
IN PARTNERSHIP WITH:
CNRS

Université Paris-Sud (Paris 11)

Université des sciences et
technologies de Lille (Lille 1)

Activity Report 2011

Project-Team GRAND-LARGE

Global parallel and distributed computing

IN COLLABORATION WITH: Laboratoire d’informatique fondamentale de Lille (LIFL), Laboratoire de recherche en
informatique (LRI)

RESEARCH CENTER
Saclay - Île-de-France

THEME
Distributed and High Performance
Computing

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Grand-Large General Objectives 1
2.2. Highlights 2

3. Scientific Foundations .2
3.1. Large Scale Distributed Systems (LSDS) 2

3.1.1. Computing on Large Scale Global Computing systems 3
3.1.2. Building a Large Scale Distributed System 4

3.1.2.1. The resource discovery engine 4
3.1.2.2. Fault Tolerant MPI 4

3.2. Volatility and Reliability Processing 5
3.3. Parallel Programming on Peer-to-Peer Platforms (P5) 6

3.3.1. Large Scale Computational Sciences and Engineering 7
3.3.2. Experimentations and Evaluations 7
3.3.3. Languages, Tools and Interface 8

3.4. Methodology for Large Scale Distributed Systems 8
3.4.1. Observation tools 8
3.4.2. Tool for scalability evaluations 9
3.4.3. Real life testbeds: extreme realism 9

3.5. High Performance Scientific Computing 9
3.5.1. Communication avoiding algorithms for numerical linear algebra 10
3.5.2. Preconditioning techniques 10
3.5.3. Fast linear algebra solvers based on randomization 10
3.5.4. Sensitivity analysis of linear algebra problems 11

4. Application Domains .11
4.1. Building a Large Scale Distributed System for Computing 11
4.2. Security and Reliability of Network Control Protocols 11
4.3. End-User Tools for Computational Science and Engineering 12
4.4. Numerical simulations and other intensive applications 12

5. Software . 13
5.1. APMC-CA 13
5.2. YML 13
5.3. The Scientific Programming InterNet (SPIN) 14
5.4. V-DS 14
5.5. PVC: Private Virtual Cluster 15
5.6. OpenWP 16
5.7. Parallel solvers for solving linear systems of equations 16
5.8. OpenScop 17
5.9. CALU for multicore architectures 17
5.10. Fast linear system solvers in public domain libraries 17
5.11. cTuning: Repository and Tools for Collective Characterization and Optimization of Computing

Systems 18
6. New Results . 18

6.1. Communication avoiding algorithms for linear algebra 18
6.2. Preconditioning techniques for solving large systems of equations 19
6.3. MIcrowave Data Analysis for petaScale computers 20
6.4. Innovative linear system solvers for hybrid multicore/GPU architectures 20
6.5. MILEPOST GCC: machine learning enabled self-tuning compiler 21
6.6. Loop Transformations: Convexity, Pruning and Optimization 21

2 Activity Report INRIA 2011

6.7. Exact algorithm for the l1-compressive sensing problem using a modified Dantzig- Wolfe
method 22

6.8. Supple: a flexible probabilistic data dissemination protocol for wireless sensor networks 22
6.9. Non-self-stabilizing and self-stabilizing gathering in networks of mobile agents–the notion of

speed 22
6.10. Making Population Protocols Self-stabilizing 23
6.11. Self-stabilizing synchronization in population protocols with cover times 23
6.12. Impossibility of consensus for population protocol with cover times 23
6.13. Routing and synchronization in large scale networks of very cheap mobile sensors 24
6.14. Self-Stabilizing Control Infrastructure for HPC 24
6.15. Large Scale Peer to Peer Performance Evaluations 25

6.15.1. Large Scale Grid Computing 25
6.15.2. High Performance Cluster Computing 25
6.15.3. Large Scale Power aware Computing 26

6.16. High Performance Linear Algebra on the Grid 26
6.17. Emulation of Volatile Systems 26
6.18. Exascale Systems 27

7. Partnerships and Cooperations . 28
7.1. Regional, National and International Actions 28

7.1.1. Activities starting in 2009 28
7.1.2. Other activities 28

7.2. International Initiatives 28
7.2.1. INRIA Associate Teams 28
7.2.2. Visits of International Scientists 29

8. Dissemination . 29
9. Bibliography .29

Project-Team GRAND-LARGE

Keywords: Fault Tolerance, Grid Computing, High Performance Computing, Parallel Solver,
Peer-to-Peer

1. Members
Research Scientists

Franck Cappello [Research Director, HdR]
Christine Eisenbeis [Research Director]
Laura Grigori [Researcher CR1, HdR]
Grigori Fursin [Researcher CR1, since December 2011]

Faculty Members
Brigitte Rozoy [Temporary Team Leader, Professor at Paris-Sud University, HdR]
Joffroy Beauquier [Professor at Paris-Sud University, HdR]
Thomas Hérault [Associate Professor at Paris-Sud University, delegated in the INRIA project/team]
Serge Petiton [Professor at University of Science and Technology of Lille, HdR]
Sylvain Peyronnet [Associate Professor at Paris-Sud University, HdR]
Marc Baboulin [Associate Professor at Paris-Sud University, Inria Research Chair]
Cédric Bastoul [Associate Professor at Paris-Sud University]

Technical Staff
Vincent Néri [CNRS Study Engineer]

PhD Students
Amina Guermouche [MESR Grant (LRI)]
Alexandre Borghi [MESR Grant (LRI)]
Simplice Donfack [INRIA Grant]
Adrien Rémy [MESR Grant (LRI)]
Amal Khabou [MESR Grant (LRI), since October 2009]
Antoine Baldacci [CIFRE IFP, since November 2009]
Sophie Moufawad [INRIA Grant, since October 2011]
Mouad Bahi [INRIA Grant, until March 2011]
Michael Kruse [Grant of Université Paris-Sud XI]

Post-Doctoral Fellow
Maxime Hugues [ANR-JST FP3C Grant]

Administrative Assistant
Katia Evrat [Administrative assistant]

2. Overall Objectives
2.1. Grand-Large General Objectives

Grand-Large is a research project investigating the issues raised by High Performance Computing (HPC) on
Large Scale Distributed Systems (LSDS), where users execute HPC applications on a shared infrastructure and
where resources are subject to failure, possibly heterogeneous, geographically distributed and administratively
independent. More specifically, we consider large scale distributed computing mainly, Desktop Grids, Grids,
and large scale parallel computers. Our research focuses on the design, development, proof and experiments
of programming environments, middleware and scientific algorithms and libraries for HPC applications.
Fundamentally, we address the issues related to HPC on LSDS, gathering several methodological tools that
raise themselves scientific issues: theoretical models and exploration tools (simulators, emulators and real size
experimental systems).

2 Activity Report INRIA 2011

Our approach ranges from concepts to experiments, the projects aims at:

1. models and fault-tolerant algorithms, self-stabilizing systems and wireless networks.
2. studying experimentally, and formally, the fundamental mechanisms of LSDS for high performance

computing;
3. designing, implementing, validating and testing real software, libraries, middleware and platforms;
4. defining, evaluating and experimenting approaches for programming applications on these platforms.

Compared to other European and French projects, we gather skills in 1) large scale systems formal design and
validation of algorithms and protocols for distributed systems and 2) programming, evaluation, analysis and
definition of programming languages and environments for parallel architectures and distributed systems.

This project pursues short and long term researches aiming at having scientific and industrial impacts. Research
topics include:

1. the design of middleware for LSDS (XtremWeb and PVC)
2. large scale data movements on LSDS (BitDew)
3. fault tolerant MPI for LSDS, fault tolerant protocol verification (MPICH-V)
4. algorithms, programming and evaluation of scientific applications LSDS;
5. tools and languages for large scale computing on LSDS (OpenWP, YML).
6. Exploration systems and platforms for LSDS (Grid’5000, XtremLab, DSL-Lab, SimBOINC, FAIL,

V-DS)

These researches should have some applications in the domain of Desktop Grids, Grids and large scale parallel
computers.

As a longer term objective, we put special efforts on the design, implementation and use of Exploration Tools
for improving the methodology associated with the research in LSDS. For example we had the responsibility
of the Grid eXplorer project founded by the French ministry of research and we were deeply involved in the
Grid5000 project (as project Director) and in the ALADDIN initiative (project scientific director).

2.2. Highlights
BEST PAPER AWARD :
[25] 23rd International Symposium on Computer Architecture and High Performance Computing -
SBAC-PAD’2011. M. BAHI, C. EISENBEIS.

3. Scientific Foundations
3.1. Large Scale Distributed Systems (LSDS)

What makes a fundamental difference between recent Global Computing systems (Seti@home), Grid (EGEE,
TeraGrid) and former works on distributed systems is the large scale of these systems. This characteristic
becomes also true for large scale parallel computers gathering tens of thousands of CPU cores. The notion of
Large Scale is linked to a set of features that has to be taken into account in these systems. An example is the
system dynamicity caused by node volatility: in Internet Computing Platforms (also called Desktop Grids),
a non predictable number of nodes may leave the system at any time. Some recent results also report a very
low MTTI (Mean Time To Interrupt) in top level supercomputers gathering 100,000+ CPU cores. Another
example of characteristics is the complete lack of control of nodes connectivity. In Desktop Grid, we cannot
assume that external administrator is able to intervene in the network setting of the nodes, especially their
connection to Internet via NAT and Firewalls. This means that we have to deal with the in place infrastructure
in terms of performance, heterogeneity, dynamicity and connectivity. These characteristics, associated with the
requirement of scalability, establish a new research context in distributed systems. The Grand-Large project
aims at investigating theoretically as well as experimentally the fundamental mechanisms of LSDS, especially
for the high performance computing applications.

Project-Team GRAND-LARGE 3

3.1.1. Computing on Large Scale Global Computing systems
Large scale parallel and distributed systems are mainly used in the context of Internet Computing. As
a consequence, until Sept. 2007, Grand-Large has focused mainly on Desktop Grids. Desktop Grids are
developed for computing (SETI@home, Folding@home, Decrypthon, etc.), file exchanges (Napster, Kazaa,
eDonkey, Gnutella, etc.), networking experiments (PlanetLab, Porivo) and communications such as instant
messaging and phone over IP (Jabber, Skype). In the High Performance Computing domain, LSDS have
emerged while the community was considering clustering and hierarchical designs as good performance-cost
tradeoffs. Nowadays, Internet Computing systems are still very popular (the BOINC platform is used to run
over 40 Internet Computing projects and XtremWeb is used in production in three countries) and still raise
important research issues.

Desktop Grid systems essentially extend the notion of computing beyond the frontier of administration
domains. The very first paper discussing this type of systems [94] presented the Worm programs and several
key ideas that are currently investigated in autonomous computing (self replication, migration, distributed
coordination, etc.). LSDS inherit the principle of aggregating inexpensive, often already in place, resources,
from past research in cycle stealing/resource sharing. Due to its high attractiveness, cycle stealing has been
studied in many research projects like Condor [83] , Glunix [76] and Mosix [55], to cite a few. A first approach
to cross administration domains was proposed by Web Computing projects such as Jet [87], Charlotte [56],
Javeline [70], Bayanihan [92], SuperWeb [51], ParaWeb [63] and PopCorn [65]. These projects have emerged
with Java, taking benefit of the virtual machine properties: high portability across heterogeneous hardware
and OS, large diffusion of virtual machine in Web browsers and a strong security model associated with
bytecode execution. Performance and functionality limitations are some of the fundamental motivations of
the second generation of Global Computing systems like BOINC [53] and XtremWeb [72]. The second
generation of Global Computing systems appeared in the form of generic middleware which allow scientists
and programmers to design and set up their own distributed computing project. As a result, we have seen
the emergence of large communities of volunteers and projects. Currently, Global Computing systems are
among the largest distributed systems in the world. In the mean time, several studies succeeded to understand
and enhance the performance of these systems, by characterizing the system resources in term of volatility
and heterogeneity and by studying new scheduling heuristics to support new classes of applications: data-
intensive, long running application with checkpoint, workflow, soft-real time etc... However, despite these
recent progresses, one can note that Global Computing systems are not yet part of high performance
solution, commonly used by scientists. Recent researches to fulfill the requirements of Desktop Grids for
high demanding users aim at redesigning Desktop Grid middleware by essentially turning a set of volatile
nodes into a virtual cluster and allowing the deployment of regular HPC utilities (batch schedulers, parallel
communication libraries, checkpoint services, etc...) on top of this virtual cluster. The new generation would
permit a better integration in the environment of the scientists such as computational Grids, and consequently,
would broaden the usage of Desktop Grid.

The high performance potential of LSDS platforms has also raised a significant interest in the industry.
Performance demanding users are also interested by these platforms, considering their cost-performance ratio
which is even lower than the one of clusters. Thus, several Desktop Grid platforms are daily used in production
in large companies in the domains of pharmacology, petroleum, aerospace, etc.

Desktop Grids share with Grid a common objective: to extend the size and accessibility of a computing
infrastructure beyond the limit of a single administration domain. In [73], the authors present the similarities
and differences between Grid and Global Computing systems. Two important distinguishing parameters are
the user community (professional or not) and the resource ownership (who own the resources and who is
using them). From the system architecture perspective, we consider two main differences: the system scale
and the lack of control of the participating resources. These two aspects have many consequences, at least on
the architecture of system components, the deployment methods, programming models, security (trust) and
more generally on the theoretical properties achievable by the system.

Beside Desktop Grids and Grids, large scale parallel computers with tens of thousands (and even hundreds of
thousands) of CPU cores are emerging with scalability issues similar to the one of Internet Computing systems:

4 Activity Report INRIA 2011

fault tolerance at large scale, large scale data movements, tools and languages. Grand-Large is gradually
considering the application of selected research results, in the domain of large scale parallel computers, in
particular for the fault tolerance and language topics.

3.1.2. Building a Large Scale Distributed System
This set of studies considers the XtremWeb project as the basis for research, development and experimentation.
This LSDS middleware is already operational. This set gathers 4 studies aiming at improving the mechanisms
and enlarging the functionalities of LSDS dedicated to computing. The first study considers the architecture of
the resource discovery engine which, in principle, is close to an indexing system. The second study concerns
the storage and movements of data between the participants of a LSDS. In the third study, we address the
issue of scheduling in LSDS in the context of multiple users and applications. Finally the last study seeks to
improve the performance and reduce the resource cost of the MPICH-V fault tolerant MPI for desktop grids.

3.1.2.1. The resource discovery engine

A multi-users/multi-applications LSDS for computing would be in principle very close to a P2P file sharing
system such as Napster [93], Gnutella [93] and Kazaa [82], except that the shared resource is the CPUs instead
of files. The scale and lack of control are common features of the two kinds of systems. Thus, it is likely that
solutions sharing fundamental mechanisms will be adopted, such as lower level communication protocols,
resource publishing, resource discovery and distributed coordination. As an example, recent P2P projects have
proposed distributed indexing systems like CAN [90], CHORD [95], PASTRY [91] and TAPESTRY [100]
that could be used for resource discovery in a LSDS dedicated to computing.

The resource discovery engine is composed of a publishing system and a discovery engine, which allow a
client of the system to discover the participating nodes offering some desired services. Currently, there is as
much resource discovery architectures as LSDS and P2P systems. The architecture of a resource discovery
engine is derived from some expected features such as speed of research, speed of reconfiguration, volatility
tolerance, anonymity, limited use of the network, matching between the topologies of the underlying network
and the virtual overlay network.

This study focuses on the first objective: to build a highly reliable and stable overlay network supporting
the higher level services. The overlay network must be robust enough to survive unexpected behaviors (like
malicious behaviors) or failures of the underlying network. Unfortunately it is well known that under specific
assumptions, a system cannot solve even simples tasks with malicious participants. So, we focus the study on
designing overlay algorithms for transient failures. A transient failure accepts any kind of behavior from the
system, for a limited time. When failures stop, the system will eventually provide its normal service again.

A traditional way to cope with transient failures are self-stabilizing systems [71]. Existing self-stabilizing
algorithms use an underlying network that is not compatible with LSDS. They assume that processors
know their list of neighbors, which does not fit the P2P requirements. Our work proposes a new model for
designing self-stabilizing algorithms without making this assumption, then we design, prove and evaluate
overlay networks self-stabilizing algorithms in this model.

3.1.2.2. Fault Tolerant MPI

MPICH-V is a research effort with theoretical studies, experimental evaluations and pragmatic implementa-
tions aiming to provide a MPI implementation based on MPICH [85], featuring multiple fault tolerant proto-
cols.

There is a long history of research in fault tolerance for distributed systems. We can distinguish the auto-
matic/transparent approach from the manual/user controlled approach. The first approach relies either on co-
ordinated checkpointing (global snapshot) or uncoordinated checkpointing associated with message logging.
A well known algorithm for the first approach has been proposed by Chandy and Lamport [67]. This algorithm
requires restarting all processes even if only one process crashes. So it is believed not to scale well. Several
strategies have been proposed for message logging: optimistic [97], pessimistic [52], causal [98]. Several op-
timizations have been studied for the three strategies. The general context of our study is high performance
computing on large platforms. One of the most used programming environments for such platforms is MPI.

Project-Team GRAND-LARGE 5

Within the MPICH-V project, we have developed and published several original fault tolerant protocols
for MPI: MPICH-V1 [60], MPICH-V2 [61], MPICH-Vcausal, MPICH-Vcl [62], MPICH-Pcl. The two first
protocols rely on uncoordinated checkpointing associated with either remote pessimistic message logging or
sender based pessimistic message logging. We have demonstrated that MPICH-V2 outperforms MPICH-V1.
MPICH-Vcl implements a coordinated checkpoint strategy (Chandy-Lamport) removing the need of message
logging. MPICH-V2 and Vcl are concurrent protocols for large clusters. We have compared them considering
a new parameter for evaluating the merits of fault tolerant protocols: the impact of the fault frequency on
the performance. We have demonstrated that the stress of the checkpoint server is the fundamental source of
performance differences between the two techniques. MPICH-Vcausal implements a causal message logging
protocols, removing the need for waiting acknowledgement in contrary to MPICH-V2. MPICH-Pcl is a
blocking implementation of the Vcl protocol. Under the considered experimental conditions, message logging
becomes more relevant than coordinated checkpoint when the fault frequency reaches 1 fault every 4 hours,
for a cluster of 100 nodes sharing a single checkpoint server, considering a data set of 1 GB on each node and
a 100 Mb/s network.

Multiple important events arose from this research topic. A new open source implementation of the MPI-2
standard was born during the evolution of the MPICH-V project, namely OpenMPI. OpenMPI is the result of
the alliance of many MPI projects in the USA, and we are working to port our fault tolerance algorithms both
into OpenMPI and MPICH.

Grids becoming more popular and accessible than ever, parallel applications developers now consider them as
possible targets for computing demanding applications. MPI being the de-facto standard for the programming
of parallel applications, many projects of MPI for the Grid appeared these last years. We contribute to this new
way of using MPI through a European Project in which we intend to grid-enable OpenMPI and provide new
fault-tolerance approaches fitted for the grid.

When introducing Fault-Tolerance in MPI libraries, one of the most neglected component is the runtime envi-
ronment. Indeed, the traditional approach consists in restarting the whole application and runtime environment
in case of failure. A more efficient approach could be to implement a fault-tolerant runtime environment, ca-
pable of coping with failures at its level, thus avoiding the restart of this part of the application. The benefits
would be a quicker restart time, and a better control of the application. However, in order to build a fault-
tolerant runtime environment for MPI, new topologies, more connected, and more stable, must be integrated
in the runtime environment.

For traditional parallel machines of large scale (like large scale clusters), we also continue our investigation of
the various fault tolerance protocols, by designing, implementing and evaluating new protocols in the MPICH-
V project.

3.2. Volatility and Reliability Processing
In a global computing application, users voluntarily lend the machines, during the period they don’t use them.
When they want to reuse the machines, it is essential to give them back immediately. We assume that there is
no time for saving the state of the computation (for example because the user is shooting down is machine).
Because the computer may not be available again, it is necessary to organize checkpoints. When the owner
takes control of his machine, one must be able to continue the computation on another computer from a
checkpoint as near as possible from the interrupted state.

The problems raised by this way of managing computations are numerous and difficult. They can be put into
two categories: synchronization and repartition problems.

• Synchronization problems (example). Assume that the machine that is supposed to continue the
computation is fixed and has a recent checkpoint. It would be easy to consider that this local
checkpoint is a component of a global checkpoint and to simply rerun the computation. But on
one hand the scalability and on the other hand the frequency of disconnections make the use of
a global checkpoint totally unrealistic. Then the checkpoints have to be local and the problem of
synchronizing the recovery machine with the application is raised.

6 Activity Report INRIA 2011

• Repartition problems (example). As it is also unrealistic to wait for the computer to be available
again before rerunning the interrupted application, one has to design a virtual machine organization,
where a single virtual machine is implemented as several real ones. With too few real machines for
a virtual one, one can produce starvation; with too many, the efficiency is not optimal. The good
solution is certainly in a dynamic organization.

These types of problems are not new ([74]). They have been studied deeply and many algorithmic solutions
and implementations are available. What is new here and makes these old solutions not usable is scalability.
Any solution involving centralization is impossible to use in practice. Previous works validated on former
networks can not be reused.

3.2.1. Reliability Processing
We voluntarily presented in a separate section the volatility problem because of its specificity both with
respect to type of failures and to frequency of failures. But in a general manner, as any distributed system,
a global computing system has to resist to a large set of failures, from crash failures to Byzantine failures,
that are related to incorrect software or even malicious actions (unfortunately, this hypothesis has to be
considered as shown by DECRYPTHON project or the use of erroneous clients in SETI@HOME project),
with in between, transient failures such as loss of message duplication. On the other hand, failures related
accidental or malicious memory corruptions have to be considered because they are directly related to the very
nature of the Internet. Traditionally, two approaches (masking and non-masking) have been used to deal with
reliability problems. A masking solution hides the failures to the user, while a non-masking one may let the
user notice that failures occur. Here again, there exists a large literature on the subject (cf. [84], [96], [71] for
surveys). Masking techniques, generally based on consensus, are not scalable because they systematically use
generalized broadcasting. The self-stabilizing approach (a non-masking solution) is well adapted (specifically
its time adaptive version, cf. [81], [80], [57], [58], [75]) for three main reasons:

1. Low overhead when stabilized. Once the system is stabilized, the overhead for maintaining correc-
tion is low because it only involves communications between neighbours.

2. Good adaptivity to the reliability level. Except when considering a system that is continuously under
attacks, self-stabilization provides very satisfying solutions. The fact that during the stabilization
phase, the correctness of the system is not necessarily satisfied is not a problem for many kinds of
applications.

3. Lack of global administration of the system. A peer to peer system does not admit a centralized
administrator that would be recognized by all components. A human intervention is thus not feasible
and the system has to recover by itself from the failures of one or several components, that is
precisely the feature of self-stabilizing systems.

We propose:

1. To study the reliability problems arising from a global computing system, and to design self-
stabilizing solutions, with a special care for the overhead.

2. For problem that can be solved despite continuously unreliable environment (such as information
retrieval in a network), to propose solutions that minimize the overhead in space and time resulting
from the failures when they involve few components of the system.

3. For most critical modules, to study the possibility to use consensus based methods.

4. To build an adequate model for dealing with the trade-off between reliability and cost.

3.3. Parallel Programming on Peer-to-Peer Platforms (P5)
Several scientific applications, traditionally computed on classical parallel supercomputers, may now be
adapted for geographically distributed heterogeneous resources. Large scale P2P systems are alternative
computing facilities to solve grand challenge applications.

Project-Team GRAND-LARGE 7

Peer-to-Peer computing paradigm for large scale scientific and engineering applications is emerging as a
new potential solution for end-user scientists and engineers. We have to experiment and to evaluate such
programming to be able to propose the larger possible virtualization of the underlying complexity for the
end-user.

3.3.1. Large Scale Computational Sciences and Engineering
Parallel and distributed scientific application developments and resource managements in these environments
are a new and complex undertaking. In scientific computation, the validity of calculations, the numerical
stability, the choices of methods and software are depending of properties of each peer and its software
and hardware environments; which are known only at run time and are non-deterministic. The research to
obtain acceptable frameworks, methodologies, languages and tools to allow end-users to solve accurately their
applications in this context is capital for the future of this programming paradigm.

GRID scientific and engineering computing exists already since more than a decade. Since the last few years,
the scale of the problem sizes and the global complexity of the applications increase rapidly. The scientific
simulation approach is now general in many scientific domains, in addition to theoretical and experimental
aspects, often link to more classic methods. Several applications would be computed on world-spread networks
of heterogeneous computers using some web-based Application Server Provider (ASP) dedicated to targeted
scientific domains. New very strategic domains, such as Nanotechnologies, Climatology or Life Sciences, are
in the forefront of these applications. The development in this very important domain and the leadership in
many scientific domains will depend in a close future to the ability to experiment very large scale simulation
on adequate systems [79]. The P2P scientific programming is a potential solution, which is based on existing
computers and networks. The present scientific applications on such systems are only concerning problems
which are mainly data independents: i.e. each peer does not communicate with the others.

P2P programming has to develop parallel programming paradigms which allow more complex dependencies
between computing resources. This challenge is an important goal to be able to solve large scientific
applications. The results would also be extrapolated toward future petascale heterogeneous hierarchically
designed supercomputers.

3.3.2. Experimentations and Evaluations
We have followed two tracks. First, we did experiments on large P2P platforms in order to obtain a realistic
evaluation of the performance we can expect. Second, we have set some hypothesis on peers, networks, and
scheduling in order to have theoretical evaluations of the potential performance. Then, we have chosen a
classical linear algebra method well-adapted to large granularity parallelism and asynchronous scheduling:
the block Gauss-Jordan method to invert dense very large matrices. We have also chosen the calculation
of one matrix polynomial, which generates computation schemes similar to many linear algebra iterative
methods, well-adapted for very large sparse matrices. Thus, we were able to theoretically evaluate the potential
throughput with respect to several parameters such as the matrix size and the multicast network speed.

Since the beginning of the evaluations, we experimented with those parallel methods on a few dozen peer
XtremWeb P2P Platforms. We continue these experiments on larger platforms in order to compare these
results to the theoretical ones. Then, we would be able to extrapolate and obtain potential performance for
some scientific applications.

Recently, we also experimented several Krylov based method, such as the Lanczos and GMRES methods on
several grids, such as a French-Japanese grid using hundred of PC in France and 4 clusters at the University of
Tsukuba. We also experimented on GRID5000 the same methods. We currently use several middleware such
as Xtremweb, OmniRPC and Condor. We also begin some experimentations on the Tsubame supercomputer
in collaboration with the TITech (Tokyo Institute of Technologies) in order to compare our grid approaches
and the High performance one on an hybrid supercomputer.

Experimentations and evaluation for several linear algebra methods for large matrices on P2P systems will
always be developed all along the Grand Large project, to be able to confront the different results to the reality
of the existing platforms.

8 Activity Report INRIA 2011

As a challenge, we would like, in several months, to efficiently invert a dense matrix of size one million using
a several thousand peer platform. We are already inverting very large dense matrices on Grid5000 but more
efficient scheduler and a larger number of processors are required to this challenge.

Beyond the experimentations and the evaluations, we propose the basis of a methodology to efficiently
program such platforms, which allow us to define languages, tools and interface for the end-user.

3.3.3. Languages, Tools and Interface
The underlying complexity of the Large Scale P2P programming has to be mainly virtualized for the end-
user. We have to propose an interface between the end-user and the middleware which may extract the end-
user expertise or propose an on-the-shelf general solution. Targeted applications concern very large scientific
problems which have to be developed using component technologies and up-to-dated software technologies.

We introduced the YML framework and language which allows to describe dependencies between compo-
nents. We introduced different classes of components, depending of the level of abstraction, which are asso-
ciated with divers parts of the framework. A component catalogue is managed by an administrator and/or the
end-users. Another catalogue is managed with respect to the experimental platform and the middleware crite-
ria. A front-end part is completely independent of any middleware or testbed, and a back-end part is developed
for each targeted middleware/platform couple. A YML scheduler is adapted for each of the targeted systems.

The YML framework and language propose a solution to develop scientific applications to P2P and GRID
platform. An end-user can directly develop programs using this framework. Nevertheless, many end-users
would prefer avoid programming at the component and dependency graph level. Then, an interface has to be
proposed soon, using the YML framework. This interface may be dedicated to a special scientific domain
to be able to focus on the end-user vocabulary and P2P programming knowledge. We plan to develop such
version based on the YML framework and language. The first targeted scientific domain will be very large
linear algebra for dense or sparse matrices.

3.4. Methodology for Large Scale Distributed Systems
Research in the context of LSDS involves understanding large scale phenomena from the theoretical point of
view up to the experimental one under real life conditions.

One key aspects of the impact of large scale on LSDS is the emergence of phenomena which are not co-
ordinated, intended or expected. These phenomena are the results of the combination of static and dynamic
features of each component of LSDS: nodes (hardware, OS, workload, volatility), network (topology, conges-
tion, fault), applications (algorithm, parameters, errors), users (behavior, number, friendly/aggressive).

Validating current and next generation of distributed systems targeting large-scale infrastructures is a complex
task. Several methodologies are possible. However, experimental evaluations on real testbeds are unavoidable
in the life-cycle of a distributed middleware prototype. In particular, performing such real experiments
in a rigorous way requires to benchmark developed prototypes at larger and larger scales. Fulfilling this
requirement is mandatory in order to fully observe and understand the behaviors of distributed systems. Such
evaluations are indeed mandatory to validate (or not!) proposed models of these distributed systems, as well
as to elaborate new models. Therefore, to enable an experimentally-driven approach for the design of next
generation of large scale distributed systems, developing appropriate evaluation tools is an open challenge.

Fundamental aspects of LSDS as well as the development of middleware platforms are already existing in
Grand-Large. Grand-Large aims at gathering several complementary techniques to study the impact of large
scale in LSDS: observation tools, simulation, emulation and experimentation on real platforms.

3.4.1. Observation tools
Observation tools are mandatory to understand and extract the main influencing characteristics of a distributed
system, especially at large scale. Observation tools produce data helping the design of many key mechanisms
in a distributed system: fault tolerance, scheduling, etc. We pursue the objective of developing and deploying a
large scale observation tool (XtremLab) capturing the behavior of thousands of nodes participating to popular

Project-Team GRAND-LARGE 9

Desktop Grid projects. The collected data will be stored, analyzed and used as reference in a simulator
(SIMBOINC).

3.4.2. Tool for scalability evaluations
Several Grid and P2P systems simulators have been developed by other teams: SimGrid [66], GridSim [64],
Briks [50]. All these simulators considers relatively small scale Grids. They have not been designed to scale
and simulate 10 K to 100 K nodes. Other simulators have been designed for large multi-agents systems such
as Swarm [86] but many of them considers synchronous systems where the system evolution is guided by
phases. In the P2P field, ad hoc many simulators have been developed, mainly for routing in DHT. Emulation is
another tool for experimenting systems and networks with a higher degree of realism. Compared to simulation,
emulation can be used to study systems or networks 1 or 2 orders of magnitude smaller in terms of number of
components. However, emulation runs the actual OS/middleware/applications on actual platform. Compared
to real testbed, emulation considers conducting the experiments on a fully controlled platform where all static
and dynamic parameters can be controlled and managed precisely. Another advantage of emulation over real
testbed is the capacity to reproduce experimental conditions. Several implementations/configurations of the
system components can be compared fairly by evaluating them under the similar static and dynamic conditions.
Grand-Large is leading one of the largest Emulator project in Europe called Grid explorer (French funding).
This project has built and used a 1K CPUs cluster as hardware platform and gathers 24 experiments of 80
researchers belonging to 13 different laboratories. Experiments concerned developing the emulator itself and
use of the emulator to explore LSDS issues. In term of emulation tool, the main outcome of Grid explorer
is the V-DS system, using virtualization techniques to fold a virtual distributed system 50 times larger than
the actual execution platform. V-DS aims at discovering, understanding and managing implicit uncoordinated
large scale phenomena. Grid Explorer is still in use within the Grid’5000 platform and serves the community
of 400 users 7 days a week and 24h a day.

3.4.3. Real life testbeds: extreme realism
The study of actual performance and connectivity mechanisms of Desktop Grids needs some particular testbed
where actual middleware and applications can be run under real scale and real life conditions. Grand-Large is
developing DSL-Lab, an experimental platform distributed on 50 sites (actual home of the participants) and
using the actual DSL network as the connection between the nodes. Running experiments over DSL-Lab put
the piece of software to study under extremely realistic conditions in terms of connectivity (NAT, Firewalls),
performance (node and network), performance symmetry (DSL Network is not symmetric), etc.

To investigate real distributed system at large scale (Grids, Desktop Grids, P2P systems), under real life con-
ditions, only a real platform (featuring several thousands of nodes), running the actual distributed system
can provide enough details to clearly understand the performance and technical limits of a piece of software.
Grand-Large members are strongly involved (as Project Director) in the French Grid5000 project which intents
to deploy an experimental Grid testbed for computer scientists. This testbed features about 4000 CPUs gath-
ering the resources of about 9 clusters geographically distributed over France. The clusters will be connected
by a high speed network (Renater 10G). Grand-Large is the leading team in Grid5000, chairing the steering
committee. As the Principal Investigator of the project, Grand-Large has taken some strong design decisions
that nowadays give a real added value of Grid5000 compared to all other existing Grids: reconfiguration and
isolation. From these two features, Grid5000 provides the capability to reproduce experimental conditions and
thus experimental results, which is the cornerstone of any scientific instrument.

3.5. High Performance Scientific Computing
This research is in the area of high performance scientific computing, and in particular in parallel matrix
algorithms. This is a subject of crucial importance for numerical simulations as well as other scientific and
industrial applications, in which linear algebra problems arise frequently. The modern numerical simulations
coupled with ever growing and more powerful computational platforms have been a major driving force behind
a progress in numerous areas as different as fundamental science, technical/technological applications, life
sciences.

10 Activity Report INRIA 2011

The main focus of this research is on the design of efficient, portable linear algebra algorithms, such
that solving a large set of linear equations or a least squares problem. The characteristics of the matrices
commonly encountered in this situations can vary significantly, as are the computational platforms used for
the calculations. Nonetheless two common trends are easily discernible. First, the problems to solve are larger
and larger, since the numerical simulations are using higher resolution. Second, the architecture of today’s
supercomputers is getting very complex, and so the developed algorithms need to be adapted to these new
achitectures.

3.5.1. Communication avoiding algorithms for numerical linear algebra
Since 2007, we work on a novel approach to dense and sparse linear algebra algorithms, which aims at
minimizing the communication, in terms of both its volume and a number of transferred messages. This
research is motivated by technological trends showing an increasing communication cost. Its main goal is to
reformulate and redesign linear algebra algorithms so that they are optimal in an amount of the communication
they perform, while retaining the numerical stability. The work here involves both theoretical investigation
and practical coding on diverse computational platforms. We refer to the new algorithms as communication
avoiding algorithms [6], [9]. In our team we focus on communication avoiding algorithms for dense direct
methods as well as sparse iterative methods.

The theoretical investigation focuses on identifying lower bounds on communication for different operations
in linear algebra, where communication refers to data movement between processors in the parallel case, and
to data movement between different levels of memory hierarchy in the sequential case. The lower bounds are
used to study the existing algorithms, understand their communication bottlenecks, and design new algorithms
that attain them.

This research focuses on the design of linear algebra algorithms that minimize the cost of communication.
Communication costs include both latency and bandwidth, whether between processors on a parallel computer
or between memory hierarchy levels on a sequential machine. The stability of the new algorithms represents
an important part of this work.

3.5.2. Preconditioning techniques
Solving a sparse linear system of equations is the most time consuming operation at the heart of many scientific
applications, and therefore it has received a lot of attention over the years. While direct methods are robust,
they are often prohibitive because of their time and memory requirements. Iterative methods are widely used
because of their limited memory requirements, but they need an efficient preconditioner to accelerate their
convergence. In this direction of research we focus on preconditioning techniques for solving large sparse
systems.

One of the main challenges that we address is the scalability of existing methods as incomplete LU factoriza-
tions or Schwarz-based approaches, for which the number of iterations increases significantly with the problem
size or with the number of processors. This is often due to the presence of several low frequency modes that
hinder the convergence of the iterative method. To address this problem, we study direction preserving solvers
in the context of multilevel filtering LU decompositions. A judicious choice for the directions to be preserved
through filtering allows us to alleviate the effect of low frequency modes on the convergence. While precon-
ditioners and their scalability are studied by many other groups, our approach of direction preserving and
filtering is studied in only very few other groups in the world (as Lawrence Livermore National Laboratory,
Frankfurt University, Pennsylvania State University).

3.5.3. Fast linear algebra solvers based on randomization
Linear algebra calculations can be enhanced by statistical techniques in the case of a square linear system
Ax = b where A is a general or symmetric indefinite matrix [54]& [1]. Thanks to a random transformation of
A, it is possible to avoid pivoting and then to reduce the amount of communication. Numerical experiments
show that this randomization can be performed at a very affordable computational price while providing us
with a satisfying accuracy when compared to partial pivoting. This random transformation called Partial
Random Butterfly Transformation (PRBT) is optimized in terms of data storage and flops count. A PRBT

Project-Team GRAND-LARGE 11

solver for LU factorization (and for LDLT factorization on multicore) has been developed. This solver takes
advantage of the latest generation of hybrid multicore/GPU machines and gives better Gflop/s performance
than existing factorization routines.

3.5.4. Sensitivity analysis of linear algebra problems
We derive closed formulas for the condition number of a linear function of the total least squares solution [2].
Given an over determined linear systems Ax = b, we show that this condition number can be computed using
the singular values and the right singular vectors of [A, b] and A. We also provide an upper bound that requires
the computation of the largest and the smallest singular value of [A, b] and the smallest singular value of A. In
numerical experiments, we compare these values with condition estimates from the literature.

4. Application Domains

4.1. Building a Large Scale Distributed System for Computing
The main application domain of the Large Scale Distributed System developed in Grand-Large is high
performance computing. The two main programming models associated with our platform (RPC and MPI)
allow to program a large variety of distributed/parallel algorithms following computational paradigms like bag
of tasks, parameter sweep, workflow, dataflow, master worker, recursive exploration with RPC, and SPMD
with MPI. The RPC programming model can be used to execute concurrently different applications codes,
the same application code with different parameters and library function codes. In all these cases, there is no
need to change the code. The code must only be compiled for the target execution environment. LSDS are
particularly useful for users having large computational needs. They could typically be used in Research
and Development departments of Pharmacology, Aerospace, Automotive, Electronics, Petroleum, Energy,
Meteorology industries. LSDS can also be used for other purposes than CPU intensive applications. Other
resources of the connected PCs can be used like their memory, disc space and networking capacities. A
Large Scale Distributed System like XtremWeb can typically be used to harness and coordinated the usage
of these resources. In that case XtremWeb deploys on Workers services dedicated to provide and manage
a disc space and the network connection. The storage service can be used for large scale distributed fault
tolerant storage and distributed storage of very large files. The networking service can be used for server
tests in real life conditions (workers deployed on Internet are coordinated to stress a web server) and for
networking infrastructure tests in real like conditions (workers of known characteristics are coordinated to
stress the network infrastructure between them).

4.2. Security and Reliability of Network Control Protocols
The main application domain for self-stabilizing and secure algorithms is LSDS where correct behaviours
must be recovered within finite time. Typically, in a LSDS (such as a high performance computing system),
a protocol is used to control the system, submit requests, retrieve results, and ensure that calculus is carried
out accordingly to its specification. Yet, since the scale of the system is large, it is likely that nodes fail while
the application is executing. While nodes that actually perform the calculus can fail unpredictably, a self-
stabilizing and secure control protocol ensures that a user submitting a request will obtain the corresponding
result within (presumably small) finite time. Examples of LSDS where self-stabilizing and secure algorithms
are used, include global computing platforms, or peer to peer file sharing systems. Another application domain
is routing protocols, which are used to carry out information between nodes that are not directly connected.
Routing should be understood here in its most general acceptance, e.g. at the network level (Internet routing) or
at the application level (on virtual topologies that are built on top of regular topologies in peer to peer systems).
Since the topology (actual or virtual) evolves quickly through time, self-stabilization ensures that the routing
protocol eventually provides accurate information. However, for the protocol to be useful, it is necessary that
it provides extra guarantees either on the stabilization time (to recover quickly from failures) or on the routing
time of messages sent when many faults occur. Finally, additional applications can be found in distributed

12 Activity Report INRIA 2011

systems that are composed of many autonomous agents that are able to communicate only to a limited set of
nodes (due to geographical or power consumption constraints), and whose environment is evolving rapidly.
Examples of such systems are wireless sensor networks (that are typically large of 10000+ nodes), mobile
autonomous robots, etc. It is completely unrealistic to use centralized control on such networks because
they are intrinsically distributed; still strong coordination is required to provide efficient use of resources
(bandwidth, battery, etc).

4.3. End-User Tools for Computational Science and Engineering
Another Grand Large application domain is Linear Algebra, which is often required to solve Large Scale
Computational Science and Engineering applications. Two main approaches are proposed. First, we have to
experiment and evaluate several classical stable numerical methods. Second, we have to propose tools to help
end-users to develop such methods.

In addition to the classical supercomputing and the GRID computing, the large scale P2P approach proposes
new computing facilities for computational scientists and engineers. Thus, it exists many applications which
would use such computing facilities for long period of time . During a first period, many applications will be
based on large simulations rather than classical implicit numerical methods, which are more difficult to adapt
for such large problems and new programming paradigm as they generated linear algebra problems. Then,
implicit method would be developed to have more accurate solutions.

Simulations and large implicit methods always have to compute linear algebra routines. So, they were our
first targeted numerical methods (we also remark that the powerful worldwide computing facilities are still
rated using a linear algebra benchmark http://www.top500.org). We especially focused on divide-and-conquer
and block-based matrix methods to solve dense problems. We have also studied Krylov subspace methods
(Lanczos, Arnoldi) and hybrid methods to solve sparse matrix problems. As these applications are utilized for
many applications, it is possible to extrapolate the results to different scientific domains.

Many smart tools have to be developed to help the end-user to program such environments, using up-to-date
component technologies and languages. At the actual present stage of maturity of this programming paradigm
for scientific applications, the main goal is to experiment on large platforms, to evaluate and extrapolate
performance, and to propose tools for the end-users; with respect to many parameters and under some specify
hypothesis concerning scheduling strategies and multicast speeds [78]. We have to always replace the end-
user at the center of this scientific programming. Then, we have to propose a framework to program P2P
architectures which completely virtualizes the P2P middleware and the heterogeneous hardware. Our approach
is based, on the one hand, on component programming and coordination languages, and on the other hand,
to the development of an ASP, which may be dedicated to a targeted scientific domain. The YML framework
provides a solution to the first point since it offers the YvetteML workflow language in order to orchestrate
components. This is a very intuitive programming approach and it favors the re-usability of optimized and
bug-free components. The abstraction of the underlying P2P middleware is also ensured by YML by means of
its back-end mechanism. The end-user of YML can submit a computing task to any kind of peer connected to
Internet as long as YML has a back-end in charge of the middleware which is running on this peer. Currently,
YML has two back-ends for the XtremWeb and OmniRPC middleware. Another one for Condor will be soon
available. The second point concerns the integration of SPIN to YML in order to get a complete programming
tool which covers all the needs of the client in order to run applications (based on linear algebra methods) over
the Internet. Finally, the conclusion of our work would be a P2P scientific programming methodology based
on experimentations and evaluation on an actual P2P development environment.

4.4. Numerical simulations and other intensive applications
For the research on numerical linear algebra, the final goal of the research of Marc Baboulin and Laura
Grigori is to make the algorithms and software as generic and widely usable as possible. However, through
our academic and industrial collaborators, our research focuses on several important application domains, that
we briefly describe in the following.

http://www.top500.org

Project-Team GRAND-LARGE 13

• Simulation of compositional multiphase Darcy flow in heterogeneous porous media with different
type of applications: simulation of reservoir models, simulation of basin models, sim- ulation
of geological CO2 underground storage, simulation of underground nuclear waste disposal. This
research is performed in the context of the ANR Petal and Petalh projects, in collaboration with
partners from IFP and CEA.

• Data analysis in astrophysics: we focus on computationally intensif numerical algorithms arising in
the data analysis of current and forthcoming Cosmic Microwave Background (CMB) experiments in
astrophysics. While this application does not involve a PDE, its most complex and time consuming
step is solving a generalized least squares problem, which is at the core of our research. This research
is performed in the context of the ANR Midas project in collaboration with Paris 7.

• Numerical simulations of incompressible fluid flows: We address the solution of large sparse linear
systems coming from the discretization of Helmholtz and Poisson equations that represent the major
part of the computational time for solving the Navier-Stokes equations describing a large class
of fluid flows. For this application, the objective is to develop algorithms that take advantage of
current heterogeneous multicore/GPU architectures. These algorithms must minimize the amount of
communication in the linear algebra kernels involved in the computation (e.g. sparse matrix-vector
product) and in the choice of the preconditioners. This research is a multidisciplinary collaboration
between researchers from University Paris-Sud, INRIA-Saclay and LIMSI/CNRS in the framework
of the CALIFHA project (funded by DIM/Digitéo).

5. Software

5.1. APMC-CA
Participants: Sylvain Peyronnet [correspondant], Joel Falcou, Pierre Esterie, Khaled Hamidouche, Alexandre
Borghi.

The APMC model checker implements the state-of-the-art approximate probabilistic model checking methods.
Last year we develop a version of the tool dedicated to the CELL architecture. Clearly, it was very pedagogic,
but the conclusion is that the CELL is not adapted to sampling based verification methods.

This year we develop, thanks to the BSP++ framework, a version compatible with SPM/multicores machines,
clusters and hybrid architectures. This version outperforms all previous ones, thus showing the interest of both
these new architectures and of the BSP++ framework.

5.2. YML
Participants: Serge Petiton [correspondant], Nahid Emad, Maxime Hugues.

Scientific end-users face difficulties to program P2P large scale applications using low level languages and
middleware. We provide a high level language and a set of tools designed to develop and execute large coarse
grain applications on peer-to-peer systems. Thus, we introduced, developed and experimented the YML for
parallel programming on P2P architectures. This work was done in collaboration with the PRiSM laboratory
(team of Nahid Emad).

The main contribution of YML is its high level language for scientific end-users to develop parallel programs
for P2P platforms. This language integrates two different aspects. The first aspect is a component description
language. The second aspect allows to link components together. A coordination language called YvetteML
can express graphs of components which represent applications for peer-to-peer systems.

14 Activity Report INRIA 2011

Moreover, we designed a framework to take advantage of the YML language. It is based on two component
catalogues and an YML engine. The first one concerns end-user’s components and the second one is related to
middleware criteria. This separation enhances portability of applications and permits real time optimizations.
Currently we provide support for the XtremWeb Peer-to-Peer middleware and the OmniRPC grid system.
The support for Condor is currently under development and a beta-release will be delivered soon (in this
release, we plan to propagate semantic data from the end-users to the middleware). The next development of
YML concerns the implementation of a multi-backend scheduler. Therefore, YML will be able to schedule at
runtime computing tasks to any global computing platform using any of the targeted middleware.

We experimented YML with basic linear algebra methods on a XtremWeb P2P platform deployed between
France and Japan. Recently, we have implemented complex iterative restarted Krylov methods, such as
Lanczos-Bisection, GMRES and MERAM methods, using YML with the OmniRPC back-end. The experi-
ments are performed either on the Grid5000 testbed of on a Network of Workstations deployed between Lille,
Versailles and Tsukuba in Japan. Demos was proposed on these testbeds from conferences in USA. We recently
finished evaluations of the overhead generated using YML, without smart schedulers and with extrapolations
due to the lack of smart scheduling strategies inside targeted middleware.

In the context of the FP3C project funded by ANR-JST, we have recently extended YML to support a directive
distributed parallel language, XcalableMP http://www.xcalablemp.org/. This extension is based on the support
of the XcalableMP language inside YML components. This allows to develop parallel programs with two
programming paradigm and thus two parallelism levels. This work is a part of the project that targets post-
Petascale supercomputer that would be composed of heterogeneous and massively parallel hardware.

The software is available at http://yml.prism.uvsq.fr/

5.3. The Scientific Programming InterNet (SPIN)
Participant: Serge Petiton [correspondant].

SPIN (Scientific Programming on the InterNet), is a scalable, integrated and interactive set of tools for
scientific computations on distributed and heterogeneous environments. These tools create a collaborative
environment allowing the access to remote resources.

The goal of SPIN is to provide the following advantages: Platform independence, Flexible parameterization,
Incremental capacity growth, Portability and interoperability, and Web integration. The need to develop a
tool such as SPIN was recognized by the GRID community of the researchers in scientific domains, such
as linear algebra. Since the P2P arrives as a new programming paradigm, the end-users need to have such
tools. It becomes a real need for the scientific community to make possible the development of scientific
applications assembling basic components hiding the architecture and the middleware. Another use of SPIN
consists in allowing to build an application from predefined components ("building blocks") existing in the
system or developed by the developer. The SPIN users community can collaborate in order to make more and
more predefined components available to be shared via the Internet in order to develop new more specialized
components or new applications combining existing and new components thanks to the SPIN user interface.

SPIN was launched at ASCI CNRS lab in 1998 and is now developed in collaboration with the University of
Versailles, PRiSM lab. SPIN is currently under adaptation to incorporate YML, cf. above. Nevertheless, we
study another solution based on the Linear Algebra KErnel (LAKE), developed by the Nahid Emad team at
the University of Versailles, which would be an alternative to SPIN as a component oriented integration with
YML.

5.4. V-DS
Participant: Franck Cappello [correspondant].

http://www.xcalablemp.org/
http://yml.prism.uvsq.fr/

Project-Team GRAND-LARGE 15

This project started officially in September 2004, under the name V-Grid. V-DS stands for Virtualization
environment for large-scale Distributed Systems. It is a virtualization software for large scale distributed
system emulation. This software allows folding a distributed systems 100 or 1000 times larger than the
experimental testbed. V-DS virtualizes distributed systems nodes on PC clusters, providing every virtual node
its proper and confined operating system and execution environment. Thus compared to large scale distributed
system simulators or emulators (like MicroGrid), V-DS virtualizes and schedules a full software environment
for every distributed system node. V-DS research concerns emulation realism and performance.

A first work concerns the definition and implementation of metrics and methodologies to compare the merits of
distributed system virtualization tools. Since there is no previous work in this domain, it is important to define
what and how to measure in order to qualify a virtualization system relatively to realism and performance. We
defined a set of metrics and methodologies in order to evaluate and compared virtualization tools for sequential
system. For example a key parameter for the realism is the event timing: in the emulated environment, events
should occur with a time consistent with a real environment. An example of key parameter for the performance
is the linearity. The performance degradation for every virtual machine should evolve linearly with the increase
of the number of virtual machines. We conducted a large set of experiments, comparing several virtualization
tools including Vserver, VMware, User Mode Linux, Xen, etc. The result demonstrates that none of them
provides both enough isolation and performance. As a consequence, we are currently studying approaches to
cope with these limits.

We have made a virtual platform on the GDX cluster with the Vserver virtualization tool. On this platform,
we have launched more than 20K virtual machines (VM) with a folding of 100 (100 VM on each physical
machine). However, some recent experiments have shown that a too high folding factor may cause a too
long execution time because of some problems like swapping. Currently, we are conducting experiments on
another platform based on the virtualization tool named Xen which has been strongly improved since 2 years.
We expect to get better result with Xen than with Vserver. Recently, we have been using the V-DS version
based on Xen to evaluate at large scales three P2P middleware [89].

This software is available at http://v-ds.lri.fr/

5.5. PVC: Private Virtual Cluster
Participant: Franck Cappello [correspondant].

Current complexity of Grid technologies, the lack of security of Peer-to-Peer systems and the rigidity of VPN
technologies make sharing resources belonging to different institutions still technically difficult.

We propose a new approach called "Instant Grid" (IG), which combines various Grid, P2P and VPN
approaches, allowing simple deployment of applications over different administration domains. Three main
requirements should be fulfilled to make Instant Grids realistic: simple networking configuration (Firewall and
NAT), no degradation of resource security, no need to re-implement existing distributed applications.

Private Virtual Cluster, is a low-level middle-ware that meets Instant Grid requirements. PVC turns dynam-
ically a set of resources belonging to different administration domains into a virtual cluster where existing
cluster runtime environments and applications can be run. The major objective of PVC is to establish direct
connections between distributed peers. To connect firewall protected nodes in the current implementation, we
have integrated three techniques: UPnP, TCP/UDP Hole Punching and a novel technique Traversing-TCP.

One of the major application of PVC is the third generation desktop Grid middleware. Unlike BOINC and
XtremWeb (which belong to the second generation of desktop Grid middleware), PVC allows the users to
build their Desktop Grid environment and run their favorite batch scheduler, distributed file system, resource
monitoring and parallel programming library and runtime software. PVC ensures the connectivity layer and
provide a virtual IP network where the user can install and run existing cluster software.

By offering only the connectivity layer, PVC allows to deploy P2P systems with specific applications, like file
sharing, distributed computing, distributed storage and archive, video broadcasting, etc.

http://v-ds.lri.fr/

16 Activity Report INRIA 2011

5.6. OpenWP
Participant: Franck Cappello [correspondant].

Distributed applications can be programmed on the Grid using workflow languages, object oriented approaches
(Proactive, IBIS, etc), RPC programming environments (Grid-RPC, DIET), component based environments
(generally based on Corba) and parallel programming libraries like MPI.

For high performance computing applications, most of the existing codes are programmed in C, Fortran and
Java. These codes have 100,000 to millions of lines. Programmers are not inclined to rewrite then in a "non
standard" programming language, like UPC, CoArray Fortran or Global Array. Thus environments like MPI
and OpenMPI remain popular even if they require hybrid approaches for programming hierarchical computing
infrastructures like cluster of multi-processors equipped with multi-core processors.

Programming applications on the Grid add a novel level in the hierarchy by clustering the cluster of multi-
processors. The programmer will face strong difficulties in adapting or programming a new application for
these runtime infrastructures featuring a deep hierarchy. Directive based parallel and distributed computing
is appealing to reduce the programming difficulty by allowing incremental parallelization and distribution.
The programmer add directives on a sequential or parallel code and may check for every inserted directive its
correction and performance improvement.

We believe that directive based parallel and distributed computing may play a significant role in the next
years for programming High performance parallel computers and Grids. We have started the development of
OpenWP. OpenWP is a directive based programming environment and runtime allowing expressing workflows
to be executed on Grids. OpenWP is compliant with OpenMP and can be used in conjunction with OpenMP
or hybrid parallel programs using MPI + OpenMP.

The OpenWP environment consists in a source to source compiler and a runtime. The OpenWP parser,
interprets the user directives and extracts functional blocks from the code. These blocks are inserted in a
library distributed on all computing nodes. In the original program, the functional blocks are replaced by RPC
calls and calls to synchronization. During the execution, the main program launches non blocking RPC calls
to functions on remote nodes and synchronize the execution of remote functions based on the synchronization
directives inserted by the programmer in the main code. Compared to OpenMP, OpenWP does not consider a
shared memory programming approach. Instead, the source to source compiler insert data movements calls in
the main code. Since the data set can be large in Grid application, the OpenWP runtime organize the storage
of data sets in a distributed way. Moreover, the parameters and results of RPC calls are passed by reference,
using a DHT. Thus, during the execution, parameter and result references are stored in the DHT along with the
current position of the datasets. When a remote function is called, the DHT is consulted to obtain the position
of the parameter data sets in the system. When a remote function terminates its execution, it stores the result
data sets and store a reference to the data set in the DHT.

We are evaluating OpenWP from an industrial application (Amibe), used by the European aerospace company
EADS. Amibe is the mesher module of jCAE 1. Amibe generates a mesh from a CAD geometry in three
steps. It first creates edges between every patch of the CAD (mesh in one dimension), then generates a surface
mesh for every unfolded patch (mesh in two dimensions) and finally adds the third dimension to the mesh by
projecting the 2D mesh into the original CAD surfaces. The first and third operation cannot be distributed.
However the second step can easily be distributed following a master/worker approach, transferring the
mesh1d results to every computing node and launching the distributed execution of the patches.

5.7. Parallel solvers for solving linear systems of equations
Participant: Laura Grigori.

1project page: http://jcae.sourceforge.net

http://jcae.sourceforge.net

Project-Team GRAND-LARGE 17

In the last several years, there has been significant research effort in the development of fully parallel direct
solvers for computing the solution of large unsymmetric sparse linear systems of equations. In this context,
we have designed and implemented a parallel symbolic factorization algorithm, which is suitable for general
sparse unsymmetric matrices. The symbolic factorization is one of the steps that is sequential and represents
a memory bottleneck. The code is intended to be used with very large matrices when because of the memory
usage, the sequential algorithm is not suitable. This code is available in the SuperLU_DIST, a widely used
software, developed at UC Berkeley and LBNL by Professor James W. Demmel and Dr. Xiaoye S. Li. The
algorithm is presented in [77]. The SuperLU_DIST is available at http://crd.lbl.gov/~xiaoye/SuperLU/ .

5.8. OpenScop
Participant: Cédric Bastoul.

OpenScop is an open specification which defines a file format and a set of data structures to represent a
static control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model, an
algebraic representation of programs used for automatic parallelization and optimization (used, e.g., in GNU
GCC, LLVM, IBM XL or Reservoir Labs R-Stream compilers). The goal of OpenScop is to provide a common
interface to various polyhedral compilation tools in order to simplify their interaction.

OpenScop provides a single format for tools that may have different purposes (e.g., as different as code
generation and data dependence analysis). We could observe that most available polyhedral compilation tools
during the last decade were manipulating the same kind of data (polyhedra, affine functions...) and were
actually sharing a part of their input (e.g., iteration domains and context concepts are nearly everywhere). We
could also observe that those tools may rely on different internal representations, mostly based on one of the
major polyhedral libraries (e.g., Polylib, PPL or isl), and this representation may change over time (e.g., when
switching to a more convenient polyhedral library). OpenScop aims at providing a stable, unified format that
offers a durable guarantee that a tool can use an output or provide an input to another tool without breaking
a compilation chain because of some internal changes in one element of this chain. The other promise of
OpenScop is the ability to assemble or replace the basic blocks of a polyhedral compilation framework at no,
or at least low engineering cost. The OpenScop Library (licensed under the 3-clause BSD license) has been
developped as an example, yet powerful, implementation of the OpenScop specification.

5.9. CALU for multicore architectures
Participant: Laura GRIGORI [correspondant].

The communication avoiding algorithms are implemented in the form of a portable library. In its current form,
this library is designed for multicore architectures and uses a hybrid scheduling technique that exploits well
the data locality and can adapt to dynamic changes in the machine. The library will be publicly available since
February 2012.

See also the web page http://www-rocq.inria.fr/who/Laura.Grigori/COALA2010/coala.html.

• Version: 1.0

5.10. Fast linear system solvers in public domain libraries
Participant: Marc Baboulin [correspondant].

Hybrid multicore+GPU architectures are becoming commonly used systems in high performance computing
simulations. In this research, we develop linear algebra solvers where we split the computation over multicore
and graphics processors, and use particular techniques to reduce the amount of pivoting and communication
between the hybrid components. This results in efficient algorithms that take advantage of each computational
unit [12]. Our research in randomized algorithms yields to several contributions to propose public domain
libraries PLASMA and MAGMA in the area of fast linear system solvers for general and symmetric indefinite
systems. These solvers minimize communication by removing the overhead due to pivoting in LU and LDLT
factorization.

http://crd.lbl.gov/~xiaoye/SuperLU/
http://www-rocq.inria.fr/who/Laura.Grigori/COALA2010/coala.html

18 Activity Report INRIA 2011

See also the web page http://icl.cs.utk.edu/magma/.

5.11. cTuning: Repository and Tools for Collective Characterization and
Optimization of Computing Systems
Participant: Grigori Fursin [correspondant].

Designing, porting and optimizing applications for rapidly evolving computing systems is often complex, ad-
hoc, repetitive, costly and error prone process due to an enormous number of available design and optimization
choices combined with the complex interactions between all components. We attempt to solve this fundamental
problem based on collective participation of users combined with empirical tuning and machine learning.

We developed cTuning framework that allows to continuously collect various knowledge about application
characterization and optimization in the public repository at cTuning.org. With continuously increasing and
systematized knowledge about behavior of computer systems, users should be able to obtain scientifically
motivated advices about anomalies in the behavior of their applications and possible solutions to effectively
balance performance and power consumption or other important characteristics.

Currently, we use cTuning repository to analyze and learn profitable optimizations for various programs,
datasets and architectures using machine learning enabled compiler (MILEPOST GCC). Using collected
knowledge, we can quickly suggest better optimizations for a previously unseen programs based on their
semantic or dynamic features [7].

We believe that such approach will be vital for developing efficient Exascale computing systems. We are
currently developing the new extensible cTuning2 framework for automatic performance and power tuning of
HPC applications.

For more information, see the web page http://cTuning.org.

6. New Results

6.1. Communication avoiding algorithms for linear algebra
Participants: Laura Grigori, Simplice Donfack, Amal Khabou, Mathias Jacquelin, Sophie Moufawad.

The focus of this research is on the design of efficient parallel algorithms for solving problems in numerical
linear algebra, as solving very large sets of linear equations and large least squares problems, often with
millions of rows and columns. These problems arise in many numerical simulations, and solving them is very
time consuming.

This research focuses on developing new algorithms for linear algebra problems, that minimize the required
communication, in terms of both latency and bandwidth. We have introduced in 2008 two communication
avoiding algorithms for computing the LU and QR factorizations, that we refer to as CALU and CAQR (joint
work with J. Demmel and M. Hoemmen from U.C. Berkeley, J. Langou from C.U. Denver, and H. Xiang then
at INRIA) [6], [9]. Since then, we have also designed a communication avoiding algorithm for rank revealing
QR. In addition, we have also extended theoretical lower bounds to sparse Cholesky factorization and identified
algorithms that attain these bounds and so minimize communication. The communication avoiding algorithms
are now studied by several other groups, including groups at INRIA, and they start being implemented and
being available in public libraries as ScaLAPACK.

http://icl.cs.utk.edu/magma/
http://cTuning.org

Project-Team GRAND-LARGE 19

During 2011, our research has focused on a study of the stability of communication avoiding LU factorization
and on its implementation on multicore machines. In [20] we focus on numerical properties of CALU. To
decrease the communication required in the LU factorization, CALU uses a new pivoting strategy, referred
to as tournament pivoting, that may lead to a different row permutation than the classic LU factorization
with partial pivoting. We have further investigated the numerical stability of CALU. The reason to consider
CALU is that it does an optimal amount of communication, and asymptotically less than Gaussian elimination
with partial pivoting (GEPP), and so will be much faster on platforms where communication is expensive, as
shown in previous work. We show that the Schur complement obtained after each step of performing CALU
on a matrix A is the same as the Schur complement obtained after performing GEPP on a larger matrix whose
entries are the same as the entries of A (sometimes slightly perturbed) and zeros. More generally, the entire
CALU process is equivalent to GEPP on a large, but very sparse matrix, formed by entries of A and zeros.
Hence we expect that CALU will behave as GEPP and it will be also very stable in practice. In addition,
extensive experiments on random matrices and a set of special matrices show that CALU is stable in practice.
The upper bound on the growth factor of CALU is worse than of GEPP. However, there are Wilkinson like-
matrices for which GEPP has exponential growth factor, but not CALU, and vice-versa.

We present experimental results for random matrices and for a set of special matrices, including sparse
matrices, for binary tree based and flat-tree-based CALU. We discuss both the stability of the LU factorization
and of the linear solver, in terms of pivot growth and backward errors. The results show that in practice
CALU is stable. We present the backward errors measured three ways: by ‖PA− LU‖/‖A‖, by the
normwise backward error ‖Ax− b‖/(‖A‖‖x‖+ ‖b‖), and by the componentwise backward error (after
iterative refinement in working precision). For random matrices, all CALU’s backward errors were at most 1.9x
larger than GEPP’s backward errors. We also tested "special" matrices, including known difficult examples:
(1) The ratios of ‖PA− LU‖/‖A‖ were at most 1 in over 69% of cases (i.e. CALU was at least as stable as
GEPP), and always 1.5 or smaller, except for one ratio of 4.3, in which case both backward errors were much
smaller than 2−53 = machine epsilon. (2) The ratios of normwise backward errors were at most 1 in over 53%
of cases, and always 1.5 or smaller, except for 5 ratios ranging up to 26, in which cases all backward errors
were less than 4x machine epsilon. (3) The ratios of componentwise backward errors were at most 1 in over
52% of cases, and always 3.2 or smaller, except for one ratio of 8.3.

In [30] we design a scheduling algorithm for efficiently executing CALU on multicore architectures. We
focus on a tunable scheduling strategy that maintains load balance across cores while also maintaining data
locality and low dequeue overhead. To achieve this, we use a strategy that combines static and dynamic
scheduling. This approach was shown to be successful on regular mesh computations by V. Kale and B. Gropp.
This tunable scheduling strategy allows us to flexibly control the percentage of tasks that can be scheduled
dynamically; this gives a knob to control load balancing so that it occurs only at the point in computation when
the benefits it provides outweighs the costs it induces. On NUMA machines where remote memory access is
costly, the percentage of work scheduled dynamically should be small enough to avoid excessive cache misses,
but large enough to keep the cores busy during idle times in the static part.

In this work, we show the effectiveness of this method in the context of already highly-optimized dense
matrix factorizations. Our prior work on multi-threaded CALU was based on dynamic scheduling. The
algorithm performed well on tall and skinny matrices, but became less scalable on square matrices with
increasing numbers of processors. We show that the usage of this scheduling in communication avoiding
dense factorization leads to significant performance gains. On a 48 core AMD Opteron NUMA machine,
our experiments show that we can achieve up to 64% improvement over a version of CALU that uses fully
dynamic scheduling, and up to 30% improvement over the version of CALU that uses fully static scheduling.
On a 16-core Intel Xeon machine, our hybrid static/dynamic scheduling approach is up to 8% faster than
the version of CALU that uses a fully static scheduling or fully dynamic scheduling. Our algorithm leads to
speedups over the corresponding routines for computing LU factorization in well known libraries. On the 48
core AMD NUMA machine, our best implementation is up to 110% faster than MKL, while on the 16 core
Intel Xeon machine, it is up to 82% faster than MKL. Our approach also shows significant speedups compared
with PLASMA on both of these systems.

20 Activity Report INRIA 2011

6.2. Preconditioning techniques for solving large systems of equations
Participants: Laura Grigori, Riadh Fezzanni, Sophie Moufawad.

A different direction of research is related to preconditioning large sparse linear systems of equations. This
research is performed in the context of ANR PETALh project (2011-2012), which follows the ANR PETAL
project (2008-2009). It is conducted in collaboration with Frederic Nataf from University Paris 6.

Several highly used preconditioners are for example the incomplete LU factorizations and Schwarz based
approaches as used in domain decomposition. Most of these preconditioners are known to have scalability
problems. The number of iterations can increase significantly when the size of the problem increases or when
the number of independent domains is increased. This is often due to the presence of several low frequency
modes that hinder the convergence of the iterative method. To address this problem, we study a different class
of preconditioners, called direction preserving or filtering preconditioners. These preconditioners have the
property of being identical to the input matrix on a given filtering vector. A judicious choice of the vector
allows to alleviate the effect of low frequency modes on the convergence.

We consider in particular two classes of preconditioners. The first preconditoner is an incomplete decompo-
sition that satisfies the filtering property [11]. The nested preconditioner has the same property for a specific
vector of all ones. However the construction is different and takes advantage of a nested structure of the in-
put matrix. The previous research on these methods considered only matrices arising from the discretization
of PDEs on structured grids, where the matrix has a block tridiagonal structure. This structure imposes a
sequential computation of the preconditioner and it is not suitable for the more general case of unsructured
grids. Hence, while very efficient, the usage of these preconditioners was very limited. At the beginning of
this research we have obtained several theoretical results for these methods that demonstrate their numerical
behavior and convergence properties for cases arising from the discretization of PDEs on structured grids [11].
But the main result is the development of a generalized method [48], [46] that has two important properties:
it allows the filtering property to be satisfied for any input matrix; the matrix can be reordered such that its
computation is highly parallel. Experimental results show that the method is very efficient for certain classes
of matrices, and shows good scalability results in terms of both problem size and number of processors.

6.3. MIcrowave Data Analysis for petaScale computers
Participants: Laura Grigori, Mikolaj Szydlarski, Meisam Shariffy.

In [47] we describe an scalable algorithm for computing an inverse spherical harmonic transform suitable
for cluster of multiple CPU-GPUs. We base our implementation on hybrid programming combining MPI and
CUDA. We focus our attention on the two major sequential steps involved in the transforms computation,
retaining the efficient parallel framework of the original code. We detail optimization techniques used to
enhance the performance of the OpenMP/CUDA-based code and compare them with those implemented in
the public domain parallel package, S2HAT.

We also present performance comparisons of the multi GPU version and a hybrid, MPI/OpenMP version of
the same transform. We find that one NVIDIA Tesla S1070 can accelerate overall execution time of the SHT
by as much as 3 times with respect to the MPI/OpenMP version executed on one quad-core processor (Intel
Nehalem 2.93 GHz) and, owing to very good scalability of both versions, 128 Tesla cards perform as good as
256 twelve-core processor (AMD Opteron 2.1 GHz).

The work presented here has been performed in the context of the Cosmic Microwave Background simulations
and analysis. However, we expect that the developed software will be of more general interest and applicability.

6.4. Innovative linear system solvers for hybrid multicore/GPU architectures
Participant: Marc Baboulin.

The advent of new processor architectures (e.g. multicore, GPUs) requires the rethinking of most of the
scientific applications and innovative methods must be proposed in order to take full advantage of current
supercomputers [12].

Project-Team GRAND-LARGE 21

To accelerate linear algebra solvers on current parallel machines, we introduced in public domain libraries
a class of solvers based on statistical techniques. A first application concerns the solution of a square linear
systems Ax = b. We study a random transformation of A that enables us to avoid pivoting and then to reduce
the amount of communication [54]. Numerical experiments show that this randomization can be performed at
a very affordable computational price while providing us with a satisfying accuracy when compared to partial
pivoting. This random transformation called Partial Random Butterfly Transformation (PRBT) is optimized in
terms of data storage and flops count. In the solver that we developed, PRBT combined with LU factorization
with no pivoting take advantage of the latest generation of hybrid multicore/GPU machines and outperform
existing factorization routines from current parallel library MAGMA.

A second application is related to solving symmetric indefinite systems via LDLT factorization for which
there was no existing parallel implementation in the dense library ScaLAPACK. We developed an efficient
and innovative parallel tiled algorithm for solving symmetric indefinite systems on multicore architectures
[59]& [1]. This solver avoids pivoting by using a multiplicative preconditioning based on symmetric random-
ization. This randomization prevents the communication overhead due to pivoting, is computationally inexpen-
sive and requires very little storage. Following randomization, a tiled LDLT factorization is used that reduces
synchronization by using static or dynamic scheduling. We compare Gflop/s performance of our solver with
other types of factorizations on a current multicore machine and we provide tests on accuracy using LAPACK
test cases.

6.5. MILEPOST GCC: machine learning enabled self-tuning compiler
Participant: Grigori Fursin [correspondant].

Tuning compiler optimizations for rapidly evolving hardware makes porting and extending an optimizing
compiler for each new platform extremely challenging. Iterative optimization is a popular approach to
adapting programs to a new architecture automatically using feedback-directed compilation. However, the
large number of evaluations required for each program has prevented iterative compilation from widespread
take-up in production compilers. Machine learning has been proposed to tune optimizations across programs
systematically but is currently limited to a few transformations, long training phases and critically lacks
publicly released, stable tools.

Our approach is to develop a modular, extensible, self-tuning optimization infrastructure to automatically learn
the best optimizations across multiple programs and architectures based on the correlation between program
features, run-time behavior and optimizations. In this paper we describe MILEPOST GCC, the first publicly-
available open-source machine learning-based compiler. It consists of an Interactive Compilation Interface
(ICI) and plugins to extract program features and exchange optimization data with the cTuning.org open
public repository. It automatically adapts the internal optimization heuristic at function-level granularity to
improve execution time, code size and compilation time of a new program on a given architecture. Part of
the MILEPOST technology together with low-level ICI-inspired plugin framework is now included in the
mainline GCC.

We developed machine learning plugins based on probabilistic and transductive approaches to predict good
combinations of optimizations. Our preliminary experimental results show that it is possible to automatically
reduce the execution time of individual MiBench programs on various machines from GRID5000, some by
more than a factor of 2, while also improving compilation time and code size. We also present a realistic
multi-objective optimization scenario for Berkeley DB library using MILEPOST GCC and improve execution
time by approximately 17%, while reducing compilation time and code size by 12% and 7% respectively on
Intel Xeon processor.

6.6. Loop Transformations: Convexity, Pruning and Optimization
Participant: Cédric Bastoul.

22 Activity Report INRIA 2011

High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit
resources in modern processor architectures. However, determining appropriate compositions of loop transfor-
mations to achieve this remains a significantly challenging task; current compilers may achieve significantly
lower performance than hand-optimized programs. To address this fundamental challenge, we first present a
convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then
bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algo-
rithm over this highly expressive space. The framework has been implemented and validated experimentally
on a representative set of benchmarks run on state-of-the-art multi-core platforms.

6.7. Exact algorithm for the l1-compressive sensing problem using a modified
Dantzig- Wolfe method
Participants: Alexandre Borghi, Jerome Darbon, Sylvain Peyronnet.

In this work, we consider the l1-Compressive Sensing problem and presents an efficient algorithm that
computes an exact solution. The idea consists in reformulating the problem such that it yields a modified
Dantzig-Wolfe decomposition that allows to efficiently apply all standard simplex pivoting rules. Experimental
results show the superiority of our approach compared to standard linear programming methods.

6.8. Supple: a flexible probabilistic data dissemination protocol for wireless
sensor networks
Participants: Aline Carneiro Viana, Thomas Hérault, Thomas LArgillier, Sylvain Peyronnet, Fatiha Zaidi.

We propose a flexible proactive data dissemination approach for data gathering in self-organized Wireless
Sensor Networks (WSN). Our protocol Supple, effectively distributes and stores monitored data in WSNs
such that it can be later sent to or retrieved by a sink. Supple empowers sensors with the ability to make
on the fly forwarding and data storing decisions and relies on flexible and self-organizing selection criteria,
which can follow any predefined distribution law. Using formal analysis and simulation, we show that Supple
is effective in selecting storing nodes that respect the predefined distribution criterion with low overhead and
limited network knowledge.

6.9. Non-self-stabilizing and self-stabilizing gathering in networks of mobile
agents–the notion of speed
Participants: Joffroy Beauquier, Janna Burman, Julien Clment, Shay Kutten.

In the population protocol model, each agent is represented by a finite state machine. Agents are anonymous
and supposed to move in an asynchronous way. When two agents come into range of each other (“meet”),
they can exchange information. One of the vast variety of motivating examples to the population protocols
model is ZebraNet. ZebraNet is a habitat monitoring application where sensors are attached to zebras and
collect biometric data (e.g. heart rate, body temperature) and information about their behavior and migration
patterns (via GPS). The population protocol model is, in some sense, related to cloud computing and to
networks characterized by asynchrony,large scale, the possibility of failures, in the agents as well as in the
communications, with the constraint that each agent is resource limited.

In order to extend the computation power and efficiency of the population protocol model, various extensions
were suggested. Our contribution is an extension of the population protocol model that introduces the notion
of “speed”, in order to capture the fact that the mobile agents move at different speeds and/or have different
communication ranges and/or move according to different patterns and/or visit different places with different
frequencies. Intuitively, fast agents which carry sensors with big communication ranges communicate with
other agents more frequently than other agents do. This notion is formalized by allocating a cover time, cv, to
each mobile agent v. cv is the minimum number of events in the whole system that occur before agent v meets
every other agent at least once. As a fundamental example, we have considered the basic problem of gathering
information that is distributed among anonymous mobile agents and where the number of agents is unknown.
Each mobile agent owns a sensed input value and the goal is to communicate the values (as a multi-set, one
value per mobile agent) to a fixed non-mobile base station (BS), with no duplicates or losses.

Project-Team GRAND-LARGE 23

Gathering is a building block for many monitoring applications in networks of mobile agents. For example, a
solution to this problem can solve a transaction commit/abort task in MANETs, if the input values of agents
are votes (and the number of agents is known to BS). Moreover, the gathering problem can be viewed as a
formulation of the routing problem in Disruption Tolerant Networks.

We gave different solutions to the gathering in the model of mobile agents with speed and we proved that one
of them is optimal.

6.10. Making Population Protocols Self-stabilizing
Participants: Joffroy Beauquier, Janna Burman, Shay Kutten, Brigitte Rozoy.

As stated in the previous paragraph, the application domains of the population protocol model are asyn-
chronous large scale networks, in which failures are possible and must be taken into account. This work
concerns failures and namely the technique of self-stabilization for tolerating them.

Developing self-stabilizing solutions (and proving them) is considered to be more challenging and complicated
than developing classical solutions, where a proper initialization of the variables can be assumed. This remark
holds for a large variety of models and hence, to ease the task of the developers, some automatic techniques
have been proposed to transform programs into self-stabilizing ones.

We have proposed such a transformer for algorithms in the population protocol model introduced for dealing
with resource-limited mobile agents. The model we consider is a variation of the original one in that there
is a non mobile agent, the base station, and that the communication characteristics (e.g. moving speed,
communication radius) of the agents are considered through the notion of cover time.

The automatic transformer takes as an input an algorithm solving a static problem and outputs a self-stabilizing
solution for the same problem. To the best of our knowledge, it is the first time that such a transformer for self-
stabilization is presented in the framework of population protocols. We prove that the transformer we propose
is correct and we make the complexity analysis of the stabilization time.

6.11. Self-stabilizing synchronization in population protocols with cover times
Participants: Joffroy Beauquier, Janna Burman, Shay Kutten, Brigitte Rozoy.

Synchronization is widely considered as an important service in distributed systems which may simplify
protocol design. Phase clock is a general synchronization tool that provides a form of a logical time. We
have developed a self-stabilizing phase clock algorithm suited to the model of population protocols with cover
time. We have shown that a phase clock is impossible in the model with only constant-state agents. Hence, we
assumed an existence of resource unlimited agent - the base station. The clock size and duration of each phase
of the proposed phase clock tool are adjustable by the user. We provided application examples of this tool and
demonstrate how it can simplify the design of protocols. In particular, it yields a solution to Group Mutual
Exclusion problem.

6.12. Impossibility of consensus for population protocol with cover times
Participants: Joffroy Beauquier, Janna Burman.

We have extended the impossibility result for asynchronous consensus of Fischer, Lynch and Paterson (FLP)
to the asynchronous model of population protocols with cover times. We noted that the proof of FLP does not
apply. Indeed, the key lemma stating that two successive factors in an execution, involving disjoint subsets
of agents, commute, is no longer true, because of the cover time property. Then we developed a completely
different approach and we proved that there is no general solution to consensus for population protocols
with cover times, even if there is a single possible crash. We noted that this impossibility result also applies
to randomized asynchronous consensus, contrary to what happens in the classical message-passing or shared
memory communication models, in which the problem is solvable inside some bounds on the number of faulty
processes. Then, for circumventing these impossibility results, we introduced the phase clock oracle and the S
oracle, and we shown how they allow to design solutions.

24 Activity Report INRIA 2011

6.13. Routing and synchronization in large scale networks of very cheap
mobile sensors
Participants: Joffroy Beauquier, Brigitte Rozoy.

In a next future, large networks of very cheap mobile sensors will be deployed for various applications, going
from wild life preserving or environmental monitoring up to medical or industrial system control. Each sensor
will cost only a few euros, allowing a large scale deployment. They will have only a few bit of memory,
no identifier, weak capacities of computation and communication, no real time clock and will be prone to
failures. Moreover such networks will be fundamentally dynamic. The goal of this subject is to develop the
basic protocols and algorithms for rudimentary distributed systems for such networks. The studied problems
are basic ones, like data collection, synchronization (phase clock, mutual exclusion, group mutual exclusion),
fault tolerance (consensus), automatic transformers, always in a context of possible failures. A well known
model has already been proposed for such networks, the population protocol model. In this model, each
sensor is represented by a finite state machine. Sensors are anonymous and move in an asynchronous way.
When two sensors come into range of each other ("meet"), they can exchange information. One of the vast
variety of motivating examples for this model is ZebraNet. ZebraNet is a habitat monitoring application in
which sensors are attached to zebras in order to collect biometric data (e.g., heart rate, body temperature)
and information about their behavior and migration patterns. Each pair of zebras meets from time to time.
During such meetings (events), ZebraNet’s agents (zebras’ attached sensors) exchange data. Each agent stores
its own sensor data as well as data of other sensors that were in range in the past. They upload data to a base
station whenever it is nearby. It was shown that the set of applications that can be solved in the original model
of population protocols is rather limited. Other models (such as some models of Delay/Disruption-Tolerant
Networks - DTNs), where each node maintains links and connections even to nodes it may interact with only
intermittently, do not seem to suit networks with small memory agents and a very large (and unknown) set
of anonymous agents. That is why we enhance the model of population protocols by introducing a notion
of "speed". We try to capture the fact that the mobile agents move at different speeds and/or have different
communication ranges and/or move according to different patterns and/or visit different places with different
frequencies. Intuitively, fast agents which carry sensors with large communication ranges communicate with
other agents more frequently than other agents do. This notion is formalized by the notion of cover time for
each agent. The cover time of an agent is the unknown number of events (pairwise meetings) in the whole
system that occur (during any execution interval) before agent v meets every other agent at least once. The
model we propose is somehow validated by some recent statistical results, obtained from empirical data sets
regarding human or animal mobility. An important consequence of our approach is that the analytic complexity
of the protocols designed in this model is possible, independently of any simulation or experimentation. For
instance, we consider the fundamental problem of gathering different pieces of information, each sensed by a
different anonymous mobile agent, and where the number of agents is unknown. The goal is to communicate
the sensed values (as a multi-set, one value per mobile agent) to a base station, with no duplicates or losses.
Gathering is a building block for many monitoring applications in networks of mobile agents. Moreover, the
gathering problem can be viewed as a special case of the routing problem in DTNs, in which there is only one
destination, the base station. Then we are able to compute the complexity of solutions we propose, as well
as those of solutions used in experimental projects (like ZebraNet), and to compare them. The algorithms we
present are self-stabilizing. Such algorithms have the important property of operating correctly regardless of
their initial state (except for some bounded period). In practice, self-stabilizing algorithms adjust themselves
automatically to any changes or corruptions of the network components (excluding the algorithm’s code).
These changes are assumed to cease for some sufficiently long period. Self-stabilization is considered for two
reasons. First, mobile agents are generally fragile, subject to failures and hard to initialize. Second, systems
of mobile agents are by essence dynamic, some agents leave the system while new ones are introduced. Self-
stabilization is a well adapted framework for dealing with such situations.

6.14. Self-Stabilizing Control Infrastructure for HPC
Participants: Thomas Hérault, Camille Coti.

Project-Team GRAND-LARGE 25

High performance computing platforms are becoming larger, leading to scalability and fault-tolerance issues
for both applications and runtime environments (RTE) dedicated to run on such machines. After being
deployed, usually following a spanning tree, a RTE needs to build its own communication infrastructure to
manage and monitor the tasks of parallel applications. Previous works have demonstrated that the Binomial
Graph topology (BMG) is a good candidate as a communication infrastructure for supporting scalable and
fault-tolerant RTE.

In this work, we presented and analyzed a self-stabilizing algorithm to transform the underlying communica-
tion infrastructure provided by the launching service (usually a tree, due to its scalability during launch time)
into a BMG, and maintain it in spite of failures. We demonstrated that this algorithm is scalable, tolerates
transient failures, and adapts itself to topology changes.

The algorithms are scalable, in the sense that all process memory, number of established communication links,
and size of messages are logarithmic with the number of elements in the system. The number of synchronous
rounds to build the system is also logarithmic, and the number of asynchronous rounds in the worst case is
square logarithmic with the number of elements in the system. Moreover, the salf-stabilizing property of the
algorithms presented induce fault-tolerance and self-adaptivity. Performance evaluation based on simulations
predicts a fast convergence time (1/33s for 64K nodes), exhibiting the promising properties of such self-
stabilizing approach.

We pursue this work by implementing and evaluating the algorithms in the STCI runtime environment to
validate the theoretical results.

6.15. Large Scale Peer to Peer Performance Evaluations
Participant: Serge Petiton.

6.15.1. Large Scale Grid Computing
Recent progress has made possible to construct high performance distributed computing environments, such as
computational grids and cluster of clusters, which provide access to large scale heterogeneous computational
resources. Exploration of novel algorithms and evaluation of performance is a strategic research for the future
of computational grid scientific computing for many important applications [88]. We adapted [68] an explicit
restarted Lanczos algorithm on a world-wide heterogeneous grid platform. This method computes one or few
eigenpairs of a large sparse real symmetric matrix. We take the specificities of computational resources into
account and deal with communications over the Internet by means of techniques such as out-of-core and data
persistence. We also show that a restarted algorithm and the combination of several paradigms of parallelism
are interesting in this context. We perform many experimentations using several parameters related to the
Lanczos method and the configuration of the platform. Depending on the number of computed Ritz eigenpairs,
the results underline how critical the choice of the dimension of the working subspace is. Moreover, the size
of platform has to be scaled to the order of the eigenproblem because of communications over the Internet.

6.15.2. High Performance Cluster Computing
Grid computing focuses on making use of a very large amount of resources from a large-scale computing
environment. It intends to deliver high-performance computing over distributed platforms for computation
and data-intensive applications. We propose [99] an effective parallel hybrid asynchronous method to solve
large sparse linear systems by the use of a Grid Computing platform Grid5000. This hybrid method combines
a parallel GMRES(m) (Generalized Minimum RESidual) algorithm with the Least Square method that needs
some eigenvalues obtained from a parallel Arnoldi algorithm. All of these algorithms run on the different
processors of the platform Grid5000. Grid5000, a 5000 CPUs nation-wide infrastructure for research in
Grid computing, is designed to provide a scientific tool for computing. We discuss the performances of this
hybrid method deployed on Grid5000, and compare these performances with those on the IBM SP series
supercomputers.

26 Activity Report INRIA 2011

6.15.3. Large Scale Power aware Computing
Energy conservation is a dynamic topic of research in High Performance Computing and Cluster Computing.
Power-aware computing for heterogeneous world-wide Grid is a new track of research. We have studied
and evaluated the impact of the heterogeneity of the computing nodes of a Grid platform on the energy
consumption. We propose to take advantage of the slack-time caused by the heterogeneity in order to save
energy with no significant loss of performance by using Dynamic Voltage Scaling (DVS) in a distributed
eigensolver [69]. We show that using DVS only during the slack-time does not penalize the performances but
it does not provide significant energy savings. If DVS is applied to all the execution, we get important global
and local energy savings (respectively up to 9% and 20%) without a significant rise of the wall-clock times.

6.16. High Performance Linear Algebra on the Grid
Participants: Thomas Hérault, Camille Coti.

Previous studies have reported that common dense linear algebra operations do not achieve speed up by
using multiple geographical sites of a computational grid. Because such operations are the building blocks of
most scientific applications, conventional supercomputers are still strongly predominant in high-performance
computing and the use of grids for speeding up large-scale scientific problems is limited to applications
exhibiting parallelism at a higher level.

In this work, we have identified two performance bottlenecks in the distributed memory algorithms imple-
mented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLAPACK assumes a
homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their
communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly
greater than other algorithms that trade flops for communication.

This year, we presented a new approach for computing a QR factorization one of the main dense linear algebra
kernels of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our
contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-
aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the
different geographical sites.

An experimental study conducted on the Grid5000 platform shows that the resulting performance increases
linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher
than ScaLAPACKs).

6.17. Emulation of Volatile Systems
Participants: Thomas Largillier, Benjamin Quetier, Sylvain Peyronnet, Thomas Hérault, Franck Cappello.

In the process of developping grid applications, people need to often evaluate the robustness of their work.
Two common approaches are simulation, where one can evaluate his software and predict behaviors under
conditions usually unachievable in a laboratory experiment, and experimentation, where the actual application
is launched on an actual grid. However simulation could ignore unpredictable behaviors due to the abstraction
done and experimation does not guarantee a controlled and reproducible environment, and simulation often
introduces a high level of abstraction that make the discovery and study of unexpected, but real, behaviors a
rare event.

In this work, we proposed an emulation platform for parallel and distributed systems including grids where
both the machines and the network are virtualized at a low level. The use of virtual machines allows us to test
highly accurate failure injection since we can destroy virtual machines, and network virtualization provides
low-level network emulation. Failure accuracy is a criteria that evaluates how realistic a fault is. The accuracy
of our framework has been evaluated through a set of micro benchmarks and a very stable P2P system called
Pastry.

Project-Team GRAND-LARGE 27

We are in the process of developping a fault injection tool to work with the platform. it will be an extension
of the work started in the tool Fail. The interest of this work is that using Xen virtual machines will allow to
model strong adversaries since it is possible to have virtual machines with shared memory. These adversaries
will be stronger since they will be able to use global fault injection strategies.

6.18. Exascale Systems
Participant: Franck Cappello.

Over the last 20 years, the open-source community has provided more and more software on which the world’s
high-performance computing systems depend for performance and productivity. The community has invested
millions of dollars and years of effort to build key components. Although the investments in these separate
software elements have been tremendously valuable, a great deal of productivity has also been lost because
of the lack of planning, coordination, and key integration of technologies necessary to make them work
together smoothly and efficiently, both within individual petascale systems and between different systems.
A repository gatekeeper and an email discussion list can coordinate open-source development within a single
project, but there is no global mechanism working across the community to identify critical holes in the
overall software environment, spot opportunities for beneficial integration, or specify requirements for more
careful coordination. It seems clear that this completely uncoordinated development model will not provide
the software needed to support the unprecedented parallelism required for peta/exascale computation on
millions of cores, or the flexibility required to exploit new hardware models and features, such as transactional
memory, speculative execution, and GPUs. We presented a rational promoting that the community must work
together to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated
International Exascale Software Project.

Over the past few years resilience has became a major issue for high-performance computing (HPC) systems,
in particular in the perspective of large petascale systems and future exascale systems. These systems will
typically gather from half a million to several millions of central processing unit (CPU) cores running up
to a billion threads. From the current knowledge and observations of existing large systems, it is anticipated
that exascale systems will experience various kind of faults many times per day. It is also anticipated that the
current approach for resilience, which relies on automatic or application level checkpoint/restart, will not work
because the time for checkpointing and restarting will exceed the mean time to failure of a full system. This set
of projections leaves the community of fault tolerance for HPC systems with a difficult challenge: finding new
approaches, which are possibly radically disruptive, to run applications until their normal termination, despite
the essentially unstable nature of exascale systems. Yet, the community has only five to six years to solve the
problem. In order to start addressing this challenge, we synthesized the motivations, observations and research
issues considered as determinant of several complimentary experts of HPC in applications, programming
models, distributed systems and system management.

As a first step to adress the resilience challenge, we conducted a comprehensive study of the state of the
art . The emergence of petascale systems and the promise of future exascale systems have reinvigorated the
community interest in how to manage failures in such systems and ensure that large applications, lasting several
hours or tens of hours, are completed successfully. Most of the existing results for several key mechanisms
associated with fault tolerance in high-performance computing (HPC) platforms follow the rollback-recovery
approach. Over the last decade, these mechanisms have received a lot of attention from the community with
different levels of success. Unfortunately, despite their high degree of optimization, existing approaches do
not fit well with the challenging evolutions of large-scale systems. There is room and even a need for new
approaches. Opportunities may come from different origins: diskless checkpointing, algorithmic-based fault
tolerance, proactive operation, speculative execution, software transactional memory, forward recovery, etc.
We provided the following contributions: (1) we summarize and analyze the existing results concerning
the failures in large-scale computers and point out the urgent need for drastic improvements or disruptive
approaches for fault tolerance in these systems; (2) we sketch most of the known opportunities and analyze
their associated limitations; (3) we extract and express the challenges that the HPC community will have to
face for addressing the stringent issue of failures in HPC systems.

28 Activity Report INRIA 2011

7. Partnerships and Cooperations

7.1. Regional, National and International Actions
7.1.1. Activities starting in 2009

• Franck Cappello, Co-Director of the INRIA - Illinois Joint Laboratory on PetaScale Computing,
since 2009

7.1.2. Other activities

• CALIFHA project (DIM Digiteo 2011): CALculations of Incompressible Fluid flows on Hetero-
geneous Architectures. Funding for a PhD student. Collaboration with LIMSI/CNRS. Participants:
Marc Baboulin (Principal Investigator), Joel Falcou, Yann Fraigneau (LIMSI), Laura Grigori, Olivier
Le Maître (LIMSI), Laurent Martin Witkowski (LIMSI).

• ANR SPADES Coordinated by LIP-ENS Lyon. (Sylvain Peyronnet, Franck Cappello, Ala
Rezmerita)

• Défi ANR SECSI Participant to this challenge. From September 2008 to August 2010. Managed by
the SAIC. (Thomas Hérault, Sylvain Peyronnet, Sébastien Tixeuil)

• ANR Cosinus project MIDAS - MIcrowave Data Analysis for petaScale computers Decem-
ber 2009 - December 2012 (http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/
index.html). Collaboration with APC, University Paris 7 and Lawrence Berkeley Laboratory. This is
an interdisciplinary project devised to bring together cosmologists, computational physicists, com-
puter scientists and applied mathematiciancs to face the challenge of the tremendous volume of data
as anticipated from current and forthcoming Cosmic Microwave Background (CMB) experiments.
(Laura Grigori, Coordinator for INRIA Saclay, F. Cappello, J. Falcou, T. Hérault, S. Peyronnet)

• ANR Cosinus project PETALh - PETascale ALgorithms for preconditioning for scientific ap-
plications January 2011- December 2012. Collaboration with Laboratoire Lions - Universite 6, IFP,
INRIA Bordeaux and CEA, UC Berkeley and Argonne. The goal is to investigate preconditioning
techniques on multicore architectures and apply them on real world applications from IFP, CEA and
Argonne. (Laura Grigori, Principal Investigator)

• Digiteo DIM-08 project X-Scale-NL – Scheduling and numerical libraries enabling scientific
applications on petascale machines 2008-2011. Funding for a Phd student and travel (114000
euros). Participants: Laura Grigori (Principal Investigator), F. Cappello (INRIA), T. Hérault, S.
Peyronnet (LRI) and two foreign collaborators: J. Demmel from UC Berkeley and J. Darbon from
UC Los Angeles.

• INRIA Associated Team "F-J Grid" with University of Tsukuba, head: Franck Cappello

• INRIA funding, MPI-V, collaboration with UTK, LALN and ANL, head: Franck Cappello

• ANR CIS Project FF2A3, 3 years (2007 - 2010), PI F. Hecht, subproject head L. Grigori

• HipCal, ANR CIS, 3 years (2006-2009), , Franck Cappello

7.2. International Initiatives
7.2.1. INRIA Associate Teams

• INRIA associated team COALA with Prof. J. Demmel, UC Berkeley, 2010-2013. This project
is proposed in the context of developing Communication Optimal Algorithms for Linear Algebra.
The funding covers visits in both directions. The following visits of PhD students took place in the
context of this associated team:

– Visit of A. Khabou to UC Berkeley (August 2011, for 1 month).

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/index.html
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/index.html

Project-Team GRAND-LARGE 29

– Visit of E. Carson and N. Knight from UC Berkeley to INRIA Saclay (July 2011, for 1
month).

– Visit of S. Donfack and A. Khabou to UC Berkeley (November 2010, for 1 month).

7.2.2. Visits of International Scientists

• Visit of E. Carson and N. Knight from UC Berkeley (July 2011, for 1 month, July 2011).

• Visit of Gary Howell from North Carolina State University, September 2011.

8. Dissemination

8.1. Animation of the scientific community
• Cédric Bastoul, Program Committee Member of the 3rd PARMA Workshop on Parallel Program-

ming and Run-time Management Techniques for Many-core Architectures (PARMA 2012).

• Cédric Bastoul, co-chair of the first International Workshop on Polyhedral Compilation Techniques
(IMPACT’2011).

• Cédric Bastoul, Program Committee Member of the 16th ACM International Conference on Com-
puting Frontiers (CF’2011).

• Laura Grigori, Member of Organizing Committee of 5th SIAM Workshop on Combinatorial Scien-
tific Computing (CSC).

• Laura Grigori, Member of Program Committee of IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2011.

9. Bibliography
Major publications by the team in recent years

[1] M. BABOULIN, D. BECKER, J. DONGARRA. A parallel tiled solver for dense symmetric indefinite systems on
multicore architectures, in "Proceedings of IPDPS 2012", 2012.

[2] M. BABOULIN, S. GRATTON. A contribution to the conditioning of the total least squares problem, in "SIAM
J. Matrix Anal. and Appl.", 2011, vol. 32, no 3, p. 685–699.

[3] R. BOLZE, F. CAPPELLO, E. CARON, M. J. DAYDÉ, F. DESPREZ, E. JEANNOT, Y. JÉGOU, S. LANTERI,
J. LEDUC, N. MELAB, G. MORNET, R. NAMYST, P. PRIMET, B. QUÉTIER, O. RICHARD, E.-G. TALBI,
T. IRENA. Grid’5000: a large scale and highly reconfigurable experimental Grid testbed., in "International
Journal of High Performance Computing Applications", November 2006, vol. 20, no 4, p. 481-494.

[4] A. BOUTEILLER, T. HÉRAULT, G. KRAWEZIK, P. LEMARINIER, F. CAPPELLO. MPICH-V Project: a
Multiprotocol Automatic Fault Tolerant MPI, in "International Journal of High Performance Computing
Applications", 2005, vol. 20, no 3, p. 319–333.

[5] F. CAPPELLO, S. DJILALI, G. FEDAK, T. HÉRAULT, F. MAGNIETTE, V. NÉRI, O. LODYGENSKY. Computing
on Large Scale Distributed Systems: XtremWeb Architecture, Programming Models, Security, Tests and
Convergence with Grid, in "FGCS Future Generation Computer Science", 2004.

30 Activity Report INRIA 2011

[6] J. W. DEMMEL, L. GRIGORI, M. HOEMMEN, J. LANGOU. Communication-optimal parallel and sequential
QR and LU factorizations, in "SIAM Journal on Scientific Computing", 2011, short version of technical report
UCB/EECS-2008-89 from 2008.

[7] G. FURSIN, Y. KASHNIKOV, A. MEMON, Z. CHAMSKI, O. TEMAM, M. NAMOLARU, E. YOM-TOV,
B. MENDELSON, A. ZAKS, E. COURTOIS, F. BODIN, P. BARNARD, E. ASHTON, E. BONILLA, J.
THOMSON, C. WILLIAMS, M. O’BOYLE. Milepost GCC: Machine Learning Enabled Self-tuning Compiler,
in "International Journal of Parallel Programming", 2011, vol. 39, p. 296-327, 10.1007/s10766-010-0161-2,
http://dx.doi.org/10.1007/s10766-010-0161-2.

[8] L. GRIGORI, J. DEMMEL, X. S. LI. Parallel Symbolic Factorization for Sparse LU Factorization with Static
Pivoting, in "SIAM Journal on Scientific Computing", 2007, vol. 29, no 3, p. 1289-1314.

[9] L. GRIGORI, J. DEMMEL, H. XIANG. Communication Avoiding Gaussian Elimination, in "Proceedings of the
ACM/IEEE SC08 Conference", 2008.

[10] T. HÉRAULT, R. LASSAIGNE, S. PEYRONNET. APMC 3.0: Approximate Verification of Discrete and
Continuous Time Markov Chains, in "Proceedings of the 3rd International Conference on the Quantitative
Evaluation of SysTems (QEST’06)", California, USA, September 2006.

[11] Q. NIU, L. GRIGORI, P. KUMAR, F. NATAF. Modified tangential frequency filtering decomposition and its
Fourier analysis, in "Numerische Mathematik", 2010, vol. 116, no 1, p. 123-148.

[12] S. TOMOV, J. DONGARRA, M. BABOULIN. Towards dense linear algebra for hybrid GPU accelerated
manycore systems, in "Parallel Computing", 2010, vol. 36, no 5&6, p. 232–240.

[13] B. WEI, G. FEDAK, F. CAPPELLO. Scheduling Independent Tasks Sharing Large Data Distributed with
BitTorrent, in "IEEE/ACM Grid’2005 workshop Seattle, USA", 2005.

Publications of the year
Articles in International Peer-Reviewed Journal

[14] J. BEAUQUIER, J. BURMAN, S. KUTTEN. A Self-stabilizing Transformer for Population Protocols with
Covering, in "Theoretical Computer Science", 2011 [DOI : 10.1016/J.TCS.2010.09.016], http://hal.inria.fr/
inria-00531379/en.

[15] A. DENISE, M.-C. GAUDEL, S.-D. GOURAUD, R. LASSAIGNE, J. OUDINET, S. PEYRONNET. Coverage-
biased random exploration of large models and application to testing, in "Software Tools for Technology
Transfer (STTT)", 2011, http://hal.inria.fr/inria-00560621/en.

[16] S. DOLEV, S. DUBOIS, M. GRADINARIU POTOP-BUTUCARU, S. TIXEUIL. Stabilizing data-link over
non-FIFO channels with optimal fault-resilience, in "Information Processing Letters", September 2011
[DOI : 10.1016/J.IPL.2011.06.010], http://hal.inria.fr/inria-00627760/en.

[17] S. DUBOIS, M. GRADINARIU POTOP-BUTUCARU, S. TIXEUIL. Dynamic FTSS in asynchronous systems:
The case of unison, in "Theoretical Computer Science", July 2011 [DOI : 10.1016/J.TCS.2011.02.012],
http://hal.inria.fr/inria-00627763/en.

http://dx.doi.org/10.1007/s10766-010-0161-2
http://hal.inria.fr/inria-00531379/en
http://hal.inria.fr/inria-00531379/en
http://hal.inria.fr/inria-00560621/en
http://hal.inria.fr/inria-00627760/en
http://hal.inria.fr/inria-00627763/en

Project-Team GRAND-LARGE 31

[18] S. DUBOIS, T. MASUZAWA, S. TIXEUIL. Bounding the Impact of Unbounded Attacks in Stabilization, in
"IEEE Transactions on Parallel and Distributed Systems", May 2011 [DOI : 10.1109/TPDS.2011.158],
http://hal.inria.fr/inria-00627746/en.

[19] G. FURSIN, Y. KASHNIKOV, A. MEMON, Z. CHAMSKI, O. TEMAM, M. NAMOLARU, E. YOM-TOV,
B. MENDELSON, A. ZAKS, E. COURTOIS, F. BODIN, P. BARNARD, E. ASHTON, E. BONILLA, J.
THOMSON, C. WILLIAMS, M. O’IBOYLE. Milepost GCC: Machine Learning Enabled Self-tuning Compiler,
in "International Journal of Parallel Programming", 2011, vol. 39, p. 296-327, 10.1007/s10766-010-0161-2,
http://dx.doi.org/10.1007/s10766-010-0161-2.

[20] L. GRIGORI, J. DEMMEL, H. XIANG. CALU: a communication optimal LU factorization algorithm, in
"SIAM Journal on Matrix Analysis and Applications", 2011, vol. 32, p. 1317-1350.

[21] S. LIU, C. EISENBEIS, J.-L. GAUDIOT. Value Prediction and Speculative Execution on GPU, in "International
Journal of Parallel Programming", 2011, vol. 39, no 5, p. 533-552.

[22] B. NICOLAE. On the Benefits of Transparent Compression for Cost-Effective Cloud Data Storage, in
"Transactions on Large-Scale Data- and Knowledge-Centered Systems", July 2011, vol. 3, p. 167-184
[DOI : 10.1007/978-3-642-23074-5], http://hal.inria.fr/inria-00613583/en.

Articles in Non Peer-Reviewed Journal

[23] V.-T. TRAN, B. NICOLAE, G. ANTONIU. Towards Scalable Array-Oriented Active Storage: the Pyramid
Approach, in "Operating Systems Review (OSR)", January 2012, http://hal.inria.fr/hal-00640900/en.

International Conferences with Proceedings

[24] N. ALON, H. ATTIYA, S. DUBOIS, S. DOLEV, M. GRADINARIU POTOP-BUTUCARU, S. TIXEUIL. Prag-
matic Self-Stabilization of Atomic Memory in Message-Passing Systems, in "13th International Symposium on
Stabilization, Safety, and Security of Distributed Systems", Grenoble, France, 2011, http://hal.inria.fr/inria-
00627780/en.

[25] Best Paper
M. BAHI, C. EISENBEIS. High Performance by Exploiting Information Locality through Reverse Computing,
in "23rd International Symposium on Computer Architecture and High Performance Computing - SBAC-
PAD’2011", Vitória, Espírito Santo, Brazil, October, 26-29 2011, Best Paper Award for the Architecture Track
and Júlio Salec Aude Award - Best Paper SBAC-PAD 2011.

[26] M. BAHI, C. EISENBEIS. Rematerialization-based register allocation through reverse computing, in "Pro-
ceedings of the 8th ACM International Conference on Computing Frontiers", New York, NY, USA, CF ’11,
ACM, 2011, p. 24:1–24:2, http://doi.acm.org/10.1145/2016604.2016632.

[27] J. BEAUQUIER, P. BLANCHARD, J. BURMAN, S. DELAËT. Computing Time Complexity of Population
Protocols with Cover Times - The ZebraNet Example, in "Stabilization, Safety, and Security of Distributed
Systems - 13th International Symposium, SSS 2011", Grenoble, France, 2011 [DOI : 10.1007/978-3-642-
24550-3_6], http://hal.inria.fr/hal-00639583/en.

http://hal.inria.fr/inria-00627746/en
http://dx.doi.org/10.1007/s10766-010-0161-2
http://hal.inria.fr/inria-00613583/en
http://hal.inria.fr/hal-00640900/en
http://hal.inria.fr/inria-00627780/en
http://hal.inria.fr/inria-00627780/en
http://doi.acm.org/10.1145/2016604.2016632
http://hal.inria.fr/hal-00639583/en

32 Activity Report INRIA 2011

[28] J. BEAUQUIER, J. BURMAN. Self-stabilizing Mutual Exclusion and Group Mutual Exclusion for Population
Protocols with Covering, in "15th International Conference On Principles Of Distributed Systems, OPODIS
2011", Toulouse, France, 2011, http://hal.inria.fr/hal-00639651/en.

[29] S. DOLEV, S. DUBOIS, M. POTOP-BUTUCARU, S. TIXEUIL. Communication Optimalement Stabilisante
sur Canaux non Fiables et non FIFO, in "13es Rencontres Francophones sur les Aspects Algorithmiques de
Télécommunications (AlgoTel)", Cap Estérel, France, 2011, http://hal.inria.fr/inria-00587089/en.

[30] S. DONFACK, L. GRIGORI, W. D. GROPP, V. KALE. Hybrid static/dynamic scheduling for already optimized
dense matrix factorization, in "IEEE International Parallel and Distributed Processing Symposium IPDPS",
2012.

[31] S. DUBOIS, T. MASUZAWA, S. TIXEUIL. Auto-Stabilisation et Confinement de Fautes Malicieuses :
Optimalité du Protocole min+1, in "13es Rencontres Francophones sur les Aspects Algorithmiques de
Télécommunications (AlgoTel)", Cap Estérel, France, 2011, http://hal.inria.fr/inria-00587517/en.

[32] S. DUBOIS, T. MASUZAWA, S. TIXEUIL. Maximum Metric Spanning Tree made Byzantine Tolerant, in "25th
International Symposium on Distributed Computing", Rome, Italy, 2011, http://hal.inria.fr/inria-00627777/en.

[33] B. NICOLAE, F. CAPPELLO, G. ANTONIU. Optimizing multi-deployment on clouds by means of self-
adaptive prefetching, in "Euro-Par ’11: Proceedings of the 17th International Euro-Par Conference on Parallel
Processing", Bordeaux, France, Springer Verlag., August 2011, To appear., http://hal.inria.fr/inria-00588637/
en.

[34] B. NICOLAE, F. CAPPELLO, G. ANTONIU. Optimizing multi-deployment on clouds by means of self-
adaptive prefetching, in "Euro-Par ’11: Proc. 17th International Euro-Par Conference on Parallel Processing",
Bordeaux, France, February 2011, p. 503-513 [DOI : 10.1007/978-3-642-23400-2_46], http://hal.inria.fr/
inria-00594406/en.

[35] B. NICOLAE, F. CAPPELLO. BlobCR: Efficient Checkpoint-Restart for HPC Applications on IaaS Clouds
using Virtual Disk Image Snapshots, in "SC’11: The 24th International Conference for High Performance
Computing, Networking, Storage and Analysis", Seattle, United States, May 2011, http://hal.inria.fr/inria-
00601865/en.

[36] J. OUDINET, A. DENISE, M.-C. GAUDEL, R. LASSAIGNE, S. PEYRONNET. Uniform Monte-Carlo Model
Checking, in "FASE 2011", Saarbrücken, Germany, 2011, http://hal.inria.fr/hal-00644834/en.

[37] L.-N. POUCHET, U. BONDHUGULA, C. BASTOUL, A. COHEN, J. RAMANUJAM, P. SADAYAPPAN,
N. VASILACHE. Loop Transformations: Convexity, Pruning and Optimization, in "38th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL’11)", Austin, TX, États-Unis, 2011,
http://hal.inria.fr/inria-00551077/PDF/PBBCRSV11-POPL.pdf.

[38] V.-T. TRAN, B. NICOLAE, G. ANTONIU, L. BOUGÉ. Pyramid: A large-scale array-oriented active storage
system, in "LADIS 2011: The 5th Workshop on Large Scale Distributed Systems and Middleware", Seattle,
United States, September 2011, http://hal.inria.fr/inria-00627665/en.

Scientific Books (or Scientific Book chapters)

http://hal.inria.fr/hal-00639651/en
http://hal.inria.fr/inria-00587089/en
http://hal.inria.fr/inria-00587517/en
http://hal.inria.fr/inria-00627777/en
http://hal.inria.fr/inria-00588637/en
http://hal.inria.fr/inria-00588637/en
http://hal.inria.fr/inria-00594406/en
http://hal.inria.fr/inria-00594406/en
http://hal.inria.fr/inria-00601865/en
http://hal.inria.fr/inria-00601865/en
http://hal.inria.fr/hal-00644834/en
http://hal.inria.fr/inria-00551077/PDF/PBBCRSV11-POPL.pdf
http://hal.inria.fr/inria-00627665/en

Project-Team GRAND-LARGE 33

[39] G. DOWEK, L. MOUNIER, F. QUESSETTE, A. RASSE, B. ROZOY. , G. DOWEK (editor)Langages de
programmation, dans Introduction à la science informatique, Repères pour agir, 2001, CRDP Paris, IGI
Global, 2011.

Research Reports

[40] M. BAHI, C. EISENBEIS. High Performance by Exploiting Information Locality through Reverse Computing,
August 2011, http://hal.inria.fr/inria-00615493/en.

[41] M. BAHI, C. EISENBEIS. Register Reverse Rematerialization, July 2011, http://hal.inria.fr/inria-00607323/en.

[42] F. CAPPELLO, M. JACQUELIN, L. MARCHAL, Y. ROBERT, M. SNIR. Comparing archival policies for Blue
Waters, INRIA, March 2011, no RR-7583, http://hal.inria.fr/inria-00580599/en.

[43] M. DORIER, G. ANTONIU, F. CAPPELLO, M. SNIR, L. ORF. Damaris: Leveraging Multicore Parallelism to
Mask I/O Jitter, INRIA, August 2011, no RR-7706, http://hal.inria.fr/inria-00614597/en.

[44] S. DUBOIS, T. MASUZAWA, S. TIXEUIL. Maximum Metric Spanning Tree made Byzantine Tolerant, April
2011, http://hal.inria.fr/inria-00589234/en.

[45] S. DUBOIS, T. MASUZAWA, S. TIXEUIL. Self-Stabilization, Byzantine Containment, and Maximizable
Metrics: Necessary Conditions, INRIA, March 2011, http://hal.inria.fr/inria-00577062/en.

[46] L. GRIGORI, F. NATAF. Generalized Filtering Decomposition, INRIA, March 2011, no RR-7569, http://hal.
inria.fr/inria-00576894/en.

[47] M. SZYDLARSKI, P. ESTERIE, J. FALCOU, L. GRIGORI, R. STOMPOR. Spherical harmonic transform on
heterogeneous architectures using hybrid programming, INRIA, April 2011, no RR-7635, http://hal.inria.fr/
inria-00597576/en.

Other Publications

[48] L. GRIGORI, F. NATAF. Generalized Filtering Decomposition, May 2011, Session 7, http://hal.inria.fr/inria-
00581744/en.

[49] P. HAVE, R. MASSON, F. NATAF, M. SZYDLARSKI, T. ZHAO. Algebraic Domain Decomposition Methods
for Highly Heterogeneous Problems, 2011, http://hal.inria.fr/hal-00611997/en.

References in notes

[50] K. AIDA, A. TAKEFUSA, H. NAKADA, S. MATSUOKA, S. SEKIGUCHI, U. NAGASHIMA. Performance
evaluation model for scheduling in a global computing system, in "International Journal of High Performance
Computing Applications", 2000, vol. 14, No. 3, p. 268-279, http://dx.doi.org/10.1177/109434200001400308.

[51] A. D. ALEXANDROV, M. IBEL, K. E. SCHAUSER, C. J. SCHEIMAN. SuperWeb: Research Issues in
JavaBased Global Computing, in "Concurrency: Practice and Experience", June 1997, vol. 9, no 6, p. 535–553.

[52] L. ALVISI, K. MARZULLO. Message Logging: Pessimistic, Optimistic and Causal, 2001, Proc. 15th Int’l
Conf. on Distributed Computing.

http://hal.inria.fr/inria-00615493/en
http://hal.inria.fr/inria-00607323/en
http://hal.inria.fr/inria-00580599/en
http://hal.inria.fr/inria-00614597/en
http://hal.inria.fr/inria-00589234/en
http://hal.inria.fr/inria-00577062/en
http://hal.inria.fr/inria-00576894/en
http://hal.inria.fr/inria-00576894/en
http://hal.inria.fr/inria-00597576/en
http://hal.inria.fr/inria-00597576/en
http://hal.inria.fr/inria-00581744/en
http://hal.inria.fr/inria-00581744/en
http://hal.inria.fr/hal-00611997/en
http://dx.doi.org/10.1177/109434200001400308

34 Activity Report INRIA 2011

[53] D. P. ANDERSON. BOINC, 2011, http://boinc.berkeley.edu/.

[54] M. BABOULIN, J. DONGARRA, J. HERRMANN, S. TOMOV. Accelerating linear system solutions using
randomization techniques, 2011, LAPACK Working Note 246.

[55] A. BARAK, O. LA’ADAN. The MOSIX multicomputer operating system for high performance cluster
computing, in "Future Generation Computer Systems", 1998, vol. 13, no 4–5, p. 361–372.

[56] A. BARATLOO, M. KARAUL, Z. M. KEDEM, P. WYCKOFF. Charlotte: Metacomputing on the Web, in
"Proceedings of the 9th International Conference on Parallel and Distributed Computing Systems (PDCS-
96)", 1996.

[57] J. BEAUQUIER, C. GENOLINI, S. KUTTEN. Optimal reactive k-stabilization: the case of mutual exclusion. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, may 1999.

[58] J. BEAUQUIER, T. HÉRAULT. Fault-Local Stabilization: the Shortest Path Tree., October 2002, Proceedings
of the 21th Symposium of Reliable Distributed Systems.

[59] D. BECKER, M. BABOULIN, J. DONGARRA. Reducing the amount of pivoting in symmetric indefinite systems,
2011, University of Tennessee Technical Report ICL-UT-11-06 and INRIA Research Report 7621, to appear in
the proceedings of 9th International Conference on Parallel Processing and Applied Mathematics, September
2011.

[60] G. BOSILCA, A. BOUTEILLER, F. CAPPELLO, S. DJILALI, G. FEDAK, C. GERMAIN, T. HÉRAULT, P.
LEMARINIER, O. LODYGENSKY, F. MAGNIETTE, V. NÉRI, A. SELIKHOV. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes, 2002, in IEEE/ACM SC 2002.

[61] A. BOUTEILLER, F. CAPPELLO, T. HÉRAULT, G. KRAWEZIK, P. LEMARINIER, F. MAGNIETTE. MPICH-
V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Message Logging, November
2003, in IEEE/ACM SC 2003.

[62] A. BOUTEILLER, P. LEMARINIER, G. KRAWEZIK, F. CAPPELLO. Coordinated Checkpoint versus Message
Log for fault tolerant MPI, December 2003, in IEEE Cluster.

[63] T. BRECHT, H. SANDHU, M. SHAN, J. TALBOT. ParaWeb: Towards World-Wide Supercomputing, in "Pro-
ceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications",
1996.

[64] R. BUYYA, M. MURSHED. GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing, Wiley Press, May 2002.

[65] N. CAMIEL, S. LONDON, N. NISAN, O. REGEV. The POPCORN Project: Distributed Computation over the
Internet in Java, in "Proceedings of the 6th International World Wide Web Conference", April 1997.

[66] H. CASANOVA. Simgrid: A Toolkit for the Simulation of Application Scheduling. In Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ’01), May 2001.

http://boinc.berkeley.edu/

Project-Team GRAND-LARGE 35

[67] K. M. CHANDY, L. LAMPORT. Distributed Snapshots: Determining Global States of Distr. systems., 1985,
ACM Trans. on Comp. Systems, 3(1):63–75.

[68] L. CHOY, S. G. PETITON, M. SATO. Resolution of large symmetric eigenproblems on a world wide grid, in
"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007)", Rio de Janeiro,
Brazil, IEEE Computer Society, May 2007, p. 301-308.

[69] L. CHOY, S. G. PETITON, M. SATO. Toward power-aware computing with dynamic voltage scaling for het-
erogeneous platforms, in "Sixth International Workshop on Algorithms, Models and Tools for Parallel Com-
puting on Heterogeneous Networks (HeteroPar) in conjunction with the 2007 IEEE International Conference
on Cluster Computing (Cluster07)", Austin, Texas USA, IEEE Computer Society Press, September 2007.

[70] B. O. CHRISTIANSEN, P. CAPPELLO, M. F. IONESCU, M. O. NEARY, K. E. SCHAUSER, D. WU. Javelin:
Internet-Based Parallel Computing Using Java, in "Concurrency: Practice and Experience", November 1997,
vol. 9, no 11, p. 1139–1160.

[71] S. DOLEV. Self-stabilization, 2000, M.I.T. Press.

[72] G. FEDAK, C. GERMAIN, V. NÉRI, F. CAPPELLO. XtremWeb: A Generic Global Computing System, in
"CCGRID’01: Proceedings of the 1st International Symposium on Cluster Computing and the Grid", IEEE
Computer Society, 2001, 582.

[73] I. FOSTER, A. IAMNITCHI. On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing, in
"2nd International Workshop on Peer-to-Peer Systems (IPTPS’03)", Berkeley, CA, February 2003.

[74] V. K. GARG. Principles of distributed computing, John Wiley and Sons, May 2002.

[75] C. GENOLINI, S. TIXEUIL. A lower bound on k-stabilization in asynchronous systems, October 2002,
Proceedings of the 21th Symposium of Reliable Distributed Systems.

[76] DOUGLAS P. GHORMLEY, D. PETROU, STEVEN H. RODRIGUES, AMIN M. VAHDAT, THOMAS E. ANDER-
SON. GLUnix: A Global Layer Unix for a Network of Workstations, in "Software Practice and Experience",
1998, vol. 28, no 9, p. 929–961.

[77] L. GRIGORI, J. DEMMEL, X. S. LI. Parallel Symbolic Factorization for Sparse LU Factorization with Static
Pivoting, in "SIAM Journal on Scientific Computing", 2007, vol. 29, no 3, p. 1289-1314.

[78] B. HUDZIA. Use of Multicast in P2P Network thought Integration in MPICH-V2, Master of Science Internship,
Pierre et Marie Curie University, September 2003.

[79] D. E. KEYES. A Science-based Case for Large Scale Simulation, Vol. 1, Office of Science, US Department of
Energy, Report Editor-in-Chief, July 30 2003.

[80] S. KUTTEN, B. PATT-SHAMIR. Stabilizing time-adaptive protocols. Theoretical Computer Science 220(1),
1999.

[81] S. KUTTEN, D. PELEG. Fault-local distributed mending. Journal of Algorithms 30(1), 1999.

36 Activity Report INRIA 2011

[82] N. LEIBOWITZ, M. RIPEANU, A. WIERZBICKI. Deconstructing the Kazaa Network, in "Proceedings of the
3rd IEEE Workshop on Internet Applications WIAPP’03", Santa Clara, CA, 2003.

[83] M. LITZKOW, M. LIVNY, M. MUTKA. Condor — A Hunter of Idle Workstations, in "Proceedings of the
Eighth Conference on Distributed Computing", San Jose, 1988.

[84] NANCY A. LYNCH. , M. KAUFMANN (editor)Distributed Algorithms, 1996.

[85] MESSAGE PASSING INTERFACE FORUM. MPI: A message passing interface standard, June 12 1995,
Technical report, University of Tennessee, Knoxville.

[86] N. MINAR, R. MURKHART, C. LANGTON, M. ASKENAZI. The Swarm Simulation System: A Toolkit for
Building Multi-Agent Simulations, 1996.

[87] H. PEDROSO, L. M. SILVA, J. G. SILVA. Web-Based Metacomputing with JET, in "Proceedings of the ACM",
1997.

[88] S. G. PETITON, L. CHOY. Eigenvalue Grid and Cluster Computations, Using Task Farming Computing
Paradigm and Data Persistency, in "SIAM conference on Computational Science & Engineering (CSE’07)",
Costa Mesa, California, USA, February 2007.

[89] B. QUÉTIER, M. JAN, F. CAPPELLO. One step further in large-scale evaluations: the V-DS environment,
INRIA, December 2007, no RR-6365, http://hal.inria.fr/inria-00189670.

[90] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, S. SHENKER. A Scalable Content Addressable
Network, in "Proceedings of ACM SIGCOMM 2001", 2001.

[91] A. ROWSTRON, P. DRUSCHEL. Pastry: Scalable, Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems, in "IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware)", 2001, p. 329–350.

[92] L. F. G. SARMENTA, S. HIRANO. Bayanihan: building and studying Web-based volunteer computing systems
using Java, in "Future Generation Computer Systems", 1999, vol. 15, no 5–6, p. 675–686.

[93] S. SAROIU, P. K. GUMMADI, S. D. GRIBBLE. A Measurement Study of Peer-to-Peer File Sharing Systems,
in "Proceedings of Multimedia Computing and Networking", San Jose, CA, USA, January 2002.

[94] J. F. SHOCH, J. A. HUPP. The Worm Programs: Early Experiences with Distributed Systems, in "Communi-
cations of the Association for Computing Machinery", March 1982, vol. 25, no 3.

[95] I. STOICA, R. MORRIS, D. KARGER, F. KAASHOEK, H. BALAKRISHNAN. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications, in "Proceedings of the 2001 ACM SIGCOMM Conference", 2001,
p. 149–160.

[96] G. TEL. Introduction to distributed algorithms, 2000, Cambridge University Press.

[97] Y.-M. WANG, W. K. FUCHS. Optimistic Message Logging for Independent Checkpointing in Message-
Passing Systems, 1992, Symposium on Reliable Distributed Systems.

http://hal.inria.fr/inria-00189670

Project-Team GRAND-LARGE 37

[98] Y. YI, T. PARK, H. Y. YEOM. A Causal Logging Scheme for Lazy Release Consistent Distributed Shared
Memory Systems, December 1998, In Proc. of the 1998 Int’l Conf. on Parallel and Distributed Systems.

[99] Y. ZHANG, G. BERGÈRE, S. G. PETITON. A parallel hybrid method of GMRES on Grid System, in "Workshop
on High Performance Grid Computing (HPGC’07), jointly published with IPDPS’07 proceedings", Long
Beach, California, USA, March 2007.

[100] B. Y. ZHAO, J. D. KUBIATOWICZ, A. D. JOSEPH. Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing, UC Berkeley, April 2001, no UCB/CSD-01-1141.

