifakis (VERIMAG, France) gave a talk on March 10 on a vision for computer science: the
system perspective.

8.2.2. Participation In International Programs

• SIVES12 is a French-Chinese ANR-NSFC project for 2009-2011 between INRIA FORMES, Ts-
inghua University and ST Microelectronics on the development of a “SImulation and Verification
based platform for Embedded Systems” (coordinated by Frédéric Blanqui on the French side and
Ming Gu on the Chinese side).

• Logical Frameworks is a grant from the National Science Foundation of China obtained by Jean-
Pierre Jouannaud and Jianqi Li to sustain their work on the subject.

12http://formes.asia/cms/sives

http://formes.asia/cms/sives

20 Activity Report INRIA 2011

9. Dissemination
9.1. Animation of the scientific community

• FORMES organizes a weekly seminar which is a major local forum in the area of formal methods,
with a steady participation of colleagues who come from the other nearby research institutions,
CASIA, ISCAS and Peking University, to attend the presentations. All seminars are announced on
our website, as well as the other relevant local seminars or events, in particular those taking place at
ISCAS.

• Jean-Pierre Jouannaud and Zhong Shao (Yale University) have initiated a new conference, the 1st
international conference on Certified Programs and Proofs (CPP’11), held on December 7-9 at
Kenting, Taiwan. The local organization is done by Tyng-Ruey Chang (Academia Sinica), Yih-Kuen
Tsay (NTU) and Bow-Yaw Wang (INRIA and Academia Sinica).

• Vania Joloboff co-organized with Pr John Koo the first Shenzhen International Summer School on
Embedded Systems Design, held at Shenzhen SIAT from July 4-8.

• FORMES organized on April 11-12 the 1st Tsinghua Software Day and Tsinghua Student Day on
the occasion of Tsinghua’s 100 years anniversary with talks by Pierre-Louis Curien, Zhaohui Luo,
Georges Gonthier and Tom Henzinger.

• Frédéric Blanqui is member of the Steering Committee of the International Conference on Rewriting
Techniques and Applications (RTA) from July 2010 to July 2013.

• Frédéric Blanqui was a PC member of the 22nd International Conference on Rewriting Techniques
and Applications (RTA’11), 30 May - 1st June, Novisad, Serbia.

• Jean-Pierre Jouannaud is a member of the LICS organizing committee.
• Jean-Pierre Jouannaud is a member of the editorial board of the International Journal of Software

and Informatics (IJSI).
• Jean-Pierre Jouannaud is a guest co-editor of JACM (selection of 3 papers from LICS 2010), and a

co-guest editor of LMCS (selection of papers from LICS 2010).
• Jean-Pierre Jouannaud is a member of the advisory committee of Academia Sinica, Taipei, Taiwan.
• Jean-Pierre Jouannaud is PC co-chair of CPP 2011, 7-9 December 2011, Kenting, Taiwan.
• Jean-Pierre Jouannaud participated to the STIC-Asie meeting in Guangdong in June, and the AURA

meeting in Hanoi, Vietnam, in November, where he gave talks.

9.2. Teaching
• Vania Joloboff taught a class at Tsinghua University on SystemC and Transaction Level Modeling.
• Vania Joloboff taught a session at Shenzhen International Summer School on Embedded Systems

Design.
• Jean-François Monin taught a module on Coq entitled Introduction to Interactive Proofs of Software

at Tsinghua School Software, 3rd year undergraduate, but also followed by 4th year students, a mas-
ter student of Beihang and 2 master students of University of Beijing, department of mathematics;
volume: 35 hours.

10. Bibliography
Major publications by the team in recent years

[1] F. BLANQUI. Definitions by rewriting in the Calculus of Constructions, in "Mathematical Struc-
tures in Computer Science", 2005, vol. 15, no 1, p. 37-92, Journal version of LICS’01
[DOI : 10.1017/S0960129504004426], http://hal.inria.fr/inria-00105648/en/.

http://hal.inria.fr/inria-00105648/en/

Team FORMES 21

[2] F. BLANQUI, C. HELMSTETTER, V. JOLOBOFF, J.-F. MONIN, X. SHI. Designing a CPU model: from a
pseudo-formal document to fast code, in "3rd Workshop on: Rapid Simulation and Performance Evaluation:
Methods and Tools", Grèce Heraklion, 2010, Best paper award, http://hal.inria.fr/inria-00546228/en/.

[3] F. BLANQUI, A. KOPROWSKI. CoLoR: a Coq library on well-founded rewrite relations and its application
to the automated verification of termination certificates, in "Mathematical Structures in Computer Science",
2011, vol. 21, no 4, p. 827-859, http://hal.inria.fr/inria-00543157/en/.

[4] F. BLANQUI, J.-P. JOUANNAUD, P.-Y. STRUB. From formal proofs to mathematical proofs: a safe, incremental
way for building in first-order decision procedures, in "5th IFIP International Conference on Theoretical
Computer Science - TCS 2008", Milan Italie, IFIP, 2008, vol. 273 [DOI : 10.1007/978-0-387-09680-
3_24], http://hal.inria.fr/inria-00275382/en/.

[5] B. BÉRARD, L. FRIBOURG, F. KLAY, J.-F. MONIN. A compared study of two correctness proofs for the
standardized algorithm of ABR conformance, in "Formal Methods in System Design", january 2003.

[6] B. DELSART, V. JOLOBOFF, E. PAIRE. JCOD: A Lightweight Modular Compilation Technology for Embedded
Java, in "Second International Conference on Embedded Software", Lecture Notes in Computer Science,
Springer-Verlag, 2002, vol. 2491, p. 197–212, ISBN 3-540-44307-X.

[7] F. HE, X. SONG, M. GU, J. SUN. Heuristic-Guided Abstraction Refinement, in "Computer Journal", May
2009, vol. 52, no 3, p. 280-287.

[8] J.-P. JOUANNAUD, A. RUBIO. Polymorphic Higher-Order Recursive Path Orderings, in "Journal of the ACM",
2007, vol. 54, no 1, p. 1-48.

[9] Y. JUNG, S. KONG, B.-Y. WANG, K. YI. Deriving Invariants by Algorithmic Learning, Decision Procedures,
and Predicate Abstraction, in "Verification, Model Checking, and Abstract Interpretation", Madrid, Spain,
January 2010, http://hal.inria.fr/inria-00517257/en/.

[10] Y.-K. TSAY, B.-Y. WANG. Automated Compositional Reasoning of Intuitionistically Closed Regular Proper-
ties, in "International Journal on Foundation of Computer Science", 2009, vol. 20, no 4, p. 747-762.

Publications of the year
Articles in International Peer-Reviewed Journal

[11] F. BLANQUI, A. KOPROWSKI. CoLoR: a Coq library on well-founded rewrite relations and its application
to the automated verification of termination certificates, in "Mathematical Structures in Computer Science",
2011, vol. 21, no 4, p. 827-859 [DOI : 10.1017/S0960129511000120], http://hal.inria.fr/inria-00543157/en.

[12] S. SUZUKI, K. KUSAKARI, F. BLANQUI. Argument filterings and usable rules in higher-order rewrite
systems, in "IPSJ Transactions on Programming", March 2011, vol. 4, no 2, p. 1-12, http://hal.inria.fr/inria-
00555008/en.

[13] H. WAN, C. GANG, X. SONG, M. GU. Formalisation and verification of programmable logic controllers
timers in Coq, in "IET Software", February 2011, http://hal.inria.fr/inria-00612410/en.

http://hal.inria.fr/inria-00546228/en/
http://hal.inria.fr/inria-00543157/en/
http://hal.inria.fr/inria-00275382/en/
http://hal.inria.fr/inria-00517257/en/
http://hal.inria.fr/inria-00543157/en
http://hal.inria.fr/inria-00555008/en
http://hal.inria.fr/inria-00555008/en
http://hal.inria.fr/inria-00612410/en

22 Activity Report INRIA 2011

[14] R. WANG, X. SONG, J. ZHU, M. GU. Formal modeling and synthesis of programmable logic controllers, in
"Computers in Industry", January 2011, http://hal.inria.fr/inria-00612411/en.

[15] L. XIAO, M. GU, J. SUN. The Denotational Semantics Definition of PLC Programs Based on Extended
λ-Calculus, in "Communications in Computer and Information Science", July 2011, vol. 176(II), no 40-46,
http://hal.inria.fr/inria-00612409/en.

Articles in National Peer-Reviewed Journal

[16] L. XIAO, M. GU, J. SUN. A Formal Definition Method of Denotational Semantics and Functions for PLC
Program Language, in "Journal of Central South University (in Chinese)", July 2011, http://hal.inria.fr/inria-
00612407/en.

International Conferences with Proceedings

[17] B. BARRAS, J.-P. JOUANNAUD, P.-Y. STRUB, Q. WANG. CoqMTU: a higher-order type theory with a
predicative hierarchy of universes parametrized by a decidable first-order theory, in "Twenty-Sixth Annual
IEEE Symposium on "Logic in Computer Science" - LICS 2011", Toronto, Canada, 2011, http://hal.inria.fr/
inria-00583136/en.

[18] J. O. BLECH, S. OULD BIHA. Verification of PLC Properties Based on Formal Semantics in Coq, in "Interna-
tional Conference on Software Engineering and Formal Methods, SEFM 2011", Montevideo, Uruguay, June
2011, http://hal.inria.fr/inria-00601907/en.

[19] Y. DENG, S. GRUMBACH, J.-F. MONIN. A Framework for Verifying Data-Centric Protocols, in "DisCoTec
2011 - 6th International Federated Conferences on Formal Techniques for Distributed Systems", Reykjavik,
Iceland, R. BRUNI, J. DINGEL (editors), Lecture Notes in Computer Science, Springer, December 2011, vol.
6722, p. 106-120 [DOI : 10.1007/978-3-642-21461-5_7], http://hal.inria.fr/hal-00647802/en.

[20] V. JOLOBOFF, X. ZHOU, C. HELMSTETTER, X. GAO. Fast Instruction Set Simulation Using LLVM-based
Dynamic Translation, in "International MultiConference of Engineers and Computer Scientists 2011", Hong
Kong, China, Springer, July 2011, vol. 2188, p. 212-216, http://hal.inria.fr/hal-00646947/en.

[21] Y. JUNG, W. LEE, B.-Y. WANG, K. YI. Predicate Generation for Learning-Based Quantifier-Free Loop
Invariant Inference, in "TACAS 2011 - Seventeenth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems", Saarbruecken, Germany, Lecture Notes in Computer Science,
Springer, March 2011, vol. 6605, p. 205-219 [DOI : 10.1007/978-3-642-19835-9], http://hal.inria.fr/hal-
00648946/en.

[22] H. KONG, H. ZHANG, X. SONG, M. GU, J. SUN. Proving Computational Geometry Algorithms in TLA+2,
in "5th IEEE International Conference on Theoretical Aspects of Software Engineering(TASE 2011)", Xi’an,
China, August 2011, http://hal.inria.fr/inria-00612413/en.

[23] S. OULD BIHA. A formal semantics of PLC programs in Coq, in "IEEE Computer Software and Applications,
COMPSAC’11", Munich, Germany, July 2011, http://hal.inria.fr/inria-00601906/en.

[24] X. SHI, J.-F. MONIN, F. TUONG, F. BLANQUI. First steps towards the certification of an ARM simulator
using Compcert, in "First International Conference on Certified Programs and Proofs", Hengchun, Taiwan,
Province Of China, December 2011, http://hal.inria.fr/inria-00624833/en.

http://hal.inria.fr/inria-00612411/en
http://hal.inria.fr/inria-00612409/en
http://hal.inria.fr/inria-00612407/en
http://hal.inria.fr/inria-00612407/en
http://hal.inria.fr/inria-00583136/en
http://hal.inria.fr/inria-00583136/en
http://hal.inria.fr/inria-00601907/en
http://hal.inria.fr/hal-00647802/en
http://hal.inria.fr/hal-00646947/en
http://hal.inria.fr/hal-00648946/en
http://hal.inria.fr/hal-00648946/en
http://hal.inria.fr/inria-00612413/en
http://hal.inria.fr/inria-00601906/en
http://hal.inria.fr/inria-00624833/en

Team FORMES 23

[25] L. XIAO, M. GU, J. SUN. The Verification of PLC Program Based on Interactive Theorem Proving Tool COQ,
in "4th IEEE International Conference on Computer Science and Information Technology(ICCSIT2011)",
Chengdu, China, June 2011, http://hal.inria.fr/inria-00612408/en.

[26] H. ZHANG, M. GU, X. SONG. Edola: A Domain Modeling and Verification Language for PLC Systems,
in "The Sixth International Conference on Software Engineering (ICSEA 2011)", Barcelona, Spain, October
2011, http://hal.inria.fr/inria-00612416/en.

[27] H. ZHANG, Y. JIANG, H. WILLIAM N.N., X. SONG, M. GU. Domain-driven Probabilistic Analysis of
Programmable Logic Controllers, in "13th International Conference on Formal Engineering Methods(ICFEM
2011)", Durham, United Kingdom, October 2011, http://hal.inria.fr/inria-00612414/en.

References in notes

[28] ARM Architecture Reference Manual DDI 0100I, ARM, 2005.

[29] Certification Problem Format, http://cl-informatik.uibk.ac.at/software/cpf/.

[30] F. GHENASSIA (editor). Transaction-Level Modeling with SystemC. TLM Concepts and Applications for
Embedded Systems, Springer, June 2005, ISBN 0-387-26232-6.

[31] Software Manual, Renesas 32-Bit RISC Microcomputer SuperHTM RISC engine Family, Renesas, 2006.

[32] Termination Competition, http://termination-portal.org/wiki/Termination_Competition.

[33] OSCI SystemC TLM 2.0.1, Open SystemC Initiative, 2009, http://www.systemc.org/.

[34] F. BELLARD. QEMU, A Fast And Portable Dynamic Translator, in "USENIX Annual Technical Conference",
Philadelphia, PA, USA, 2005.

[35] F. BLANQUI, C. HELMSTETTER, V. JOLOBOFF, J.-F. MONIN, X. SHI. Designing a CPU model: from a
pseudo-formal document to fast code, in "3rd Workshop on: Rapid Simulation and Performance Evaluation:
Methods and Tools", Grèce Heraklion, 2011, http://hal.inria.fr/inria-00546228/en/.

[36] A. R. BRADLEY, Z. MANNA, H. B. SIPMA. What’s decidable about arrays, in "VMCAI ’06", E. A.
EMERSON, K. S. NAMJOSHI (editors), LNCS, Springer, 2006, vol. 3855, p. 427–442.

[37] D. BURGER, T. M. AUSTIN. The SimpleScalar tool set, version 2.0, in "SIGARCH Comput. Archit. News",
1997, vol. 25, no 3, p. 13–25, http://doi.acm.org/10.1145/268806.268810.

[38] L. CAI, D. GAJSKI. Transaction level modeling: an overview, in "CODES+ISSS ’03: Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis", New York,
NY, USA, ACM Press, 2003, p. 19–24, http://doi.acm.org/10.1145/944645.944651.

[39] Y.-F. CHEN, E. CLARKE, A. FARZAN, M.-H. TSAI, Y.-K. TSAY, B.-Y. WANG. Automated Assume-
Guarantee Reasoning through Implicit Learning, in "Computer Aided Verification", Royaume-Uni Edinburgh,
2010, http://hal.inria.fr/inria-00496949/en/.

http://hal.inria.fr/inria-00612408/en
http://hal.inria.fr/inria-00612416/en
http://hal.inria.fr/inria-00612414/en
http://cl-informatik.uibk.ac.at/software/cpf/
http://termination-portal.org/wiki/Termination_Competition
http://www.systemc.org/
http://hal.inria.fr/inria-00546228/en/
http://doi.acm.org/10.1145/268806.268810
http://doi.acm.org/10.1145/944645.944651
http://hal.inria.fr/inria-00496949/en/

24 Activity Report INRIA 2011

[40] E. CLARKE, O. GRUMBERG, D. A. PELED. Model Checking, The MIT Press, Cambridge, Massachusetts,
1999.

[41] B. CMELIK, D. KEPPEL. Shade: a fast instruction-set simulator for execution profiling, in "SIGMETRICS
Perform. Eval. Rev.", 1994, vol. 22, no 1, p. 128–137, http://doi.acm.org/10.1145/183019.183032.

[42] J. M. COBLEIGH, G. S. AVRUNIN, L. A. CLARKE. Breaking Up is Hard to do: An Evaluation of Automated
Assume-Guarantee Reasoning, in "ACM Trans. Software Engineering Methodology", 2008, vol. 17, no 2.

[43] J. M. COBLEIGH, D. GIANNAKOPOULOU, C. S. PĂSĂREANU. Learning Assumptions for Compositional
Verification, in "TACAS", H. GARAVEL, J. HATCLIFF (editors), Lecture Notes in Computer Science, Springer
Verlag, 2003, vol. 2619, p. 331–346.

[44] COQ DEVELOPMENT TEAM. The Coq Reference Manual, Version 8.2, INRIA Rocquencourt, France, 2008,
http://coq.inria.fr/.

[45] J. D’ERRICO, W. QIN. Constructing portable compiled instruction-set simulators: an ADL-driven approach,
in "DATE ’06: Proceedings of the conference on Design, automation and test in Europe", 3001 Leuven,
Belgium, Belgium, European Design and Automation Association, 2006, p. 112–117.

[46] Y. DENG, S. GRUMBACH, J.-F. MONIN. Towards Verifying Declarative Netlog Protocols with Coq, 2010,
http://hal.inria.fr/inria-00506093/en/.

[47] L. FENG, M. KWIATKOWSKA, D. PARKER. Compositional Verification of Probabilistic Systems using
Learning, in "QEST", G. CIARDO, R. SEGAL (editors), IEEE CS Press, 2010.

[48] F. FUMMI, G. PERBELLINI, M. LOGHI, M. PONCINO. ISS-centric modular HW/SW co-simulation., in "ACM
Great Lakes Symposium on VLSI", 2006, p. 31-36.

[49] A. GAVARE. GXemul Documentation, 2007, http://gxemul.sourceforge.net/gxemul-stable/doc/index.html.

[50] P. GERIN, S. YOO, G. NICOLESCU, A. A. JERRAYA. Scalable and flexible cosimulation of SoC designs with
heterogeneous multi-processor target architectures, in "ASP-DAC ’01: Asia South Pacific Design Automation
Conference", ACM, 2001, p. 63–68.

[51] J. GIESL, R. THIEMANN, P. SCHNEIDER-KAMP, S. FALKE. Mechanizing and Improving Dependency Pairs,
in "Journal of Automated Reasoning", 2006, vol. 37, no 3, p. 155-203.

[52] J.-Y. GIRARD, Y. LAFONT, P. TAYLOR. Proofs and Types, Cambridge University Press, 1988.

[53] N. HIROKAWA, A. MIDDELDORP. Tyrolean Termination Tool: Techniques and Features, in "Information and
Computation", 2007, vol. 205, no 4, p. 474-511.

[54] IEEE. IEEE Standard 1666 - SystemC Language Reference Manual, IEEE, 2006.

[55] J.-P. JOUANNAUD, V. VAN OOSTROM. Diagrammatic Confluence and Completion, in "International
Conference in Automata, Languages and Programming", Grèce Rhodes, W. THOMAS (editor), Springer
Berlin/Heidelberg, 2009, vol. 2, http://hal.inria.fr/inria-00436070/en/.

http://doi.acm.org/10.1145/183019.183032
http://coq.inria.fr/
http://hal.inria.fr/inria-00506093/en/
http://gxemul.sourceforge.net/gxemul-stable/doc/index.html
http://hal.inria.fr/inria-00436070/en/

Team FORMES 25

[56] Y. JUNG, S. KONG, B.-Y. WANG, K. YI. Deriving Invariants by Algorithmic Learning, Decision Procedures,
and Predicate Abstraction, in "Verification, Model Checking, and Abstract Interpretation", Espagne Madrid,
2010, http://hal.inria.fr/inria-00517257/en/.

[57] S. KONG, Y. JUNG, C. DAVID, B.-Y. WANG, K. YI. Automatically Inferring Quantified Loop Invariants
by Algorithmic Learning from Simple Templates, in "ASIAN Symposium on Programming Languages and
Systems", Chine Shanghai, K. UEDA (editor), 2010, http://hal.inria.fr/inria-00515166/en/.

[58] D. KROENING, O. STRICHMAN. Decision Procedures: An Algorithmic Point of View, Springer, 2008, ISBN-
10: 3540741046.

[59] L. LAMPORT. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers,
Addison-Wesley, 2002.

[60] X. LEROY, D. DOLIGEZ, J. GARRIGUE, D. RÉMY, J. VOUILLON. The Objective Caml system release 3.11,
Documentation and user’s manual, INRIA, France, 2008, http://caml.inria.fr/.

[61] X. LEROY. A formally verified compiler back-end, in "Journal of Automated Reasoning", 2009, vol. 43, no 4,
p. 363-446.

[62] R. MAYR, T. NIPKOW. Higher-Order Rewrite Systems and their Confluence, in "Theoretical Computer
Science", 1998, vol. 192, no 2, p. 3-29.

[63] M. MEERWEIN, C. BAUMGARTNER, T. WIEJA, W. GLAUERT. Embedded systems verification with FGPA-
enhanced in-circuit emulator, in "ISSS ’00: Proceedings of the 13th international symposium on System
synthesis", Washington, DC, USA, IEEE Computer Society, 2000, p. 143–148, http://doi.acm.org/10.1145/
501790.501821.

[64] G. NELSON. Techniques for program verification, Stanford University, Stanford, CA, USA, 1980.

[65] G. NELSON, D. C. OPPEN. Simplification by cooperating decision procedures, in "ACM Trans. Program.
Lang. Syst.", 1979, vol. 1, no 2, p. 245–257.

[66] A. NOHL, G. BRAUN, O. SCHLIEBUSCH, R. LEUPERS, H. MEYR, A. HOFFMANN. A universal technique for
fast and flexible instruction-set architecture simulation, in "DAC ’02: Proceedings of the 39th conference on
Design automation", New York, NY, USA, ACM, 2002, p. 22–27, http://doi.acm.org/10.1145/513918.513927.

[67] M. PONCINO, J. ZHU. DynamoSim: a trace-based dynamically compiled instruction set simulator, in "ICCAD
’04: Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design", Washington,
DC, USA, IEEE Computer Society, 2004, p. 131–136, http://dx.doi.org/10.1109/ICCAD.2004.1382557.

[68] M. RESHADI, P. MISHRA, N. DUTT. Instruction set compiled simulation: a technique for fast and flexible
instruction set simulation, in "DAC ’03: Proceedings of the 40th conference on Design automation", New
York, NY, USA, ACM, 2003, p. 758–763, http://doi.acm.org/10.1145/775832.776026.

[69] P. SCHAUMONT, D. CHING, I. VERBAUWHEDE. An interactive codesign environment for domain-specific
coprocessors, in "ACM Trans. Des. Autom. Electron. Syst.", 2006, vol. 11, no 1, p. 70–87, http://doi.acm.
org/10.1145/1124713.1124719.

http://hal.inria.fr/inria-00517257/en/
http://hal.inria.fr/inria-00515166/en/
http://caml.inria.fr/
http://doi.acm.org/10.1145/501790.501821
http://doi.acm.org/10.1145/501790.501821
http://doi.acm.org/10.1145/513918.513927
http://dx.doi.org/10.1109/ICCAD.2004.1382557
http://doi.acm.org/10.1145/775832.776026
http://doi.acm.org/10.1145/1124713.1124719
http://doi.acm.org/10.1145/1124713.1124719

26 Activity Report INRIA 2011

[70] R. SEBASTIANI. Lazy satisfiability modulo theories, in "Journal on Satisfiability, Boolean Modeling and
Computation", 2007, vol. 3, no 3-4, p. 141–224.

[71] H. SHEINI, K. SAKALLAH. From propositional satisfiability to satisfiability modulo theories, in "Theory and
Applications of Satisfiability Testing-SAT 2006", 2006, p. 1–9.

[72] P.-Y. STRUB. Type Theory and Decision Procedures, École Polytechnique, July 2008.

[73] P.-Y. STRUB. Coq Modulo Theory, in "19th EACSL Annual Conference on Computer Science Logic",
Tchèque, République Brno, A. DAWAR, H. VEITH (editors), Springer, 2010, vol. 6247, p. 529–543, http://
hal.inria.fr/inria-00497404/en/.

[74] TECHNICAL COMMITTEE NO.65. IEC 1131 - Programmable Controllers, International Electrotechnical
Commission, 1997.

[75] C. WEIDENBACH, D. DIMOVA, A. FIETZKE, R. KUMAR, M. SUDA, P. WISCHNEWSKI. SPASS Version 3.5,
in "Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings", R. A. SCHMIDT (editor), Lecture Notes in Computer Science,
Springer Verlag, 2009, p. 140-145.

[76] L. DE MOURA, B. DUTERTRE, N. SHANKAR. A tutorial on satisfiability modulo theories, in "CAV’07: Pro-
ceedings of the 19th international conference on Computer aided verification", Berlin, Heidelberg, Springer-
Verlag, 2007, p. 20–36.

[77] W.-P. DE ROEVER, F. DE BOER, U. HANNEMAN, J. HOOMAN, Y. LAKHNECH, M. POEL, J. ZWIERS.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods, Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 2001, no 54.

http://hal.inria.fr/inria-00497404/en/
http://hal.inria.fr/inria-00497404/en/

