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2. Overall Objectives

2.1. GALEN@Ecole-Centrale
Computational vision is one of the most challenging research domains in engineering sciences. The aim is
to reproduce human visual perception through intelligent processing of visual data. The application domains
span from computer aided diagnosis to industrial automation & robotics. The most common mathematical
formulation to address such a challenge is through mathematical modeling. In such a context, first the solution
of the desired vision task is expressed in the form of a parameterized mathematical model. Given such a
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model, the next task consists of associating the model parameters with the available observations, which is
often called the model-to-data association. The aim of this task is to determine the impact of a parameter
choice to the observations and eventually maximize/minimize the adequacy of these parameters with the visual
observations. In simple words, the better the solution is, the better it will be able to express and fit the data. This
is often achieved through the definition of an objective function on the parametric space of the model. Last, but
not least given the definition of the objective function, visual perception is addressed through its optimization
with respect to the model parameters. To summarize, computation visual perception involves three aspects,
a task-specific definition of a parametric model, a data-specific association of this model with the available
observations and last the optimization of the model parameters given the objective and the observations.

Such a chain processing inherits important shortcomings. The curse of dimensionality is often used to express
the importance of the model complexity. In simple words, the higher the complexity of the model is, the better
its expressive power will be with counter effect the increase of the difficulty of the inference process. Non-
linearity is another issue to be addressed which simply states that the association between the model and the
data is a (highly) non-linear function and therefore direct inference is almost infeasible. The impact of this
aspect is enforced from the curse of non-convexity that characterizes the objective function. Often it lives in
high-dimensional spaces and is ill posed making exact inference problematic (in many cases not possible)
and computationally expensive. Last, but not least modularity and scalability is another important concern
to be addressed in the context of computational vision. The use of task-specific modeling and algorithmic
solutions make their portability infeasible and therefore transfer of knowledge from one task to another is not
straightforward while the methods do not always scale well with respect either to the dimensionality of the
representation or the data.

GALEN aims at proposing innovative techniques towards automatic structuring, interpretation and longitu-
dinal modeling of visual data. In order to address these fundamental problems of computational perception,
GALEN investigates the use of discrete models of varying complexity. These methods exhibit an important
number of strengths such as their ability to be modular with respect to the input measurements (clinical data),
the nature of the model (certain constraints are imposed from computational perspective in terms of the level
of interactions), and the model-to-data association while being computational efficient.

2.2. Highlights
• ICCV Participation: GALEN has participated in the 2011 International Conference in Computer

Vision (ICCV’11) conference, the most selective conference in the field of computer vision and
medical image analysis with five papers (acceptance rate %20).

• CVPR Participation: GALEN has participated in the 2011 annual IEEE Conference in Computer
Vision and Pattern Recognition (CVPR’11) conference, the leading event in the field of computer
vision and medical image analysis with five papers (double blind full submissions, acceptance rate
%25) including one oral presentation (out of a 60).

• MICCAI Participation: GALEN has participated in the 2011 annual Medical Image Computing
and Computer Assisted Intervention (MICCAI’11) conference one of the leading events in the field
of medical image analysis with four (double blind full submissions, acceptance rate %30).

• ISBI Participation: GALEN has participated in the 2011 International Symposium of Biomedical
Imaging (ISBI’11) conference, one of the notable events in the field of medical image analysis with
four papers (acceptance rate %40) including three oral presentations.

• IEEE Fellow & BMVC Plenary Speaker: N. Paragios was promoted to the IEEE Fellow grade and
was one of the plenary speakers of the 22nd edition of the British Machine Vision Conference.

3. Scientific Foundations
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3.1. Discrete Computational Perception
A wide variety of tasks in medical image analysis can be formulated as discrete labeling problems. In very
simple terms, a discrete optimization problem can be stated as follows: we are given a discrete set of variables
V, all of which are vertices in a graph G. The edges of this graph (denoted by E) encode the variables’
relationships. We are also given as input a discrete set of labels L. We must then assign one label from L

to each variable in V. However, each time we choose to assign a label, say, xp1 to a variable p1, we are forced
to pay a price according to the so-called singleton potential function gp(xp), while each time we choose to
assign a pair of labels, say, xp1 and xp2 to two interrelated variables p1 and p2 (two nodes that are connected
by an edge in the graph G), we are also forced to pay another price, which is now determined by the so called
pairwise potential function fp1p2(xp1 , xp2). Both the singleton and pairwise potential functions are problem
specific and are thus assumed to be provided as input.

Our goal is then to choose a labeling which will allow us to pay the smallest total price. In other words, based
on what we have mentioned above, we want to choose a labeling that minimizes the sum of all the MRF
potentials, or equivalently the MRF energy. This amounts to solving the following optimization problem:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2). (1)

The use of such a model can describe a number of challenging problems in medical image analysis.
However these simplistic models can only account for simple interactions between variables, a rather
constrained scenario for high-level medical imaging perception tasks. One can augment the expres-
sion power of this model through higher order interactions between variables, or a number of cliques
{Ci, i ∈ [1, n] = {{pi1 , · · · , pi|Ci|}} of order |Ci| that will augment the definition of V and will introduce
hyper-vertices:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2) +
∑
Ci∈E

fp1···pn(xpi1 , · · · , pxi|Ci|
). (2)

where fp1···pn is the price to pay for associating the labels (xpi1 , · · · , pxi|Ci|
) to the nodes (p1 · · · pi|Ci|).

Parameter inference, addressed by minimizing the problem above, is the most critical aspect in computational
medicine and efficient optimization algorithms are to be evaluated both in terms of computational complexity
as well as of inference performance. State of the art methods include deterministic and non-deterministic
annealing, genetic algorithms, max-flow/min-cut techniques and relaxation. These methods offer certain
strengths while exhibiting certain limitations, mostly related to the amount of interactions which can be
tolerated among neighborhood nodes. In the area of medical imaging where domain knowledge is quite strong,
one would expect that such interactions should be enforced at the largest scale possible.

3.2. Machine Learning & Structure Prediction
The foundation of statistical inference is to learn a function that minimizes the expected loss of a prediction
with respect to some unknown distribution

R(f) =

∫
`(f, x, y)dP (x, y), (3)

where `(f, x, y) is a problem specific loss function that encodes a penalty for predicting f(x) when the correct
prediction is y. In our case, we consider x to be a medical image, and y to be some prediction, e.g. the
segmentation of a tumor, or a kinematic model of the skeleton. The loss function, `, is informed by the costs
associated with making a specific misprediction. As a concrete example, if the true spatial extent of a tumor
is encoded in y, f(x) may make mistakes in classifying healthy tissue as a tumor, and mistakes in classifying
diseased tissue as healthy. The loss function should encode the potential physiological damage resulting from
erroneously targeting healthy tissue for irradiation, as well as the risk from missing a portion of the tumor.
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A key problem is that the distribution P is unknown, and any algorithm that is to estimate f from labeled
training examples must additionally make an implicit estimate of P . A central technology of empirical
inference is to approximate R(f) with the empirical risk,

R(f) ≈ R̂(f) =
1

n

n∑
i=1

`(f, xi, yi), (4)

which makes an implicit assumption that the training samples (xi, yi) are drawn i.i.d. from P . Direct
minimization of R̂(f) leads to overfitting when the function class f ∈ F is too rich, and regularization is
required:

min
f∈F

λΩ(‖f‖) + R̂(f), (5)

where Ω is a monotonically increasing function that penalizes complex functions.

Equation (5) is very well studied in classical statistics for the case that the output, y ∈ Y, is a binary or scalar
prediction, but this is not the case in most medical imaging prediction tasks of interest. Instead, complex
interdependencies in the output space leads to difficulties in modeling inference as a binary prediction problem.
One may attempt to model e.g. tumor segmentation as a series of binary predictions at each voxel in a
medical image, but this violates the i.i.d. sampling assumption implicit in Equation (4). Furthermore, we
typically gain performance by appropriately modeling the inter-relationships between voxel predictions, e.g.
by incorporating pairwise and higher order potentials that encode prior knowledge about the problem domain.
It is in this context that we develop statistical methods appropriate to structured prediction in the medical
imaging setting.

3.3. Self-Paced Learning with Missing Information
Many tasks in artificial intelligence are solved by building a model whose parameters encode the prior domain
knowledge and the likelihood of the observed data. In order to use such models in practice, we need to estimate
its parameters automatically using training data. The most prevalent paradigm of parameter estimation is
supervised learning, which requires the collection of the inputs xi and the desired outputs yi. However, such an
approach has two main disadvantages. First, obtaining the ground-truth annotation of high-level applications,
such as a tight bounding box around all the objects present in an image, is often expensive. This prohibits the
use of a large training dataset, which is essential for learning the existing complex models. Second, in many
applications, particularly in the field of medical image analysis, obtaining the ground-truth annotation may not
be feasible. For example, even the experts may disagree on the correct segmentation of a microscopical image
due to the similarities between the appearance of the foreground and background.

In order to address the deficiencies of supervised learning, researchers have started to focus on the problem
of parameter estimation with data that contains hidden variables. The hidden variables model the missing
information in the annotations. Obtaining such data is practically more feasible: image-level labels (‘contains
car’,‘does not contain person’) instead of tight bounding boxes; partial segmentation of medical images.
Formally, the parameters w of the model are learned by minimizing the following objective:

min
w∈W

R(w) +

n∑
i=1

∆(yi, yi(w), hi(w)). (6)

Here, W represents the space of all parameters, n is the number of training samples, R(·) is a regularization
function, and ∆(·) is a measure of the difference between the ground-truth output yi and the predicted output
and hidden variable pair (yi(w), hi(w)).
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Previous attempts at minimizing the above objective function treat all the training samples equally. This is in
stark contrast to how a child learns: first focus on easy samples (‘learn to add two natural numbers’) before
moving on to more complex samples (‘learn to add two complex numbers’). In our work, we capture this
intuition using a novel, iterative algorithm called self-paced learning (SPL). At an iteration t, SPL minimizes
the following objective function:

min
w∈W,v∈{0,1}n

R(w) +

n∑
i=1

vi∆(yi, yi(w), hi(w))− µt
n∑
i=1

vi. (7)

Here, samples with vi = 0 are discarded during the iteration t, since the corresponding loss is multiplied by
0. The term µt is a threshold that governs how many samples are discarded. It is annealed at each iteration,
allowing the learner to estimate the parameters using more and more samples, until all samples are used. Our
results already demonstrate that SPL estimates accurate parameters for various applications such as image
classification, discriminative motif finding, handwritten digit recognition and semantic segmentation. We will
investigate the use of SPL to estimate the parameters of the models of medical imaging applications, such as
segmentation and registration, that are being developed in the GALEN team. The ability to handle missing
information is extremely important in this domain due to the similarities between foreground and background
appearances (which results in ambiguities in annotations). We will also develop methods that are capable of
minimizing more general loss functions that depend on the (unknown) value of the hidden variables, that is,

min
w∈W,θ∈Θ

R(w) +

n∑
i=1

∑
hi∈H

Pr (hi|xi, yi; θ)∆(yi, hi, yi(w), hi(w)). (8)

Here, θ is the parameter vector of the distribution of the hidden variables hi given the input xi and output yi,
and needs to be estimated together with the model parameters w. The use of a more general loss function will
allow us to better exploit the freely available data with missing information. For example, consider the case
where yi is a binary indicator for the presence of a type of cell in a microscopical image, and hi is a tight
bounding box around the cell. While the loss function ∆(yi, yi(w), hi(w)) can be used to learn to classify
an image as containing a particular cell or not, the more general loss function ∆(yi, hi, yi(w), hi(w)) can be
used to learn to detect the cell as well (since hi models its location).

4. Application Domains
4.1. Application Domains

• Large Scale Urban Modeling: The use of satellite imaging along with range data towards large
scale image-driven reconstruction. The aim is to produce scalable representations of 3D models that
are compact, modular and able to provide realistic 3D representations of real visual data.

• Objet Recognition: The use annotated data-bases towards learning class-specific visual and geo-
metric object characteristics to perform recognition.

• MR & Muscular Diseases: The use of MR and Diffusion Tensor Imaging are investigated in
collaboration with the Henri Mondor University Hospital and Institut of Myology towards automatic
quantification of muscular mass loss and non-invassive biopsy. The aim is to provide tools that
could be used to automatically analyze MR imaging and extract useful clinical measurements
(Insitut of Myology), and assess the potential impact of diffusion tensor imaging towards automatic
quantification either of muscular diseases progression.

• MR Brain Imaging towards Low-Gliomas Tumor Brain Understanding: The use of contrast
enhanced imaging is investigated in collaboration with the Montpellier University Hospital towards
better understanding of low-gliomas positioning, automatic tumor segmentation/identification and
longitudinal (tumor) growth modeling.
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5. Software

5.1. Deformable Registration Software
Participants: Nikos Paragios [Correspondant], Ben Glocker, Aristeidis Sotiras, Nikos Komodakis.

DROP is a deformable registration platform in C++ for the medical imaging community (publicly available
at http://www.mrf-registration.net) developed mainly at Ecole Centrale, Technical University of Munich and
University of Crete. This is the first publicly available platform which contains most of the existing metrics
to perform registration under the same concept. The platform is used for clinical research from approximately
3,000 users worldwide.

5.2. Fast Primal Dual Strategies for Optimization of Markov Random Fields
Participants: Nikos Komodakis [Correspondant], Nikos Paragios, George Tziritas.

FASTPD is an optimization platform in C++ for the computer vision and medical imaging community
(publicly available at http://www.csd.uoc.gr/~komod/FastPD/ ) developed mainly at Ecole Centrale and
University of Crete. This is the most efficient publicly available platform in terms of a compromise of
computational efficiency and ability to converge to a good minimum for the optimization of generic MRFs.
The platform is used from approximately 1,500 users worldwide.

5.3. imaGe-based Procedural Modeling Using Shape Grammars
Participants: Olivier Teboul [Correspondant], Iasonas Kokkinos, Panagiotis Koutsourakis, Loic Simon, Nikos
Paragios.

GRAPES is a generic image parsing library based on re-inforcement learning. It can handle grammars (binary-
split, four-color, Hausmannian) and image-based rewards (Gaussian mixtures, Randomized Forests) of varying
complexity while being modular and computationally efficient both in terms of grammar and image rewards.
The platform is used from approximately 500 users worldwide.

5.4. Texture Analysis Using Modulation Features and Generative Models
Participants: Iasonas Kokkinos [Correspondant], Georgios Evangelopoulos.

TEXMEG is a front-end for texture analysis and edge detection platform in Matlab that relies on Gabor
filtering and image demodulation (publicly available at http://cvsp.cs.ntua.gr/software/texture/). Includes
frequency- and time- based definition of Gabor- and other Quadrature-pair filterbanks, demodulation with the
Regularized Energy Separation Algorithm and Texture/Edge/Smooth classification based on MDL criterion.
The platform is used from approximately 250 users worldwide.

6. New Results

6.1. Reconstruction
Participants: Panagiotis Koutsourakis, Helene Langet, Loic Simon, Olivier Teboul, Gilles Fleury, Elisabeth
Lahalle, Yves Trousset, Cyril Riddell, Nikos Paragios.

http://www.mrf-registration.net
http://www.csd.uoc.gr/~komod/FastPD/ 
http://cvsp.cs.ntua.gr/software/texture/


Team GALEN 7

• Image-based Procedural Modeling of Urban environments: In [20] we develop a multiple
hypotheses testing algorithm for image-based/grammar-driven building modeling. Shape grammars
are used to express the variation of the observed architecture. Such a model is coupled with the
observations through a maximum likelihood principle where the aim is to maximize the posterior
segmentation probability in the image plane given the partition being determined from the grammar
derivation. The unknown parameters of the process involve the grammar derivation tree and the
associated parameters. Such a mixed continuous/discrete problem is solved through a hill climbing
approach that involves joint perturbations in the derivation and parameter space. Promising results
demonstrated the potentials of such a formulation for complex Parisian architectures. This idea was
further extended in [40] where reinforcement learning was used as optimization principle. 2D Image-
based grammar parsing was expressed as a Markov decision process where an agent ought to take
actions in an environment so as to maximize some notion of cumulative reward. Performance in
particular computational gain over [20] demonstrated the extreme potentials of such a formulation. In
order to cope with multi-view geometry, the grammar was further derived to include 3D components
and the optimization process was amended to deal with multiple views. An evolutionary computation
process (based on consistent mutation and recombination of partial grammar trees) was proposed to
fuse image and depth-based information. The use of the Pareto frontier between the two concurrent
components of the objective function provides a principle way to determine the optimal solution of
the designed objective function.

• Compressed Sensing Digital Subtraction Rotational Angiography: in [39] we develop an ex-
tension of iterative filtered backprojection method for reconstruction of three-dimensional vascular
structures from two spins. Our contribution refers to an approach that improves the reconstruction
quality of non-sparse volumes when there exists a sparse combination of these volumes. This is
achieved through a joint reconstruction of the mask and contrast volumes via ′l′ − 1-minimization
of sparse priors. These ideas were further explored to address three-dimensional reconstruction in in-
terventional radiology in [30] through a regularized extension of the iterative filtered backprojection
algorithm. To this end the conventional TV-norm was replaced from a new sparsity constraint that
relies on the ′l′ − 1-minimization-norm and the positivity constraint. The use of such a constraint
allows for removing most of the subsampling artifacts while preserving background structures.

6.2. Matching/Segmentation
Participants: Haithem Boussaid, Iasonas Kokkinos, Chaohui Wang, Bo Xiang, Ahmet Besbes, Ben Glocker,
Nikos Komodakis, Nikos Paragios.

• Rapid Deformable Part Model Detection: in [27] we introduce a Branch-and-Bound technique
which efficiently finds the most promising configuration of a pictorial structure model given an
image. The fastest previously known techniques are linear in the image size; our technique has a
best-case complexity that is logarithmic in the image size. When evaluated on standard datasets
(Pascal benchmark) our technique gives a 5- to 15-fold speedup. Moreover, when evaluated in the
multi-object detection problem our technique’s complexity scales sublinearly also in the number of
objects, resulting in 20- to 100- fold speedups when evaluated with 20 object categories.

• Segmentation with Deformable Graph-based Priors: in [22] we have introduced a novel for-
mulation to address deformable segmentation using graph-based priors while being able to handle
partial-correspondences. Segmentation was formulated as a matching task, where candidate corre-
spondences were determined using boosting, and the assignment problem was solved using MAP
inference constrained by a graph-based deformable prior. The notion of missing/erroneous corre-
spondences was introduced in the process leading to state-of-the art results once compared with
prior art in the field. The same prior was used in the context of the segmentation of tagging MR heart
images [37]. The main contribution of this paper was the exact estimation of the region-based prob-
ability likelihood within a pair-wise MRF through the use of Stokes theorem and integral images.
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• Deformable Model-based 3D reconstruction: in [23] we introduce a model-based optimization
approach to the 3D reconstruction of Femur images using a small set of low-dose X-Ray images. We
use a parametric deformable model of the Femur surface and fit it to the acquired data by optimizing
its parameters. We incorporate in our optimization criterion multiple aspects of the problem, namely
the 3D surface- to 2D plane projection, region-based statistics, and edge-based terms. Our evaluation
includes both in vitro and in vivo experiments, where our method is shown to yield promising results,
while alleviating the need for time demanding, manual annotations.

• Pose-invariant Higher Order Graph-based Priors: in [36] we have introduced a novel method for
3D model inference from 2D images in the absence of camera pose parameters. The method exploits
higher (fourth) order priors, which alleviate the need of the estimation of the camera parameters.
Furthermore, the proposed formulation couples 3D model inference with 2D correspondences and
results on a single shot solution for both problems in the absence of knowledge of the observer
internal and external parameters.

6.3. Fusion/Registration
Participants: Stavros Alchatzidis, Nicolas Honnorat, Fabrice Michel, Aristeidis Sotiras, Chaohui Wang, Alex
Bronstein, Michael Bronstein, Christos Davatzikos, Ben Glocker, Nikos Komodakis, Yangming Ou, Dimitris
Samaras, Regis Vaillant, Yun Zeng, Nikos Paragios.

• Intrinsic Dense 3D Surface Matching: in [38] a probabilistic tracking framework for registering
two 3D shape that relies on accurate correspondences between all points across the two frames
was proposed. The definition of the matching cost is done using the "uniformization" theory that
is combined with regularization terms that enforce spatial and temporal motion consistencies, into
a maximum a posteriori (MAP) problem which we approximate using a Markov Random Field
(MRF).

• Optimal Linear Registration: in [26] we proposed a novel formulation to address linear registration
of volumetric images (translation, rotation and scale) that guarantees the optimality of the obtained
solution. This was achieved through the approximation of the volumetric data using a sparse
representation and the expression of the registration criterion in the form of a difference of convex
functions. Cutting plain algorithms in the high-dimensional space were used to provide the optimal
solution of the registration problem.

• Quasi-real Time Registration: in [21] we proposed a novel message-passing based optimization
method to for pair-wise Markov Random Fields models and their applications in medical imag-
ing and computer vision. Such a method was integrated to the deformable registration paradigm
introduced in [12]. Such an optimization framework was combined with efficient use of modern ar-
chitectures (Graphics Processing Units) leading to a speed up of at least one order of magnitude with
respect to [12] making quasi real-time deformable registration feasible.

• Metric Learning: in [31] we extend prior work on similarity sensitive hashing to address multimodal
3D registration. The method consists of combining invariant to translation/rotation/scale features
defined at the Gabor space with a machine learning/boosting method that aims to projection
corresponding visual patterns to binary vectors with minimal Hamming distance while maximizing
the distance between no corresponding samples.

• Symmetric Deformable Fusion: in [9] a novel graph-based formulation combining image and
geometric terms was proposed for deformable registration. The method aimed at constraining iconic
registration using a set of landmark correspondences that are sparse, do not inherit redundancy and
are symmetric. The central idea was to simultaneously deform the target and the source image
using two symmetric flows such that the similarity criterion is reaching its lowest potential. This
was achieved through the use of composite symmetric deformation fields. This formulation was
expressed as a graph-based optimization problem leading to promising experimental results.
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• Deformable registration of gene expression data: in [28] the combined iconic/geometric registra-
tion framework introduced in [9] was extended to deal with gene expression data. Similarity Sensitive
Hashing was used to establish costs for landmark correspondences, and a graph-based formulations
with unknowns the deformation vectors was adopted for the objective function. Such an idea was
extended to deal with combined segmentation/registration approach through an atlas in [29] where
subdivision surfaces were considered to represent the deformation grid.

6.4. Physiological Modeling & Spatio-Temporal Analysis
Participants: Nicolas Honnorat, Sarah Parisot, Stephane Chemouny, Hugues Dufaut, Regis Vaillant, Nikos
Paragios.

• Low Gliomas Brain Map: in [33] we introduce a graph-based modeling approach towards spatial
position interpretation of low gliomas brain tumors. This was achieved through unsupervised
clustering from exemplars, where spatial and geometric proximity of tumors were used to determine
the strength connectivity of a graph. Towards automatic estimation of the lowest rank graph that
is able to express the observed variation of tumors, an LP problem was solved that determines
automatically the number of clusters and their centers while associating the training exemplars with
them. Promising results that are well aligned with observations from neuro-sciences demonstrate the
potentials of the proposed formulation.

• Coupled Iconic/Geometric Spatio-temporal Segmentation: in [25] we have introduced a com-
bined elongated structures segmentation/tracking approach that was based on a two-layer graphical
model. The image layer was exploiting the visual space and was seeking to minimize a data-driven
cost while the geometric layers was seeking to establish temporal correspondences of the deforming
structure. These two layers were coupled through a common set of variables acting on the defor-
mation of the control points representing the elongated structure. Guide-wire segmentation [24] and
tracking in low signal-to-noise ratio interventional images demonstrated the extreme potentials of
our approach.

7. Contracts and Grants with Industry

7.1. Contracts with Industry
• Intrasene: spatio-temporal modeling of low gliomas brain tumors [PhD thesis S. Parisot: 2010-

2013]

• General Electric HealthCare
– Compressed Sensing Digital Subtraction Rotational Angiography [PhD thesis H. Langet:

2009-2012]

– Guide-wire Segmentation and Tracking of in interventional Imaging [PhD thesis N.
Honnorat: 2008-2011]

• Microsoft: Image-based Procedural Modeling of Large Scale Urban Environments [PhD thesis O.
Teboul: 2008-2011]

• Siemens: Muscle Segmentation in MR Imaging [PhD thesis P-Y. Baudin: 2009-2012]

8. Partnerships and Cooperations

8.1. Regional Initiatives
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• SubSample: A chair proposal was submitted to DIGITEO in collaboration with the PARIETAL
group (B. Thirion) from Pr. Dimitris Samaras (StonyBrook) aiming understanding correlations
between imaging and gene expressions data. The proposal was accepted and Pr. Samaras will be
spending for the next four years, three months per year at Ecole Centrale. In parallel a PhD student
will be co-supervised between B. Thirion and D. Samaras.

• sterEOS+: MEDICEN excellence cluster supported a regional imitative towards the creation of
the new generation clinical orthopedic work-station. This was a collaborative project consisting
of EOS-Imaging (hardware provide/low dose X-ray Imaging), Global Imaging on Line (software
provider - Picture archiving and communication system), the Arts et Métiers ParisTech (image-
based biomechanical modeling), the GALEN group (medical image processing) and the leading
clinical and university hospitals in the greater Paris area

• ADOC: MEDICEN excellence cluster supported a regional imitative towards an imaging scanner
providing guided diagnosis for cancer surgery. This translational research project will be conducted
in collaboration between public partners (Inria, The Curie Institut and Hopital Tenon) and private
companies (LLtech, Intrasense). A new imaging scanner allowing real time digital histology will be
developed to assist the surgeon. The digital images will be used to give an indication to the surgeon,
after a pathologist’ validation, on whether the surgical procedure shall be continued or stopped.

8.2. European Initiatives
8.2.1. Collaborations in European Programs, except FP7

Program: European Research Council

Project acronym: DIOCLES

Project title: Discrete bIOimaging perCeption for Longitudinal Organ modEling and computEr-aided
diagnosiS

Duration: mois année début - mois année fin 9/2011-8/2016

Coordinator: N. Paragios

Abstract: Recent hardware developments from the medical device manufacturers have made pos-
sible non-invasive/in-vivo acquisition of anatomical and physiological measurements. One can cite
numerous emerging modalities (e.g. PET, fMRI, DTI). The nature (3D/multi-phase/vectorial) and the
volume of this data make impossible in practice their interpretation from humans. On the other hand,
these modalities can be used for early screening, therapeutic strategies evaluation as well as evaluat-
ing bio-markers for drugs development. Despite enormous progress made on the field of biomedical
image analysis still a huge gap exists between clinical research and clinical use. The aim of this
proposal is three-fold. First we would like to introduce a novel biomedical image perception frame-
work for clinical use towards disease screening and drug evaluation. Such a framework is expected
to be modular (can be used in various clinical settings), computationally efficient (would not require
specialized hardware), and can provide a quantitative and qualitative anatomo-pathological indices.
Second, leverage progress made on the field of machine learning along with novel, efficient, com-
pact representation of measurements toward computer aided diagnosis. Last, using these emerging
multi-dimensional signals, we would like to perform longitudinal modeling and understanding the
effects of aging to a number of organs and diseases that do not present pre-disease indicators such as
brain neurological diseases, muscular diseases, certain forms of cancer, etc. Such a challenging and
pioneering effort lies on the interface of medicine (clinical context), biomedical imaging (choice of
signals/modalities), machine learning (manifold representations of heterogeneous multivariate vari-
ables), discrete optimization (computationally efficient infer- ence of higher-order models), and bio-
medical image inference (measurements extraction and multi-modal data fusion of heterogeneous
information sources). The expected results of such an approach are societal and scientific. The soci-
etal impact can be tremendous since we aim to provide novel means of using emerging biomedical
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signals to help physicians diagnose, select, customize and follow up therapeutic strategies for life-
threatening diseases. Concerning scientific impact, this framework could influence and introduce
novel means of re-thinking old, unsolved problems in a number of areas such us bioinformatics,
geometric modeling, robotics, computer vision, multimedia, etc.

8.2.2. Major European Organizations with which you have followed Collaborations

Partner 1: Technical University of Munich, Chair for Computer Aided Medical Procedures &
Augmented Reality - Computer Science Department (Germany)
Mono and Multi-modal image fusion using discrete optimization and efficient linear programming.

Partner 2: University of Crete, Computer Vision Group - Computer Science Department, (Greece)
Linear Programming, relaxations and efficient optimization of pair-wise and higher order Markov
Random Fields.

Partner 3: Eidgenössische Technische Hochschule (ETH) - Zürich, Seminar für angewandte Mathe-
matik - Mathematics Department, (Switzerland)
Sparse Representations and Optimal Linear Registration of Volumetric Medical Image Data.

8.3. International Initiatives
8.3.1. INRIA Associate Teams

Galen Team along with the Machine Learning Group (DAGS) of the Computer Science Department of
Stanford University have proposed the creation of the SPLENDID — Self-Paced Learning for Exploiting
Noisy, Diverse or Incomplete Data associate team. The proposal was among the ones accepted in the 2011
INRIA campaign.

8.3.2. INRIA International Partners

• Department of Diagnostic Radiology, University of Pennsylvania: The GALEN and the Section
of Biomedical Image Analysis - SBIA group (Pr. C. Davatzikos) have an established collaboration
during the past three years in the area of deformable image fusion. In this context, PhD candidates of
the GALEN group spend time visiting the SBIA group, while Pr. Paragios participates at a Nantional
Institute Health grant led by SBIA. Such a collaboration led to a number of outstanding rank journal
and conference publications [19].

• Department of Computer Science, StonyBrook, State University of New York: The GALEN and
the Image Analysis Lab - CBL (Pr. D. Samaras) have an established collaboration during the past
three years in the area of graph-based methods in medical imaging and computer vision. Pr. Samaras
holds a research professor position (DIGITEO chair) at Ecole Centrale de Paris. Such a collaboration
led to a number of outstanding rank conference publications during the last year [38], [32].

• Department of Computer Science, University of Houston: The GALEN and the Computational
Biomedicine Lab - CBL (Pr. I. Kakadiaris) have an established collaboration during the past three
years in the area of medical image segmentation and gene expressions imaging processing. Pr.
Paragios holds a research professor position at the Computer Science Department of the University
of Houston. Such a collaboration led to a number of outstanding rank conference publications [19]
during the last year [36], [28].

• Chang Gung Memorial Hospital – Linkou, Taiwan: In the context of France-Taiwan program
sponsored from the French Science Foundation, GALEN (in collaboration with the department of
radiology of Henri Mondor University Hospital), a project (ADAMANTIUS) was initiated with
the Chang Gung Memorial Hospital – Linkou that is the largest private hospital in Taiwan. The
aim of the project is to study the Automatic Detection And characterization of residual Masses in
pAtients with lymphomas through fusioN of whole-body diffusion-weighTed mrI on 3T and 18F-
flUorodeoxyglucoSe pet/ct.
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8.3.3. Visits of International Scientists

• Rafeef Abugharbieh: Jan-Jun. 2011, University of British Columbia - CA.

• Ghassan Hamarneh: Jan-Jun. 2011, Simon Fraser University - CA.

• Dimitris Samaras: Oct. 2011, State University of New York - StonyBrook, US.

8.3.3.1. Internship

• Avinash Singh Bagri: Indian Institute of Technology - New Delhi, IN - Message Passing Methods
on Graphics Processing Units towards Real-time Deformable Image Fusion .

• Krishna Nand Keshava Murthy: University of British Columbia, CA - Iconic/Geometric De-
formable Registration of Diffusion Tensor Images.

• Thanos Papadopoulos: Technical University of Athens, GR - Iconic/Geometric Atlas-based Seg-
mentation of Liver Volumetric Images.

• Jose Carlos Rubio: Universitat Autònoma de Barcelona, ES - HyperGraph Representations and
Matching towards Scene Understanding.

• Stavros Tsogkas: Technical University of Athens, GR - Learning-based Symmetry Detection.

9. Dissemination

9.1. Animation of the scientific community
• Matthew Blaschko

– Guest Editorships: International Journal of Computer Vision: Special Issue on Structured
Prediction and Inference

– Conference Committee: IEEE International Conference on Computer Vision, IEEE Com-
puter Vision and Pattern Recognition, Artificial Intelligence and Statistics (area chair),
Neural Information Processing Systems, Robotics: Science and Systems, International
Conference on Robotics and Automation

– Workshop & Tutorials Organization: British Machine Vision Conference Tutorial on
Structured Prediction, Twentieth Annual Computational Neuroscience Meeting CNS*2011
Tutorial on Machine Learning and Kernel Methods

– Journal Reviewing Services: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Journal of Machine Learning Research, PLoS ONE.

– Invited Seminars/Presentations: Max Planck Institutes, Tübingen; Royal Academy of
Engineering; Gatsby Computational Neuroscience Unit, University College London; Uni-
versity of Sheffield; Radboud Universiteit Nijmegen; University of Birmingham; Toyota
Technological Institute at Chicago; University of Illinois at Chicago; Winter Intelligence
Conference, Future of Humanity Institute, University of Oxford

– Distinctions: Newton International Fellow, Best Reviewer Award IEEE International
Conference on Computer Vision.

• Iasonas Kokkinos
– Editorial Activities: Image and Vision Computing Journal.

– Conference Committee: IEEE International Conference on Computer Vision, IEEE Com-
puter Vision and Pattern Recognition, Artificial Intelligence and Statistics, IEEE Workshop
in Stochastic Image Grammars Workshop, Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition.
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– Journal Reviewing Services: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on Image Processing, IEEE Transactions on Systems Man and
Cybernetics, Part B., Computer Vision and Image Understanding.

– PhD Committee Participation: Olivier Teboul - Ecole Centrale de Paris - FR.

– Master Committee Participation: Stavros Tsogkas - National Technical University of
Athens -GR.

– Invited Seminars/Presentations: Symmetry Detection in Real World Images Workshop,
in conjunction with the IEEE Conference in Computer Vision and Pattern Recognition
- US, Visual Geometry Group, Oxford University - UK, Visual Computing Lunch, ETH
Zurich - CH, Computer Science Department, Università della Svizzera Italiana - CH.

• Pawan Kumar
– Conference Committee: IEEE Conference on Computer Vision and Pattern Recognition,

IEEE International Conference on Computer Vision, International Conference on Machine
Learning, Advances in Neural Information Processing Systems.

– Journal Reviewing Services: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Journal of Machine Learning Research.

– Workshop & Tutorials Organization: IEEE International Conference in Computer Vi-
sion tutorial on Learning with Inference for Discrete Graphical Models, IEEE Computer
Vision and Pattern Recognition Workshop on Inference in Graphical Models with Struc-
tured Potentials.

– Invited Seminars/Presentations: Mysore Park Workshop on Computer Vision - IN, Ecole
Normale Superieure - FR, Ecole Centrale de Paris - FR, Kungliga Techniska Hogskolan,
SE.

– Distinctions: Best Reviewer Award, IEEE Conference in Computer Vision and Pattern
Recognition.

• Nikos Paragios
– Editorial Activities: IEEE Transactions on Pattern Analysis and Machine Intelligence,

International Journal of Computer Vision, Medical Image Analysis, Computer Vision
and Image Understanding, Image and Vision Computing Journal, Machine Vision and
Applications, SIAM Journal in Imaging Sciences.

– Guest Editorships: Computer Vision and Image Understanding, Image and Vision Com-
puting Journal, Special issue on Optimization for vision, graphics and medical imaging:
Theory and applications [15].

– Conference Committee: IEEE International Conference in Computer Vision, IEEE Com-
puter Vision and Pattern Recognition, Medical Image Computing and Computer Assisted
Intervention (area chair), Information Processing in Medical Imaging, IEEE International
Symposium on Biomedical Imaging, IEEE Mathematical Methods in Biomedical Image
Analysis, International Symposium on Visual Computing.

– Workshop & Tutorials Organization: IEEE International Conference in Computer Vi-
sion tutorial on Learning with Inference for Discrete Graphical Models.

– Journal Reviewing Services: IEEE Transactions on Image Processing.

– PhD Committee Participation: Daniel Pescia - Ecole Centrale de Paris - FR, Yangming
Ou - University of Pennsylvania - US, Olivier Teboul - Ecole Centrale de Paris - FR,
Benjamin Glocker - Technical University of Munich - DE, Loic Simon - Ecole Centrale de
Paris - FR, Chaohui Wang - Ecole Centrale de Paris - FR, Maélène Lohezic - University of
Nancy - FR, Aristeidis Sotiras - Ecole Centrale de Paris - FR, Hiep Hoang Vu - Ecole des
Ponts-ParisTech - FR, Christophe Avenel - Univeristy of Rennes - FR.
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– Invited Seminars/Presentations: British Machine Vision Conference - UK, Isaac Newton
Institute for Mathematical Sciences, Analytic and Geometric Methods in Medical Imaging
- UK.

– Distinctions: IEEE Fellow.

9.2. Teaching
Participants: Nikos Paragios, Iasonas Kokkinos.

Master : Introduction to Signal Processing, 36, M1, Ecole Centrale de Paris, France [I. Kokkinos]

Master : Introduction to Computer Vision, 36, M1, Ecole Centrale de Paris, France [I. Kokkinos]

Master : Pattern Recognition, 24, M2, Ecole Centrale de Paris/Ecole Normale Superieure-Cachan,
France [I. Kokkinos]

Master : Advanced Mathematical Models in Computer Vision, 24, M2, Ecole Centrale de Paris/Ecole
Normale Superieure-Cachan, France [N. Paragios]

N. Paragios is in charge of the option Medical Imaging, Machine Learning and Computer Vision at the
Department of Applied Mathematics of Ecole Centrale de Paris. This option consists of 6 classes in the above
mentioned fields, 180 hours of teaching and is associated with the M.Sc. (M2) program of the ENS-Cachan in
Applied Mathematics, Machine Learning and Computer Vision.

PhD: Daniel Pescia[7], Segmentation des tumeurs du foie sur des images de scanner CT, Ecole
Centrale de Paris, 15/01/2011, Nikos Paragios

PhD: Aristeidis Sotiras [9], Discrete Image Registration: a Hybrid Paradigm, Ecole Centrale de Paris,
6/11/2011, Nikos Paragios

PhD: Chaohui Wang[11], Distributed and Higher-Order Graphical Models: towards Segmentation,
Tracking, Matching and 3D Model Inference, Ecole Centrale de Paris, 29/09/2011, Nikos Paragios
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